大学 数学专业 空间解析几何第五章 非欧几何简介 PPT
几何的五大模型课件

特性 平行线永不相交。
欧几里得几何的应用
01
02
03
建筑学
欧几里得几何在建筑设计 中广泛应用,如确定建筑 物的位置、方向和尺寸等。
工程学
在机械工程、航空航天和 交通运输等领域,欧几里 得几何用于指导实际物体 的设计和制造。
日常生活
在日常生活中,人们常常 利用欧几里得几何知识解 决实际问题,如测量距离、 计算角度等。
定义
连续性
等价关系
不变性
拓扑几何是研究图形在 连续变形下保持不变的 性质和不变量的几何分支。
拓扑变换是连续的,不 改变图形的基本性质。
同胚的图形被视为等价, 具有相同的拓扑性质。
某些拓扑性质在连续变 形下保持不变。
拓扑几何的应用
网络分析
拓扑几何用于分析网络结构,如 社交网络、互联网等。
数据可视化
通过拓扑结构表示复杂数据,帮 助理解数据内在关系。
欧几里得几何的局限性
现实世界的复杂性
欧几里得几何在描述现实世界的一些 现象时存在局限性,如弯曲的空间、 微观粒子的运动等。
非绝对性
无法解释某些自然现象
在解释一些自然现象,如地壳运动、 电磁波传播等方面,欧几里得几何显 得力不从心。
欧几里得几何基于一些假设和公理, 其绝对性和客观性存在争议。
CHAPTER
对初学者的挑战
解析几何需要较高的数学基础和思 维能力,对于初学者来说可能存在 学习难度。CHAPTER定来自与特性微分几何模型的定 义
微分几何模型是一种使用微积分和线 性代数工具来研究形状、曲线和曲面 几何特性的数学模型。
微分几何模型的特性
微分几何模型强调局部性质,通过研 究曲线和曲面的切线、法线、曲率等 局部几何量来描述物体的形状和运动 规律。
数学中的非欧几何与应用知识点

数学中的非欧几何与应用知识点数学作为一门学科,其中的几何学一直以来都是研究空间、形状和变换的重要分支。
而欧几里得几何作为传统几何学的基础,主要研究了平面和空间中的几何关系和性质。
然而,19世纪的数学家们通过对平行公设的思考和推翻,引入了非欧几何的概念,开辟了几何学的新篇章。
本文将介绍非欧几何的概念、基本理论和应用知识点。
一、非欧几何的概念和分类非欧几何是与欧几里得几何相对应的一个几何学分支,它不满足欧几里得几何中的平行公设。
根据非欧几何的不同特性,可以将其分为以下两种类型:1. 椭圆几何椭圆几何是一种非欧几何,其中的平行公设被取否定,即不存在平行线。
相反,任意两条直线在某一点处相交。
椭圆几何主要研究了曲率为正的几何空间,如球面。
2. 双曲几何双曲几何也是一种非欧几何,其中的平行公设被替换为双曲公设,即通过一点外一直线的平行线可以有无数条。
相比于椭圆几何,双曲几何研究的是曲率为负的几何空间。
二、非欧几何的基础理论非欧几何的基础理论包括非欧空间、非欧几何公设和非欧运动等。
1. 非欧空间非欧空间,也称为开平面,是非欧几何的基础。
它是一个无穷大的平面空间,没有边界和界限。
在非欧空间中,平行线不再存在,给几何学带来了全新的视角。
2. 非欧几何公设非欧几何的公设与欧几里得几何不同。
非欧几何中的公设包括反证法、证明方法和平行公设的改变等。
其中最为重要的是改变平行公设,也是区分椭圆几何和双曲几何的关键因素。
3. 非欧运动非欧运动是指在非欧几何中的刚体运动。
在椭圆几何和双曲几何中,刚体在空间中的平移、旋转和翻转等运动被重新定义,不再满足欧几里得几何中的性质。
三、非欧几何的应用知识点非欧几何在现实生活中有着广泛的应用,特别是在相对论、地理学和计算机图形学等领域。
1. 相对论相对论是物理学中的一项重要理论,其中的时空观念受到了非欧几何的影响。
爱因斯坦的相对论通过引入非欧几何的概念,重新定义了时空的结构,改变了传统的欧几里得空间观念,从而对现代物理学产生了深远影响。
大学课程《高等数学》PPT课件:6-1 空间解析几何简介

