逻辑连接词且或非

合集下载

逻辑连接词课件

逻辑连接词课件
过程与方法
在观察和思考中,在解题和证明题中,本节课要特别注重学生思维 的严密性品质的培养
情感态度与价值观
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度, 培养积极进取的精神,通过探索、发现知识过程,获得成功的体验,锻 炼学生克服困难的意志,建立学习数学的自信心。,
PPT学习交流
6
重点难点
PPT学习交流
10
探究二
探究新知
以前我们有没有学习过像这样用联结词连接的命 题?试举一些例子?
【设计意图】 :通过具体数学实例引入逻辑联结词,易
引发学生的学习兴趣.引导学生思考、讨论,目的是引出 逻辑联结词“且、或、非”,让学生较轻松地感受到用逻 辑联结词联结两个命题可以得到一个新命题的认识.
PPT学习交流
PPT学习交流
13
探究三 qppp q
真假表的判定
p
q p∧q
p∨q
真真 真假 假真 假假
探究新知
p ¬p 真 假
口诀:“全真才真,一假则假”,“全假才假,一真则真”,“真假相反”.
[设计意图]为准确地运用新知,作必要的铺垫.
PPT学习交流
14
例1
新知运用
将下列命题用“且”联结成新命题,并判断
它们的真假:
(1) :平行四边形的对角线互相平分, :平行四 边形的对角线相等; (2) :菱形的对角线互相垂直, :菱形的对角线 互相平分; (3) :35是15的倍数, :35是7的倍数.
[设计意图] 通过本例题可以让学生认识到三个方面:一是 简洁表示命题;二是体会常用逻辑用语表述数学内容的准 确性;三是根据“且”的含义,确定 的真假.
PPT学习交流
4
学情分析

逻辑联结词

逻辑联结词

例:下列语句是命题吗? 如果是, 它们与 以上的命题有何区别呢? ① 10 可以被 2 或 5 整除 ② 菱形的对角线互相垂直且平分 ③ 0.5 非整数
例:下列语句是命题吗? 如果是, 它们与 以上的命题有何区别呢? ① 10 可以被 2 或 5 整除 ② 菱形的对角线互相垂直且平分 ③ 0.5 非整数
课堂小结
①命题--可以判断真假的语句; ②逻辑连接词--“或” 、 “且” 、 “非”; ③命题的构成及形式:p 或 q,p 且 q,p 非 q; ④“或” 、 “且” 、 “非”类似于集合中的 “并” 、 “交” 、 “补”.
课外作业
1. 2. 3. 阅读教材; 教材第 28 页第 1 题, 29 页第 2 题; 预习教材 P26~P28.
例 1. 分别指出下列复合命题的形式以及 构成它的简单命题:
1)24 既是 8 的倍数,也是 6 的倍数;
例 1. 分别指出下列复合命题的形式以及 构成它的简单命题:
1)24 既是 8 的倍数,也是 6 的倍数; 2)小强是篮球运动员或跳高运动员;
例 1. 分别指出下列复合命题的形式以及 构成它的简单命题:
逻辑联结词:“或”、 “且” 、 “非”
例:下列语句是命题吗? 如果是, 它们与 以上的命题有何区别呢? ① 10 可以被 2 或 5 整除 ② 菱形的对角线互相垂直且平分 ③ 0.5 非整数
逻辑联结词:“或”、 “且” 、 “非”
简单命题:不含逻辑联结词的命题.
例:下列语句是命题吗? 如果是, 它们与 以上的命题有何区别呢? ① 10 可以被 2 或 5 整除 ② 菱形的对角线互相垂直且平分 ③ 0.5 非整数
定义中的意义“或”相同;
“或”、 “且” 、 “非” 与集合中哪些运算 性质相同?

考点03 逻辑联结词及数学归纳法(解析版)

考点03 逻辑联结词及数学归纳法(解析版)

