连续和离散系统分析报告

合集下载

计算机控制系统性能分析

计算机控制系统性能分析

南京邮电大学自动化学院实验报告课程名称:计算机控制系统实验名称:计算机控制系统性能分析所在专业:自动化学生姓名:**班级学号:B************: ***2013 /2014 学年第二学期实验一:计算机控制系统性能分析一、 实验目的:1.建立计算机控制系统的数学模型;2.掌握判别计算机控制系统稳定性的一般方法3.观察控制系统的时域响应,记录其时域性能指标;4.掌握计算机控制系统时间响应分析的一般方法;5.掌握计算机控制系统频率响应曲线的一般绘制方法。

二、 实验内容:考虑如图1所示的计算机控制系统图1 计算机控制系统1. 系统稳定性分析(1) 首先分析该计算机控制系统的稳定性,讨论令系统稳定的K 的取值范围; 解:G1=tf([1],[1 1 0]);G=c2d(G1,0.01,'zoh');//求系统脉冲传递函数 rlocus(G);//绘制系统根轨迹Root LocusReal AxisI m a g i n a r y A x i s-7-6-5-4-3-2-1012-2.5-2-1.5-1-0.500.511.522.5将图片放大得到0.750.80.850.90.9511.051.11.151.21.25-0.15-0.1-0.050.050.10.15Root LocusReal AxisI m a g i n a r y A x i sZ 平面的临界放大系数由根轨迹与单位圆的交点求得。

放大图片分析: [k,poles]=rlocfind(G)Select a point in the graphics window selected_point = 0.9905 + 0.1385i k =193.6417 poles =0.9902 + 0.1385i 0.9902 - 0.1385i 得到0<K<193(2) 假设不考虑采样开关和零阶保持器的影响,即看作一连续系统,讨论令系统稳定的K 的取值范围; 解:G1=tf([1],[1 1 0]); rlocus(G1);-1.2-1-0.8-0.6-0.4-0.200.2-0.8-0.6-0.4-0.20.20.40.60.8Root LocusReal AxisI m a g i n a r y A x i s由图片分析可得,根轨迹在S 平面左半面,系统是恒稳定的,所以: 0<K<∞(3) 分析导致上述两种情况下K 取值范围差异的原因。

实验二、离散系统分析报告

实验二、离散系统分析报告

本科学生验证性实验报告学号104090459 静学院物电学院专业、班级10电子实验课程名称数字信号处理实验教师及职称卫平教授开课学期2013 至2013 学年下学期填报时间2013 年 5 月23 日师大学教务处编印(1).为了省时间以及编译的方便性,程序应该在Blank M-File 中输入,而不应该在Command Window 中直接运行;(2).在使用MA TLAB 时应注意中英输入法的切换,在中文输入法输入程序时得到的程序是错误的;(3). MATLAB 中两个信号相乘表示为x.*u,中间有个‘.’,同样两个信号相除也是如此,也就是在实验中要注意乘和点乘的区别。

二.实验容1.实验现象与结果1..已知某LTI 系统的差分方程为: (1)初始状态 ,输入计算系统的完全响应。

(2)当以下三个信号分别通过系统时,分别计算离散系统的零状态响应:(3)该系统具有什么特性?(1)a=[1,-1.143,0.412];b=[0.0675,0.1349,0.0675];N=100;x=ones(1,N);zi=filtic(b,a,[1,2]);y=filter(b,a,x,zi)stem(y);(2)a=[1,-1.143,0.412];b=[0.0675,0.1349,0.0675];N=100;k=1:N;x1=cos(pi/10*k);y1=filter(b,a,x1)stem(y1);]2[0675.0]1[1349.0][0675.0]2[412.0]1[143.1][-+-+=-+--k x k x k x k y k y k y 2]2[,1]1[=-=-y y ][][k u k x =][)107cos(][];[)5cos(][];[)10cos(][321k u k k x k u k k x k u k k x πππ===x2=cos(pi/5*k);y2=filter(b,a,x2) stem(y2);x3=cos(7*pi/10*k); y3=filter(b,a,x3)stem(y3);4.已知某离散系统的输入输出序列。