例1 求点 M 2,1, 1 到 y轴的距离.
解 :过点 M 做 y 轴的垂线,其垂足点 P 的坐标
为 0,1,0 ,所以
MP 2 02 112 1 02 5
例2 设动点 M 与两定点 P1 1, 2,1,P2 2,1, 2 等距
离,求动点M 的轨迹.
解 :设动点 M x, y, z ,因为 P1M P2M ,所以
(2)已知方程 F x, y, z 0,研究此方程所表
示的曲面形状.
例3 求球心在点 M0 x0, y0, z0 、半径为 R 的球面方程. 解 设 M x, y, z 是球面上任一点(见图),
则有 M0M R,由两点间距离 公式得 :
x x0 2 y y0 2 z z0 2 R
本节先简要介绍空间解析几何的有关内容。
第六章
空间解析几何简介
一、空间直角坐标系 二、空间曲面及其方程 三、空间曲线及其方程
在空间任意选取一定点 O ,过点 O 做三条互相垂直
的以点 O 为原点的数轴,依次记为 x 轴(横轴)、y 轴
(纵轴)、z 轴(竖轴),统称为坐标轴. 它们的顺序按下
述右手规则确定:以右手握住 z 轴,让右手的四个手
含有三个坐标轴正半轴的那个卦限叫做第 I 卦限,
其他第 II、第 III 、第 IV 卦限在 xOy 平面的上方,按 逆时针方向确定. 第 I 、II 、III 、IV 卦限下面的空间
部分,分别称为第 V、V、V、V 卦限(见图).
设 M 为空间任意点,过该点分别
做垂直于 三坐标轴的平面, 与坐标轴
二次曲面
我们把三元二次方程 F (x, y, z) 0所表示的曲
面称为二次曲面. 而把平面称为一次曲面.
《大学数学解析几何》PPT课件

➢笛卡尔的解析几何有两个基本思想: (1)用有序数对表示点的坐标; (2)把互相关联的两个未知数的代数方程,看成平面上的一 条曲线。
Back
四、学习要求
1、课前预习. 2、课上认真听讲,积极思考,记好笔记. 3、课后及时复习,独立认真地完成作业. 4、课外适当阅读课外参考书,拓宽知识面,加深对课本内 容的理解.
Back
五、考核方式及成绩评定
考核方式:闭卷考试 总评成绩=平时成绩×30%
+期末考试成绩70%
《解析几何》
-Chapter 1
Back
3.解析几何创立的意义
➢ 笛卡尔和费马创立解析几何,在数学史上具有划时代的意义。
➢解析几何沟通了数学内数与形、代数与几何等最基本对象之间 的联系,从此,代数与几何这两门学科互相吸取营养而得到迅速 发展,并结合产生出许多新的学科,近代数学便很快发展起来了。
➢恩格斯高度评价了笛卡尔的革新思想。他说:“数学中的转折 点是笛卡儿的变数。有了变数,运动进入了数学;有了变数,辩 证法进入了数学;有了变数,微分和积分也就立刻成为必要的 了。”
关于解析几何产生的历史,可以查阅数学史方面的 书,例 如李文林的《数学史概论》(高等教育出版社),或 上网查阅 查关的内容,网址:
/2/22/07/0641.htm
Back
二、本课程的主要内容及基本要求
本课程在中学平面向量和平面解析几何的基础上,进一步 学习空间向量和空间解析几何。主要内容有:
《空间解析几何简介》PPT课件

