高等数学--隐函数的求导法则

合集下载

高等数学---隐函数

高等数学---隐函数
3. 参数方程求导法 转化 极坐标方程求导
求高阶导数时,从低到高每次都用参数方程求导公式
4. 相关变化率问题 列出依赖于 t 的相关变量关系式
对 t 求导
相关变化率之间的关系式
再求速度方向 (即轨迹的切线方向):
设 为切线倾角, 则
抛射体轨迹的参数方程
速度的水平分量 速度的方向
垂直分量
在刚射出 (即 t = 0 )时, 倾角为
达到最高点的时刻
高度
落地时刻
抛射最远距离
例6. 设由方程
确定函数

解: 方程组两边对 t 求导 , 得

三、相关变化率
为两可导函数
之间有联系
之间也有联系
可用对数求导法求导 :
注意: 按指数函数求导公式 按幂函数求导公式
2) 有些显函数用对数求导法求导很方便 . 例如,
两边取对数
两边对 x 求导
又如,
两边取对数 对 x 求导
二、由参数方程确定的函数的导数
若参数方程
可确定一个 y 与 x 之间的函数
关系,
可导, 且

时, 有
时, 有
(此时看成 x 是 y 的函数 )
若上述参数方程中 则由它确定的函数
利用新的参数方程
二阶可导, 且
可求二阶导数 .
,可得
注意 : 已知
?
例4. 设
,且

解: 练习: P109 题8(1) 解:
例5. 抛射体运动轨迹的参数方程为
求抛射体在时刻 t 的运动速度的大小和方向. 解: 先求速 度大小:
速度的水平分量为
Байду номын сангаас垂直分量为
故抛射体速度大小

高等数学-隐函数的求导法则

高等数学-隐函数的求导法则

第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂ 22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = d e ()0,0,1d cos x yx y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF zy F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,将上式两端分别对x 和y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于是得x z F z x F ∂=-∂, y zF zy F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z xz z z ∂-+-+∂-+∂-===∂---. 二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数22y x yu +=,22y x x v +=. 事实上,0xu yv -=u y x v =1=⋅+u yx x yu 22y x yu +=, 2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,. 它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvxv u v u v F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y vu v uv F F G G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数xu ∂∂,x v ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数yu ∂∂,y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x∂∂,uy ∂∂和v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂和vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂和vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂. .。

高等数学@9.5隐函数的求导法则

高等数学@9.5隐函数的求导法则

x x
x 2 z
2z x 2

(2 z) x z x
(2 z)2
(2 z) x x

2 z (2 z)2
(2 z)2 x2 (2 z)3 .
例3 设 x =x(y,z)、 y =y(x,z)、 z =z(x,y) 都是由方程 F(x,y,z)=0所确定的具有连续偏导数的函数,
Fz
y) z
x z x
x
y
z y


z Fz

y ( y) zz
Fz
zFz Fz
z
练习题
1.求方程 z3 3xyz a3 确定隐函数z=z(x,y) 的偏导数
2. 设 z=z(x,y) 是由方程 f (x+y, y+z, z+x)=0
所确定的隐函数,求 z , z x y
解 设 F x y z, G x2 y2 z2 1
Fx 1, Fy 1, Fz 1, Gx 2x, Gy 2 y, Gz 2z,
J
Fx Gx
Fy Gy
1
2x
1 2y
2( y x)
dx 1 Fz dz J Gz
Fy Gy
11 J 2z
F dx F dy F dz 0, x y z
则方程F(x,y,z)=0在该邻域 内恒能唯 0,
连续且具有连续偏导数的
dz Fx dx Fy dy
函数 z = f (x, y)它满足条件
Fz
Fz
z0=f(x0, y0), 并有
1 J
x y
u v


vx x2

高等数学隐函数的求导公式

高等数学隐函数的求导公式

3
隐函数的求导公式
隐函数存在定理1 设二元函数 F ( x, y)在点 P( x0 , y0 )的某一邻域内满足:
(1) 具有连续偏导数;
(2) F ( x0 , y0 ) 0; (3)Fy ( x0, y0 ) 0, 则方程 F ( x, y) 0在点 P( x0 , y0 )的某一邻域内 恒能唯一确定一个连续且具有连续导数的函数
9
隐函数的求导公式
z Fx , x Fz
z Fy y Fz