系解实验报告结论

系解实验报告结论

系解实验报告结论引言在本次实验中,我们通过对不同类型的线性系统进行系统解析的实验研究,旨在进一步加深对线性系统系统解析的理解和掌握。

实验设计了三个不同类型的线性系统,并使用Matlab软件进行仿真和模拟实验。

本报告将对实验结果进行详细的分析和总结,得到实验的结论。

结论经过实验的研究和分析,我们得出了以下结论:1. 线性系统的稳定性对系统的工作性能有重要影响。

在本次实验中,我们研究了连续线性系统和离散线性系统的稳定性。

通过分析系统的特征方程和极点位置,我们可以判断系统的稳定性。

在系统的稳定性分析过程中,我们发现,连续系统的稳定性与极点的实部有关,而离散系统的稳定性与极点的模长有关。

稳定的系统能够保持稳定的输出,从而保证系统的正常工作。

2. 滤波器在信号处理中起着关键作用。

我们在实验中设计了一个模拟滤波器,并对不同类型的信号进行了滤波处理。

通过滤波器的设计和仿真实验,我们发现滤波器能够滤除不需要的频率分量和噪声,并突出需要的信号。

这使得我们能够更好地进行信号处理和分析,提高了系统的工作性能。

3. 频率响应是分析和设计系统的重要方法之一。

在实验中,我们通过绘制系统的频率响应曲线,观察系统在不同频率下的特性。

我们发现,频率响应曲线能够直观地反映系统的增益特性和相位特性。

通过对频率响应曲线的分析,我们可以了解系统的频率选择性、频率放大性和相位延迟等特性。

这对系统的设计和优化具有重要意义。

4. 噪声对系统的性能影响较大。

在实验中,我们引入了不同强度的噪声信号,观察系统的输出变化。

我们发现,噪声信号会造成系统的输出波形扭曲和信噪比下降。

这使得系统的工作性能受到了一定的影响。

为了提高系统的抗噪能力,我们需要采取相应的滤波和抗干扰措施,从而降低噪声对系统的影响。

5. 实验中使用的Matlab软件是进行系统解析和仿真的重要工具。

通过Matlab 软件,我们可以方便地进行系统参数的设置和修改,进行系统的频域分析和时域仿真。

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

离散数学实验报告(两篇)

离散数学实验报告(两篇)

引言:离散数学是一门基础性的数学学科,广泛应用于计算机科学、电子信息等领域。

本文是《离散数学实验报告(二)》,通过对离散数学实验的深入研究和实践,总结了相关的理论知识和应用技巧,希望能够对读者对离散数学有更加深入的理解。

概述:本实验主要涉及离散数学中的集合、关系、图论等基本概念及其应用。

通过对离散数学的实验学习,深入掌握了这些概念和应用,对于在实际问题中的应用和拓展具有重要的意义。

正文内容:一、集合相关概念及应用1.定义:集合是由元素组成的无序的整体。

介绍了集合的基本概念、集合的表示法以及集合的运算。

2.集合的应用:介绍了集合在数学、计算机科学中的应用,如数据库的查询、关系代数等。

二、关系相关概念及应用1.定义:关系是一个元素与另一个元素之间的对应关系。

介绍了关系的基本概念、关系的表示方法及其运算。

2.关系的应用:介绍了关系在图像处理、社交网络分析等领域的应用,如图像中的像素点之间的关系、社交网络中用户之间的关系等。

三、图论基础知识及应用1.定义:图是由顶点和边组成的抽象的数学模型。

介绍了图的基本概念、图的表示方法和图的运算。

2.图论的应用:介绍了图论在路由算法、电子商务等领域的应用,如路由器的路由选择、电子商务中的商品推荐等。

四、布尔代数的概念及应用1.定义:布尔代数是一种基于集合论和逻辑学的代数系统。

介绍了布尔代数的基本概念、布尔表达式及其化简方法。

2.布尔代数的应用:介绍了布尔代数在电路设计、开关控制等方面的应用,如逻辑门电路的设计、开关控制系统的建模等。

五、递归的概念及应用1.定义:递归是一种通过调用自身来解决问题的方法。

介绍了递归的基本原理、递归的应用技巧。

2.递归的应用:介绍了递归在算法设计、树的遍历等方面的应用,如快速排序算法、树结构的遍历等。

总结:通过本次离散数学的实验学习,我深入掌握了集合、关系、图论等基本概念与应用。

集合的应用在数据库查询、关系代数等方面起到了重要的作用。

关系的应用在图像处理、社交网络分析等领域有广泛的应用。

离散时间系统的时域特性分析实验报告

离散时间系统的时域特性分析实验报告

信号、系统与信号处理实验报告实验一、离散时间系统的时域特性分析姓名:学号:班级:专业:一.实验目的线性时不变(LTI)离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应列可以刻画时域特性。

本次实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变性的理解。

二.基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。

离散时间系统中最重要、最常用的是“线性时不变系统”。

1.线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。

即那么当且仅当系统同时满足和时,系统是线性的。

在证明一个系统是线性系统时,必须证明此系统同时满足可加性和比例性,而且信号以及任何比例系数都可以是复数。

2.时不变系统系统的运算关系在整个运算过程中不随时间(也即序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。

若输入的输出为,则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应该保持不变,即则满足以上关系的系统称为时不变系统。

