比较实数大小的方法
实数大小比较的常用方法
用作差法比较实数的大小的依据是:对任意实数a、b有:
例6比较 与 的大小。
析解:设 ,
则
所以
七、作商法
用作商法比较实数的大小的依据是:对任意正数a、b有:
例7比较 与 的大小。
析解:设 ,
,则
即
八、放缩法
用放缩法比较实数的大小的基本思想方法是:把要比较的两个数进行适当的放大或缩小,使复杂的问题得以简化,来达到比较两个实数的大小的目的。
A.c<a<d<b B.b<d<a<c C.a<c<d<b D.b<c<a<d
分析 可以分别求出a、b、c、d的具体值,从而可以比较大小.
解 因为a=20=1,b=(-3)2=9,c= =- ,d= =2,而- <1<2<9,所以c<a<d<b.故应选A.
除以上七种方法外,还有利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法。对于不同的问题要灵活用简便合理的方法来解题。能快速地取得令人满意的结果。
解 ∵1-(-2)
=1-+2
=3-﹥0。(3=,﹥)
∴1﹥-2,
∴﹥。
说明:若a、b为实数, a-b﹥0则a﹥b;a-b=0则a=b; a-b﹤0则a﹤b。以后做题时遇到同分母或同分子的问题时可用上面的方法。
二、求商法
例2 :有两个数A=、 B=比较A、B的大小。
分析:本题在不用计算器的前提下对于初中生来说并不容易。通过观察可以发现分子、分母都可以分解因数。分子含有公因数:111,分母含有公因数:1111。因此可采用两数相除的方法,问题就迎刃而解了。
十一、法则比较法
正数大于0,0大于负数,正数大于负数。两个正数,绝对值大的数较大;两个负数,绝对值大的数反而较小。
实数大小比较
实数大小的比较一、数轴比较法数轴上的点与实数成一一对应的关系,数轴上的靠右边的点表示的数大于靠左边的点表示的数。
例1、已知a、b是实数,且。
试比较a,b,-a,-b的大小关系。
解析:因为,故可将a、b两数在数轴上表示出来。
又因为a与与互为相反数,根据相反数的几何意义,a与,在数轴上可表示为图2。
所以的大小关系是。
二、法则比较法正数大于0,0大于负数,正数大于负数。
两个正数,绝对值大的数较大;两个负数,绝对值大的数反而较小。
例2、已知a、b是实数,且a<0<b,c≠0,试比较的大小。
解析:因为a<0,b>0,则ab<0。
又c≠0,则,所以,为负数。
而b>0,,所以,为正数。
所以。
三、比较被开方数法一般地,当a>0,b>0时,如果a>b,那么。
也就是说,两个正数,较大的正数的算术平方根也较大,其立方根也较大。
反之也成立。
例3、比较大小:(1);(2)。
解析:若要比较形如的两数的大小,可先把根号外的因数a与c移入根号内,再根据被开方数的大小进行比较。
(1)因为,且,所以,因此,。
(2)因为,且,所以,所以。
因此,。
四、添加根号法若a>0,则。
在比较一个有理数和一个无理数的大小时,常选用此式。
例4、比较的大小。
解析:因为,又因为,于是,即。
五、乘方法(平方法或立方法)如果a>0,b>0,若,那么a>b;若,那么a>b。
例5、比较大小:(1);(2)。
解析:(1)因为,而12<18,所以。
(2)因为,而,所以。
六、作差法作差法的基本思路是,设a、b为任意两个实数,先求出a与b的差。
当时,得到a>b;当时,得到a<b;当时,得到a=b。
例6、比较的大小。
解析:因为,所以。
七、作商法作商法的基本思路是,设a、b为任意两个正实数,先求出a与b的商。
当时,a<b;当时,a>b;当时,a=b。
例7、比较的大小。
实数的求值和大小比较
课 题 实数的比较与求值方法实数大小进行比较的常用方法:方法一:差值比较法 差值比较法的基本思路是设a ,b 为任意两个实数,先求出a 与b 的差,再根据当a -b ﹥0时,得到a ﹥b 。
当a -b ﹤0时,得到a ﹤b 。
当a -b =0,得到a=b 。
例1:(1)比较513-与51的大小。
(2)比较1-2与1-3的大小。
方法二:商值比较法 商值比较法的基本思路是设a ,b 为任意两个正实数,先求出a 与b 得商。
当b a <1时,a <b ;当b a >1时,a >b ;当ba =1时,a=b 。
来比较a 与b 的大小。
例2:比较513-与51的大小。