已知 x2 a2

y2 b2

z2 c2

1,
求 z , z 及 2z . x y xy

令 F(x,
y, z)
x2 a2

y2 b2

z2 c2
1

Fx

2x a2
,
2y Fy b2 ,
2z Fz c2
z2


c2[
x ( a2z2
c2 y b2z
)]
c4 xy a2b2z3
注 对复合函数求高阶偏导数时, 需注意:
导函数仍是复合函数. 故对导函数再求偏导数时,
仍需用复合函数求导的方法.
11
隐函数的求导公式

设有隐函数
F(
x z
,
y z
)

0
,其中F的偏导数连续,
求 z , z . x y
u y u v
22
隐函数的求导公式
特别
如果方程组
F ( x, G( x,
y, u, v ) y, u, v )

0 0

F ( x,u,v) G( x,u,v)

高等数学上24隐函数的导数对数求导法由参数方程所确定函数的导数

高等数学上24隐函数的导数对数求导法由参数方程所确定函数的导数

结束
若函数 xy ((tt))二阶可 , 导
d2 y dx2

d (dy) dx dx

d ((t)) dt dt (t) dx
d2y dx 2

d dt

(t ) ( t )

dx
dt
(t)( t) 2( t)(t)(t)1 (t)
上页
返回
下页
结束
x a(t sint) y a(1cost)
x a cos3 t

y

a
sin 3
t
2
2
2
x3 y3 a3
首页
上页
返回
下页
结束
x2 y2 axa x2 y2
a(1cost)
首页
上页
返回
下页
结束
ea
a
首页
首页
上页
返回
下页
结束
例8 一汽球从离5开 0m 0处 观离 察地 员面铅
上升 ,其速率 14m 0为 /mi.当 n 气球高 50m 度 0时,为
观察员视线的 率仰 是角 多 ? 增 少加
解 设t时 刻 ,气球上升h高 ,观度 察为 员 视 线
的 仰 角 ,则 为
tan h (相关方程)
500
四、隐函数的导数 对数求导法 由参数方程所确定函数的导数
隐函数的导数 对数求导法由参数 方程所确定函数的导数
首页
上页
返回
下页
结束
1、隐函数的导数 P102
定义: 设在方程 F(x, y) 0中,当x取某区 间内的任意值 , 相时应地总有满足这的方程 唯一y的值存,在 那么就说方F程 (x, y) 0在 该区间内确定了一函个数y隐 f (x).

高等数学9_6隐函数求导

高等数学9_6隐函数求导

导数的另一求法 — 利用隐函数求导
sin y ex xy 1 0, y y(x)
两边对 x 求导
两边再对 x 求导
y x 0
ex cos
y y
x
(0,0)
sin y ( y)2 cos y y
令 x = 0 , 注意此时 y 0 , y 1
d2y dx2
x 0 3
机动 目录 上页 下页 返回 结束
定理2 . 若函数 F(x, y, z)满足:
① 在点
的某邻域内具有连续偏导数 ,
② F(x0 , y0, z0 ) 0 ③ Fz (x0 , y0, z0 ) 0
则方程
在点
某一邻域内可唯一确
定一个单值连续函数 z = f (x , y) , 满足
并有连续偏导数
z Fx , z Fy x Fz y Fz
化简得
x f dy
F2 dy 消去d y 可得 dz .
dx
机动 目录 上页 下页 返回 结束
第六节 隐函数的求导方法
一、由一个方程所确定的隐函数 的求(偏)导公式
二、由方程组所确定的隐函数组 的求(偏)导法则
三、全微分法
本节讨论 :
1) 方程(组)在什么条件下才能确定隐函数 . 2) 在方程(组)能确定隐函数时,研究其连续 性、可微性及求(偏)导方法问题 .
一、由一个方程所确定的隐函数的求导公式
dy dx
Fx x 0 Fy
x
0
ex y cos y x
d2y dx2 x 0
d ( ex y ) dx cos y x
x 0, y 0
( ex y)(cos y x) (ex y)(sin y y 1)

高等数学 第三章 第4节 隐函数及由参数方程确定的函数的导数(中央财经大学)

高等数学 第三章 第4节 隐函数及由参数方程确定的函数的导数(中央财经大学)
原则是: 按照高阶导数的定义, 运用隐函数及参 数方程所确定的函数的求导法则逐阶进行求 导.

d y 设 x + x y + y = 4, 求 . 2 dx
2 2
2

对方程两边关于 x 求导:
2 x + y + x y′ + 2 y y ′ = 0
故 2x + y y′ = − x + 2y
想想如何求二阶导数?