3.常系数线性差分方程线性时不变离散系统的输入、输出关系可用以下常系数线性差分方程描述:当输入为单位冲激序列时,输出即为系统的单位冲激响应。

当时,是有限长度的,称系统为有限长单位冲激响应(FIR)系统;反之,则称系统为无限长单位冲激响应(IIR)系统。

三.实验内容及实验结果1.实验内容考虑如下差分方程描述的两个离散时间系统:系统1:系统2:输入:(1)编程求上述两个系统的输出,并画出系统的输入与输出波形。

(2)编程求上述两个系统的冲激响应序列,并画出波形。

(3)若系统的初始状态为零,判断系统2是否为时不变的?是否为线性的?2.实验结果(1)编程求上述两个系统的输出和冲激响应序列,并画出系统的输入、输出与冲激响应波形。

clf;n=0:300;x=cos((20*pi*n)/256)+cos((200*pi*n)/256);num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=filter(num1,den1,x);y2=filter(num2,den2,x);subplot(3,1,1);stem(n,x);xlabel('时间信号');ylabel('信号幅度');title('输入信号');subplot(3,1,2);stem(y1);xlabel('时间信号n');ylabel('信号幅度');title('输出信号');subplot(3,1,3);stem(y2);xlabel('时间序号n ');ylabel('信号幅度');title('冲激响应序列');(2)N=40;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=impz(num1,den1,N);y2=impz(num2,den2,N);subplot(2,1,1);stem(y1);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');subplot(2,1,2);stem(y2);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');1.应用叠加原理验证系统2是否为线性系统:clear allclcn = 0 : 1 : 299;x1 = cos(20 * pi * n / 256);x2 = cos(200 * pi * n / 256);x = x1 + x2;num = [0.45 0.5 0.45];den = [1 -0.53 0.46];y1 = filter(num, den, x1);y2 = filter(num, den, x2);y= filter(num, den, x);yt = y1 + y2;figuresubplot(2, 1, 1);stem(n, y, 'g');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;subplot(2, 1, 2);stem(n, yt, 'r');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;2.应用时延差值来判断系统2是否为时不变系统。

离散时间系统的时域分析实验报告

离散时间系统的时域分析实验报告
3
3. clf; h=[-6 5 2 3 -2 0 1 0 5 -3 4 2 -1 -3 2]; %冲激 x=[2 4 -1 3 -5 2 0 -1 2 -1]; %输入序列 y=conv(h,x); n=0:23; subplot(2,1,1); stem(n,y);
4. clf; n=0:301; x=cos((0.5*pi/600)*n.*n+0*n); %计算输出序列 num1=[0.5 0.27 0.77]; y1=filter(num1,1,x);%系统#1 的输出 den2=[1 -0.35 0.46]; num2=[0.45 0.5 0.45]; y2=filter(num2,den2,x);%系统#2 的输出 %画出输入序列 subplot(3,1,1); plot(n,x); axis([0 300 -2 2]); ylabel('振幅'); title('系统的输入'); grid;

四、实验结果与分析
图一 图二
2
图三
图四
五、实验小结
通过这次实验,我熟悉 MATLAB 中产生信号和绘制信号的基本命令,学会 通过 MATLAB 仿真一些简单的离散时间系统,并研究了它们的时域特性。
经过了两次实验课,对于 MATLAB 的一些命令语句的格式熟悉多了。在完 成实验时比第一次更顺利了些。
subplot(3,1,3) d=d(2:42); stem(n,d);
2. clf; n=0:40; D=10; a=3.0; b=-2; x=a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n); xd=[zeros(1,D) x]; nd=0:length(xd)-1; y=(n.*x)+[0 x(1:40)]; yd=(nd.*xd)+[0 xd(1:length(xd)-1)]; d=y-yd(1+D:41+D);

实验三 连续信号与系统的频域分析

实验三 连续信号与系统的频域分析
郑慧乐
学号
0174280
同组人:无
实验项目
实验三连续信号与系统的频域分析
☑必修□选修
□演示性实验☑验证性实验□操作性实验□综合性实验
实验地点
H113
实验仪器台号
F0
指导教师
蒋娜
实验日期及节次
week14->2-12
一、实验目的及要求:
1、目的
1.掌握非周期信号的傅里叶变换:fourier函数和ifourier函数;
四、实验结果与数据处理:
1.利用fourier函数求下列信号的傅里叶变换F(jω),并用ezplot函数绘出其幅度谱和相位谱。
(1)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=sym('Heaviside(t)-Heaviside(t-2)');%
Fw=fourier(f);
plot([07.0711],[0.7070.707],':');
axis([04001.1]);
grid;
xlabel('角频率(\omega)');
ylabel('幅度');
title('H(j\omega)的幅频特性');
subplot(212);
plot(w,h2*180/pi);
axis([0400200]);
(2)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=exp(-1*t)*sym('Heaviside(t)');%
Fw=fourier(f);
subplot(311);