.
7
首页 上页 下页
四川水利职业技术学院
7(补充) 空间解析几何简介
例2 作z = d (d为常数)的图形.
解 A x B y C zD 0
A0,B0,C 1.
z
d
o
x
y
.
8
首页 上页 下页
四川水利职业技术学院
7(补充) 空间解析几何简介
例3 求球心在点
,半径为R的球面方程.
M0(x0, y0,z0)
.
9
首页 上页 下页
四川水利职业技术学院
7(补充) 空间解析几何简介
例4 作 x2y2R2的 图 形 .
解
z
x2 y2 R2
o y
x
.
10
首页 上页 下页
四川水利职业技术学院
7(补充) 空间解析几何简介
例5 作 zx2y2的 图 形 .
解
z
z x2 y2
x2 y2 0 zx2y2在xoy面的上方,
2. 空间曲面与方程
定义 如果曲面S上任意一点的坐标都满足方程F(x,y,z)=0, 不在曲面S上的点的坐标都不满足F(x,y,z)=0,则称方程 F(x,y,z)=0为曲面S的方程,而曲面S称为方程F(x,y,z)=0的图 形.
.
6
首页 上页 下页
四川水利职业技术学院
7(补充) 空间解析几何简介
z
o x
y
.
14
首页 上页 下页
四川水利职业技术学院
7(补充) 空间解析几何简介
(5) 抛物面 x2 y2 z(p、q同号)
2p 2q
z
z
o y
x
xo
欧氏几何与非欧几何(修订版)

欧氏几何与非欧几何整个欧氏几何的理论大厦,建筑在5 条几何公理( 公设) 的基础之上,这5 条公理是:(1) 从任一点到另外一点能作一条直线( 简言之,即通过任意两点可作一条直线) ;(2) 任何一条有限直线可以沿着直线不断延长;(3) 以任意一点为中心,任一距离为半径能作一圆;(4) 凡直角皆相等;(5) 若一条直线与两直线相交,在同侧的两个内角之和小于两直角,那么不加限制地延长这两条直线,必在该侧相交于一点.前四条公理都十分简明,容易为人们经验所检验.而第五条( 称“第 5 公设”) 却显得冗长繁琐,不易检验.历代都有人想把它当作定理由其他4 条公理推证出来,从而将它排除在公理之外.其结果虽然都归于失败,但却推得若干与它等价的命题,其中Playfair(1748 —1819) 提出的等价命题最为著名:过一点能作一条且只能作一条直线,平行于给定的直线.不少教科书( 包括我国现行中学几何课本) 都用它来代替第 5 公设,并把它称为“平行公理”或“欧几里得公理”,因为它反映了欧氏几何的本质特征.长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。
有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。
也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。
因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。
由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?罗巴切夫斯基是从1815—1816年着手研究第五公设问题的.到1826年2月23日于喀山大学物理数学系学术会议上首次宣读自己新几何学的论文——《简要叙述平行线公理的一个严格证明》,前后经过了十年艰苦的努力.开始,他像其他所有研究者一样,也试图给出第五公设的证明,但不久就意识到这是徒劳的,对于第五公设,“至今没能找到它的严格证明,以往给出的任何一种证明,只能是一种说明,而不配称做是真正意义下的数学证明”。
欧氏几何与非欧几何