(
)
1 2 1+ t 2 d y = 2 = = 2 2t 2 ′ 4t dx (ln(1 + t ) ) 1 + t 2
⎛ t ⎞′ ⎜ ⎟ ⎝ 2⎠
⎛ 1 + t 2 ⎞′ 2t 2 − 1 − t 2 ⎜ 3 ⎜ 4t ⎟ ⎟ 2 t 4 −1 d y 4t ⎝ ⎠ = = = 3 3 ′ 2t 8t dx (ln(1 + t 2 ) ) 1+ t 2

1 (1 − x)(1 − 2 x)(1 + x ) y′ = 3 3 (1 + 5 x)(1 + 8 x)(1 + x 4 )
⎧ −1 −2 2x 5 8 4 x3 ⎫ − − − ⎨1 − x + 1 − 2 x + 2 1 + 5x 1 + 8 x 4⎬ 1+ x 1+ x ⎭ ⎩
2
四、 隐函数及参数方程 确定的函数的高阶导数
F ( x, f (x) ) ≡ 0
对上式两边关于 x 求导:
d F ( x , y) = 0 dx
然后, 从这个式子中解出 y ′, 就得到隐函数的导数.

求由方程 F ( x , y ) = xy − e x + e y = 0 ( x ≥ 0 ) 所确定的隐函数的导数 y′, 并求 y′

隐函数的求导法则

隐函数的求导法则

隐函数的求导法则在高等数学中,人们经常要研究使用函数表示不明确的关系的问题。

具有x和y两个自变量的方程通常也称为隐函数。

在这种情况下,求导的方法与单变量函数的情况有所不同。

假设我们有一个方程f(x,y)=0代表一个隐函数。

如果我们将y表示为x的函数,那么我们可以使用求导规则计算dy/dx。

我们用y=f(x)来代表意味着y是x的函数,在这种情况下,我们可以将原始方程看成f(x,f(x))=0。

现在我们需要将它们进行求导:通过链式法则,我们得到:∂f/∂x + ∂f/∂y * dy/dx = 0解决方程,我们可以得到dy/dx:dy/dx = -(∂f/∂x)/(∂f/∂y)这就是隐函数的求导法则。

现在我们来看几个例子。

例子1:考虑方程x^2+y^2 = 1,代表一个圆形。

假设我们需要求通过点(0.5,0.866)的圆的斜率。

我们可以通过对方程隐式地求导来解决这个问题。

从方程中得到:2x + 2y * dy/dx = 0这个时候,我们用点(0.5,0.866)代入求导公式:dy/dx = -(∂f/∂x)/(∂f/∂y) = -x/y = -0.577例子2:考虑方程x^2+y^2+z^2 = 1,代表一个球。

假设要求通过点(0.5, 0.866, 0)的球的切平面。

我们如何确定这个平面的法向量?这里我们可以思考什么会构成法向量:从点(0.5, 0.866, 0)向球的中心(0,0,0)所成的向量,然后我们将这个向量投影在切平面上。

我们可以通过隐函数求导的方法来找到它的方向。

从方程中得到:2x + 2y * dy/dx + 2z * dz/dx = 0我们需要知道dz/dx的值,但只有两个自变量,我们该怎么办?我们可以再次隐式地求导。

我们有这样的等式:∂f/∂x + ∂f/∂y * dy/dx + ∂f/∂z * dz/dx = 0将方程放入这个等式,我们得到:(1) + y * dy/dx + z * dz/dx = 0然后再用我们之前求出的dy/dx代替,得到:(1) + y * (-x/y) + z * dz/dx = 0然后代入我们想要的点,我们得到:dz/dx = -x * z/y = (-0.5) * 0/0.866 = 0现在我们知道了dz/dx = 0。

高等数学 第八章 第4节 隐函数的求导公式

高等数学 第八章 第4节 隐函数的求导公式

求导, 将所给方程的两边对 y 求导,用同样方法得
∂u xv − yu , = 2 2 ∂y x + y
∂v xu + yv . =− 2 2 x +y ∂y
18
x + y + z = 0 du 例6 u = sin xy , 且 2 2 2 , 求 . dz x + y + z = 1
解 : 方程组对 求导 方程组对z
1(1)(3),2,3,4
B组 组
1,3