解:∵513-÷51=13-<1 ∴513-<51 方法三:倒数法 倒数法的基本思路是设a ,b 为任意两个正实数,先分别求出a 与b 的倒数,再根据当a 1>b1时,a <b 。
来比较a 与b 的大小。
例3:比较2004-2003与2005-2004的大小。
方法四:平方法 平方法的基本是思路是先将要比较的两个数分别平方,再根据a >0,b >0时,可由2a >2b 得到a >b 来比较大小,这种方法常用于比较无理数的大小。
例5:比较62+与53+的大小 解:1228)62(2+=+, 2)53(+=8+215。
又∵8+212<8+215 ∴62+<53+。
方法五:估算法 估算法的基本是思路是设a ,b 为任意两个正实数,先估算出a ,b 两数或两数中某部分的取值范围,再进行比较。
例4:比较8313-与81的大小 方法六:移动因式法(穿墙术)移动因式法的基本是思路是,当a >0,b >0,若要比较形如a d b c 与的大小,可先把根号外的因数a 与c 平方后移入根号内,再根据被开方数的大小进行比较。
例6:比较27与33的大小方法七:取特值验证法比较两个实数的大小,有时取特殊值会更简单。
例7:当10 x 时,2x ,x ,x1的大小顺序是______________。
实数大小比较的方法和技巧——教案二重点
实数大小比较的方法和技巧——教案二重点。
一、实数大小的比较实数的大小比较是指对两个或多个实数进行比较,了解它们的大小关系。
在比较实数大小时,我们通常都是将实数按照从小到大或从大到小的顺序排列。
我们可以通过以下不同的方法来进行实数大小比较:1.图像法图像法是通过坐标系表示实数的大小,并直观比较它们之间的大小差距。
例如,当我们比较 $4$ 和 $-2$ 的大小时,我们可以画出一个数轴,将那些数标在数轴上面并作为一个点表示。
我们可以看到$4$ 在数轴上面更靠右边,而 $-2$ 更靠左边,所以我们可以得出$4$ 比 $-2$ 大。
2.化简法当我们需要比较一些数量级相等的实数时,我们可以将它们进行化简,使比较过程变得简洁有序。
例如,当我们进行以下比较时:$$\frac{7}{3},\frac{8}{3},\frac{29}{9},\frac{19}{6}$$其中,我们可以将这四个数的分母相等,并化简为:$$\frac{7}{3},\frac{8}{3},\frac{10}{3},\frac{19}{6}$$接下来,我们只需要比较分子的大小即可,也就是:$$\frac{7}{3}<\frac{8}{3}<\frac{10}{3}<\frac{19}{6}$$3.通分比较法当我们需要比较不同分数的大小关系时,我们可以先将它们通分。
通分是将不同分数的分数位分子分母都相同,之后我们可以通过分子的大小关系来比较实数的大小关系。
例如,当我们进行以下比较时:$$\frac{2}{3},\frac{1}{2},\frac{3}{4}$$通过通分,我们可以得到:$$\frac{8}{12},\frac{6}{12},\frac{9}{12}$$而在与通分后的结果比较中,$\frac{8}{12}<\frac{9}{12}<\frac{6}{12},$也就是说,$\frac{2}{3}<\frac{3}{4}<\frac{1}{2}$。
实数大小比较方法
实数大小比较方法
实数大小比较方法如下:
方法一、平方法。
当两个数都是正实数的时候,若a²>b²,则a>b。
注意,一定都是正实数。
方法二、作商法。
对于两个任意正实数:
若a÷b>1,则a>b。
若a÷b=1,则a=b。
若a÷b<1,则a<b。
方法三、无理数估值法。
这个非常好理解,就是对两个任意正实数进行估值。
方法四、分母有理化。
在化最简二次根式的时候,经常需要用到分母有理化。
实数的大小比较,也经常用到,分母有理化后,分母一般会相同,通过分子来比较大小。
方法五、分子有理化。
这是和分母有理化异曲同工之妙的方法。
通过分子有理化,两个正实数的分子相同,再比较分母的大小,即可比较两实数的大小。
方法六、做差法。
对于任意两个实数:
若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.。
比较实数大小的方法
比较实数大小的方法实数大小比较是基础中的基础,重要性不言而喻。
它是我们在数学领域中经常会遇到的问题。
实数大小比较的概念很简单,就是将两个实数进行比较大小。
但是具体的比较方法却不是那么简单。
在本文中,我将系统地介绍实数大小比较的几种方法和应用场景。