欧氏几何欧几里得几何学,简称欧氏几何,主要是以欧几里得平行公理为基础的几何学。
欧几里得他把当代希腊数学家积累的几何知识和逻辑推理的思想方法加以系统化,初步奠定了几何学的逻辑结构的基础。
19世纪末期,德国数学家希尔伯特于1899年发表了著名的著作《几何基础》,书中提出了一个欧几里得几何的完整的公理体系。
从此人们把满足希尔伯特公理系统中的结合公理、顺序公理、合同公理、平行公理、连续公理等五组公理以及由其导出的一切推论组成的几何学叫做欧几里得几何学。
特别指出的是,平行公理在欧几里得几何中有着很重要的作用。
凡与平行公理有关的命题,都是欧几里得几何学的结论。
如三角形三条高线共点;过不共线的三点恒有一圆;任何三角形三内角之和等于180°;存在相似形;勾股定理成立。
1872年,德国数学家克莱茵在爱尔朗根大学提出著名的“爱尔朗根计划书”,明确了采用几何变换对各种几何进行分类。
指出,如果一种几何变换,它的全体组成一个“群”,就相应有一种几何学。
在每一种几何中主要研究在相应的变换下的不变性和不变量。
根据这种观点,欧几里得几何学就是研究图形在合同变换下(或在运动变换下)不变的科学。
欧几里得著有《几何原本》一书,该书共13卷,除第5、7、8、9、10卷是用几何方法讲述比例和算术理论以外,其他各卷都是论述几何问题的。
《几何原本》共有23个定义,5条公设,5条公理,他力图把几何学建立在这些原始的定义、公理和公设的基础上,然后以这些显然的假设为依据推证出体系里的一切定理。
在第1卷开始他首先提出23个定义,前6个定义是:①点没有大小;②线有长度没有宽度; ③线的界是点;④直线上的点是同样放置的;⑤面只有长度和宽度;⑥面的界是线。
在定义之后,有5个公设:①从任意点到另一点可以引直线;②有限直线可以无限延长;③以任意点为圆心,可用任意半径作圆;④所有直角都相等;⑤如果两条直线与另一条直线相交,所成的同侧内角的和小于两直角,那么这两条直线在这一侧必相交。
非欧几何

罗巴切夫斯基定理
欧式几何: 同一直线的垂线和斜线相 交。 垂直于同一直线的两条直 线互相平行。 存在相似的多边形。 过不在同一直线上的三点 可以做且仅能做一个圆。 罗氏几何: 同一直线的垂线和斜线不 一定相交。 垂直于同一直线的两条直 线,当两端延长的时候, 离散到无穷。 不存在相似的多边形。 过不在同一直线上的三点, 不一定能做一个圆。
黎曼几何
黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论 几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了 几何学的一片新的广阔领域。黎曼几何中的一条基本规定是:在同一 平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行 线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有 限的。黎曼几何的模型是一个经过适当“改进”的球面。近代黎曼几 何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相 对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了 关于时空均匀性的观念,他认为时空只是在充分小的空间里以一种近 似性而均匀的,但是整个时空却是不均匀的。在物理学中的这种解释, 恰恰是和黎曼几何的观念是相似的。 此外,黎曼几何在数学中也是一个重要的工具。它不仅是微分几何的 基础,也应用在微分方程、变分法和复变函数论等方面。
非欧几何的发展
19世纪70年代以后,意大利数学家贝尔特拉米、 德国数学家克莱因和法国数学家庞加莱等人先后 在欧几里得空间中给出了非欧几何的直观模型, 从而揭示出非欧几何的现实意义。至此,非欧几 何才真正获得了广泛的理解。罗巴切夫斯基的独 创性研究也就由此得到学术界的高度评价和一致 赞美,他本人则被人们赞誉为“几何学中的哥白 尼”。
C.F. Gauss是 德国著名数学家、物理 学家、天文学家、大地测量学家。他有 数学王子的美誉,并被誉为历史上最伟 大的数学家之一 。高斯从小表现出了 很高的数学天赋,据载他9岁时,用很 短的时间计算出了小学老师布置的任务: 对自然数从1到100的求和。但是据更 为精细的数学史书记载,高斯所解的并 不止1加到100那么简单,而是 81297+81495+......+100899(公差198, 项数100)的一个等差数列。
《高等数学课件——空间解析几何》