《信号与系统》离散信号的频域分析实验报告

《信号与系统》离散信号的频域分析实验报告

信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。

4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。

实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。

图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。

分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。

并观察是否存在频谱混叠。

图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。

(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。

(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。

(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。

11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告报告⼆:⼀、设计题⽬1.绘制信号)()(1k k f δ=和)2()(2-=k k f δ的波形2.绘制直流信号)()(1k k f ε=和)2(2-=k f ε的波形3绘制信号)()(6k G k f =的波形⼆实验⽬的1.掌握⽤MATLAB 绘制离散时间信号(序列)波形图的基本原理。

2.掌握⽤MATLAB 绘制典型的离散时间信号(序列)。

3.通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

三、设计原理离散时间信号(也称为离放序列)是指在时间上的取值是离散的,只在⼀些离放的瞬间才有定义的,⽽在其他时间没有定义,简称离放信号(也称为离散序列) 序列的离散时间间隔是等间隔(均匀)的,取时间间隔为T.以f(kT)表⽰该离散序列,k 为整数(k=0,±1.±2,...)。

为了简便,取T=1.则f(kT)简记为f(k), k 表⽰各函数值在序列中出现的序号。

序列f(k)的数学表达式可以写成闭合形式,也可逐⼀列出f(k)的值。

通常,把对应某序号K0的序列值称为序列的第K0个样点的“样点值”。

四、设计的过程及仿真1clear all; close all; clc;k1=-4;k2=4;k=k1:k2;n1=0;n2=2;f1=[(k-n1)==0];f2=[(k-n2)==0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('δ(k)')axis([k1,k2,-0.1,1.1]);subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);ylabel('f_2(k)');title('δ(k-2)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:2c lear all; close all; clc;k1=-2;k2=8;k=k1:k2;n1=0;n2=2; %阶跃序列开始出现的位置f1=[(k-n1)>=0]; f2=[(k-n2)>=0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('ε(k)')axis([k1,k2+0.2,-0.1,1.1])subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);xlabel('k');ylabel('f_2(k)');title('ε(k-2)')axis([k1,k2+0.2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:3clear all; close all; clc;k1=-2;k2=7;k=k1:k2; %建⽴时间序列n1=0;n2=6; f1=[(k-n1)>=0];f2=[(k-n2)>=0];f=f1-f2;stem(k,f,'fill','-k','linewidth',2);xlabel('k');ylabel('f(k)');title('G_6(k)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:五、设计的结论及收获实现了⽤matlab绘制离散时间信号, 通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

离散实验报告思路

离散实验报告思路

一、实验背景与目的离散实验是数字信号处理和系统理论中的重要内容,通过实验,我们可以更直观地理解离散系统的基本概念、理论和方法。

本次实验旨在通过MATLAB软件对离散系统进行仿真和分析,加深对以下内容的理解:1. 离散时间系统的基本概念和数学模型。

2. 离散系统的时域、频域和Z域分析。

3. 离散系统的零、极点分布及其对系统性能的影响。

4. 常见离散系统的设计与应用。

二、实验内容与步骤1. 离散时间系统的时域分析(1)设计一个简单的离散时间系统,如一阶差分方程、二阶差分方程等。

(2)使用MATLAB编写程序,求解系统的单位冲激响应。

(3)通过绘制单位冲激响应曲线,观察系统的稳定性和响应特性。

(4)分析系统的稳定性和响应特性与系统参数之间的关系。

2. 离散系统的频域分析(1)对设计好的离散时间系统进行Z变换,求出系统的传递函数。

(2)使用MATLAB绘制系统的幅频响应和相频响应曲线。

(3)通过分析幅频响应和相频响应曲线,了解系统的频率特性。

(4)比较不同参数对系统频率特性的影响。

3. 离散系统的零、极点分布分析(1)根据系统的传递函数,求出系统的零点和极点。

(2)使用MATLAB绘制系统的零、极点分布图。

(3)分析零、极点分布对系统稳定性和频率特性的影响。

(4)通过调整系统参数,观察零、极点分布的变化,并分析其对系统性能的影响。

4. 常见离散系统的设计与应用(1)设计一个简单的低通滤波器,如FIR滤波器、IIR滤波器等。

(2)使用MATLAB绘制滤波器的幅频响应和相频响应曲线。

(3)分析滤波器的性能,如通带纹波、阻带衰减等。

(4)将滤波器应用于实际信号处理问题,如信号滤波、噪声抑制等。

三、实验结果与分析在实验过程中,记录以下内容:1. 离散时间系统的单位冲激响应曲线。

2. 离散系统的幅频响应和相频响应曲线。

3. 离散系统的零、极点分布图。

4. 滤波器的幅频响应和相频响应曲线。

对实验结果进行分析,主要包括:1. 离散时间系统的稳定性和响应特性。

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6-离散时间系统的z域分析————————————————————————————————作者:————————————————————————————————日期:实验6 离散时间系统的z 域分析(综合型实验)一、 实验目的1) 掌握z 变换及其反变换的定义,并掌握MAT LAB实现方法。