考点48 逻辑联结词及数学归纳法一.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词. (2)命题p 且q 、p 或q 、非p 的真假判断二.量词2.全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示. (2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含一个量词的命题的否定三.数学归纳法1.由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法. 2.用数学归纳法证明一个与正整数有关的命题时,其步骤如下: (1)归纳奠基:证明取第一个自然数n 0时命题成立;(2)归纳递推:假设n =k (k ∈N *,k ≥n 0)时命题成立,证明当n =k +1时,命题成立; (3)由(1)(2)得出结论.知识理解考向一 命题的否定【例1】(2021·四川成都市·高三二模(理))命题“0x ∀>,210x x ++>”的否定为( )A .00x ∃≤,20010x x ++≤ B .0x ∀≤,210x x ++≤ C .00x ∃>,20010x x ++≤D .0x ∀>,210x x ++≤【答案】C【解析】因为全称命题的否定是特称命题,所以,命题“0x ∀>,210x x ++>”的否定是:00x ∃>,20010x x ++≤.故选:C .【举一反三】1.(2021·全国高三月考(理))命题“0x R ∃∈,002ln 0x x +≤”的否定是( ) A .x R ∀∈,2ln 0x x+≥ B .x R ∀∈,2ln 0x x+> C .0x R ∃∈,002ln 0x x +≥ D .0002,0x R lnx x ∃∈+> 【答案】B【解析】命题“0x R ∃∈,002ln 0x x +≤”为特称命题,该命题的否定为“x R ∀∈,2ln 0x x+>”. 故选:B.2.(2021·湖南岳阳市)命题“()1,x ∀∈+∞,21x e x ≥+”的否定是( ) A .()1,x ∃∈+∞,21x e x ≥+ B .()1,x ∀∈+∞,21x e x <+ C .()1,x ∃∈+∞,21x e x <+ D .()1,x ∀∈+∞,21x e x ≥+【答案】C【解析】命题“()1,x ∀∈+∞,21x e x ≥+”为全称命题,该命题的否定为“()1,x ∃∈+∞,21x e x <+”. 故选:C.考向分析3.(2021·泰州市第二中学)巳知命题p :0x ∃>,10x e x --≤,则命题p 的否定为( ) A .0x ∀≤,10x e x --> B .0x ∀>,10x e x --> C .0x ∃>,10x e x --≥ D .0x ∃≤,10x e x -->【答案】B【解析】命题p :0x ∃>,10x e x --≤,则命题p 的否定为0x ∀>,10x e x -->. 故选:B考向二 逻辑连接词求参数【例2】(2021·全国高三专题练习)若命题“200[1,2],2x x a ∃∈--+”是假命题,则实数a 的范围是( ) A .2a > B .2a C .2a >- D .2a -【答案】A【解析】若命题“200[1,2],2x x a ∃∈--+”是假命题,则命题“2[1,2],2x x a ∀∈--+<”是真命题, 当0x =时,()2max22x -+=,所以2a >.故选:A. 【举一反三】1.(2021·天水市第一中学高三月考(理))已知命题():1,3p x ∃∈-,220x a --≤.若p 为假命题,则a 的取值范围为( ) A .(),2-∞- B .(),1-∞-C .(),7-∞D .(),0-∞【答案】A 【解析】p 为假命题,∴():1,3p x ⌝∀∈-,220x a -->为真命题,故22a x <-恒成立,22y x =-在()1,3x ∈-的最小值为2-,∴2a <-. 故选:A.2.(2020·北京人大附中高三月考)若命题“x R ∃∈,使得2210ax x ++<成立”为假命题,则实数a 的取值范围是( ) A .[1,+∞) B .[0,+∞)C .(-∞,1)D .(-∞,0]【答案】A 【解析】命题“x R ∃∈,使得2210ax x ++<成立”为假命题, 则它的否定命题: “x R ∀∈,2210ax x ++≥”为真命题所以0440a a >⎧⎨∆=-≤⎩ 解得1a ≥,所以实数a 的取值范围是[1,)+∞ 故选:A.3.(2020·江西高三期中(文))存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1 B .14C .12D .-1【答案】C【解析】由不等式230x mx m +-≥,可化为23x m x≤-,设()[]2,1,13x f x x x=∈--,则()()()2226(6)33x x x x f x x x ---'==--,当[1,0)x ∈-时,()0f x '<,()f x 单调递减; 当(0,1]x ∈时,()0f x '>,()f x 单调递增,又由()11(1),142f f -==,所以函数()f x 的最大值为()112f =, 要使得存在[1,1]x ∈-,使得230x mx m +-≥,则12m ≤,则m 的最大值为12. 故选:C.考向三 数学归纳法【例3-1】(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+12+13+…+121n -<n (n ∴N *,n ≥2)”时,由n =k (k ≥2)时不等式成立,推证n =k +1时,左边应增加的项数是( ) A .2k -1 B .2k -1 C .2k D .2k +1【答案】C【解析】n k =时,左边=1111 (2321)k ++++-,而n =k +1时,左边=11111111 (232122121)k k k k +++++++++-+-,增加了1111 (22121)k k k +++++-,共(2k +1-1)-(2k -1)=2k 项, 故选:C.【例3-2】.(2020·全国高三专题练习)设等比数列{}n a 满足113,34n n a a a n +==-. (1)计算23,a a ,猜想{}n a 的通项公式并加以证明; (2)求数列{}2nn a 的前n 项和n S .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-+. 【解析】(1)由题意,等比数列{}n a 满足113,34n n a a a n +==-, 可得21345a a =-= ,323427a a =-⨯=,,猜想{}n a 的通项公式为21n a n =+,证明如下:(数学归纳法)当1,2,3n =时,显然成立; ∴ 假设n k =时,即21k a k =+成立;其中*(N )k ∈, 由134k k a a k +=-3(21)4k k =+-2(1)1k =++ ∴故假设成立,综上(1)(2),数列{}n a 的通项公式21n a n =+*()n N ∈.(2)令2(21)2n nn n b a n ==+,则前项和1212...3252...(21)2n n n S b b b n =+++=⨯+⨯+++ ∴由∴两边同乘以2得:23123252...(21)2(21)2n n n S n n +=⨯+⨯++-++ ∴由∴-∴的322112(12)3222...2(21)26(21)212n n n n n S n n -++--=⨯+⨯++-+=+-+-, 化简得1(21)22n n S n +=-+. 【举一反三】1.(2020·全国高三专题练习(理))用数学归纳法证明等式123(21)(1)(21)n n n +++++=++时,从n k=到1n k =+等式左边需增添的项是( ) A .22k + B .[]2(1)1k ++ C .[(22)(23)]k k +++ D .[][](1)12(1)1k k ++++ 【答案】C【解析】当n k =时,左边123(21)k =+++++,共21k +个连续自然数相加,当1n k =+时,左边123(21)(22)(23)k k k =+++++++++,所以从n k =到1n k =+,等式左边需增添的项是[(22)(23)]k k +++. 故选:C.2.(2021·全国高三专题练习)设集合T n ={1,2,3,…,n }(其中n ≥3,n ∴N *),将T n 的所有3元子集(含有3个元素的子集)中的最小元素的和记为S n . (1)求S 3,S 4,S 5的值; (2)试求S n 的表达式.【答案】(1)S 3=1,S 4=5,S 5=15;(2)41n C + .【解析】(1)当n =3时,T 3={1,2,3},3元子集有:{1,2,3},∴S 3=1;当n =4时,T 4={1,2,3,4},3元子集有:{1,2,3},{1,2,4},{1,3,4},{2,3,4},∴S 4=1×3+2=5;当n =5时,T 5={1,2,3,4,5},3元子集有:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},222543212315S C C C ∴=⨯+⨯+⨯=.(2)由S 3=1,S 4=5,S 5=15,S 6=35…归纳猜想出41n n S C +=(n ≥3).下面用数学归纳法证明猜想:∴当n =3时,S 3=1=44C ,结论成立;∴假设n =k (k ≥3,k ∴N *)时,结论成立,即S k =41k C +,则当n =k +1时,T k +1={1,2,3,4,…,k ,k +1},()()1111111232123...21k k k k k S S C C C k C k C +---⎡⎤=+++++-+-⎣⎦()()()(){}411111122112...21k k k C k C k C k k C k k C +--=+-+-++--+--⎡⎤⎡⎤⎣⎦⎣⎦ ()(){}4111111111211231...23...1k k k C k C C C C C C k C +--⎡⎤=++++-++++-⎣⎦ ()422311k k k k C kC kC C ++⎡⎤=+--⎣⎦ ()4341111k k k C C C ++++=+=∴当n =k +1时,结论成立. 综上:由∴∴可得()413n n S C n +=≥.1.(2021·涡阳县育萃高级中学)已知命题:p x R ∀∈,2104x x -+,则p ⌝( ) A .21,04x x x ∃∈-+R B .21,04x x x ∃∈-+>R C .21,04x x x ∀∈-+>R D .21,04x x x ∀∈-+<R 【答案】B【解析】命题p 为全称命题,根据全称命题的否定为特称命题,可得:p ⌝: 21,04x x x ∃∈-+>R 故选:B2.(2021·漠河市高级中学高三月考(文))下列说法正确的是( ) A .若p q ∨为真命题,则p q ∧为真命题B .命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y ≠”C .“0x <”是“20x x ->”的充要条件强化练习D .若p :x ∀∈R ,2320x x --<,则p ⌝:0x ∃∈R ,200320x x --.【答案】D【解析】对于A 选项,若p q ∨为真命题,可能p 真q 假,则p q ∧为假,故A 选项错误.对于B 选项,命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y =”,故B 选项错误. 对于C 选项,当2x =时,20x x ->,所以“0x <”不是“20x x ->”的充要条件,C 选项错误. 根据全称量词命题的否定的知识可知,D 选项正确. 故选:D3.(2021·全国高三专题练习)下列关于命题的说法中正确的是( )∴对于命题P :x R ∃∈,使得210x x ++<,则:P x R ⌝∀∈,均有210x x ++≥ ∴“1x =”是“2320x x -+=”的充分不必要条件∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠” ∴若p q ∧为假命题,则p 、q 均为假命题 A .∴∴∴ B .∴∴∴ C .∴∴∴∴ D .∴∴【答案】A【解析】∴对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈均有210x x ++,故∴正确;∴由“1x =”可推得“2320x x -+=”,反之由“2320x x -+=”可能推出2x =,则“1x =”是“2320x x -+=”的充分不必要条件,故∴正确;∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠”,故∴正确; ∴若p q ∧为假命题,则p ,q 至少有一个为假命题,故∴错误. 则正确的命题的有∴∴∴. 故选:A4.(2021·河南高三其他模拟(文))命题:p “0,2sin 0x x x ∀≥-≥”的否定为( )A .0,2sin 0x x x ∀≥-<B .0,2sin 0x x x ∀<-<C .0000,2sin 0xx x ∃≥-< D .0000,2sin 0xx x ∃<-<【答案】C【解析】命题:p “0,2sin 0xx x ∀≥-≥”是全称命题,又全称命题的否定是特称命题,故“0x ∀≥,2sin 0x x -≥”的否定是“0000,2sin 0xx x ∃≥-<”.故选:C.5.(2021·山东菏泽市·高三一模)命题“2,0∈≥∀x R x ”的否定是( )A .2,0x R x ∃∈≥B .2,0x R x ∀∈<C .2,0x R x ∃∈<D .2,0x R x ∃∈≤【答案】C【解析】因为全称命题的否定是特称命题,所以命题:x R ∀∈,20x ≥的否定是:x R ∃∈,20x <.故选:C6.(2021·四川成都市·石室中学高三月考(理))设命题:0p x ∀≤x =-,则p ⌝为( ) A .0x ∀≤x ≠- B .00x ∃≤0x =- C .0x ∀>x =- D .00x ∃≤0x ≠-【答案】D【解析】命题p 为全称命题,该命题的否定为0:0p x ⌝∃≤0x ≠-. 故选:D.7.(2020·湖北武汉市·华中师大一附中高三期中)“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由题意,命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题” 可得命题“x R ∀∈,2(1)2(1)30m x m x -+-+>是真命题” 当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件, 故选:B.8.(2021·全国高三专题练习)若命题“∀[]1,4x ∈时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4,3]-- B .()-∞,-4 C .[4,)-+∞ D .[4,0]-【答案】D【解析】若命题“[1x ∀∈,4]时,240x x m --≠”是假命题, 则命题“[1x ∃∈,4]时,240x x m --=”是真命题, 则24m x x =-,设22()4(2)4f x x x x =-=--, 当14x 时,4()0f x -,则40m -. 故选:D .9.(2020·江苏海门市·高三月考)命题“[]21220x x a ∀∈-≤,,”为真命题的一个充分不必要条件是( )A .2a ≤B .2a ≥C .4a ≤D .4a ≥【答案】D【解析】“[]21220x x a ∀∈-≤,,”为真命题,可得2a ≥,因为[)[)4,2,+∞⊂+∞ , 故选:D .10.(2021·全国高三专题练习)已知命题“02x ∃>,20040ax ax --<”是假命题,则a 的取值范围是( )A .[)2,+∞B .()2,+∞C .(],2-∞D .(),2-∞【答案】A【解析】因为命题“02x ∃>,20040ax ax --<”是假命题,所以240ax ax --≥对2x >恒成立, 所以()242a x x x≥>-恒成立.因为2x >, 所以22x x ->,则242x x<-, 故2a ≥. 故选:A11.(2020·全国高三专题练习)用数学归纳法证明“(1)(2)()213(21)nn n n n n ++⋅⋅⋅⋅⋅+=⋅⋅⋅⋅⋅⋅⋅-”,从“k到1k +”左端需增乘的代数式为( ) A .21k + B .2(21)k +C .211k k ++ D .231k k ++ 【答案】B【解析】当n k =时,等式的左边(1)(2)()k k k k =++⋅⋅⋅⋅⋅+,当1n k =+时,等式的左边(11)(12)()(1)(2)k k k k k k k k =++++⋅⋅⋅⋅⋅+++++, 所以当从“k 到1k +”左端增乘的代数式为(1)(2)2(21)1k k k k k k ++++=++.故选:B.12.(多选)(2021·恩施市第一中学)下列命题正确的有( ) A .命题“x R ∀∈,20x ≥”的否定是“x R ∃∈,20x <”. B .函数()cos f x x =向右平移2π个单位得到函数解析式为()sin g x x =. C .函数()21f x x =-的零点为()1,0-,()1,0.D .1弧度角表示:在任意圆中,等于半径长的弦所对的圆心角. 【答案】AB【解析】对A ,根据全称命题的否定性质,A 为正确的; 对B ,()cos f x x =向右平移2π个单位得到函数()cos()sin 2g x x x π=-=;对C ,函数零点是数而不是点,故C 错误;对D ,1弧度角表示为在任意圆中,等于半径长的弧所对的圆心角,故D 错误; 故选:AB.13.(多选)(2021·全国高三专题练习)下列命题中正确的是( ) A .(0,)x ∃∈+∞,23x x >B .(0,1)x ∃∈,23log log x x <C .(0,)x ∀∈+∞,121()log 2xx >D .1(0,)3x ∀∈,131()log 2xx < 【答案】BD【解析】对于选项A :当0x >时,22133xx x ⎛⎫=< ⎪⎝⎭,所以23x x <恒成立,故选项A 不正确;对于选项B :当(0,1)x ∈时,23log lg lg 3lg 31log lg 2lg lg 2x x x x =⨯=>,且3log 0x <,所以23log log x x <,故选项B 正确;对于选项C :当12x =时,1211()()222x ==,11221log log 12x ==,则121log ()2x x >,故选项C 不正确; 对于选项D :当13x =时,131log 13=,由对数函数和指数函数的性质可知,当1(0,)3x ∈时,131()1log 2x x <<,故选项D 正确; 故选:BD14.(多选)(2021·全国高三专题练习)若01,22x ⎡⎤∃∈⎢⎥⎣⎦,使得200210x x λ-+<成立是假命题,则实数λ可能取值是( ) A .32B.C .3 D .92【答案】AB【解析】由条件可知1,22x ⎡⎤∀∈⎢⎥⎣⎦,2210x x λ-+≥是真命题, 即22112x x x xλ+≤=+,即min 112,,22x x x λ⎛⎫⎡⎤≤+∈ ⎪⎢⎥⎝⎭⎣⎦,设()112,22f x x x x ⎡⎤=+≥=∈⎢⎥⎣⎦等号成立的条件是112,222x x x ⎡⎤=⇒=∈⎢⎥⎣⎦,所以()f x的最小值是即λ≤AB. 故选:AB15.(2021·江西高三其他模拟(文))已知命题“存在x ∈R ,使220ax x -+≤”是假命题,则实数a 的取值范围是___________. 【答案】18a >【解析】因为命题“存在x ∈R ,使220ax x -+≤”是假命题, 所以命题“R x ∀∈,使得220ax x -+>”是真命题,当0a =时,得2x <,故命题“R x ∀∈,使得220ax x -+>”是假命题,不合题意;当0a ≠时,得0180a a >⎧⎨∆=-<⎩,解得18a >.故答案为:18a >16.(2021·全国高三专题练习)若“存在x ∴[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___.【答案】9(,)2-+∞【解析】存在x ∴[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数, 所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞.17.(2020·江西高三其他模拟(文))若命题:p x R ∃∈,210x mx -+<为假命题,则m 的取值范围是______. 【答案】[]22-,【解析】命题:p x R ∃∈,210x mx -+<为假命题,p ∴⌝:x R ∀∈,210x mx -+≥为真命题,则240m ∆=-≤,解得22m -≤≤,即m 的取值范围是[]22-,. 故答案为:[]22-,. 18.(2020·北京密云区·高三期中)若“01x ∃>,使得11x a x +<-.”为假命题,则实数a 的最大值为___________. 【答案】3【解析】由“∴x 0>1,使得11x a x +<-.”为假命题,可知,“11,1x x a x ∀>+≥-”为真命题, 11a x x ∴≤+-恒成立,由11111311x x x x +=-++≥=--,当且仅当2x =时取等号, 即a 的最大值为3. 故答案为:3.19.(2021·湖南永州市·高三二模)若对[]1,2x ∀∈,都有20ax x -≤,则实数a 的取值范围是___________. 【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】解:因为[]1,2x ∀∈,都有20ax x -≤,所以[]1,2x ∀∈,都有1a x≤,令()1g x x =,[]1,2x ∈,因为()1g x x=,在[]1,2x ∈上单调递减,所以()()min 122g x g ==,所以12a ≤,即实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦;故答案为:1,2⎛⎤-∞ ⎥⎝⎦20.(2020·全国高三月考(文))已知命题():0,p x ∀∈+∞,2230x mx -+>,命题:q m a <;若p 是q 的充分不必要条件,则实数a 的取值范围为______.【答案】()+∞【解析】设命题():0,p x ∀∈+∞,2230x mx -+>成立对应的m 的范围为集合A ,{}|B m m a =<若()0,x ∀∈+∞,223x mx +>,则32x m x +>,所以min 32m x x ⎛⎫<+ ⎪⎝⎭而32x x +≥32x x =,即x =时等号成立,所以min32x x ⎛⎫+= ⎪⎝⎭m <{|A m m =<,因为p 是q 的充分不必要条件,所以A B,所以a > 即实数a的取值范围为()+∞.故选答案为:()+∞21.(2020·凌海市第二高级中学高三月考)命题“2,1x R x t ∀∈>+”为真命题,则实数t 的取值范围是__________. 【答案】(),1-∞- 【解析】命题“2,1x R x t ∀∈>+”为真命题,且20x ≥,10t ∴+<,则1t <-,故实数t 的取值范围是(),1-∞-.故答案为:(),1-∞-.22.(2020·上海徐汇区·高三一模)用数学归纳法证明()2511222n n N -*++++∈能被31整除时,从k 到1k +添加的项数共有__________________项(填多少项即可). 【答案】5【解析】当n k =时,原式为:251122...2k -++++,当1n k =+时,原式为251551525354122...222222k k k k k k -+++++++++++++, 比较后可知多了55152535422222k k k k k ++++++++,共5项. 故答案为:523.(2020·浙江高三其他模拟)用数学归纳法证明:111111111234212122n n n n n-+-++-=+++-++,第一步应验证的等式是__________;从“n k =”到“1n k =+”左边需增加的等式是_________.【答案】11122-=()()1121121k k -+-+ 【解析】当1n =时,应当验证的第一个式子是11122-=,从“n k =”到“1n k =+”左边需增加的式子是()()1121121k k -+-+24.(2021·全国高三专题练习)设数列{}n a 满足11a =,12(23)n n a a n +=--. (1)计算2a ,3a .猜想{}n a 的通项公式并利用数学归纳法加以证明; (2)记2n nn b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)23a =,35a =,21n a n =-;证明见解析;(2)1(23)26n n S n +=-⨯+.【解析】(1)由题意可得2121213a a =+=+=,3221615a a =-=-=, 由数列{}n a 的前三项可猜想数列{}n a 是以1为首项,2为公差的等差数列, 即21n a n =-, 证明如下:当1n =时,12111a =⨯-=成立; 假设n k =时,21k a k =-成立.那么1n k =+时,12(23)2(21)(23)212(1)1k k a a k k k k k +=--=---=+=+-也成立. 则对任意的*n ∈N ,都有21n a n =-成立;(2)因为(21)2n n b n =-.∴23123252(21)2n n S n =⨯+⨯+⨯++-⨯,∴ 23412123252(21)2n n S n +=⨯+⨯+⨯++-⨯,∴∴-∴得:2341222222222(21)2n n n S n +-=+⨯+⨯+⨯++⨯--⨯()211122122(21)26(23)212n n n n n -++⨯-=+--⨯=---⨯-.∴1(23)26n n S n +=-⨯+.25.(2020·全国高三专题练习)已知数列{}n a 满足:11a =,点()()*1,n n a a n +∈N 在直线21y x =+上.(1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(1)2343,7,15a a a ===,21n n a =-;(2)证明见解析.【解析】(1)因为点()()*1,n n a a n N +∈在直线21y x =+上所以121n n a a +=+, 因为11a =,故22113a =⨯+=,32317a =⨯+=, 427115a =⨯+=,由上述结果,猜想:21nn a =-.(2)1︒,当1n =时,1211a =-=成立,2︒,假设当()1,n k k k N =≥∈时,21kk a =-成立,那么,当1n k =+时,()1121221121kk k k a a ++=+=-+=-成立,由1︒,2︒可得21nn a =-.26.(2020·黑龙江哈尔滨市·高三月考(理))已知数列{}n a 满足1a m =,2n a ≠,11210n n n a a a ++-⋅-=. (1)求2a ,3a ,4a ;(2)猜想{}n a 的通项公式,并用数学归纳法加以证明. 【答案】(1)212a m =-,3232m a m -=-,43243ma m-=-;(2)()()()121n n n m a n n m ---=--;证明见解析.【解析】1)因为11210n n n a a a ++-⋅-=,2n a ≠,所以112n na a +=-,又因为1a m = 211122a a m ==--,3212232m a a m -==--,43132243ma a m-==-- (2)()()()121n n n ma n n m---=--证明:1n =时,()1011ma m --==,结论成立 假设n k =时,结论成立,即()()()121k k k ma k k m---=--当1n k =+时:()()()()()()()()()11111122211221211k kk k m a k k m k k m k k m a k km k k m k k m+--====-------+--+------ 结论成立.综上,数列通项为()()()121n n n m a n n m---=-- 27(2020·云南师大附中高三月考(理))设数列{}n a 满足11a =,23a =,当()11112n n n n n a a a n a a -+-+=+++.(1)计算3a ,4a ,猜想{}n a 的通项公式,并加以证明. (2)求证:()()()2221244474111n a a a +++<+++. 【答案】(1)35a =,47a =,21n a n =-,证明见解析;(2)证明见解析. 【解析】(1)解:由11a =,23a =, 所以()123121225a a a a a +=++=+,()234231327a a a a a +=++=+. 猜想:21n a n =-,证明:当2n =时,由11a =,23a =,故成立;假设n k =(2k ≥)时成立,即21k a k =-, 所以()()1111221211k k k k k a a a k k k a a -+-+=++=+=+-+,即当1n k =+时成立,综上所述,21n a n =-. (2)证明:由(1)知,()22411n n a =+, 所以()()()22212444111n a a a ++++++22222211111111221311n n =+++<++++--- ()()1111132411n n =++++⨯⨯-+111111111111232435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭11117112214n n ⎛⎫=++--< ⎪+⎝⎭,证毕.。