思考题
x y 为可微函数, 已知 = ϕ ( ) ,其中ϕ 为可微函数, z z ∂z ∂z 求x + y =? ∂x ∂y
22
思考题解答
1 则 Fx = , z −x y (− y ) y 1 Fy = −ϕ ′( ) ⋅ , Fz = 2 − ϕ ′( ) ⋅ 2 , z z z z z y − zϕ ′ ( ) Fy ∂z ∂z Fx z z , =− = , =− = Fz x − yϕ ′( y ) Fz x − yϕ ′( y ) ∂y ∂x z z
F ( x , y , u( x , y ), v ( x , y )) = 0 ∴ G ( x , y , u( x , y ), v ( x , y )) = 0 方程组对x 方程组对 求偏导
∂u ∂v Fx + Fu ∂x + Fv ∂x = 0 G + G ∂u + G ∂v = 0 u v x ∂x ∂x
19
三、小结
(分以下几种情况) 隐函数的求导法则 分以下几种情况)
(1) F ( x , y ) = 0
( 2) F ( x , y , z ) = 0

高等数学隐函数求导

高等数学隐函数求导
(含导数 的方程)
(隐函数的显化)
例1. 求由方程
CONTENTS
在 x = 0 处的导数
01
解: 方程两边对 x 求导
02

03
因 x = 0 时 y = 0 , 故
04
确定的隐函数
05
例2. 求椭圆
在点 处的切线方程. 解: 椭圆方程两边对 x 求导 故切线方程为 即
的一阶导数 确定的隐函数 求由方程 练习: 二阶导数 解: 方程两边对 x 求导, 得
关系,
若上述参数方程中
二阶可导,

则由它确定的函数
可求二阶导数 .
利用新的参数方程
,可得
例5

例6

所求切线方程为
?
例7. 设
, 且

已知
解:
练习:
解:
注意 :
对谁求导?

例8. 设由方程
确定函数 求 解: 方程组两边对 t 求导 , 得 故
1.隐函数求导法则
直接对方程两边求导
第二章
隐函数和参数方程求导
二、由参数方程确定的函数的导数
一、隐函数的导数
一、隐函数的导数
若由方程
可确定 y 是 x 的函数 ,

表示的函数 , 称为显函数 .
例如,
可确定显函数
可确定 y 是 x 的函数 ,
但此隐函数不能显化 .
函数为隐函数 .
则称此
隐函数求导方法:
两边对 x 求导( 注意 y = y(x) )
)
1
(ln
)
1
(ln
+
+
-

高等数学第8章五节隐函数的求导公式最终

高等数学第8章五节隐函数的求导公式最终
d y x y x y y y x y . dx y x
3
引例:已知
e
x y
xy 0 确定 y y( x ), 求 y( x )
e
x y
(1 y) (y xy) 0
注意此方程能确定一个一元函数,是在y可导的前 提下进行的. 并不一定都能确定一元 函数.
10
练习P102 2
y dy 已知 ln x y arctan , 求 . x dx
2 2

公式法
令 F ( x , y ) ln x 2 y 2 arctan y , x x y y x , Fy ( x , y ) 2 , 则 Fx ( x , y ) 2 2 2 x y x y x y dy Fx . y x dx Fy
x2 y2 z2 解 法一 公式法 令 F ( x , y , z ) 2 2 2 1 a b c 2x 2z 则 Fx 2 , F y 2 y , Fz a b2 c2
z c x 2 , x a z
2
c y z 2 b z y
2
( z 0)
在求Fx , Fy, Fz时, 将F(x, y, z)看作是 x, y, z的三个自变量的函数.
能确定
dy 一个隐函数y = f (x), 并求 . dx
x y 记 证 F ( x, y ) xy e e , 则
Fx ( x , y ) y e x 与Fy ( x , y ) x e y
隐函数存在定理1
隐函数 y = f (x), 且
x dy Fx ye . y dx Fy xe
dy Fx ( x , y ) dy Fx . 或简写: dx Fy ( x , y ) dx Fy