2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。

3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、 实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MA TLA B中可采用符号数学工具箱z trans 函数和iz trans 函数计算z 变换和z 反变换: Z=ztran s(F)求符号表达式F的z 变换。

F=iztra ns(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。

此外还可采用MATL AB 中zpl ane 函数来求解和绘制离散系统的零极点分布图,zp lane 函数的调用格式为:zplane(b,a) b、a 为系统函数分子分母多项式的系数向量(行向量) zplane (z,p) z 、p为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。

实验一 时域离散信号与系统分析(实验报告)-2015

实验一 时域离散信号与系统分析(实验报告)-2015

《数字信号处理》 实验报告学院 专业 电子信息工程 班级 姓名 学号 时间实验一 时域离散信号与系统分析一、实验目的1、熟悉连续信号经理想采样后的频谱变化关系,加深对时域采样定理的理解。

2、熟悉时域离散系统的时域特性,利用卷积方法观察分析系统的时域特性。

3、学会离散信号及系统响应的频域分析。

4、学会时域离散信号的MATLAB 编程和绘图。

5、学会利用MATLAB 进行时域离散系统的频率特性分析。

二、实验内容1、序列的产生(用Matlab 编程实现下列序列(数组),并用stem 语句绘出杆图。

(要求标注横轴、纵轴和标题)(1). 单位脉冲序列x(n)=δ(n ) (2). 矩形序列x(n)=R N (n) ,N=10nδ(n )nR N (n )图1.1 单位脉冲序列 图1.2 矩形序列(3) . x(n)=e (0.8+3j )n ; n 取0-15。

4n|x (n )|201321111053 陈闽焜n<x (n )/R a d图1.3 复指数序列的 模 图1.4 复指数序列的 相角(4). x(n)=3cos (0. 25πn +0.3π)+2sin (0.125πn +0.2π) n 取0-15。

ny (n )图1.4 复合正弦实数序列(5). 把第(3)小题的复指数x(n)周期化,周期20点,延拓3个周期。

4m|y (m )|201321111053 陈闽焜图1.5 第(3)的20点周期延拓杆图(6). 假设x(n)= [1,-3,2,3,-2 ], 编程产生以下序列并绘出杆图:y(n) y(n)= x(n)-2x(n+1)+x(n-1)+x(n-3);5201321111053 陈闽焜图1.6 y(n)序列杆图(7)、编一个用户自定义matlab 函数,名为stepshf (n0,n1,n2)实现单位阶跃序列u[n -n1]。

其中位移点数n1在起点n0和终点n2之间任意可选。

自选3个入口参数产生杆图。

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。

本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。

在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。

2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。

通过设置函数发生器的频率和振幅,我们可以产生不同的信号。

接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。

使用合适的采样率,我们可以准确地获取模拟信号的离散样本。

最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。

2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。

通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。

通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。

2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。

例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。

通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。

此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。

3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。

例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。

而当信号频率小于采样率的一半时,可以还原原始信号。

此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。

4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。

信号与系统实验四 离散时间LTI系统分析实验报告资料

信号与系统实验四  离散时间LTI系统分析实验报告资料

实验四 离散时间LTI 系统分析一、实验目的(一)掌握使用Matlab 进行离散系统时域分析的方法1、学会运用MATLAB 求离散时间系统的零状态响应2、学会运用MATLAB 求解离散时间系统的单位样值响应3、学会运用MATLAB 求解离散时间系统的卷积和(二)掌握使用Matlab 进行离散时间LTI 系统z 域分析的方法1、学会运用MATLAB 求离散时间信号的z 变换和z 反变换2、学会运用MATLAB 分析离散时间系统的系统函数的零极点3、学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系4、学会运用MATLAB 进行离散时间系统的频率特性分析二、实验条件装有matlab2015a 的计算机一台三、实验内容(一)熟悉两部分相关内容原理 (二)完成作业1、表示某离散LTI 系统的差分方程如下:)()()(.)(.)(12240120-+=---+n x n x n y n y n y其中,)(n x 为激励,)(n y 为响应。