简单的逻辑连接词(很好用)

简单的逻辑连接词(很好用)
(1)1是奇数且1是素数.(假)
(2)2是素数且3是素数. (真)
探究(二):逻辑联结词“或”
命题(3)是由命
思考 下列三个命题间有什么关系? 题(1)(2)使用联
(1)27是7的倍数;
结词“或”联 结得到的新命
(2)27是9的倍数;
题.
(3)27是7的倍数 或 是9的倍数。
一般地,用逻辑联结词“ ”把命题p和命题q联结起来,
例2 写出下列命题的否定,并判断
它们的真假:
(1)p:y=sinx是周期函数;
(2)p:3<2; (3)p:空集是集合A的子集.
(1)﹁p:y=sinx不是周期函数.
假命题.
(2)﹁p:3≥2.
真命题.
(3)﹁p:空集不是集合A的子集. 假命题
例3 已知p:函数y=ax在R上是减函 数,q:不等式x+|x-2a|>1的解集为R, 若﹁(p∧q)和p∨q都是真命题,求a的取
p与﹁p必有一个是真命题, 另一个是假命题.
பைடு நூலகம்真假相反
例5 写出下列命题的否定,并判断它们的真假:
(1)p:y=sinx 是周期函数;
解: p : y=sinx不是周期函数。

(2)p:3 < 2
解: p : 3≥2.

(3) p:空集是集合A的子集
解: p : 空集不是集合A的子集。 假
符号“∧”与“∩”开口都是向下
思考4:在如图所示的串联电路中,开
关p、q处于什么状态时灯泡发亮?
pq
同真为真
其余为假
(一假必假)
思考5:如果把上述电路图中开关p、q 的闭合与断开,分别对应命题p、q的真 与假,那么灯泡发亮与命题p∧q的真假 有什么关系?

逻辑连接词

逻辑连接词

逻辑连接词逻辑连接词,也被称为连词、连接词或连接词汇,是用来连接两个句子、短语或单词的词语。

它们在句子中起到连接和衔接关系的作用,使得文章更加连贯和通顺。

在写作中,正确使用逻辑连接词非常重要,可以使句子之间的关系更加明确,使文章结构更加清晰。

下面我将介绍一些常用的逻辑连接词,并给出使用示例。

1. 并列连接词:并列连接词用来连接并列的句子、短语或单词,表示相同、相似或并列的关系。

例如:- 而且(用来连接两个或多个陈述意见或事实的句子):我喜欢旅行,而且我认为旅行可以增长见识。

- 或者(用来表示选择):你可以选择去看电影或者去逛商场。

- 并且(用来连接两个相似的陈述或动作):她努力工作,并且她总是取得好成绩。

2. 递进连接词:递进连接词用来表示递进或增加的关系,表明后面的内容与前面的内容相比更进一步或更加详细。

例如:- 而且(用来表示进一步补充):他不仅会弹钢琴,而且还会演奏吉他。

- 此外(用来表示另外增加的信息):我喜欢旅行。

此外,我也喜欢尝试不同的美食。

- 而且还(用来进一步增加信息):这座城市不仅风景优美,而且还有许多历史名胜古迹。

3. 转折连接词:转折连接词用来表示转折或对比的关系,表明后面的内容与前面的内容相比有所不同。

例如:- 但是(用来表示转折):我很喜欢运动,但是我不太擅长游泳。

- 然而(用来表示转折或对比):他刚开始很有信心,然而最后还是失败了。

- 尽管(用来表示让步):尽管下雨了,但是我们还是决定去露营。

4. 因果连接词:因果连接词用来表示因果关系,表明前面的内容是后面内容的原因或结果。

例如:- 因为(用来表示原因):我昨天没有上课,因为我生病了。

- 所以(用来表示结果):她努力学习,所以她考试取得了好成绩。

- 由于(用来表示原因):由于天气不好,比赛被取消了。

5. 条件连接词:条件连接词用来表示条件关系,表明后面的内容是前面内容的条件。

例如:- 如果(用来表示假设或条件):如果你明天有时间,我们可以一起去看电影。

二元逻辑连接词

二元逻辑连接词

二元逻辑连接词在中国,作为一个文学传统丰富的国家,语言是我们最重要的工具之一。

在日常生活中,我们经常使用逻辑连接词,并将它们应用到我们的语言中。

这些连接词可以用于连接单个单词,短语或者句子,从而为我们提供更加清晰和连贯的语言表达。

以下是一些常用的中文二元逻辑连接词。

1. 不仅...而且(bù jǐn...ér qiě) - 表示两个事物并存,用于加强语句中的语气。

例如:这位艺术家不仅在音乐上很出色,而且在绘画方面也有很高的才华。

2. 无论...还是(wú lùn...hái shì) - 表示两个或多个选项不重要,可以任选其一。

例如:无论你选择去看电影还是做运动,我都会支持你。

3. 虽然...但是(suī rán...dàn shì) - 表示一种让步关系,用于表达对一个现象或事实的承认,并对其进行转折或反驳。

例如:虽然这件事让我很难过,但是我不会放弃我的梦想。

4. 既然...就(jì rán...jiù) - 表示某种前提条件,意为“如果…,那么就…”。

例如:既然你已经买了机票,那么就来探望我吧。

5. 或者...或者(huò zhě...huò zhě) - 表示两个或多个选项之间的“或”的关系。

例如:你可以选择在家里看电影,或者到电影院观看大银幕。

以上是一些常用的中文二元逻辑连接词,它们能够帮助我们在语言表达中更好地传递信息,使得文章、讲话等等更加高效和有条理。

学习和掌握这些连接词,对提升我们的写作水平和语言表达能力非常有帮助。

连接词

连接词

简单的逻辑联结词、全称量词与存在量词自主梳理1.逻辑联结词命题中的或,且,非叫做逻辑联结词.“p且q”记作p∧q,“p或q”记作p∨q,“非p”记作┑p.2.命题p∧q,p∨q,綈p的真假判断3.(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题,可用符号简记为∀x∈M,p(x),它的否定∃x∈M,綈p(x).(2)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做存在性命题,可用符号简记为∃x∈M,p(x),它的否定∀x∈M,綈p(x).自我检测1.命题“∃x∈R,x2-2x+1<0”的否定是__________________2.若命题p:x∈A∩B,则非p是________________3.命题“若x>0,则x2>0”的否命题是________命题.(填“真”或“假”)4.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是________.5.下列4个命题:①∃x ∈(0,+∞),(12)x <(13)x ;②∃x ∈(0,1),log 12x >log 13x ;③∀x ∈(0,+∞),(12)x >log 12x ;④∀x ∈(0,13),(12)x <log 13x .其中的真命题是________(填序号).探究点一 判断含有逻辑联结词的命题的真假例1 写出由下列各组命题构成的“p ∨q ”、“p ∧q ”、“非p ”形式的复合命题,并判断真假.(1)p :1是素数;q :1是方程x 2+2x -3=0的根;(2)p :平行四边形的对角线相等;q :平行四边形的对角线互相垂直;(3)p :方程x 2+x -1=0的两实根的符号相同;q :方程x 2+x -1=0的两实根的绝对值相等.变式迁移1 已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题,其中正确的是________(填序号).. 探究点二 全称(存在性)命题及真假判断 例2 判断下列命题的真假. (1)∀x ∈R ,都有x 2-x +1>12.(2)∃α,β使cos(α-β)=cos α-cos β. (3)∀x ,y ∈N ,都有x -y ∈N . (4)∃x 0,y 0∈Z ,使得2x 0+y 0=3.变式迁移2若命题“∃x ∈R ,使得x 2+(1-a )x +1<0”是真命题,则实数a 的取值范围为__________________.探究点三 全称命题与存在性命题的否定 例3 写出下列命题的“否定”,并判断其真假. (1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x ∈R ,x 2+2x +2≤0; (4)s :至少有一个实数x ,使x 3+1=0.变式迁移3 已知命题p :∃x ∈R ,x 2+2ax +a ≤0.若命题p 是假命题,则实数a 的取例 已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,求实数a 的取值范围.一、填空题(每小题6分,共48分)1.已知命题p:∃x∈R,x2-3x+3≤0,则綈p为________.2.已知命题p:∀x∈R,ax2+2x+3>0,如果命题綈p是真命题,那么实数a的取值范围是________.3.已知条件p:|x+1|>2,条件q:x>a,且綈p是綈q的充分不必要条件,则a的取值范围是________.4.已知命题“∀a,b∈R,如果ab>0,则a>0”,则它的否命题是________.5.下列有关命题的说法中正确的有________(填序号).①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②“x=-1”是“x2-5x-6=0”的必要不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.6.命题“对∀x∈R,|x-2|+|x-4|>3”的否定是______________.7.已知命题p:“∀x∈R,∃m∈R使4x-2x+1+m=0”,若命题綈p是假命题,则实数m的取值范围为__________.8.命题“存在x∈R,使得x2+2x+5=0”的否定是______________________.二、解答题9.(14分)分别指出由下列命题构成的“p∨q”“p∧q”“綈p”形式的命题的真假.(1)p:4∈{2,3},q:2∈{2,3};(2)p:1是奇数,q:1是质数;(3)p:0∈∅,q:{x|x2-3x-5<0}⊆R;(4)p:5≤5,q:27不是质数.10.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3-2a)x 是增函数,若p或q为真,p且q为假,求实数a的取值范围.11.已知p:x2+mx+1=0有两个不等的负根,q:4x2+4(m-2)x+1=0无实根.若p 或q为真,p且q为假,求m的取值范围.。

1.3.1逻辑联结词“且”或“‘非’

1.3.1逻辑联结词“且”或“‘非’

分析:
因为p 和 q都是假命题, 所以p ∨ q一定是假命题, 而 A 的表述明显是真命题, 因此正确答案是 B .
课堂小结
“或”的概念 : 逻辑联结词 “或” : p ∨ q 读作:p或 q
“或”的判断方法 :
当p,q 两个命题中有一个 命题是真命题时 p ∨ q 是真命题;
•当p,q 两个命题中都是 命题是假命题时, p ∨ q是假命题.
1.分别用“p或q”、“p且q”、“非p”填空: 命题“非空集A∪B中的元素是A中的 元素或B中的元素” 是__p_或__q___的形式.
2. p:菱形的对角线互相垂直, q:菱形的对角线互相平分 p或q形式的复合命题是
菱__形__的__对__角__线__互__相__垂__直__或__互__相__平__分__.
例1
判断下列命题的真假: (1) 2≤2; (2) 集合A是 A∩B的子集或A∪B
的子集; (3) 周长相等的两个三角形全等或
面积相等的两个三角形全等.
(1) 2≤2;
解:
(1)命题“2≤2”是由命题:
p:2=2;q:2 < 2
用“或”联结后构成的新命题,即 p∨q. 因为p是真命题,所以p ∨ q 是真
这句话中p为真,q为真, 就说明这句话是对的.
下列三个命题间有什么关系?
(1) 12能被3整除; (2) 12能被4整除; (3) 12能被3整除且能被4整除.
可以看出… 命题(3)是由 命题(1)和(2)用 联结词“且”连接起来的.
一般地,用逻辑联结词 “且” 把命题 p 和命题 q 联结起来.就得到 一个新命题,记作:
命题,所以原命题为真命题.
(2) 集合A是 A∩B的子集或A∪B的子