一、实数的比较规律在介绍实数大小比较方法之前,我们需要了解一下实数的大小比较规律。
实数的大小比较规律可以概括为以下几点:1、如果两个实数中的一个大于另一个,那么这两个实数一定是不相等的。
2、如果两个实数相等,那么这两个实数必须具有相同的小数表示形式,即它们的小数点后的数字序列必须完全相同。
3、如果两个实数相等,在计算中可能得到不同的结果,这是因为它们的算术形式可能不同。
4、如果两个实数不等,我们需要比较它们的大小。
对于任意两个实数a 和b,它们之间的大小关系可以表示为以下四种形式:a > b:表示a 大于b。
a < b:表示a 小于b。
a ≥b:表示a 大于等于b,即a >b 或a = b。
a ≤b:表示a 小于等于b,即a <b 或a = b。
了解了实数的比较规律之后,我们就可以具体地讲解实数的大小比较方法。
二、实数绝对值比较法实数绝对值比较法是一种比较简单的方法,它是通过比较两个实数的绝对值的大小来确定它们的大小关系。
这种方法的基本思路非常简单,但是它并不适用于所有的实数比较问题。
在使用这种方法时,我们需要将两个实数的绝对值进行比较。
如果它们的绝对值相等,那么它们的大小关系就是相等的。
如果它们的绝对值不相等,那么我们可以通过比较它们的正负号来确定它们的大小关系。
例如,当我们需要比较两个实数-5 和3 时,我们可以将它们的绝对值分别进行比较,即-5 = 5,3 = 3。
因此,我们可以断言3 > -5。
虽然实数绝对值比较法比较简单,但是它仅仅适用于非负实数和负实数之间的比较。
对于一般实数的比较,这种方法并不适用。
三、相减比较法相减比较法是比较常用的一种实数比较方法。
比较实数大小的七种方法
所 以、了 一 / > / / 、了 、
六、 倒数 比较法
一 /丽 . 、
例 6 在 下列 两数 之 间填 上适 当的不 等
县 . 一 ‘ 1 1 1 1
1 l 1 1 1 1 1‘ 1 1
比较 依据: b0 0 ÷, <. 若a>, D 则ab 且 >
解 =; , =+ , : 击 1 o 0
、 俪
歹 1 、 i : 14 + = 4 + > /_ 歹+ = 3 l4 . l 涵
所 以、 一 < / v 丽 l 、 /
+. 1
比较依据 :、 均为正数 , 口b 若孚 > , 口 1则 >
练 习 :在下列两数 之 间填 上适 当的不等
号
6 詈 1 6 詈 l < ; =则 ; <则a・ 若 , 若 , b
(砸 、
一 /丽 ) 、芝
参考答 案 :1> ( ) ;3 < ( ) ;2 > ( ).
( Y f + /6 ̄) v' 2 6 xY i
遇救外 学习 ( 年级 ) 九
因为雨 > 1 所 以 >
,
脚
<
.
再根据 比较两个负数 的大小 , 绝对值大 的
反而小 , 一 得 > 一 .
七、 中介值 比较法
一
2 1X2 2 、 01 01 ’
.
例 7 比较 、 而 一 / 1与 、 T + / l的大
小.
 ̄: .0 0 )I 2 1・ ]1 ) 1<
解: 因为 —
X21 / 0 2一x 2 1 / 00
一
( )一 / 13 、
, 9 9
~
一
\ 一 ; 厂 2
比较实数大小的十种常用方法
实数比较大小的常用方法
例 3 ̄ ,/2 N@ - 百与 俪
大 /J、。
解 :‘·’
1
一 ,/V26N 的
分 子 有 理 化 法 的 基 本 思 路 是 :利 用 方 式 的 基 本 性 质 ,把 方 式 的 分 子 和 分母 同乘 以一 个 有 理 化 因式 ,
然 后 再进 行 比较 ,此 方 法 是 比较 根 式 大 小 时 不 可 忽 视 的 方 法 。
初 级 中 学)
的放 大 或 缩 小 ,把 哪 个 数 放 大 或 缩 小 ,放 缩 到 什 么 程
试 , 比较 盘、b、f的大 小 。
度 是 此 法 的 关 键 。 八 、移 入 比较 法
解 :设 z一 20092009, 一 10001,则 口一 ,b
移 人 比较 法 的 基 本 思 路 是 :设 a、b d是 任 意
当然 两 个 实 数 比较 大 小 ,形 式 有 多 种 多 样 ,但 只
要我 们 在 实 际 比较 时 ,有 选 择 性 地 灵 活 运 用 上 面 的
俪=
、
:
1
—一
;=
一
、俪 …
+ 、俪 ……
, …
又 ‘. v/ 丽 + 两 > 、俪 + 俪 .