(1)试用MATLAB 命令中的filter 函数求出并画出)(n x 为单位阶跃序列时系统的零状态响应;程序:a=[1 0.2 -0.24];b=[1 1];n=-5:30;x=uDT(n);y=filter(b,a,x);stem(n,y,'fill');xlabel('n');title('x(n)为单位阶跃序列时系统的零状态响应');运行结果:(2)试用MATLAB命令求出并画出系统的单位样值响应[注:分别用filter函数和impz 函数求解,并比较二者结果是否一致];程序:%filter函数a=[1 0.2 -0.24];b=[1 1];n=0:30;x=impDT(n);y=filter(b,a,x);subplot(211);stem(n,y,'fill');xlabel('n');title('filter函数求系统的单位样值响应');%impz函数subplot(212);impz(b,a,30);title('impz 函数求系统的单位样值响应');运行结果:(3)试用MATLAB 命令中的conv 函数求出并画出)(n x 为单位阶跃序列时系统的零状态响应[注:)()(n h n x 和各取前100个样点],并与(1)的结果进行比较; 程序:a=[1 0.2 -0.24]; b=[1 1]; n=-50:50; x1=impDT(n); y1=filter(b,a,x1);nx=-50:50; nh=-50:50;x=double(uDT(nx)); h=double(y1); y=conv(x,h); ny1=nx(1)+nx(1);ny=ny1+(0:(length(nx)+length(nh)-2)); stem(ny,y,'fill');xlabel('n');title('y(n)=x(n)*h(n)'); axis([-5,30,0,2.5]);运行结果:(4)试用MATLAB 命令求出此系统的系统函数)(z H ,并画出相应的零极点分布图,根据零极点图讨论该系统的稳定性; 程序:a=[1 0.2 -0.24]; b=[1 1 0]; zplane(b,a);legend('零点','极点'); title('零极点分布图');运行结果:结论:该因果系统的极点全部在单位圆内,故系统是稳定的。

离散系统的时域分析实验报告

离散系统的时域分析实验报告

实验2 离散系统的时域分析一、实验目的1、熟悉并掌握离散系统的差分方程表示法;2、加深对冲激响应和卷积分析方法的理解。

二、实验原理在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下:其输入、输出关系可用以下差分方程描述:输入信号分解为冲激信号,记系统单位冲激响应,则系统响应为如下的卷积计算式:当时,h[n]是有限长度的(),称系统为FIR系统;反之,称系统为IIR系统。

三、实验内容1、用MATLAB求系统响应1)卷积的实现线性移不变系统可由它的单位脉冲响应来表征。

若已知了单位脉冲响应和系统激励就可通过卷积运算来求取系统响应,即程序:x=input(‘Type in the input sequence=’); %输入xh=input(‘Type in the impulse response sequence=’); %输入hy=conv(x,h); % 对x,h进行卷积N=length(y)-1; %求出N的值n=0:1:N; %n从0开始,间隔为1的取值取到N为止disp(‘output sequence=’); disp(y); %输出ystem(n,y); %画出n为横轴,y为纵轴的离散图xlabel(‘Time index n’); ylable(‘Amplitude’); % 规定x轴y 轴的标签输入为:x=[-2 0 1 -1 3]h=[1 2 0 -1]图形:2)单位脉冲响应的求取线性时不变因果系统可用MATLAB的函数filter来仿真y=filter(b,a,x);其中,x和y是长度相等的两个矢量。

矢量x表示激励,矢量a,b 表示系统函数形式滤波器的分子和分母系数,得到的响应为矢量y。

例如计算以下系统的单位脉冲响应y(n)+0.7y(n-1)-0.45y(y-2)-0.6y(y-3)=0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3)程序:N=input(‘Desired impuse response length=’);b=input(‘Type in the vector b=’);a=input(‘Type in the vector a=’);x=[1 zeros(1,N-1)];y=filter(b,a,x);k=0:1:N-1;stem(k,y);xlabel(’Time index n’); ylable(‘Amplitude’);输入:N=41b=[0.8 -0.44 0.36 0.02]a=[1 0.7 -0.45 -0.6]图形:2、以下程序中分别使用conv和filter函数计算h和x的卷积y和y1,运行程序,并分析y和y1是否有差别,为什么要使用x[n]补零后的x1来产生y1;具体分析当h[n]有i个值,x[n]有j个值,使用filter完成卷积功能,需要如何补零?程序:clf;h = [3 2 1 -2 1 0 -4 0 3]; %impulse responsex = [1 -2 3 -4 3 2 1]; %input sequencey = conv(h,x);n = 0:14;subplot(2,1,1);stem(n,y);xlabel('Time index n'); ylabel('Amplitude');title('Output Obtained by Convolution'); grid;x1 = [x zeros(1,8)];y1 = filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel('Time index n'); ylabel('Amplitude');title('Output Generated by Filtering'); grid;图形:因为在y=filter(b,a,x)中,利用给定矢量a和b对x中的数据进行滤波,结果放入y矢量中,y与x长度要相等,所以要使用x[n]补零后的x1来产生y1。