人教课标版高中数学选修1-1:《简单的逻辑联结词》教案-新版

人教课标版高中数学选修1-1:《简单的逻辑联结词》教案-新版

1.3简单的逻辑联结词一、教学目标 【核心素养】培养学生的数学抽象,构建基本的数学逻辑体系. 【学习目标】(1)通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义; (2)能正确地利用“或”、“且”、“非”表述相关的数学内容; (3)知道命题的否定与否命题的区别. 【学习重点】逻辑联结词“或”、“且”、“非”的含义; 【学习难点】逻辑联结词“或”的含义; 二、教学设计 (一)课前设计 1.预习任务任务1:阅读教材P 14—P 17,,思考:“或”“且”“非”的含义 任务2:“p ∧q ”、“p ∨q ”、“非p ”形式命题的真假如何判断 2.预习自测1.已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是( ) A .()p q ⌝∨ B .p q ∨ C .p q ∧ D .()()p q ⌝∧⌝ 答案:B解析:由已知得命题p 是真命题,命题q ⌝是真命题,所以命题q 是假命题,根据复合命题的真假判断p q ∨是真命题,其他选项都是假命题,故选B . 考点:复合命题真假的判断.2.已知命题:p 若π6α=,则1sin 2α=;命题:q 若1sin 2α=,则π6α=.下面四个结论中正确的是( ) A .p q ∧是真命题 B .p q ∨是真命题 C .p ⌝是真命题 D .q ⌝是假命题 答案:B解析:由题意可知,命题p 为真命题,命题q 为假命题,所以p q ∨是真命题,故选B .考点:复合命题的真假判断. 3.下列说法错误的是( )A .若命题“p q ∧”为真命题,则“p q ∨”为真命题B .若命题“p q ⌝∨”为假命题,则“p q ∧⌝”为真命题C .命题“若a b >,则22ac bc >”的否命题为真命题D .命题“若0m >,则方程20x x m +-=有实根”的逆命题为真命题 答案:D解析:对于A :若“p q ∧”为真命题,则p ,q 都是真命题,所以“p q ∨”为真命题,故A 正确; 对于B :若“p q ⌝∨”为假命题,则,p q ⌝都是假命题,∴p 是真命题,q ⌝是真命题,所以“p q ∧⌝”为真命题,故B 正确;对于C :“若a b >,则22ac bc >”的否命题为“若a b ≤,则22ac bc ≤”,∵c 2≥0,∴由a b ≤可得到22ac bc ≤,故C 正确;对于D :命题“若0m >,则方程20x x m +-=有实根”的逆命题为“若方程20x x m +-=有实根,则0m >”,方程20x x m +-=有实数根只需1140,,4m m ∆=+≥≥-所以不一定得到0m >,所以D 错.故选D .(二)课堂设计1.知识回顾(1)学生自己写两个命题p,q,并判断其真假.(2)再将两个命题用“或、且、非”联结,能否判断真假?2.问题探究问题探究一:逻辑连接词观察与思考:想一想:从串联电路A B C之间的一些关系,我们能得到什么样的启示?阅读与举例:请大家阅读教材中P14所举例的例子,并试着举一些类似的命题.探究:考察下列命题:(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3不是有理数;想一想:这些命题的构成各有什么特点?1.逻辑连结词命题中的“或”、“且”、“非”这些词叫做逻辑联结词2.三种命题构成形式的表示常用小写拉丁字母p、q、r、s……表示命题1.用联结词“且(and)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.2.用联结词“或(or)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.3.对一个命题p全盘否定(not),就得到一个新命题,记作__________,读作_________或__________.问题探究二:三种命题真假判断1.“p且q”形式的复合命题真假:2.“p或q”形式的复合命题真假:3.“非p”形式的复合命题真假:3.课堂总结【知识梳理】1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.3.“p∧q”“p∨q”“非p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“¬p”命题的真假.【重难点突破】含有逻辑联结词的命题的真假判断规律(1)p∨q:当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q 为假.(一真必真)(2)p∧q:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q 为假.(一假必假)(3)非p:当p为真时,非p为假;当p为假时,非p为真(真假相反)4.随堂检测1.“xy≠0”是指()A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0解析:【知识点:逻辑联结词】答案:A2.下列命题:①矩形的对角线相等且互相平分;②10的倍数一定是5的倍数;③方程x2=1的解为x=±1;④3∉{1,2}.其中使用逻辑联结词的命题有()A.1个B.2个C.3个D.4个答案:C解析:【知识点:逻辑联结词】①中有“且”;②中没有;③中有“或”;④中有“非”.故选C.3.若条件p:x∈A∩B,则¬p是()A.x∈A且x∉BB.x∉A或x∉BC.x∉A且x∉BD.x∈A∪B答案:B解析:【知识点:逻辑联结词,四种命题】由p:x∈A∩B,得p:x∈A且x∈B,∴¬p是x∉A或x∉B.4.设命题p:函数y=sin2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真答案:C解析:【知识点:逻辑联结词,命题真假的判断】因周期T=2π2=π,故p为假命题.因函数y=cos x的对称轴为x=kπ(k∈Z),故q也为假命题,所以p∧q为假.5.已知P:2+2=5,Q:3>2,则下列判断正确的是()A.“P∨Q”为假,“¬Q”为假B.“P∨Q”为真,“¬Q”为假C.“P∧Q”为假,“¬P”为假D.“P∧Q”为真,“P∨Q”为假答案:B解析:【知识点:逻辑联结词,命题真假的判断】由题意可知,P假、Q真,所以P或Q为真,P且Q为假,非Q为假,非P为真,故选B.(三)课后作业★基础型自主突破1.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.⌝p是真命题D.⌝q是真命题答案:D解析:【知识点:逻辑联结词,命题真假的判断】2.若命题“p∧(¬q)”为真命题,则()A.p∨q为假命题B.q为假命题C.q为真命题D.(¬p)∧(¬q)为真命题答案:B解析:【知识点:逻辑联结词,命题真假的判断】p∧(¬q)为真命题,故¬q为真命题,所以q为假命题.3.若p、q是两个简单命题,“p或q”的否定是真命题,则必有()A.p真q真B.p假q假C.p真q假D.p假q真答案:B解析:【知识点:逻辑联结词,命题真假的判断】“p或q”的否定是:“¬p且¬q”是真命题,则¬p、¬q都是真命题,故p、q都是假命题.4.命题p:2不是质数,命题q:2是无理数,在命题“p∧q”、“p∨q”、“¬p”、“¬q”中,假命题是__________________,真命题是__________________.答案:“p∧q”“¬q”;“p∨q”“¬p”解析:【知识点:逻辑联结词,命题真假的判断】因为命题p假,命题q真,所以命题“p∧q”假,命题“p∨q”真,“¬p”真,“¬q”假.5.已知p:x2-x≥6,q:x∈Z.若“p∧q”,“¬q”都是假命题,则x的值组成的集合为_____________.答案:{-1,0,1,2}解析:【知识点:逻辑联结词,命题真假的判断】 因为“p ∧q ”为假,“¬q ”为假,所以q 为真,p 为假.故⎩⎨⎧ x 2-x <6x ∈Z ,即⎩⎨⎧-2<x <3x ∈Z,因此x 的值可以是-1,0,1,2. 6.如果命题“非p 或非q ”是假命题,给出下列四个结论:①命题“p 且q ”是真命题;②命题“p 且q ”是假命题;③命题“p 或q ”是真命题;④命题“p 或q ”是假命题. 其中正确的结论是( ) A .①③ B .②④ C .②③ D .①④解析:【知识点:逻辑联结词,命题真假的判断】 答案:A“非p 或非q ”是假命题⇒“非p ”与“非q ”均为假命题⇒p 与q 均为真命题. 7.分别指出下列各组命题构成的“p ∧q ”、“p ∨q ”形式的命题的真假. (1)p :6<6,q :6=6;(2)p :梯形的对角线相等,q :梯形的对角线互相平分;(3)p :函数y =x 2+x +2的图象与x 轴没有公共点,q :不等式x 2+x +2<0无解; (4)p :函数y =cos x 是周期函数,q :函数y =cos x 是奇函数. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)∵p 为假命题,q 为真命题,∴p ∧q 为假命题,p ∨q 为真命题. (2)∵p 为假命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为假命题. (3)∵p 为真命题,q 为真命题,∴p ∧q 为真命题,p ∨q 为真命题. (4)∵p 为真命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为真命题. 8.写出下列命题的否定: (1)若a >b >0,则1a <1b ;(2)a 、b ∈N ,若ab 可被5整除,则a 、b 中至少有一个能被5整除;(3)若x2-x-2=0,则x≠-1且x≠2.答案:见解析解析:【知识点:命题的否定】(1)若a>b>0,若1a≥1b.(2)正方形的四条边不全相等.(2)a、b∈N,若ab可以被5整除,则a、b都不能被5整除;(3)若x2-x-2=0,则x=-1或x=2.★★能力型师生共研9.已知命题p:偶函数的图象关于y轴对称,命题q:正数的对数都是正数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∧(¬q)答案:D解析:【知识点:逻辑联结词,命题真假的判断】∵p为真命题,q为假命题,∴p∧(¬q)为真命题,故选D.10.已知命题p:x2-4x+3<0与q:x2-6x+8<0;若“p且q”是不等式2x2-9x +a<0成立的充分条件,则实数a的取值范围是()A.(9,+∞)B.{0}C.(-∞,9]D.(0,9]解析:【知识点:逻辑联结词,充分必要条件】答案:C11.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.q为真C .p ∧q 为假D .p ∨q 为真 答案:C解析:【知识点:逻辑联结词,命题真假的判断】 命题p ,q 均为假命题,故p ∧q 为假命题.12.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .(⌝p )∨q B .p ∧q C .(⌝p )∧(⌝q ) D .(⌝p )∨(⌝q ) 答案:D解析:【知识点:逻辑联结词,命题真假的判断】命题p 为真命题,命题q 为假命题,所以¬p 为假命题,¬q 为真命题,所以(¬p )∨(¬q )为真命题.13.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .⌝p 为假命题D .⌝q 为假命题 答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎨⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题.14.已知命题p :函数f (x )=|lg x |为偶函数,q :函数g (x )=lg|x |为奇函数,由它们构成的“p ∨q ”“p ∧q ”和“¬p ”形式的新命题中,真命题是________________. 解析:【知识点:逻辑联结词,命题的否定,命题真假的判断】答案:¬p函数f (x )=|lg x |为非奇非偶函数,g (x )=lg|x |为偶函数,故命题p 和q 均为假命题,从而只有“¬p ”为真命题.15.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2) ⌝p 是⌝q 的充分不必要条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎨⎧ x 2-x -6≤0,x 2+2x -8>0,解得⎩⎨⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3. 所以q 为真时,2<x ≤3. 若p ∧q 为真,则⎩⎨⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)设A ={x |x ≤a ,或x ≥3a },B ={x |x ≤2,或x >3},因为¬p 是¬q 的充分不必要条件,所以A ⊆B .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].16.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p ∨q ”是假命题,求a 的取值范围. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断,一元二次方程解的讨论】 由2x 2+ax -a 2=0,得(2x -a )(x +a )=0,∴x =a 2或x =-a ,∴当命题p 为真命题时, ⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p∨q”为真命题时,|a|≤2.∵命题“p∨q”为假命题,a>2,或a<-2.∴a>2或a<-2.即a的取值范围为{a|}★★★探究型多维突破17.设a、b、c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)解析:【知识点:逻辑联结词,命题真假的判断】答案:A取a=c=(1,0),b=(0,1)知,a·b=0,b·c=0,但a·c≠0,∴命题p为假命题;∵a∥b,b∥c,∴存在λ,μ∈R,使a=λb,b=μc,∴a=λμc,∴a∥c,∴命题q是真命题.∴p∨q为真命题.18.在一次篮球投篮比赛中,甲、乙两球员各投篮一次.设命题p:“甲球员投篮命中”;q:“乙球员投篮命中”,则命题“至少有一名球员投中”可表示为()A.p∨qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∨(¬q)解析:【知识点:逻辑联结词,命题的否定】答案:A至少有一名球员投中为p∨q.19.已知a>0,设命题p:函数y=a x在R上单调递增;命题q:不等式x2-ax +1>0对x∈R恒成立.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】∵函数y=a x在R上单调递增,∴a>1,∴p :a >1.∵不等式x 2-ax +1>0时x ∈R 恒成立,∴Δ=a 2-4<0,∴-2<a <2. ∴q :0<a <2.又∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧ a >1a ≥2,∴a ≥2.当p 假q 真时,⎩⎪⎨⎪⎧ 0<a ≤10<a <2,∴0<a ≤1,综上可知,实数a 的取值范围是(0,1]∪[2,+∞)20.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】若方程x 2+mx +1=0有两个不等的负根x 1,x 2,则⎩⎨⎧ Δ>0,x 1+x 2<0,x 1x 2>0,即⎩⎨⎧Δ=m 2-4>0,m >0. 解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0.解得1<m <3,即q :1<m <3. ∵p 或q 为真,p 且q 为假,∴p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真.∴⎩⎨⎧ m >2,m ≤1或m ≥3或⎩⎨⎧m ≤2,1<m <3.解得m ≥3或1<m ≤2. ∴m 的取值范围是(1,2]∪[3,+∞).(四)自助餐1.已知命题p :1∈{x |(x +2)(x -3)<0},命题q :∅={0},则下列判断正确的是( )A .p 假q 假B .“p 或q ”为真C .“p 且q ”为真D .p 假q 真答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵{x|(x+2)(x-3)<0}={x|-2<x<3},∴1∈{x|(x+2)(x-3)<0},∴p真.∵∅≠{0},∴q假.故“p或q”为真,“p且q”为假,故选B.2.若命题p:0是偶数,命题q:2是3的约数,则下列结论中正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对.答案:B解析:【知识点:逻辑联结词,命题真假的判断】命题p为真命题,命题q为假命题,故“p∨q”为真命题.3.已知命题p、q,则命题“p∨q为真”是命题“p∧q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:【知识点:逻辑联结词,命题真假的判断,充分必要条件】p∧q为真⇒p真且q真⇒p∨q为真;p∨q为真⇒p真或q真⇒/p∧q为真.4.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是()A.a>0B.a≥0C.a>1D.a≥1解析:【知识点:逻辑联结词,命题真假的判断】答案:B当p真时,Δ=4-4a≥0,解得a≤1.当q真时a2-a>0,解得a<0或a>1.∵p ∧q 为假命题,p ∨q 为真命题,∴p,q 中一真一假.(1)当p 真q 假时,得0≤a ≤1.(2)当p 假q 真时得a>1,由(1)(2)得所求a 的取值范围是a ≥0.故选B .5.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真答案:C【知识点:逻辑联结词,命题真假判断】y =log a (ax +2a )=log a a (x +2)=1+log a (x +2),当x =-1时,log a (x +2)=0, ∴函数y =log a (ax +2a )(a >0且a ≠1)的图象过定点(-1,1),故p 真;如果函数y =f (x )的图象关于点(3,0)对称,则函数y =f (x -3)的图象关于点(6,0)对称,故q 假,∴选C .6.p :函数f (x )=lg x +1有零点;q :存在α、β,使sin(α-β)=sin α-sin β,在p ∨q ,p ∧q ,¬p ,¬q 中真命题有( )A .1个B .2个C .3个D .4个答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵f ⎝ ⎛⎭⎪⎫110=0,∴p 真;∵α=β时,sin(α-β)=0=sin α-sin β,∴q 真,故p ∨q 为真,p ∧q 为真,¬p 为假,¬q 为假.7.分别用“p ∧q ”、“p ∨q ”填空.(1)命题“0是自然数且是偶数”是__________________形式;(2)命题“5小于或等于7”是__________________形式;(3)命题“正数或0的平方根是实数”是__________________形式.答案: p ∧q ;p ∨q ;p ∨q解析:【知识点:逻辑联结词】8.设命题p :a 2<a ,命题q :对任何x ∈R ,都有x 2+4ax +1>0,命题p ∧q 为假,p ∨q 为真,则实数a 的取值范围是__________________.答案:-12<a ≤0或12≤a <1解析:【知识点:逻辑联结词】由a 2<a 得0<a <1,∴p :0<a <1;由x 2+4ax +1>0恒成立知Δ=16a 2-4<0,∴-12<a <12,∴q :-12<a <12,∵p ∧q 为假,p ∨q 为真,∴p 与q 一真一假,p 假q 真时,-12<a ≤0,p 真q 假时,12≤a <1,∴实数a 的取值范围是-12<a ≤0或12≤a <1.9.已知命题p :不等式x 2+x +1≤0的解集为R ,命题q :不等式x -2x -1≤0的解集为{x |1<x ≤2},则命题“p ∨q ”“p ∧q ”“¬p ”“¬q ”中为真命题是__________________. 解析:【知识点:逻辑联结词,命题真假的判断】答案:p ∨q ,¬p∴∀x ∈R ,x 2+x +1>0,∴命题p 为假,¬p 为真;∵x -2x -1≤0⇔⎩⎨⎧(x -2)(x -1)≤0x -1≠0⇔1<x ≤2.∴命题q 为真,p ∨q 为真,p ∧q 为假,¬q 为假.10.已知命题p :1x -1<1,命题q :x 2+(a -1)x -a >0,若¬p 是¬q 的充分不必要条件,则实数a 的取值范围是__________________.答案:(-∞,-2)解析:【知识点:逻辑联结词,充分必要条件】命题p :1x -1<1,∴x >2或x <1. 命题q :x 2+(a -1)x -a >0,∴(x +a )(x -1)>0.∵¬p 是¬q 的充分不必要条件,∴q 是p 的充分不必要条件.∴-a >2,∴a <-2.11.已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;命题q :函数f (x )=-(5-2a )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0. 所以-2<a <2,所以命题p :-2<a <2;又f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.所以命题q :a <2. ∵p ∨q 为真命题,p ∧q 为假命题,∴p 和q 一真一假.(1)若p 为真命题,q 为假命题,则⎩⎨⎧ -2<a <2a ≥2,此不等式组无解. (2)若p 为假命题,q 为真命题,则⎩⎨⎧a ≤-2或a ≥2a <2,解得a ≤-2. 综上,实数a 的取值范围是(-∞,-2].12.已知p :|3x -4|>2;q :1x 2-x -2>0;r :(x -a )(x -a -1)<0. (1)¬p 是¬q 的什么条件;(2)若¬r 是¬p 的必要不充分条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,充分必要条件】(1)p :|3x -4|>2⇒x >2或x <23,q :1x 2-x -2>0⇒x >2或x <-1, ¬p :23≤x ≤2,¬q :-1≤x ≤2,∴¬p ⇒¬q ,¬q ⇒/ ¬p ,∴¬p 是¬q 的充分不必要条件.(2)r :a <x <a +1,¬r :x ≥a +1或x ≤a .∵¬r 是¬p 的必要不充分条件,∴a ≥2或a +1≤23,即a ≥2或a ≤-13.数学视野建立逻辑的语言,使逻辑学象数学那样也有一套完美的、通用的符号,其思想也可以追溯到莱布尼茨.他认为,我们可以建立一种普遍的、没有歧义的语言,通过这种语言,就可以把推理转变为演算.一旦发生争论,我们只要坐下来,拿出纸和笔算一算就行了.这里,他实际上提出了数理逻辑的两个基本思想:构造形式语言和建立演算.但是,对于他所设想的语言,他要求:“它能这样地形成和排列符号,使得它能表达一些思想,或者说使得它们之间具有和这些思想之间的关系相同的关系.一个表达式是一些符号的组合,这些符号能表象被表示的事物,表达式的规律如下:如果被表示的那个事物的观念是由一些事物的一些观念组成的,那么那个事物的表达式也是由这些事物的符号组成的.”(张家龙,第46-47 页)莱布尼茨的这些论述,实际上就是要将逻辑形式化.不过莱布尼茨没有实现他的两个设想.1879年,逻辑学家弗雷格发表了名著的《概念文字——一种模仿算术语言构造的纯思维的形式语言》.在这本书中,弗雷格借鉴了两种语言,一种是传统逻辑使用的语言,另一种是算术的语言.从而成功地构造了一种逻辑的形式语言,即:一种表意的符号语言,并且用这种语言建立了一个一阶谓词演算系统,实现了莱布尼茨提出建立一种普遍语言的思想.其实,在莱布尼茨之前,从亚里士多德开始,对逻辑学的研究所使用的语言就是一种半形式化的语言.这种半形式化的语言就是用字母表达一般概念.。