向量的线性运算与性质
向量加法与减法
深入研究向量的加法和减法 的运算规则,以及它们的几 何意义和应用。
数量积及其性质
了解向量的数量积的定义和 性质,并掌握数量积在解析 几何中的应用方法。
向量积及其性质
探索向量的向量积的定义和 性质,解析向量积的几何意 义与特点。
平面的法向量及其方程
平面的法向量
平面的方程
了解平面的法向量的概念与性质, 进一步理解法向量在平面方程中 的运用与解读。
通过法向量和已知点的坐标,求 解平面的方程,应用平面方程解 决实际问题。
平面的位置关系
分析不同平面之间的位置关系, 如相交、平行、重合等,加深对 平面的理解。
直线的方向向量及其方程
1 直线的方向向量
学习直线的方向向量的定义 和性质,以及与直线垂直的 向量的特征。
3
线平行或垂直于面
深入研究直线与平面之间的位置关系,如直线平行于面、直线垂直于面等情况。
点到直线的距离及其计算
点到直线的垂直距离
学习如何计算点到直线的垂直距 离,以及求解点到直线的最短距 离的方法。
点到直线的最近点
探究如何确定点到直线的最近点 的坐标,加深对点到直线距离的 理解。
点到直线的垂线段
了解点到直线的垂线段和与之相 关的几何特征,应用垂线段解决 问题。
探讨点在直线上的性质与条件, 进一步发掘点的坐标与直线的关 联。
向量的概念和表示方法
1 向量的定义
2 向量的表示
准确把握向量的概念和基本 性质,以及它在空间解析几 何中的重要作用。
3 向量的数量特征
学习向量的表示方法,包括 点表示、坐标表示和运算表 示等,加深对向量概念的理 解。
探索向量的模、方向和共线性的性质,并应用于解决空间几何问题。
空间解析几何平面ppt课件

返回
微积分
第五章 向量代数与空间解析几何
P ( a , 0 , 0 ) x ,y ,z 例 4设 平 面 与 三 轴 分 别 交 于 、
Q ( 0 , b , 0 ) R ( 0 , 0 , c ) a 0 b 0 c 0 、 ( 其 中 , , ) ,
求 此 平 面 方 程 .
解
设平面为 Ax By Cz D 0 ,
例 1 求 过 点 A ( 1 , 1 , 1 ) 且 垂 直 于 点 A 的 向 径 O A 的 平 面 方 程 。
例 2 求 过 点 M ( 1 , 1 , 1 ) , M ( 2 , 2 , 2 ) , M ( 1 , 1 , 2 ) 1 2 3 的 平 面 方 程 。
abc返回第五章向量代数与空间解析几何微积分返回第五章向量代数与空间解析几何微积分ax将三点坐标代入得返回第五章向量代数与空间解析几何微积分平面的截距式方程x轴上截距轴上截距z轴上截距返回第五章向量代数与空间解析几何微积分定义通常取锐角三两平面的夹角返回第五章向量代数与空间解析几何微积分两平面夹角余弦公式两平面位置特征
M ( 1 , 1 , 0 ) ( 1 , 1 , 0 ) 1M 2
两平面平行但不重合.
2 1 1 (3) , 4 2 2 两平面平行 M ( 1 , 1 , 0 ) M ( 1 , 1 , 0 ) 1 2
两平面重合.
返回
微积分
类似地可讨论 A 情形. C 0 , B C 0
返回
微积分
第五章 向量代数与空间解析几何
例 3 求 过 z 轴 和 点 A ( 1 , 1 , 1 ) 的 平 面 方 程 。
《空间解析几何》课件

THANKS
感谢观看
通过参数方程表示曲面的形式,如x = x(u, v),y = y(u, v),z = z(u, v)。
曲面方程
表示三维空间中曲面的方程形式,如z = f(x, y)。
空间曲线的方程
1 2
参数曲线
通过参数方程表示曲线的形式,如x = x(t),y = y(t),z = z(t)。
空间曲线
表示三维空间中曲线的方程形式,如F(x, y, z) = 0。
空间解析几何的应用领域
总结词
空间解析几何在许多领域都有广泛的应用。
详细描述
在物理学中,空间解析几何用于描述物理现象的空间关系,如力学、电磁学和光学等领 域。在计算机图形学中,空间解析几何用于建模和渲染三维场景。在工程学中,空间解 析几何用于设计和分析机械、建筑和航空航天等领域中的物体和结构。此外,空间解析
03
空间平面与直线
空间平面的方程
平面方程的基本形式
Ax + By + Cz + D = 0
特殊平面
平行于坐标轴的平面、过原点的平面、与坐标轴垂直的平面
参数方程
当平面过某一定点时,可以用参数方程表示平面的方程
空间直线的方程
直线方程的基本形式
Ax + By + Cz = 0
特殊直线
与坐标轴平行的直线、过原点的直线、与坐标轴垂直的直线
利用代数方法,如向量运算、线性代数等, 求解空间几何问题。
几何意义
将代数解转化为几何意义,解释其实际意义 。
如何理解空间几何中的概念?
向量的概念
理解向量的表示、向量的加法、数乘以及向量的模 等基本概念。
大学 数学专业 空间解析几何第五章 非欧几何简介 PPT

