离散数学试卷及参考答案()

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题:(每空1分,本大题共15分)

1.给定命题公式A 、B ,若 ,则称A 和B 是逻辑相等的。 2.命题公式)(Q P →⌝的主析取范式为 ,主合取范式的编

码表示为 。

3.设E 为全集, ,称为A 的绝对补,记作~A ,

且~(~A )= ,~E = ,~Φ= 。 4.设},,{c b a A =考虑下列子集

}},{},,{{1c b b a S =,}},{},,{},{{2c a b a a S =,}},{},{{3c b a S =,}},,{{4c b a S =

}}{},{},{{5c b a S =,}},{},{{6c a a S =

则A 的覆盖有 ,A 的划分有 。 5.设S 是非空有限集,代数系统< (S ),⋂,⋃>中, (S )对⋂的幺元为 , 零元为 。 (S )对⋃的幺元为 ,零元为 。 6.若>=

W(G-S) S 成立,其中W(G-S)是 。

二、单项选择题:(每小题1分,本大题共10分)

1.下面命题公式( )不是重言式。

A 、)(Q P Q ∨→;

B 、P Q P →∧)(;

C 、)()(Q P Q P ∨⌝∧⌝∧⌝;

D 、)()(Q P Q P ∨⌝↔→。 2.命题“没有不犯错误的人”符号化为( )。

设x x M :

)(是人,x x P :)(犯错误。 A 、))()((x P x M x ∧∀; B 、)))()(((x P x M x ⌝→∃⌝; C 、)))()(((x P x M x ∧∃⌝; D 、)))()(((x P x M x ⌝∧∃⌝。 3.设}{Φ=A ,B = ( (A)),下列各式中哪个是错误的( )。

A 、

B ⊆Φ; B 、B ⊆Φ}{,

C 、B ∈Φ}}{{;

D 、⊆ΦΦ}}{,{ (A)。

4.对自然数集合N ,哪种运算不是可结合的,运算定义为任N b a ∈,( )。

A 、),min(b a b a =*;

B 、b a b a 2+=*;

C 、3++=*b a b a ;

D 、)3(mod ,b a b a =*。 5.设Z 为整数集,下面哪个序偶不够成偏序集( )。

A 、)(,小于关系:<><

B 、)(,小于等于关系:≤>≤

C 、)(,于关系:等=>

=

6.任意具有多个等幂元的半群,它( )。

A 、不能构成群;

B 、不一定能构成群;

C 、不能构成交换群;

D 、能构成交换群。

7.设≤><,A 是一个有界格,它也是有补格,只要满足( )。

A 、每个元素都有一个补元;

B 、每个元素都至少有一个补元;

C 、每个元素都无补元;

D 、每个元素都有多个补元。 8.设>=<

E V G ,为无向图,23,

7==E V ,则G 一定是( )

。 A 、完全图; B 、树; C 、简单图; D 、多重图。

9.给定无向图>=

A 、},,,{4341><>

B 、},,,{6451><>

C 、},,,{8474><>

D 、},,,{3221><>

10.有n 个结点)3(≥n ,m 条边的连通简单图是平面图的必要条件( )。

A 、63-≥m n ;

B 、63-≤m n ;

C 、63-≥n m ;

D 、63-≤n m 。

三、判断改正题:(每小题2分,本大题共20分)

1.设A ,B 为任意集合,不能B A B A ∈⊂且。 ( ) 2.设R 是集合A 上的关系,若21,R R 是对称的,则21R R 也是对称的。( ) 3.群中可以有零元(对阶数大于1的群)。 ( ) 4.循环群一定是Abel 群。 ( ) 5.每一个链都是分配格。 ( ) 6.不可能有偶数个结点,奇数条边的欧拉图。 ( ) 7.图G 中的每条边都是割边,则G 必是树。 ( ) 9.公式)())()((y R x Q x P x ∧→∀中x ∀的辖域为)(x P 。 ( ) 10.公式),()(y x yQ x xP ∃→∀的前束范式为

)),()((y x Q x P y x →∀∀。 ( )

四、简答题(共20分)

1.用等值演算法求下面公式的主析取范式,并求其成真赋值。

R Q P →∨)(

2.集合}4,3,2,1{=A 上的关系

}4,4,3,4,4,3,1,3,3,3,2,2,3,1,1,1{><><><><><><><><=R ,

写出关系矩阵R M ,画出关系图并讨论R 的性质。

3.有n 个药箱,若每两个药箱里有一种相同的药,而每种药恰好在两个药箱中,问共有多少种

药品?

4.一棵树T 中,有3个2度结点,一个3度结点,其余结点都是树叶。

(1)T 中有几个结点;

(2)画出具有上述度数的所有非同构的无向图。

五、证明题:(35分)

1.符号化下列各题,并说明结论是否有效(用推理规则)。

凡15的倍数都是3的倍数,凡15的倍数都是5的倍数,所以有些5的倍数是3的倍数。 2.用推理规则证明:

C A F E F

D

E B D C B A →∧⌝∨⌝∧∨⌝→∧→,)(,)()(,)()(├ A

3.设函数B A f →:,C B g →:,若f g 是满射的,则g 是满射的。 4.当且仅当G 的一条边e 不包含在G 的闭迹中时,e 才是G 的割边。

5.设>∧∨<,,S 是一个分配格,S a ∈,令a x x f ∨=)(,对任意S a ∈,证明:f 是

>∧∨<,,S 到自身的格同态映射。

一、填空题

1.对于A ,B 中原子变元n P P P ,,,21 任意一组真值指派,A 和B 的真值相同。 2.110100,

M M M Q P ∧∧⌝∧ 。

3.集A 关于E 的补集E – A ;A ;Φ;E 。 4.54354321,,,,S S S S S S S S ,,;。 5.ΦΦ;;;S S 。 6.S G -≤;的连通分支数。

二、单项选择题

三、判断改正题

1.× 可能B A B A ∈⊂且,如}2}1{1{,

}{,,==B a A 。

相关文档
最新文档