数学逻辑连接词

数学逻辑连接词

数学逻辑连接词数学逻辑连接词:因为、所以、当且仅当、若、或者、不然、只要、除非、无论、即使因为数学逻辑连接词的存在,我们能够清晰地表达数学推理中的关系、条件和结论。

这些逻辑连接词不仅能帮助我们建立论证的逻辑链条,还能使我们的数学论述更加准确和严谨。

因为是一个常用的数学逻辑连接词。

当我们在数学问题中使用因为时,通常是为了引述已知条件或前提。

例如,在证明一个几何问题时,我们可以说:“因为三角形ABC是等边三角形,所以它的三条边相等。

”所以是一个表示推理结果的数学逻辑连接词。

当我们在数学问题中使用所以时,通常是为了得出结论或推理的结果。

例如,在证明一个数学定理时,我们可以说:“已知a=b且b=c,所以a=c。

”当且仅当是一个表示充分必要条件的数学逻辑连接词。

当我们在数学问题中使用当且仅当时,通常是为了表达两个条件是等价的。

例如,在判断一个数是偶数的充分必要条件时,我们可以说:“一个整数是偶数当且仅当它能被2整除。

”若是一个用于表示条件的数学逻辑连接词。

当我们在数学问题中使用若时,通常是为了表达一个条件或假设。

例如,在证明一个数学命题时,我们可以说:“若n是一个质数,则n不能被任何小于n的正整数整除。

”或者是一个表示选择关系的数学逻辑连接词。

当我们在数学问题中使用或者时,通常是为了表达两个或多个条件中的至少一个成立。

例如,在判断一个方程有解时,我们可以说:“方程x^2-3x+2=0有解,或者方程x^2-5x+6=0有解。

”不然是一个表示否定关系的数学逻辑连接词。

当我们在数学问题中使用不然时,通常是为了表达一个条件的否定。

例如,在证明一个数学猜想时,我们可以说:“如果存在一个正整数n,使得n^2+1是一个完全平方数,那么这个猜想是错误的。

”只要是一个表示充分条件的数学逻辑连接词。

当我们在数学问题中使用只要时,通常是为了表达一个条件的充分性。

例如,在判断一个数是质数的充分条件时,我们可以说:“只要一个整数n不能被任何小于n的正整数整除,那么n是一个质数。

高中数学:1.4逻辑联结词“且,或,非” 教案 (北师大选修1-1)

高中数学:1.4逻辑联结词“且,或,非” 教案 (北师大选修1-1)

第一章常用逻辑用语第4.1节逻辑联结词“且”第4.2节逻辑联结词“或”第4.3节逻辑联结词“非”一、创设情境前面我们学习了命题的概念、命题的构成和命题的形式等简单命题的基本框架。

本节内容,我们将学习一些简单命题的组合,并学会判断这些命题的真假。

问题1:下列语句是命题吗?如果不是,请你将它改为命题的形式①11>5 ②3是15的约数吗?③0.7是整数④x>8二、活动尝试①是命题,且为真;②不是陈述句,不是命题,改为3是15的约数,则为真;③是假命题④是陈述句的形式,但不能判断正确与否。

改为x2≥0,则为真;例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题)。

我们不要在判断一个语句是不是命题上下功夫,因为这个工作过于复杂,只要能从正面的例子了解命题的概念就可以了。

三、师生探究问题2:(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3上述三个命题前面的命题在结构上有什么区别?比前面的命题复杂了,且(1)和(2)明显是由两个简单的命题组合成的新的比较复杂的命题。

命题(1)中的“或”与集合中并集的定义:A∪B={x|x∈A或x∈B}的“或”意义相同.命题(2)中的“且”与集合中交集的定义:A∩B={x|x∈A且x∈B}的“且”意义相同.命题(3否定而得出的新命题.四、数学理论1.逻辑连接词命题中的“或”、“且”、“非”这些词叫做逻辑联结词2. 复合命题的构成简单命题:不含有逻辑联结词的命题叫做简单命题复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题3.复合命题构成形式的表示常用小写拉丁字母p、q、r、s……表示简单命题.复合命题的构成形式是:p或q;p且q;非p.即:p或q 记作p∨q p且q 记作p∧q 非p (命题的否定) 记作⌝p释义:“p 或q ”是指p,q 中的任何一个或两者.例如,“x ∈A 或x ∈B ”,是指x 可能属于A 但不属于B (这里的“但”等价于“且”),x 也可能不属于A 但属于B ,x 还可能既属于A 又属于B (即x ∈A ∪B );又如在“p 真或q 真”中,可能只有p 真,也可能只有q 真,还可能p,q 都为真.“p 且q ”是指p,q 中的两者.例如,“x ∈A 且x ∈B ”,是指x 属于A ,同时x 也属于B (即x ∈A I B ). “非p ”是指p 的否定,即不是p. 例如,p 是“x ∈A ”,则“非p ”表示x 不是集合A 的元素(即x ∈U A ð).五、巩固运用例1:指出下列复合命题的形式及构成它的简单命题:(1)24既是8的倍数,也是6的倍数;(2)李强是篮球运动员或跳高运动员;(3)平行线不相交解:(1)中的命题是p 且q 的形式,其中p :24是8的倍数;q :24是6的倍数.(2)的命题是p 或q 的形式,其中p :李强是篮球运动员;q :李强是跳高运动员.(3)命题是非p 的形式,其中p :平行线相交。