高等数学:第九讲 隐函数的导数

高等数学:第九讲 隐函数的导数
2. 隐函数求导的关键是搞清楚y是x的函数,碰到只含有x的 函数,正常求导;碰到含有y的函数,先对y求导,再乘以y 对x的导数y′。
3. 在隐函数导数的结果中,既含有自变量x,又含有因变量y, 通常不能也无须求得只含自变量的表达式.
谢谢
即 ey .y′ -2y .y′+(y+x y′) =0 从中解出y,得
y y' 2y xey
因为y是x的函数,
z
所以ey是x的复合函数. y
记z e y , 求 dz .
dy
dy dx
ey
y
03 小结
1. 显函数求导的四则运算法则和复合函数求导法则对于 隐函数的导数同样成立。
02 隐函数的求导法则
F(x, y) 0 方程两边对 x 求导
d F(x, y) 0 dx
将方程中的y视为x 的函数y( x)(隐函数)
得到含导数 y 的方程 ,从而解出 y .
例题:
设方程 ey-y2+xy=0确定函数 y = y(x),求 y.
解 方程两边对x求导,得 (ey)′ - (y2 )′+ (xy )′=(0)′,
隐函数的导数
目录
01 隐函数的定义
02 隐函数的求导法则
03
小结
01 隐函数的定义
对应法则的显性和隐性 函数
显函数 隐函数
01 隐函数的定义
形如 y f (x) 的函数,称为显函数。 例如 y sin x,y x3 ex 都是显函数。 特点:方程的左边是因变量,右边是关于自变量的表达式。
隐函数
定义 若如由果方二程元方F (程x,Fy)(x, 0y)可确0 可定确y 定是 yx 是的函x 的数函, 则数称, 此则函称数

高等数学 第八章 多元函数微分法及其应用 第五节 隐函数的求导法则

高等数学 第八章 多元函数微分法及其应用 第五节 隐函数的求导法则

Fx dy = . dx Fy
求导公式推导:
隐函数的求导公式
方程 F ( x , f ( x )) ≡ 0两边对 x求导数,得:
Fx dy dy = 0, = . Fx + Fy dx Fy dx
例1 验证方程 x + y 1 = 0 在点 ( 0,1) 的某邻 域内能唯一确定一个可导,且 x = 0 时 y = 1 的隐 函数 y = f ( x ) ,并求这函数的一阶和二阶导 数在 x = 0 的值.
隐函数存在定理 2 (1)设函数 F ( x , y , z )在点 P ( x0 , y0 , z0 ) 的某一邻域内有连续的偏导数, (2) F ( x0 , y0 , z0 ) = 0 ,(3) Fz ( x0 , y0 , z0 ) ≠ 0 ,则 方程 F ( x , y , z ) = 0 在点 P ( x0 , y0 , z0 ) 的某一邻域 内恒能唯一确定一个具有连续偏导数的函数 z = f ( x , y ) ,它满足条 z0 = f ( x0 , y0 ) , 并有
Fx Fv G x Gv 1 (F ,G ) u , = = Fu Fv x J ( x, v ) Gu Gv
Fu Fx v 1 (F ,G ) = = Gu G x x J ( u, x )
Fu Fv Gu Gv
Fy 1 (F ,G ) u = = Gy y J ( y, v )
Fv Gv
Fu
在 J ≠ 0 的条件下,
u y u v x xu + yv v = = = 2 , 2 x y x x x +y y x x u3;y y x
将所给方程的两边对 y 求导,用同样方法得
u xv yu = 2 , 2 y x + y v xu + yv = 2 . 2 y x +y

《隐函数的求导法则》课件

《隐函数的求导法则》课件

对数求导法则
对数求导法则
对于形如 `y = f(g(x))` 的复合函数,其导数为 `dy/dx = (d(g)/dx) * (df/dg) * (dg/dx)`。
应用
对数求导法则在处理复杂函数的求导问题时非常有用,特别是当需要计算复合 函数的导数时。
04
隐函数在实际问题中的应用
经济模型中的应用
通过求导法则,可以分析工程系统中 的动态特性,例如稳定性、响应时间 等。
05
隐函数求导的注意事项
初始条件的确定
01 初始条件是隐函数存在的前提,必须先确定初始 条件才能进行求导。
02 初始条件通常由实际问题或实验数据给出,是隐 函数求导的基础。
03 在确定初始条件时,需要充分考虑隐函数的性质 和特点,确保初始条件的合理性和准确性。
参数的取值范围
01
在对隐函数进行求导时,需要考虑参数的取值范围。
02
参数的取值范围会影响到隐函数的形状和性质,进而影响到求
导的结果。
在确定参数的取值范围时,需要充分考虑隐函数的实际背景和
03
意义,确保取值范围的合理性和准确性。
多重解的情况
1
对于某些隐函数,可能存在多个解的情况。
2
在求导过程中,需要特别注意多重解的情况,并 采取适当的措施进行处理。
3
处理多重解的方法包括筛选、验证和比较等,需 要根据具体情况选择合适的方法进行处理。
06
总结与展望
隐函数求导的总结
隐函数求导的定义
隐函数是一类特殊的函数,其函数值由方程决定,而非显 式地给出。求隐函数的导数需要使用特定的求导法则。
求导法则的应用
在解决实际问题时,经常需要求隐函数的导数,如经济模型、物 理现象等。掌握隐函数求导法则对于解决这些问题至关重要。