19世纪初,俄罗斯人罗巴切夫斯 基在否定第五公理的同时,假设其 反面之一:“过已知直线外一点, 可作多于一条的直线与已知直线平 行”,得到了一系列定理,并且认 为他得到了一门新的几何学。这是 过去2000年以来的重大突破。
π(α)
罗巴切夫斯基1826年2月11日宣布 自己建立了新的几何学之后,得到 了许多数学大家的嘲笑、讽刺,德 国诗人歌德也出来讽刺他。实际上, 罗巴切夫斯基的理论得到世界的认 可是在他去世几十年后的事了.
欧氏几何
欧氏几何在公元前300年就已产生。 欧几里德在他的名著《几何原本》中,以5 个基本假设为基础,把当时人类已经掌握的纷杂 的几何知识变成一个演绎系统,使用逻辑推理方 法,一共推出了465个定埋。 这个系统所依据的只是几个虽然没有加以证 明,但是看起来相当明显,并且合乎人类经验的 假设。这几个“不证自明”的事实叫做公理 (axioms)。
1854年黎曼(德, 1826-1866)《关于 几何基础的假设》
(黎曼非欧几何)
(罗氏几何)
(欧氏几何)
椭圆几何 双曲几何 抛物几何
A+B+C=π
第五平行公理的研究(公元前3世纪至1800年)
欧几里得
普莱菲尔(苏格兰, 1748-1819) 勒让德(法, 1752-1833)
平行公理
A
这个平行公理在所有公理之中是最不明显的, 所以数学家或是对数学有兴趣的人便想从其他的 公理去推得平行公理。 而这努力延持了两千年, 后来证明这是不可能的,于是有了非欧几何学的 发现,这在人类思想史上是非常特别、有意思的 事实,是西方数学和中国数学不同的地方。
这五个公理是
1. 两点间必可连一条直线; 2. 直线可以任意延长; 3. 已知圆心及半径可作一圆; 4. 凡直角皆相等;
非欧几何PPt