方法 ,就 一定 能 方便 快 捷 地 取 得 令 人 满 意 的结 果 。 (作 者 单位 :江 苏省 淮安 市 淮 阴 区 西 宋集 镇 第 一
然后 再 进 行 比较 ,此 方 法 是 比 较 根 式 大 小 时 最 常 用
. . 鱼 一 兰± 一 ± 兰 一 !± 兰 /1 ’ f ± (z+ )。 oT。+2 + 、
z —}_2y
的方 法 例 比
实数的大小比较
实数的大小比较实数的大小比较是八年级数的开方一章的重要题型之一,也是历届中考和数学竞赛常见的考点。
特别是引入无理数和三角函数值后,在铜仁地区中考数学科目不能使用计算器的前提下,让许多考生望而生畏,无所适从。
为了帮助同学们掌握好这部分内容和提高学生的思维能力和逻辑能力,下面结合典型例题及对应的练习来说明实数大小比较的常用的十种方法,供同学们参考。
一、差值比较法差值比较法是最重要的比较方法之一,一般首选差值比较法,不行再尝试用其他方法。
基本思路是:设a 、b 是任意两个实数,先求出a 与b 的差,若a-b>0,则a>b ;若a-b<0,则a<b ;若a-b=0,则a=b 。
例题1:比较20132012与20142013的大小 解:因为20132012-20142013=2014*20132014*2012-2013*20142013*2013=2014*201320132014*20122- =2014*20132013-12013*120132)()(+-=2014*20131-<0 所以20132012<20142013 练习:比较1-2与1-3的大小二、添加根号法两个二次根式的比较常用此法,也适用于一个有理数与一个二次根式进行比较。
例题2:比较76与67的大小 解:因为76=7*62=7*36=252,2946*496*7672=== 而252<294 所以76<67练习:比较3.5与23的大小三、平方法若两个代数式中的被开方数的和相等时,则可选用这种方法。
当然,也可用来解决例题2类型的题目。
例题3:比较517-与715-的大小解:因为(517-)2=17-285+5=22-285,(715-)2=15-1052+7=22-1052而22-285>22-1052所以517->715-练习:比较23+1与67+的大小四、绝对值比较法当两个实数都是负数时,通常利用它们的绝对值进行比较,绝对值大的实数反而小。
最新人教版七年级下册数学实数比较大小的方法
最新人教版七年级下册数学实数比较大小的方法实数比较大小的方法一、平方法当a>b时,a>b a²>b²。
例如,比较15+5与13+7的大小。
虽然从表面上看,好像无从下手,但仔细观察发现,它们的被开方数之间存在关系15+5=13+7,因此可用“平方法”。
解:(15+5)²=(13+7)²=20²+2×15×5+5²=20²+2×13×7+7²。
由于75<91,所以15+5<13+7.说明:此种方法一般适用于四个无理数两两之和(或差)之间比较大小,且其中两个被开方数的和等于另两个被开方数的和。
二、移动因式法对于2a≥b,利用a²=a(a+ b/a),将根号外的因数移到根号内,再比较被开方数的大小。
例如,比较-35和-43的大小。
负无理数之间比较大小,先比较它们绝对值的大小,因此可将根号外的因数移到根号内,也可以用“平方法”。
解:|-35|=√35²=45,|-43|=√43²=48.由于45<48,所以-35>-43.三、求差法对于a-b>0,a>b;a-b=0,a=b;a-b<0,a<b。
例如,比较43与36的大小。
此题可以用“平方法”或“移动因式法”,也可以用“求差法”。
解:43-36=7>0,因此43>36.四、求商法对于a/b>1,a>b;a/b=1,a=b;a/b<1,a<b。
例如,比较4/5与11/3的大小。
此题可以用“平方法”或“移动因式法”,也可以用“求商法”。
解:4/5÷11/3=12/55<1,因此4/5<11/3.五、分母有理化法对于a/b>1,a<b;a/b<1,a>b(m>0,a>0,b>0)。
例如,比较10/25与13/3的大小。
此题可以用“平方法”或“移动因式法”或“求商法”,还可以用分母有理化法。
解:10/25=2/5,13/3=39/15,因此10/25<13/3.六、倒数法例如,比较a=n+3-n+1和b=n+2-n的大小。
实数大小的比较方法
要
本例若将各数化成同分母 , 运算量很大 , 过程复杂烦琐 , 可考
虑 它 化 同 子 比 : 一 , =导 , = . 于 将 们 成 分 来 较一 一 一 一 一 由 = 争 }
> > >
点
精 析
1 2
,
再 根 据两个 负 数绝对 值 大 的反而 小 , 到 : 得
常用 方 法
一
.