隐函数的求导法则

隐函数的求导法则

求 2z . x2
解 令 F (x, y, z) x2 y2 z2 4z, 则
Fx 2x, Fz 2z 4,
z Fx x ,
x
Fz 2 z
2z x2
(2 z) x z
x
(2 z)2
(2 z) x x
2z (2 z)2
(2 z)2 (2 z)3
x2
.
注:在实际应用中,求方程所确定的多元函数的偏导数时,生搬硬套地套公
dx Fy
y dx x0
二阶导数为
d2y dx 2
y xy y2
y x( x )
y y2
1 , y3
d2y
dx2
1.
x0
例 2 求由方程 xy ex ey
0 所确定的隐函数 y 的导数 dy , dy dx dx
x0 .
解 此题在第二章第六节采用两边求导的方法做过,
这里我们直接用公式求之.
z
z(x,
y) ,
y
sin
x,

du dx
时要考虑到上面各种联系.
例 8 设 u f (x, y, z), y sin x, z z(x, y) 由方程(x2, ey , z) 0 确定,
其中 f , 具有一阶连续偏导数,且 0, 求 du .
z
dx
解 由 u f (x, y, z), y sin x, z z(x, y) ,
使 Fz0,于是得
z Fx , z Fy . x Fz y Fz
例 1 证明方程 x2 y2 1 0 在点(0,1)的某邻域内能唯一确定一个有连续导
数且当 x 0 时 y 1的隐函数 y f (x) ,求这函数的一阶和二阶导数在 x 0 的值.

高等数学隐函数求导法则

高等数学隐函数求导法则

高等数学隐函数求导法则
高等数学隐函数求导法则是指当被求导的函数中含有一个隐函数时,求函数和隐函数的导数。

这种情况下,不能像求常见函数的导数那样,使用常见的微积分中的微分法则来直接求解,而是要使用高等数学隐函数求导法则,使用更加复杂的求解方法。

高等数学隐函数求导法则的基本原理是:若函数f(x,y)
含有隐函数y=φ(x),则y的导数可表示为
dy/dx=dy/dx+φ'(x)dx/dx,这里φ'(x)表示隐函数y=φ(x)
的导数。

这就是求解隐函数求导时, x 不变,只考虑 y 求导的原理,也是微积分中隐函数求解中常用到的法则,成为高等数学隐函数求导法则。

高等数学隐函数求导法则在求解函数和隐函数的导数时,都要求解隐函数的导数,这就需要考虑隐函数的定义域,即显函数的定义域这个问题,要严格遵守求解隐函数求导的基本原理。

例1.若f(x,y)=x+y,其中y=φ(x)=sin(x),则隐函数的求导法则显示,dy/dx=x+cos(x)dx/dx=1+cos(x).
例2.若f(x,y)=2x+y,其中y=φ(x)=ln(x),则隐函数的求导法则显示,dy/dx=2+1/x dx/dx = 2+1/x.
从上面几个例子来看,使用高等数学隐函数求导法则是一种既有系统又有效的方法,解决涉及到隐函数求导的问题。

最重要的是,要避免求导出现不对称或错误结果,就必须牢记求解隐函数求导的基本原理,严格按照高等数学隐函数求导法则进行求解。

高等数学-隐函数求导

高等数学-隐函数求导

y 1y 1 sin 2 J r x r x y2 r y x 2 同样有 2 2 y y x y2 x y
机动 目录 上页 下页 返回 结束
内容小结
1. 隐函数( 组) 存在定理
机动