MSA分析报告范本

MSA分析报告范本

MSA分析报告范本目录MSA分析报告范本 (1)引言 (1)研究背景 (1)研究目的 (2)研究意义 (3)MSA分析概述 (4)MSA的定义和原理 (4)MSA的应用领域 (5)MSA的分类 (6)MSA分析步骤 (7)数据收集 (7)数据准备 (9)数据分析 (9)结果评估 (10)结果应用 (11)MSA分析案例研究 (12)案例背景介绍 (12)数据收集和准备 (13)数据分析过程 (14)结果评估和应用 (15)MSA分析的局限性和改进方法 (16)MSA分析的局限性 (16)改进方法和建议 (17)结论 (18)研究总结 (18)研究展望 (18)引言研究背景随着全球化的加速和经济的快速发展,企业面临着越来越复杂的市场环境和竞争压力。

为了在这个竞争激烈的市场中保持竞争优势,企业需要不断改进和优化其生产和运营过程。

而测量系统分析(Measurement System Analysis,简称MSA)作为一种重要的质量管理工具,可以帮助企业评估和改进其测量系统的准确性、稳定性和可重复性,从而提高产品质量和生产效率。

在过去的几十年里,MSA已经成为了质量管理领域的重要研究课题。

然而,尽管有大量的研究和实践经验,但仍然存在一些问题和挑战。

首先,现有的MSA方法和指标并不完善,无法满足不同行业和企业的需求。

其次,由于测量系统的复杂性和多样性,MSA的实施和分析过程常常繁琐且耗时。

此外,由于人为因素和环境变化等原因,测量系统的准确性和稳定性可能会受到影响,从而导致测量结果的误差和不确定性。

因此,本研究旨在对MSA进行深入的分析和研究,以解决上述问题和挑战。

具体来说,本研究将从以下几个方面展开工作:首先,本研究将对现有的MSA方法和指标进行综述和评估,以了解其优缺点和适用范围。

通过对不同行业和企业的实际需求进行调研和分析,本研究将提出一种更加全面和适用的MSA方法和指标体系。

其次,本研究将开展一系列实证研究,以验证和改进所提出的MSA方法和指标。

离散信号与系统的频谱分析实验报告

离散信号与系统的频谱分析实验报告

实验二 离散信号与系统的频谱分析一、实验目的1.掌握离散傅里叶变换(DFT )及快速傅里叶变换(FFT )的计算机实现方法。

2.检验序列DFT 的性质。

3.掌握利用DFT (FFT )计算序列线性卷积的方法。

4.学习用DFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT 。

5.了解采样频率对谱分析的影响。

6.了解利用FFT 进行语音信号分析的方法。

二、实验设备1.计算机2.Matlab 软件7.0以上版本。

三、实验内容1.对不同序列进行离散傅里叶变换并进行分析;DFT 共轭对称性质的应用(通过1次N 点FFT 计算2个N 点实序列的DFT )。

2.线性卷积及循环卷积的关系,以及利用DFT (FFT )进行线性卷积的方法。

3.比较计算序列的DFT 和FFT 的运算时间。

4.利用FFT 实现带噪信号检测。

5.利用FFT 计算信号频谱及功率谱。

6.扩展部分主要是关于离散系统采样频率、时域持续时间、谱分辨率等参数之间的关系,频谱的内插恢复,对语音信号进行简单分析。

四、实验原理1.序列的离散傅里叶变换及性质离散傅里叶变换的定义:10, )()]([)(102-≤≤==∑-=-N k en x n x DFT k X N n nk Nj π离散傅里叶变换的性质:(1)DFT 的共轭对称性。

若)()()(n x n x n x op ep +=,[])()(n x DFT k X =,则:)()]([k X n x DFT R ep =, )()]([k jX n x DFT I op =。