供 同学们 参考
“
.
、
数 轴 比较 法
根 据 数 轴 的性 质
实 数 与数轴上 的点
”
.
一
一
对 应
”
.
“
在 数 轴上 右边 的 要
.
点 表示 的数 总 比左 边 的点 表 示 的数大
利 用 数 形 结 合来进 行 比较 这 种
.
方 法 特别适 用 于 同时 比较 多个 实数 的大小 例 1
.
{
~
孚
一
.2 ) (
0
一
手
~
一
仃
.
盔囫
—
(1)因 为
}
<
3
,
争
>
0
,
根 据 正 数 大于
一
切 负数
,
得 到
一
}
<
订
‘
~
!r
‘
八 年级数学 配 合华 师大教材
2 1
雾
(l I , I . 2一 } )号 一
由 于 15 > ・ , 据 “ 个 负 数 , 对 值 大 的 反 而 小 ’ 到 一" < ・7 141 根 两 绝 ’ 得 i T
、
实数比较大小的方法
∴0.20.3<0.30.2(本题主要是找到一个中间数 0.20.2) 【另解】∵(0.20.3)10=0.23=0.008,(0.30.2)10=0.32=0.09 ∵0.008<0.09,即(0.20.3)10<(0.30.2)10 ∴0.20.3<0.30.2 【例17】 (2006 天津文 4)设 P=log23,Q=log32,R=log2(log32),则 · · · · · · · · · · · · · · · · · · ( A. R<Q<P B. P<R<Q C. Q<P<R D. R<P<Q )
3
a a
【例15】 比较 sin 4 与 cos 4 的大小 5 【解】∵cos 4=sin( -4)=sin(2+ -4)=sin( -4), 2 2 2 5 3 5 ∵ -4≈3.85,且 < -4<4< , 2 2 2 2 3 而函数 y=sin x 在[ , ]上是减函数 2 2 5 ∴sin( -4)>sin 4,即 sin 4<cos 4 2
五、利用函数的单调性:
【例13】 比较 0.75
-0.33
与 0.750.32 的大小.
【解】∵0<0.75<1,所以函数 y=0.75x 在 R 上为减函数 ∴由-0.33<0.32 得,0.75
-0.33
>0.750.32
a
【例14】 已知 0<a<1,试比较 a,aa 与 aa 的大小. 【解】∵0<a<1,所以函数 y=ax 在 R 上为减函数 ∵0<a<1, ∴a0>aa>a1,即 1>aa>a 由此得 a1<aa <aa,即 a<aa <aa
5π 4
y
8
π 4
8
O
x
由单位圆及三角函数线知 tan 4>1,又 cos 4<0, ∴sin 4<cos 4 【例9】 若 a、b∈(0,+∞),试比较 aabb 和 abba 的大小;
专题实数比较大小
可用平方法,把两个正数都化成带根号或 不带根号的式子,从而比较出它们的大小
5.平方法
当a>0,b>0时,若 a2 b2 ,则 a b ;
若 a b 0 ,则 a b .
当a<0,b<0时, 若 a2 b2 ,则 a b ; 若 a b 0,则 3 a .3 b
5.平方法
例2. 比较 2 2 和 1 3 的大小.
解:(2 2 )2 8,
分析: 2 2 __>__1 3
(1 3)2 4 2 3
2 3,
8 ___>_ 4 2 3
4 2 3, 8 4 2 3
4 __>__ 2 3
2 2 1 3
2 ___>_ 3
例4.比较 3 2 与 2 3 的大小.
解: 7 8 7 9 63 1 8 9 8 8 64
7 8 89
6.运用方根定义法
例6. 比较 2 a 与3 a 3 的大小。
解: 由根式的定义知2-a≥0, 所以a≤2, 所以a-3<0. 所以 3 a 3 0 . 又因为 2 a ≥ 0 , 所以 2 a 3 a 3 .