新人教A版:1.3简单的逻辑连接词且或非

新人教A版:1.3简单的逻辑连接词且或非

授课主题简单的逻辑连接词且、或、非教学目标1.理解“且”、“或”、“非”的含义.2.会用“且”、“或”联结两个命题并判断命题的真假.3.能够判断含有逻辑联结词的命题的真假.4.掌握逻辑连接词“且”、“或”、“非”的简单应用.教学内容1.“且”“或”的概念(1)且①定义:一般地,用逻辑联结词“且”把命题p和q联结起来,就得到一个新命题,记作p q∧,读作“p且q”.逻辑联结词“且”与日常语言中的“并且”、“及”、“和”相当.可以用“且”定义集合的交集:{|()()}A B x x A x B=∈∧∈.②判断命题p q∧的真假当p q、都为真命题,p q∧就为真命题;当p q、两个命题中只要有一个命题为假命题,p q∧就为假命题.(2)或:①定义:一般地,用逻辑联结词“或”把命题p或q联结起来,就得到一个新命题,记作p q∨,读作“p或q”.逻辑联结词“或”的意义和日常语言中的“或者”相当.可以用“或”定义集合的并集:{|()()}A B x x A x B=∈∨∈.②判断命题p q∨的真假当p q、两个命题中,只要有一个命题为真命题时,p q∨为真命题;当p q、两个命题都为假命题,p q∨为假命题2.非:①定义:一般地,对命题p加以否定,得到一个新的命题,记作p⌝,读作“非p”或“p的否定”.逻辑联结词“非”(也称为“否定”)的意义是由日常语言中的“不是”“全盘否定”“问题的反面”等抽象而来.有()p p⌝⌝=成立.可以用“非”来定义集合A在全集U中的补集:{|()}{|}UA x U x A x U x A=∈⌝∈=∈∉.②判断p⌝命题的真假,p⌝和p不能同真同假,其中一个为真,另一个必定为假.3.复合命题不含逻辑联结词的命题称为简单命题,含有逻辑联结词的命题称为复合命题.复合问题的真值表:复合命题的真假,主要利用真值表来判断,步骤为:(1)确定复合命题的构成形式;(2)判断其中各简单命题的真假;(3)利用真值表判断复合命题的真假.题型一用“且”、“或”联结成新命题例1将下列命题用“且”、“或”联结成新命题.(1)p:三角形的三条中线相等;q:三角形的三条中线交于一点.(2)p:35是5的倍数;q:35是7的倍数.(3)p:方程2x2-26x+3=0的两根都是实数;q:方程2x2-26x+3=0的两根不等.解析:(1)p∧q:三角形的三条中线相等且交于一点;p∨q:三角形的三条中线相等或交于一点.(2)p∧q:35是5的倍数且是7的倍数;p∨q:35是5的倍数或是7的倍数.(3)p∧q:方程2x2-26x+3=0的两根都是实数且不相等;p∨q:方程2x2-26x+3=0的两根都是实数或不相等.巩固分别写出由下列命题构成的“p∨q”、“p∧q”形式的命题.(1)p:π是无理数;q:e不是无理数.(2)p:方程x2+2x+1=0有两个相等的实数根;q:方程x2+2x+1=0两根的绝对值相等.(3)p:三角形的外角等于与它不相邻的两个内角的和;q:三角形的外角大于与它不相邻的任何一个内角解析:(1)“p∨q”:π是无理数或e不是无理数;“p∧q”:π是无理数且e不是无理数.(2)“p∨q”:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等;“p∧q”:方程x2+2x+1=0有两个相p q p q∧p q∨p⌝真真真真假真假假真假假真假真真假假假假真等的实数根且两根的绝对值相等.(3)“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角题型二用“且”、“或”改写命题例2用“且”、“或”改写下列命题.(1)1不是质数也不是合数;(2)2既是偶数又是质数;(3)5和7都是质数;(4)x=±3是方程|x|=3的解.解析:(1)p:1不是质数,q:1不是合数,p∧q:1不是质数且1不是合数.(2)p:2是偶数,q:2是质数,p∧q:2 是偶数且2是质数.(3)p:5是质数,q:7是质数,p∧q:5是质数且7是质数.(4)p:x=3是方程|x|=3的解,q:x=-3是方程|x|=3的解,p∨q:x=3或x=-3是方程|x|=3的解.点评:(1)当一个复合命题不是用“且”或“或”连接时,可以将其改为用“且”或“或”连接的复合命题,改写时要注意不能改变原命题的意思,这就要仔细考虑到底是用“且”还是用“或”.(2)在用“且”、“或”联结两个命题p、q时,在不引起歧义的情况下,可将p、q中的条件或结论合并,使叙述更通顺.巩固用“且”、“或”改写下列命题:(1)等腰三角形的顶角平分线平分底边,也垂直底边;(2)45既能被5整除又能被9整除;(3) x2-2=0的根是±2;(4)3≥3.解析:(1)等腰三角形的顶角平分线平分底边且垂直底边;(2)45能被5整除且能被9整除;(3)x2-2=0的根是2或-2;(4)3大于3或等于3.题型三p∨q、p∧q真假的判断例3指出下列各题中的“p或q”、“p且q”形式的复合命题的真假.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:5是17的约数,q:5是15的约数.解析:(1)p是真命题,q是假命题,∴p或q是真命题,p且q是假命题.(2)p是假命题,q是真命题,∴p或q是真命题,p且q是假命题.点评:有些命题表面上不含逻辑联结词,可以通过改写化为“p∨q”或“p∧q”形式的命题,然后通过p、q的真假判断命题的真假.或命题“p∨q”的真假特点是“一真即真,要假全假”,且命题“p∧q”的真假特点是“一假即假,要真全真”.巩固指出下列“p∨q”,“p∧q”命题的真假.(1)p: 当x∈R时,x2+1≥2x,q:当x∈R时,|x|≥0;(2)p: 相似三角形的面积相等,q:相似三角形的对应角相等;(3)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.解析:(1)因为p是真命题,q是真命题,所以“ p∨q”和“ p∧q”都是真命题.(2)因为p是假命题,q是真命题,所以“p∨q”是真命题,“ p∧q”是假命题.(3)因为p是真命题,q是假命题,所以“ p∨q”是真命题,“ p∧q”是假命题.题型四“﹁p”命题真假性的判断例4写出下列命题的否定,并判断其真假.(1)p:是有理数;(2)p:5不是75的约数;(3)p:7<8;(4)p:5+6≠11;(5)p:空集是任何非空集合的真子集.解析:(1) ﹁p:不是有理数.命题p是假命题,﹁p是真命题;(2) ﹁p:5是75的约数.命题p是假命题,﹁p是真命题;(3) ﹁p:7≥8.命题p是真命题,﹁p是假命题;(4) ﹁p:5+6=11,命题p是假命题,﹁p是真命题;(5) ﹁p:空集不是任何非空集合的真子集.命题p是真命题,﹁p是假命题.巩固写出下列命题的否定,并判断它们的真假.(1)p:函数y=tan x是奇函数;(2)q:4∈{1,2,4}.解析:(1) ﹁p:函数y=tan x不是奇函数,是假命题.(2) ﹁q:4 {1,2,4},是假命题.题型五命题的否定与否命题的辨析例5写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0.解析:命题的否定是:(1)若x、y都是奇数,则x+y不是偶数,为假命题;(2)若xy=0,则x≠0且y≠0,为假命题;原命题的否命题是:(1)若x 、y 不都是奇数,则x +y 不是偶数,是假命题; (2)若xy ≠0,则x ≠0且y ≠0,是真命题.点评:1.要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.2.常用词语及其否定: 原词语 等于 大于(>) 小于(<) 是 都是 否定词语 不等于 不大于(≤)不小于(≥)不是 不都是原词语 至多有一个 至少有一个 至多有n 个 否定词语 至少有两个 一个也没有 至少有n +1个 原词语 任意的 任意两个 所有的 能 否定词语某个某两个某些不能 巩 固 写出下列命题的否定形式和否命题:(1)若abc =0,则a 、b 、c 中至少有一个为零; (2)若a =b 且b =c ,则a =c .解析:(1)否定形式:若abc =0,则a 、b 、c 全不为零. 否命题:若abc ≠0,则a 、b 、c 全不为零. (2)否定形式:若a =b 且b =c ,则a ≠c . 否命题:若a ≠b 或b ≠c ,则a ≠c . 题型六 逻辑联结词的简单运用例6 命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;q :函数f (x )=-(5-2a )x 是减函数.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解析:设g (x )=x 2+2ax +4.因为关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,所以-2<a <2,所以命题p :-2<a <2.又函数f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.所以命题q :a <2. 由p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1) 若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥2此不等式组无解.(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <2,所以a ≤-2.综上,实数a 的取值范围是 (-∞,-2].点评:(1)利用逻辑联结词“且”、“或”可以将简单命题变为复合命题,利用“非”可以否定一个命题. 在解决问题时,正确理解逻辑联结词“或”“且”“非”是关键,有些命题并不一定包含“或”“且”“非”这些逻辑联结词,要结合命题的具体含义正确进行命题构成的判定.(2)对于复合命题中的参数问题,可以根据复合命题的真假,列出方程或不等式,求出参数的值或范围.巩 固 已知a >0,a ≠1.设p :函数y =log a (x +1) 在(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.若p 或q 为真,p 且q 为假,求a 的取值范围.解析:当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减.当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减函数,故p 真时0<a <1.q 真等价于(2a -3)2-4>0,即a <12或a >52.又a >0,所以0<a <12或a >52.因为p 或q 为真,p 且q 为假, 所以p ,q 中必定是一个为真一个为假.(1)若p 真,q 假,则⎩⎪⎨⎪⎧ 0<a <1,12≤a <1或1<a ≤52⇒12≤a <1,即a ∈⎣⎡⎭⎫12,1.(2)若p 假,且q 真,则⎩⎪⎨⎪⎧a >1,0<a <12或a >52⇒a >52,即a ∈⎝⎛⎭⎫52,+∞. 综上可知,a 的取值范围为⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.(且、或)一、选择题1.下列命题中,是“ p ∨q ”形式的命题的是( )A .∅{0}B .-3<0C .平行四边形的对角线相等且互相平分D .能被5整除的整数的末位数不是0就是5 解析:“∅{0}”和“-3<0”是简单命题;“平行四边形的对角线相等且互相平分”是“p ∧q ”形式的命题.“能被5整除的整数的末位数不是0就是5” 是“ p ∨q ”形式的命题.故选D. 答案:D2.已知命题p :5≤5,q :5>6.则下列说法正确的是( )A .“p ∧q ”为真,“p ∨q ”为真B.“p∧q”为假,“p∨q”为假C.“p∧q”为假,“p∨q”为真D.“p∧q”为真,“p∨q”为假答案:C3.下列语句中,符合命题“p∧q”的个数是()①方程x2+5=0没有实数根;②y=sin x是周期函数也是R 上的减函数;③9是144和81的公约数;④(A∩B)⊆AA.0个B.1个C.2个D.3个解析:②、③符合命题“p∧q”的形式.故选C.答案:C4.“x不大于y”是指()A.x≠y B.x< y或x=y C.x< y D.x< y且x=y解析:“不大于”是指“小于或等于”.故选B.答案:B5.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0}则下列判断正确的是()A.p假q假B.“p或q”为真C.“p且q”为真D.p假q真解析:因为{x|(x+2)(x-3)<0}={x|-2<x<3},所以1∈{x|(x+2)(x-3)<0},所以p真.因为∅≠{0},所以q 假.故“p或q”为真,“p且q”为假,故选B.答案:B6.已知命题p:点P在直线y=2x-1上;命题q:点P在直线y=-x+3上,则使命题“p或q”为真命题的一个点P(x,y)是()A.(0,-3) B.(3,2) C.(1,-1) D.(5,-2)解析:命题“p或q”为真命题的含义是这两个命题至少有一个是真命题,即点P在直线y=2x-3上,或在直线y =-3x+2上,即点P至少在其中一条直线上.检验知选项D满足条件.故选D.答案:D7.已知命题p,q,则命题“p∨q为真”是命题“p∧q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:p∧q为真⇒p真且q真⇒p∨q为真;p∨q为真⇒p真或q真p∧q为真.故选B.答案:B8.若xy =0,则x =0________y =0;若xy ≠0,则x ≠0________y ≠0(填“且”或“或”).答案:或,且9.给出命题p :ax +b >0的解为x >-ba,命题q :(x -a )(x -b )<0的解为a <x <b .则p ∧q 是________命题(填“真”或“假”).解析:命题p 与q 都是假命题,所以p ∧q 是假命题. 答案:假10.若命题“p 或q ”与命题“p 且q ”都是真命题,则下列结论中正确的个数是______________.①命题q 一定是真命题;②命题q 不一定是真命题;③命题p 不一定是真命题;④命题p 与q 的真值相同. 解析:因为命题“p 或q ”与命题“p 且q ”都是真命题,所以p 、q 同真.所以①④正确. 答案:211.设命题p :y =sin ⎝⎛⎭⎫2x +π3 的最小正周期是π,q :32∉[23,+∞),则复合命题“ p ∨q ”、“p ∧q ”中真命题的是________.解析:由三角函数的性质知p 是真命题,而32∈[23,+∞),所以q 是假命题,故“p ∨q ”为真命题,“p ∧q ”为假命题.答案: p ∨q 三、解答题12.指出下列各题中的“p 或q ”、“p 且q ”形式命题的真假.(1)p :a ∈{a ,b ,c };q :{a }⊆{a ,b ,c };(2)p :x ≠y ,则sin x ≠sin y .q :如果α⊥β,l ⊂α,则l ⊥β.解析:(1)p 或q 是真命题,p 且q 是真命题;(2)p 或q 是假命题,p 且q 是假命题.13.已知p :不等式mx 2+1>0的解集是 R ;q :f (x )=log m x 是减函数.若p ∨q 为真,p ∧q 为假,求m 的取值范围.解析:因为不等式mx 2+1>0的解集是R ,所以⎩⎪⎨⎪⎧m >0,Δ<0或m =0,解得m ≥0,即p :m ≥0.又f (x )=log m x 是减函数, 所以0<m <1,即q :0<m <1,又 p ∨q 为真, p ∧q 为假,所以p 和q 一真一假.即p 为真,q 为假;或p 为假,q 为真.所以⎩⎪⎨⎪⎧ m ≥0,m ≥1或⎩⎪⎨⎪⎧m <0,0<m <1,得m ≥1. 所以m 的取值范围是m ≥1.(非)1.如果命题p或q为假命题,则()A.p、q均为真命题B.p、q中至少有一个为真命题C.p、q中至多有一个为真命题D.p、q均为假命题答案:D2.已知命题p:2+2=5,命题q:3>2,则下列判断正确的是()A.“p或q”为假,“非q”为假B.“p或q”为真,“非q”为假C.“p且q”为假,“非p”为假D.“p且q”为真,“p或q”为假解析:显然p假q真,故“p或q”为真,“p且q”为假,“非p”为真,“非q”为假,故选B.答案:B3.若命题p:x=2且y=3,则命题﹁p是()A.x≠2或y=3B.x≠2且y≠3C.x=2或y≠3 D.x≠2或y≠3答案:D4.如果命题“p∨q”与命题“﹁p”都是真命题,那么()A.命题p不一定是假命题B.命题q一定为真命题C.命题q不一定是真命题D.命题p与命题q的真假相同答案:B5.若命题p:x∈(A∩B),则﹁p为()A.x∈A且x∉BB.x∉A或x∉BC.x∉A且x∉BD.x∈(A∪B)解析:“x∈(A∩B)”是指“x∈A,且x∈B”,故﹁p:x∉A或x∉B.故选B.答案:B6.对于下述两个命题:p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形.则命题“p∨q”、“p∧q”、“﹁p”中真命题的个数为()A.0个B.1个C .2个D .3个解析:命题 p 是假命题,命题 q 是假命题,所以“﹁p ”是真命题,命题p ∨q 和命题p ∧q 都是假命题.故选B. 答案:B7.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(﹁p )∨(﹁q )B .p ∨(﹁q )C .(﹁p )∧(﹁q )D .p ∨q解析:“至少有一位学生没有落在指定范围”=“甲没有落在指定范围”或“乙没有落在指定范围”=(﹁p )∨(﹁q ).故选A.答案:A8.“p 或q 是假命题”是“非p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A 二、填空题9.命题“若a <b ,则2a < 2b ”的否命题为__________,命题的否定为____________.解析:命题“若a <b ,则 2a <2b ”的否命题为“若a ≥b ,则2a ≥2b ”,命题的否定为“若a <b ,则2a ≥2b ”. 答案:若 a ≥b ,则2a ≥2b 若a <b ,则2a ≥2b10.命题“对任意实数x ,ax 2-2ax -3≤0”是真命题,则实数a 的取值范围是__________.解析:当a =0时,-3≤0成立,当a ≠0时⎩⎪⎨⎪⎧a <0,Δ≤0.答案:[-3,0]11.分别用“p 或q ”“p 且q ”“非p ”填空.(1)命题“15能被3和5整除”是________形式;(2)命题“16的平方根是4或16的平方根是-4”是________形式; (3)命题“π不是有理数”是________形式. 答案:p 且q p 或q 非p 三、解答题12. 已知命题p: 1∈{x |x 2<a },命题q :2∈{x |x 2<a }.(1)若“p 或q ”为真命题,求实数a 的取值范围; (2)若“p 且q ”为真命题,求实数a 的取值范围.解析:若p 为真,则由1∈{x |x 2<a },得12<a ,即a >1; 若q 为真,则由 2∈{x |x 2<a },得a >4.11 (1)若“p 或q ”为真,则a >1或 a >4,即a >1.故实数a 的取值范围是(1,+∞).(2)若“p 且q ”为真,则 a >1且 a >4,即 a >4.故实数a 的取值范围是(4,+∞).13.已知命题p :|4-x |≤6,q :x 2-2x +1-a 2≥0(a >0),若非p 是q 的充分不必要条件,求a 的取值范围.解析:﹁p :|4-x |>6,x >10,或x <-2,x ∈A ={x |x >10,或x <-2},q :x 2-2x +1-a 2≥0,x ≥1+a ,或x ≤1-a ,记B ={x |x ≥1+a ,或x ≤1-a }.而﹁p ⇒q ,q ﹁p ,∴A B ,即⎩⎪⎨⎪⎧ 1-a ≥-2,1+a ≤10,a >0,∴0<a ≤3.∴a 的取值范围是(0,3].。