目录
上页
下页
返回
结束
注意 J 0, 从方程组②解得 x 1 v u 1 1 y v 1 , x J 0 y J v x J v
同理, ①式两边对 y 求导, 可得
x 1 1y u y J u 0 u
u 1x , y J v
2z 2 2 2 例2. 设 x y z 4 z 0 , 求 2 . x 解法1 利用隐函数求导 z x z z 2x 2z 4 0 x 2 z x x
再对 x 求导
2
z 2 1 ( ) x
z 4 2 0 x
2
机动
目录
上页
下页
返回
Fu Fv Gu Gv 0 , 故得
公式 目录 上页 下页 返回 结束
u 1 ( F , G ) x J ( x, v )
v 1 ( F , G ) x J ( u , x )
同样可得
u 1 ( F , G ) y J ( y , v ) v 1 ( F , G ) y J ( u , y )
sin y ( y) 2 cos y y
令 x = 0 , 注意此时 y 0 , y 1
d2 y 3 2 x0 dx
机动 目录 上页 下页 返回 结束
定理2 . 若函数 F ( x, y, z ) 满足:
① 在点 ② F ( x0 , y0 , z0 ) 0 ③ Fz ( x0 , y0 , z0 ) 0 则方程 在点 某一邻域足 并有连续偏导数 Fx z , x Fz 的某邻域内具有连续偏导数 ,

高等数学--隐函数的求导法则

高等数学--隐函数的求导法则

第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = d e ()0,0,1d cos x yx y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF zy F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,将上式两端分别对x 和y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于是得x z F z x F ∂=-∂, y zF zy F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z xz z z ∂-+-+∂-+∂-===∂---. 二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数22y x yu +=,22y x x v +=. 事实上,0xu yv -= ⇒u y x v =⇒1=⋅+u y x x yu ⇒22yx yu +=,2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,.它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvx v u v uv F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y v u v uvF FG G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数x u ∂∂,xv ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数yu ∂∂,y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x∂∂,uy ∂∂和v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂和vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂和vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例4 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 隐函数的求导法则
一、一个方程的情形
隐函数存在定理1设函数F(X, y)在点P(X 0, y o )的某一邻域内具有连续偏 导数,F(x °,y °) 0,F y (X 0, y 。

) 0 ,则方程F(x,y) 0在点X 。

的某一邻域内恒 能唯一确定一个连续且具有连续导数的函数 y f(x),它满足条件y o f(x o ), 并有
dy Fx dx
F y '
说明:1) 定理证明略,现仅给出求导公式的推导:将
y f(x)代入
F(x,y) 0 ,得恒等式
F(x,f(x)) 0,
等式两边对X 求导得
F _Fdy X y dx
由于F y 0于是得
dy Fx dx F y
导数:
2
d y I
_ Fx . dy dx X F y y F y dx
FF 2 2F F F F F 2
XX y
XyXy
y y X
F
y
例1验证方程Siny e x Xy 1
0在点(0,0)的某一邻域内能唯一确定一个
2)若F(x, y)的二阶偏导数也都连续
则按上述方法还可求隐函数的二阶
F
XX
F y
F
yX F X
F
Xy F y
F
y y F
X
FX
F y
解设 F(X l y) Siny e x
Xy 1,则 1) F X e X y , F y CoSy X 连续; 2) F(Q I Q) 0 ; 3)
F y (Q I Q) 1 Q .
一个单值可导的隐函数y f(X).
隐函数存在定理还可以推广到多元函数.一般地一个二元方程
F(x, y) Q 可
以确定一个一元隐函数,而一个三元方程F(x,y,z) Q 可以确定一个二元隐函数.
隐函数存在定理2设函数F(x, y, z)在点P(X Q ) y o , Z Q )的某一邻域内具有连续 的偏导数,且 F(X Q ) y o ,Z o ) Q , F Z (X Q , y o ,Z o ) Q ,则方程 F(X ) y, Z) Q 在点(X Q l y Q ) 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数 Z f (x, y),它
满足条件Z Q
f (X Q ,y o ),并有
Z F X Z F
y
X
F Z , y
F Z .
说明:定理证明略,现仅给出求导公式的推导:将Z f(x,y)代入
单值可导的隐函数y
f(X)
,并求 dy
x
d 2y 0 , dx 2 x
因此由定理1可知,方程Siny e X Xy 1
Q
在点(Q,Q)的某一邻域内能唯一确定
dy dx X F X F y X
cosy X X
Q,y
d 2y dx 2 X
dx cosy X X 0, y
Q,y
(e X y )(cos y X ) (e
y)( (cosy x )2
Sinyy 1)
F(x, y,Z) Q,得F(x,y, f (x, y)) Q,
将上式两端分别对X和y求导,得
F X F Z F Z-Z o .
y 因为F Z连续且F z(X o,y o,Z o) 0于是得
FX
F Z F Z
例2设X2 y2Z2 4Z 0
2 求一Z
X
解设 F (x, y, Z)Z2 4Z,则F
X2X
,F Z2z 4,
FX FI
2x 2z 4
(2
Z
X
__ X
(2 z)2
X)(2X)Z)
2 X (2 z)L
(2 X)2
二、方程组的情形
在一定条件下,由方程组
F(X,y,u,v)
G(X,y,u,v)
可以确定一对二元函数
U (X,
y)
v(X,y)
例如方程XU yV0和yu XV1可以确定两个二元函数U
X2 XU yv0 V -U y yu XfUI
y_ y
X
X2 y2.
F面讨论如何由组求U,V的导数.
隐函数存在定理3设F(x, y,u,v),G(x, y,u,v)点P(x o, y o,U o,V o)的某一邻域内具有对各个变量的连续偏导数,又F(x o, y o,U o, V o) 0,G(x o, y0,U0,V0) 0,且偏导数所组成的函数行列式(或称雅可比(JaCobi)行列式)
P(X0,y0,U0,V0)的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数
U u(x,y),
V v(x,y).
它们满足条件U0U(χ0, y0),V0V(X0, y0),且有
F X F V F U F X
U1(F,G)G X G V V1(F,G)G U G X
X J(x,v)F U F V X J(U,x)F U F V
G U G V G U G V
F y F V I F U F
yl U1(F,G)G y G V V1(F,G)G U G yI
y J(y,v)F U F V y J(U,y)F U F V
G U G
V
G
U
G
V
说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数丿,」由方程组
X X
F X F U U Fv^0,
X X
G X G U U C V
Gv-0 X X
确定;偏导数U, V由方程组
y y
F y F U U F v」0, y y
G y G U U0.
y y
确定.
F F
(F,G)U V
(u,v)G G
U V J
在点P(x o, y0,U0,V0)不等于零,则方程组F(x, y,u,v) 0,G(x, y,u,v) 0,在点
0 .
例 3 设 XU yv 0 , yu XV 1 ,求-U , — , -U 和—.
XXyy
U V U X ——y — 0,
X X
0.
XU yv V yu XV
~ 2