2012-6-1
6
高斯的生平
C.F,Gauss 是德国著名数学家、物理 学家、天文学家、大地测量学家。他有 数学王子的美誉,并被誉为历史上最伟 大的数学家天赋,据载他9岁时,用很 短的时间计算出了小学老师布置的任务: 对自然数从1到100的求和。但是据更 为精细的数学史书记载,高斯所解的并 不止1架到100那么简单,而是 81297+81095+….+100899(公差198, 项数100)的一个等差数列。
3
非欧几何的诞生
欧几里得第五公理是说:过已知直线外 一点,有且只有一条直线与已知直线平 行。 19世纪初,俄罗斯人罗巴切夫斯基在 否定第五公理的同时,假设其反面之一: “过已知直线外一点,可作多于一条的 直线与已知直线平行”,得到了一系列 定理,并且认为他得到了一门新的几何 学。这是过去2000年以来的重大突破。
非欧几何
2012-6-1
1
非欧几里得几何
Non-Euclidean geometry 非欧几里 得几何是一门大的数学分支,一般来讲, 它有广义、狭义、通常意义这三个方面 的不同含义。所谓广义是泛指一切和欧 几里得几何不同的几何学,狭义的非欧 几何只是指罗氏几何,至于通常意义的 非欧几何,就是指罗氏几何和黎曼几何 这两种几何。
2012-6-1
2
非欧几何的诞生
最先认识到非欧几何是一种逻辑上相容 并且可以描述物质空间、像欧式几何一 样正确的新几何学的是高斯。但是高斯 害怕这种理论会遭到当时教会力量的打 击和迫害不敢公开发表了自己的看法, 也是在书信中向自己的看法,也不敢站 出来公开支持罗巴切夫斯基、鲍耶他们 的新理论。
2012-6-1
2012-6-1 7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19世纪初,俄罗斯人罗巴切夫斯 基在否定第五公理的同时,假设其 反面之一:“过已知直线外一点, 可作多于一条的直线与已知直线平 行”,得到了一系列定理,并且认 为他得到了一门新的几何学。这是 过去2000年以来的重大突破。
π(α)
罗巴切夫斯基1826年2月11日宣布 自己建立了新的几何学之后,得到 了许多数学大家的嘲笑、讽刺,德 国诗人歌德也出来讽刺他。实际上, 罗巴切夫斯基的理论得到世界的认 可是在他去世几十年后的事了.
平行公理通常以如下的等价形式出现:过直线 外一点有唯一的一条直线与其平行。所谓平行就是 永不相交的意思,这就牵涉到“无穷”——一个不 很自明、无法亲身经验到的观念。 欧几里得不采取 后一种形式的平行公理,也许也是要使平行公理显 得更自明的缘故。
其中第五公理是说:过已知直线外 一点,可作一条也只可作一条直线 与已知直线平行。
A+B+C=π
第五平行公理的研究(公元前3世纪至1800年)
欧பைடு நூலகம்里得
普莱菲尔(苏格兰, 1748-1819) 勒让德(法, 1752-1833)
平行公理
A
这个平行公理在所有公理之中是最不明显的, 所以数学家或是对数学有兴趣的人便想从其他的 公理去推得平行公理。 而这努力延持了两千年, 后来证明这是不可能的,于是有了非欧几何学的 发现,这在人类思想史上是非常特别、有意思的 事实,是西方数学和中国数学不同的地方。
非欧几何的其他发明人
高斯是最先认识到非欧几何是 一种逻辑上相容并且可以描 述物质空间,像欧氏几何一样 正确的新几何,但他未发表过 任何有关非欧几何的论著,主 要是担心世俗的攻击.
另一位对非欧几何有研究的是 匈牙利青年波约,
在罗氏几何产生后的1854年,德国 数学家黎曼把欧氏第五公理改为: “过已知直线外一点,没有与其平 行之直线”,得到的一种新的几何 学——黎曼非欧几何,为非欧几何 的另一翼。
欧氏几何
欧氏几何在公元前300年就已产生。 欧几里德在他的名著《几何原本》中,以5 个基本假设为基础,把当时人类已经掌握的纷杂 的几何知识变成一个演绎系统,使用逻辑推理方 法,一共推出了465个定埋。 这个系统所依据的只是几个虽然没有加以证 明,但是看起来相当明显,并且合乎人类经验的 假设。这几个“不证自明”的事实叫做公理 (axioms)。
这五个公理是
1. 两点间必可连一条直线; 2. 直线可以任意延长; 3. 已知圆心及半径可作一圆; 4. 凡直角皆相等;
5. 两直线 AB,CD 与另一直线交于 E,F, 若 BEF EFD ,则两直线在 BD 侧相交。
A
E
B
C
F
D
平行公理
第五个公理就是有名的平行公理。 它不像前 面的四个公理那么自明,亦即那么简单明了,那么 众所公认。 虽然前人并不怀疑欧氏几何描述物理空 间的真实性,但从有《原本》开始,大家就怀疑平 行公理是否可以由其他的四个公理推出,或者可以 用另一个更自明的公理来代替。
高等院校本科数学课程
大 学 数 学(一)
—— 空间解析几何
第十五讲 非欧几何简介
脚本编写:
教案制作:
非欧几何
1893年,在喀山大学树立起了世界上第
一个为数学家雕塑的塑像。这位数学家 就是俄国的伟大学者、非欧几何的重要 创始人——罗巴切夫期基。罗巴切夫斯 基(Lobachevsky/Lobachevskii) (1792年12月1日—1856年2月24日), 俄罗斯数学家,非欧几何的早期发现人 之一。
1854年黎曼(德, 1826-1866)《关于 几何基础的假设》
(黎曼非欧几何)
(罗氏几何)
(欧氏几何)
椭圆几何 双曲几何 抛物几何