作文写作逻辑连接词大全

作文写作逻辑连接词大全

作文写作逻辑连接词大全作文写作中,逻辑连接词是非常重要的元素,它们能够帮助我们有效地组织思路,使文章内容更加连贯流畅。

下面是一份作文写作逻辑连接词大全供您参考。

1. 表示并列关系的连接词并列关系的连接词可以用于列举相同或者相似的事物、观点、原因等。

(1) 以及、和、而且、又、再、同样地、加之、不仅…而且、不但…而且例句:爱护动物是我们每个人的责任,而且保护动物也是保护整个生态环境的需要。

(2) 与其…不如、或、或者、要么、要是、不论…还是、不是…就是例句:与其等待机会,不如我们自己争取成功。

2. 表示因果关系的连接词因果关系的连接词可以用于表达原因、结果以及影响等。

(1) 因为、由于、既然、所以、因此、是因为例句:由于缺乏锻炼,他的身体变得越来越虚弱。

(2) 以致、结果、导致、造成、以便、因而、以至于、致使、所以、以免例句:学习时要专心致志,以便取得好的成绩。

3. 表示转折关系的连接词转折关系的连接词用于表示相反、对比、限制等关系。

(1) 但是、然而、可是、却、与其…不如、虽然…但是、尽管、反而例句:虽然天气很冷,但是他还是出门锻炼了。

(2) 相反、与…相比、相反地、然而、却、不过、至于、即使例句:他兄弟擅长音乐,而他自己对音乐没有兴趣。

4. 表示比较关系的连接词比较关系的连接词可以用于对比、举例、观点相似等情况。

(1) 与…相比、与其…不如、与其说…不如说、正如、好比、就像、一样例句:与其说他是个老师,不如说他是一个朋友。

(2) 类似、相似、同样、类似于、比如、例如、举例来说、就拿…来说例句:比如,作文写作就是需要一些技巧和经验的。

5. 表示递进关系的连接词递进关系的连接词可以用于表示递进和扩展。

(1) 而且、并且、不仅…而且、不但…而且、除了…以外、而且、加之例句:他不但学习成绩优秀,而且在课外活动中也非常积极。

(2) 更重要的是、更进一步、除此之外、甚至、何况、尤其是、反倒例句:更重要的是,我们应该关注学生的综合发展,而不仅仅是学习成绩。

简单逻辑连接词或、且、非

简单逻辑连接词或、且、非
简单逻辑连接词或、且、非
目录
• “或”的逻辑 • “且”的逻辑 • “非”的逻辑 • “或”、“且”、“非”的组合逻辑 • 逻辑连接词在计算机科学中的应用
01 “或”的逻辑
“或”的定义
01
“或”表示两个命题中至少有一 个为真,则该复合命题为真。
02ቤተ መጻሕፍቲ ባይዱ
“或”可以用于连接两个命题, 表示它们之间的逻辑关系。
THANKS FOR WATCHING
感谢您的观看
且(AND)
逻辑且在人工智能中用于表示多个条件必须同时满足时,才触发某个事件或行为。例如, 在自然语言处理中,可以使用逻辑且来构建规则,要求多个语法规则同时满足时,才能识 别出某个短语或句子。
非(NOT)
逻辑非在人工智能中用于否定某个条件或规则。例如,在知识表示中,可以使用逻辑非来 否定某个事实或规则。
例如,“明天去游泳且看电影。”表 示两个活动同时进行。
03 “非”的逻辑
“非”的定义
“非”是逻辑中的基本否定词,表示 对某一命题的否定。
“非”通常用符号“¬”表示,置于 命题之前,表示该命题的否定。
“非”的逻辑性质
01
“非”具有传递性
如果命题A的否定是B,命题B的 否定是C,那么命题A和C是等价 的。
条件判断
在制定条件语句时,“或”用于表示满足任一条件即可。
02 “且”的逻辑
“且”的定义
1
“且”逻辑连接词表示两个或多个命题同时成立 。
2
在逻辑学中,“且”通常用符号“∧”表示。
3
在自然语言中,“且”通常用“和”或“并且” 来表示。
“且”的逻辑性质
01
02
03
结合律
p∧(q∧r)=(p∧q)∧r,即 “且”具有结合律,可以 任意组合。

1.3.1简单的逻辑联结词——或、且、非

1.3.1简单的逻辑联结词——或、且、非

q:x=-3是方程|x|=3的解,
p∨q:x=3或x=-3是方程|x|=3的解. 金品质•高追求 我们让你更放心!
返回
◆数学•选修2-1•(配人教A版)◆
跟踪训练 3.分别指出下列命题的形式以及构成它的简单命
题.
(1)李明是老师,赵山也是老师; (2)1是合数或质数; (3)他是运动员兼教练员;
(4)这些文学作品不仅艺术上有缺点,而且政治上也
返回
◆数学•选修2-1•(配人教A版)◆
跟踪训练 4.判断下列复合命题的真假.
(1)等腰三角形顶角的平分线平分底边并且垂直于底边;
(2)5≥4; (3)A A∪B.
分析:先确定复合命题的构成形式以及构成它的简单
命题,然后研究各简单命题的真假,最后再根据相应的真
值表判定复合命题的真假.
金品质•高追求
返回
◆数学•选修2-1•(配人教A版)◆
1.“或”、“且”、“非”贯穿于集合与简易逻辑 之中.正确理解“或”、“且”、“非”的含义是十分重 要的. 2.在写出一个含有“或”、“且”命题的否命题时, 要注意“非或即且,非且即或”. 3.“或命题”的真假特点是“一真即真,要假全 假”. 4.“且命题”的真假特点是“一假即假,要真全 真”. 金品质•高追求 我们让你更放心!
◆数学•选修2-1•(配人教A版)◆
自测自评 ( 1.命题“平行四边形的对角线相等且互相平分”是 C ) A.简单命题 B.p或q形式命题
C . p且q形式命题 D.非p形式命题 2 . 已知命题 p: 5≤5, q: 5>6.则下列说法正确的是 (C )
A.“p∧q”为真,“p∨q”为真,“綈 p”为真
金品质•高追求
我们让你更放心!
返回

高中数学 选修2-1 1.4简单逻辑连接词且或非

高中数学 选修2-1 1.4简单逻辑连接词且或非
(1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除;
命题(3)是由命题(1)(2)使用联结词“且”联结得 到的新命题.
一般地,用联结词“且”把命题p和命题q联结起 来,就得到一个新命题,记作p∧q,读作“p且q”
2.问题2 思考:命题 p∧q的真假如何确定?
观察下列各组命题,命题p∧q的真假与p、q 的真假有什么联系?
逻辑联结词“或”“且”“非”的含义
且:就是两者都有的意思 或:就是两者至少有一个的意思
(可兼容) 非:就是否定的意思
复合命题的真值表
p
q
p˅q












有真即真, 全假即假
全真为真, 有假即假
p˄q
¬p








真假相反
含有逻辑联结词“且”、“或”、“非”的命题称为复合命题
且 ≠ ≤ 不 不都 至少 没有 某 某 是 是 有两 一个 个 些 个

有真即真, 全假为假. 真


q p∨q 真真 假真 真真 假假
★★ 非 (not)
1.问题1
思考:
下列两组命题间有什么关系? (1)35能被5整除; (2)35不能被5整除. (3)方程 x2+x+1=0有实数根; (4)方程 x2+x+1=0无实数根
命题(2)是命题(1)的否定,命题(4)是命题 (3)的否定.
一般地,对一个命题p否定,就得到一个新命 题,记作¬ p,读作“非p”或“p的否定”.
思考:命题P与┐p的真假关系如何?