(2)实序列DFT 的性质。

若)(n x 为实序列,则其离散傅里叶变换)(k X 为共轭对称,即10),()(*-≤≤-=N k k N X k X 。

(3)实偶序列DFT 的性质。

若)(n x 为实偶序列,则其离散傅里叶变换)(k X 为实偶对称,即10),()(-≤≤-=N k k N X k X 。

信号与系统实验报告实验三连续时间LTI系统的频域分析

信号与系统实验报告实验三连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位冲激响应: Nhomakorabean
0
h(n)
1
1
2
-1.75
1.19
3 -0.67
4 0.355
5 -0.18
单位阶跃响应:
程序计算结果:
A:单位冲激响应
(1)用 Filter 函数
(2)用 Conv 函数
(3)用 impz 函数
B:单位阶跃响应 (1)用 Filter 函数
(2)用 Conv 函数
(3)用 Impz 函数
B:单位阶跃响应 (1)用 filter 函数
(2)用 Conv 函数
(3)用 Impz 函数
结论: y=filter(p,d,x)用来实现差分方程,d 表示差分方程输出 y 的系数,p 表示输入 x 的系数,而 x 表示输入
序列。输出结果长度数等于 x 的长度; 而 y=conv(x,h)是用来实现卷积的,对 x 序列和 h 序列进行卷积,输出的结果个数等于 x 的长度与 h 的
②y=conv(x,h)是用来实现卷积的,对 x 序列和 h 序列进行卷积,输出的结果个数等于 x 的长度与 h 的长度之和减去 1;
③y=impz(p,d,N)是用来实现冲击响应的,d 和 p 的定义同 filter,N 表示冲击响应输出的 序列个数。
1)离 散系 统的 单位
冲激
n=0:20;
响应
x2=ones(1,21); y1filter=filter(num,den,x2); subplot(122); stem(n,y1filter);
h(n); 2) 输 入为
title('filter_step');
xlabel('x');
ylabel('y');
求该系统的单位冲激响应。
4 计算上述系统在输入为 x(t) etu(t) 时的零状态响应。
程序:
ts=0;te=10;dt=0.01;
sys=tf([2 8],[1 5 6]);
t=ts:dt:te;
f=exp(-t);
y=lsim(sys,f,t);
plot(t,y) xlabel('time(sec)')
实验一 连续和离散系统分析
一、实验目的 学习连续系统和离散系统响应的 matlab 求解方法;
二、实验主要仪器设备和材料 计算机
三、实验方法、步骤及结果测试 实验方法:编程,上机调试,分析实验结果; 步骤: 编程实现上述各实验容
四、实验结果 1、某系统的传递函数为:Y (s) / X (x) 1
(s 1)(s 2)
长度之和减去 1; y=impz(p,d,N)是用来实现冲击响应的,d 和 p 的定义同 filter,N 表示冲击响应输出的序列个数。
3 已知描述某连续系统的微分方程为
y '' (t) 5y ' (t) 6 y(t) 2x' (t) 8x(t)
程序: b=[2 8];a=[1 5 6]; sys=tf(b,a); t=0:0.1:10; y=impulse(sys,t); plot(t,y); xlabel(‘时间(t)’);ylabel(‘y(t)’);tltle(‘单位冲激响应’);
x(n) u(n) ,求系统的零状态响应。
6 已知某离散因果系统的系统函数 H (z) 1 z 1 ,试分析该系统的幅
1 z 1 0.5z 2
程序:
num=[1 1]; den=[1 -1 0.5];
sys=tf(num,den);
w=-10:0.001:10; H=freqs(num,den,w);
5 已知系统函数 H (z)
1 2z 1
,求
1 0.4z 1 0.12 z 2
ylabel('y(t)') 程序:
num=[1 2];den=[1 0.4 0.12];
% system model
y1=impz(num,den,20);
subplot(121); stem(y1); title('impulse response');
试求系统的冲激响应和阶跃响应。
2、编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。要 求分别用 filter、conv、impz 三种函数完成。给出理论计算结果和程序计算结 果并讨论。 (I)
y[n] 0.75y[n 1] 0.125y[n 2] x[n] x[n 1]
理论计算结果:
(II) y[n] 0.25{x[n 1] x[n 2] x[n 3] x[n 4]}
理论计算结果:
单位冲激响应:
n
0
h(n)
0
单位阶跃响应:
程序计算结果:
A:单位冲激响应 (1)用 filter 函数
1
2
3
4
5
0.25
0.25
0.25
0.25
0
(2)用 Conv 函数
(3)用 Impz 函数
t 表示计算系统响应的抽样点向量,f 是系统输入信号向量 sys 是 LTI 系统模型,借助 tf 函数获得。
②连续系统冲激响应和阶跃响应的求解 连续时间系统冲激响应可用 impulse 函数直接求出,其调用形式为:
y=impulse(sys,t) 连续时间系统阶跃响应可用 step 函数直接求出,其调用形式为:
频特性。
subplot(2,1,1);plot(w,abs(H));title ('幅频特性');
subplot(2,1,2);plot(w,angle(H));tit le('相频特性');
五、思考题 1)连续系统响应的计算机求解可以分为哪些方法?各是什么原理?
答:①连续时间系统零状态响应的求解 y lsim(sys,f,t)
y=step(sys,t) t 表示计算系统响应的抽样点向量, sys 是 LTI 系统模型.
2) matlab 中用于离散系统求解的命令有哪些?各基于什么求解方法?
答:①y=filter(p,d,x)用来实现差分方程,d 表示差分方程输出 y 的系数,p 表示输入 x 的系 数,而 x 表示输入序列。输出结果长度数等于 x 的长度;
相关文档
最新文档