-
2 2
.
X
y XXy
两个方程两边分别对y 求偏导,得关于-U
和上的方程组
y y
U V
X ——V y — 0, y
y
U V U y ——X — 0.
y y
另解 将两个方程的两边微分得
UdX XdU Vdy ydv Q 即 XdU ydv Vdy udχ,
Udy ydu VdX XdV 0, ydu XdV Udy vd
χ.
解之得
于是
y(U,V)在点(U ,V )的某一领域内连续且有连续偏
导数,又
(χ,y) (U ,V )
1)证明方程组
XU yv I dχ
X
V y
U dy , dv
yu 2 XV XU
dX y
Vdy .
X y X y
X
y X
y
dU
XU yv
U XV yu
V yu XV
V XU yv
2
2 ,
2
2 ,
2
2 ,
2
2
X y y
X
y X X y y X y
U
X
解两个方程两边分别对
X 求偏导,得关于—和上的方程组
X X 当X 2 y 2
0时,解之得—
X
当X 2 y 2
0时,解之得— y XV yu V XU yv
2
2 ,
2
2

X y
y
X y 例 设函数X X (U ,V ), y
X x(u, V) y y(u,v)
在点(X) y,u,v)(的某一领域内唯一确定一组单值连续且有连续偏导数的反函数
U U(X l y) I V V(X l y).
2)求反函数U u(x,y),v v(x, y)对x, y的偏导数.
解1)将方程组改写成下面的形式
F(x, y,u,v) X x(u, v) 0,
G(x, y,u,v) y y(u,v) 0,
则按假设J -(F Q上山0 ,
(u,v) (u,v)
由隐函数存在定理3,即得所要证的结论.
2)将方程组所确定的反函数U u(x,y), v v(x, y)代入原方程组,即得
X x[u(x,y),v(x, y)],
y y[u(x,y),v(x,y)].
将上述恒等式两边分别对X求偏导数,得
X U X V
1
U X V X
0y U y V
U X V X
由于J 0 ,故可解得
U1y V丄」
X J V X J U
同理,可得
U 1 X V 1 X
y J V y J U
0 .。

相关文档
最新文档