且、并、非三种布尔逻辑检索

且、并、非三种布尔逻辑检索

且、并、非三种布尔逻辑检索在信息检索领域,布尔逻辑是最常用的搜索方式之一。

它基于"且"、"或"和"非"三种逻辑连接词,用于指定检索条件,从而根据用户需求精确地获取相关信息。

然而,除了布尔逻辑之外,还有其他几种检索方式同样值得探索。

首先,我们来说说"且"逻辑。

"且"逻辑要求检索结果同时满足多个搜索项,即查询的关键词必须存在于目标文档中,且以特定的方式出现。

例如,假设我们想找到同时包含"猫"和"可爱"这两个关键词的图片,我们可以使用布尔逻辑进行检索。

这种精确的搜索方式可帮助用户快速获取符合要求的信息。

其次,"并"逻辑也称为模糊搜索。

与布尔逻辑不同,"并"逻辑区别于只能检索到满足所有条件的结果,它能获得包含任意一个条件的结果。

例如,如果我们在搜索引擎中输入"旅游"和"美食"两个关键词,使用"并"逻辑,我们将会获取到旅游景点和美食相关的信息。

这种搜索方式能够更加灵活地满足用户的需求,为用户提供更多选择。

最后,"非"逻辑是另一种重要的检索方式。

"非"逻辑用于排除不符合特定条件的搜索结果,即将不相关的文档排除在搜索结果之外。

例如,如果我们搜索"健康食品",但不希望看到"高糖"相关的结果,我们可以使用"非"逻辑,将"高糖"作为排除条件。

这种方式可帮助用户快速准确地获取到符合要求的信息。

综上所述,布尔逻辑是信息检索领域最为常见的检索方式,但除此之外,"且"、"并"和"非"三种逻辑同样对于用户获取准确信息非常有帮助。

高效课堂逻辑连接词或且非.ppt

高效课堂逻辑连接词或且非.ppt
(2)¬p:3≥2. 命题p是假命题,¬p是真命题.
(3)¬p:空集不是集合A的子集. 命题p是真命题,¬p是假命题.
逻辑联结词“或”“且”“非”的含义
或:就是两者至少有一个的意思 (可兼容)
且:就是两者都有的意思 非:就是否定的意思
我们先来看几个命题:
(1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数.
含有逻辑联结词“且”、“或”、“非”的命题称为复合命题
1.命题“方程x2=1的解是x=±1”,使用逻辑联结词的情况
是 (B) A.没有使用逻辑联结词
B.使用了逻辑联结词“或”
C.使用了逻辑联结词“且” D.使用了逻辑联结词“非”
2.已知p:2+2=5,q:3>2,则下列判断中,错误的是 ( C ) A.p或q为真,非q为假 B.p且q为假,非p为真 C.p且q为假,非p为假 D.p且q为假,p或q为真
题都是假命题时,pVq是假命题.
p q pVq
真 真 真 有真即真,
真 假
假真 真真
全假为假
假 假假
例3 判断下列命题的真假:
(1)2≤2; (2)集合A是A∩B的子集或是AUB的子集; (3)周长相等的两个三角形全等或面积相等的 两个三角形全等. 解:(1)命题“2≤2”是由命题: p:2=2;q:2<2
p:周长相等的两个三角形全等; q:面积相等的两个三角形全等 用“或”联结后构成的新命题,即pVq. 因为命题p,q都是假命题,所以命题pVq是 假命题.
思考?
下列三个命题间有什么关系? (1)35能被5整除; (2)35不能被5整除.
3、“非”(not)
一般地,对一个命题p全盘否定,就 得到一个新命题,记作
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


命题q: 是分数

命题p∨q: 是整数或分数

3:命题p: 3>2

命题q: 3<2;

命题p∨q: 3>2或3<2。

命题p∨q的真假判断方法:
一般地,当p,q两个命题中只要有 一 个 命题是真命题时,p∨q就是 真 命题;当p,q 两个命题都是假命题时,p∨q是假 命题.
有真即真,全假为假
p
3.若命题“﹁p”与命题“p∨q”都是真命
题,那么( B)
A.命题p与命题q的真假相同
B.命题q一定是真命题
C.命题q不一定是真命题
D.命题p不一定是真命题7.已知命题p:
若实数x,y满足x2+y2=0,则x,y全为0;
命题q:若11,abab

,则下列命题,,,pqpqpq
中,真
例6:设p:方程x2+mx+1=0有两个不等的负 根,q:方程4x2+4(m-2)x+1=0无实根.若p或q
小结 1.“且”与“或”“非”
2.p且q:一假全假 p或q:一真全真 非p:与p真假相反
若p∧q为真,则p∨q为真,反之不成立.
检测练习
1. 设命题p:实数x满足 x2 4x 3 0 ,
命题q:实数x满足 x2 4 0, 1)若p且q为真,则实数 x的取值范围为 1 x 2.
2)若p且q为假,则实数 x的取值范围为_(__,1]__(2_,_)
m m
2 1 ,或
m
3
或1mm2 3
m 3或1 m 2
练习
已知命题p:若实数x,y满足x2+y2=0,则x,y
全为0;命题q:
若则下列命题
中,真命题的个数是( )
C.对所有的无理数x,x2是有理数 D.
A. 1 个 B. 2个 C. 3个 D. 4个
8.下列全称命题中,真命题是( )
A.所有的奇数都是素数
一般地,用逻辑联结词“ 或 ”把命题p和命题q联 结起来, 就得到一个新命题“p或q”,记作p∨q
注:逻辑连接词中的“或”“可兼有”
例2 将下列命题用“或”联结成新命题并判断它们的真假:
1:命题p:正数的平方大于0;

命题q:负数的平方大于0;

命题p∨q: 正数或负数的平方大于0

2:命题p: 是整数
0,
a
1 2
.
若Q假, a≤ 1 ,又P和Q有且仅有一个正确, 2
当P真Q假时, 0 a≤ 1 . 2
当P假Q真时,
a≥1, 故综上所述得a
0,
1 2
1, .
命题p:若的夹角为钝角,
命题q:定义域为R的函数上都是增函 数,则上是增函数 下列说法正确的是
()
A.“p且q”是假命题 B.“p 或q”是真命题
有些同学把命题p∨q表述为:“能被5整除 的整数的个位数一定为5或0”,这是不对的。 这一点可以从命题的真假性方面判断出来: 命题p、q都是假命题,所以命题p∨q也是 假命题,而命题“能被5整除的整数的个位 数一定为5或0”是一个真命题。事实上,命 题p∨q正确的表述为:“能被5整除的整数 的个位数一定为5或一定为0”。
思考:
1.“p∧q为真命题”是“p∨q是真命题”
的_充__分__不__必__要__条件;
p q p∧q p∨q
2.“p∧q为假命题”是“p∨q是 假命题”的_充__分__不__必__要_条件.
真真


3. p或q 为真,p且q为假则p,q 的 真 假 假 真
真假为_p_真__q_假__或__P_假_ q真
(1)p:12是3的倍数; (2)q:12是4的倍数;
(3)12是3的倍数 且是4的倍数。 用逻辑联结词“ 且”把命题p和q连接起
来,就得到一个新命题“p且q”, 记作 p∧q.
注:逻辑联结词“且”与日常用语中的“并且”、“又”、 “和”相当;表明前后两者同时兼有,同时满足 .
例1 将下列命题用“且”联结成新命题并判断它们的真假:
【解析】(1)命题的否定:若 abc=0,则 a、b、c 全不为零; 否命题:若 abc≠0,则 a、b、c 全不为零.
(2)命题的否定:若 x2+y2=0,则 x、y 中不全为零; 否命题:若 x2+y2≠0,则 x、y 中不全为零.
(3)命题的否定:平行于同一条直线的两条直线不平行; 否命题:若两条直线不平行于同一条直线,则这两条直 线不平行.
解:(1)¬p:y=sinx不是周期函数.
命题p是真命题,¬p是假命题.
(2)¬p:3≥2. 命题p是假命题,¬p是真命题.
(3)¬p: 存在x0 R,使得x0 0 .
命题p是假命题,¬p是真命题.
活动探究
探究1:逻辑联结词“非”的含义与集合中 学过的哪个概念的意义相同呢?
对“非”的理解,可联想到集合中的“补 集”概念,若命题p对应于集合P,则命题非p 就对应着集合P在全集U中的补集CUP.
探究2:命题的否定与否命题是不是同一概 念呢?
命题的否定与否命题是完全不同的概念
例6:写出命题p: “若m>n则 2m>2n”的否定及它的 否命题,并判断它们的真假.
┓p: 若m n,则2m 2n 假
P的否命题: 若m n,则2m 2n 真
命题的否定与否命题的区别
(1)命题的否定否定结论,量词,否命题否定条件、 结论和量词 (2)命题的否定(非命题)的真假性与原命题相反; 而否命题的真假性与原命题无关,与原命题的逆命题 相同.
命题的”. (2)“非”命题对常见的几个正面词语的否定.
或 = > 是 都是 至多 至少 任 所 有一 有一 意 有 个 个 的的
且 ≠ ≤ 不 不都 至少 没有 某 某 是 是 有两 一个 个 些 个
例4已知命题p:能被5整除的整数的个位数 一定为5;命题q:能被5整除的整数的个位 数一定为0,则p∨q:_______________
拓展延伸
利用复合命题的真假求范围问题
(1)由每个简单命题为真,确定取值范围 (2)由复合命题的真假,得参数所满足的条件,进
而确定参数的取值范围。 转化为集合运算
(1)p或q成立,即求 A B
(2)P且q成立,即求 A B
(3)非P成立,即求 CI A
(4) p或q 为真,P且q为假,即求
ACI B CI A B
(2)若p∨┐q为假命题, 即 p,┐q都是假命题 即P假,q真 ∴ 即求x≤0或x≥5 和x>4或x<-3 的交集 ∴实数x 的取值范围; x<-3或x ≥5
区分:
写出下列命题的否定和否命题: (1)若 abc=0,则 a、b、c 中至少有一个为零; (2)若 x2+y2=0,则 x、y 全为零; (3)平行于同一条直线的两条直线平行.
且 1.4逻辑联结词
或非
我们先来看几个命题: (1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数. 数学上,“或”,“且”, “非”称为逻辑
联结词.
不含逻辑联结词的命题称为简单命题
由简单命题与逻辑联结词构成的命题称为 复合命题.
逻辑联结词 且
下列三个命题间有什么关系?
全(特) 称命题 的否定
是怎样
一般地,对一个命题p加以否定,就得到的?
一个新命题,称为p的非命题记作 p
读作“非p”或“p的否定”
p p
若p是真命题,则¬p必是假命题;
若p是假命题,则¬p必是真命题.
例5 写出下列命题的否定,并判断它们的真假:
(1)p:y=sinx是周期函数; (2)p:3<2 ; (3)p: 对任意x R,都有x2 0.
∵p是假命题, ∴p∧q是假命题.
(3)该命题是“p或q ”形式,p:周长相等的两个三角 形全等;q:面积相等的两个三角形全等. ∵命题p、q都是假命题, ∴ p∨q是假命题.
判断复合命题真假的步骤:
⑴把复合命题写成两个简单命题,并确定复合命题的构成形式;
⑵判断简单命题的真假;
⑶利用真值表判断复合命题的真假。
对“或”的理解,可联想到集合中“并集”的概 念.A∪B={x︱x∈A或x∈B}中的“或”,它是指 “x∈A”,“x∈B”中至少一个是成立的即x∈A且
xB;也可以x A且x∈B;也可以x∈A且x∈B.
符号“∨”与“∪”开口都是向上
p
q
p∪q
例4:命题p:实数x满足 x 3 , 命题q:实数x满足 x 2 0 ,
1:命题p:函数 y x 是奇函数;

命题q:函数 y x 在定义域内是增函数; 真
命题p∧q: 函数 y=x是奇函数且在定义域是 增函数。

2:命题p: 2

命题q: 3

命题p∧q: 小于2且大于3

3:命题p: 相似三角形的面积相等;

命题q: 相似三角形的周长相等;

命题p∧q: 相似三角形的面积相等且周长相等。 假
假真 假 真
假假 假 假
活动探究
探究:逻辑联结词“且”的含义与集合中学 过的哪个概念的意义相同呢?
对“且”的理解,可联想到集合中“交集” 的概念.
A∩B={x︱x∈A且x∈B}中的“且”,是指 “x∈A”和“x∈B”这两个条件都要满足的意思
符号“∧”与“∩”开口都是向下
活动探究
探究:逻辑联结词“或”的含义与集合中 学过的哪个概念的意义相同呢?
C.为假命题
D.为假命题
检测练习 1、p∨q的否定形式为: ┒p且┒q(可从补集角度理解)
2、p∧q的否定形式为: ┒p或┒q
3、p∨ q的否定形式为真命题,则p,q的真假是: ┒p且 ┒q为真命题,即P假q假
相关文档
最新文档