注意:先求出两个无理数的近似值,再比较大 小,这也是比较两个无理数大小的一种方法.
3 9 输入时依次按键: 9 2ndF x y 3 =
第二功能键
解: 3 9 2.080083823.
方根运算键
4.3265 2.080024038.
2.0800838232.080024038,
3 9 4.3265
3.估算法
★通过估算,比较大小:
因为 3﹤7, 所以 3 ﹤ 7
3.估算法
用估算法比较实数的大小的基本思路
实数大小比较的常用方法
实数得大小比较得常用方法一、法则法比较实数大小得法则就就是:正数都大于零,零大于一切负数,两个负数相比较,绝对值大得反而小。
例1 比较与得大小。
析解:由于,且,所以。
说明:利用法则比较实数得大小就就是最基本得方法,对于两个负数得大小比较,可将它转化成正数进行比较。
二、平方法用平方法比较实数大小得依据就就是:对任意正实数a、b有:。
例2 比较与得大小。
析解:由于,而,所以。
说明:本题也可以把外面得因数移到根号内,通过比较被开方数大小来比较原数得大小,目得就就是把含有根号得无理数得大小比较实数转化成有理数进行比较。
三、数形结合方法用数形结合法比较实数大小得理论依据就就是:在同一数轴上,右边得点表示得数总比左边得点表示得数大。
例3 若有理数a、b、c对应得点在数轴上得位置如图1所示,试比较a、-a、b、-b、c、-c得大小。
析解:如图2,利用相反数及对称性,先在数轴上把数a、-a、b、-b、c、-c表示得点画出来,容易得到结论:四、作差法:差值比较法得基本思路就就是设a,b为任意两个实数,先求出a与b得差,再根据当a-b﹥0时,得到a﹥b。
当a-b﹤0时,得到a﹤b。
当a-b=0,得到a=b。
例1:(1)比较与得大小。
(2)比较1-与1-得大小。
解 ∵-=<0 , ∴<。
解 ∵(1-)-(1-)=>0 , ∴1->1-。
例2、比较得大小。
解析:因为,所以。
五、作商法比较实数得大小得依据就就是:对任意正数a 、b 有:来比较a与b 得大小。
例1:比较与得大小。
解:∵÷=<1 ∴<例2 比较与得大小。
析解:设,,则即例3:比较与得大小解:÷=×=﹤1所以﹤六、倒数法倒数法得基本思路就就是设a,b为任意两个正实数,先分别求出a与b 得倒数,再根据当>时,a <b。
来比较a 与b 得大小。
例1:比较-与-得大小。
解∵=+ , =+又∵+<+∴->-,n m ,11a 2a 1a a a n m ,1a 2a 1a a a ,a 2a a ,0)1a (a a 2a a ,1a 2a 1a a a 1a 1a 1a 1a n m ,1a 1a n ,1a 1a m 2434434232232434232322>∴>+++++=∴++>+++∴>+∴>-=-++++++=++⋅++=∴++=++=∴2例2、已知a﹥1,b﹥2,试比较与得大小解:=+=2+因为a﹥1,所以2+﹤3=+=3+因为b﹥2,所以3+﹥3因为﹤所以﹥例3、设,则a、b、c得大小关系就就是( )。
初中数学实数大小的比较
初中数学实数大小的比较一、实数的大小比较的原理1)正负数:正数>0>负数,正数大于一切负数;2)数轴:数轴上的两个点所表示的数,右边的总比左边的大;3)绝对值:两个正数,绝对值大的就大;两个负数,绝对值大的反而小。
二、实数大小比较常见方法实数大小比较常见方法有:数轴法、倒数法、作差法、作商法、放缩法、平方法、估算法、分母有理化等.三、实数大小的比较常见方法举例及其规律方法1、数轴法例1、a,b,c三个数在数轴上对应的点如图所示,且|a|=|b|.(1)比较a,-a,-c的大小;(2)化简:|a+b|+|a-b|+|a+c|+|b-c|.打开百度APP看高清图片数轴解:(1)可以依次标出a,-a,-c在数轴上的位置易得-a<a<-c;(2)原式=0+2a+[-(a+c)]+(b-c)=2a-a-c+b-c=2a-a-a-c-c=-2c.2、倒数法规律方法:两个无理数的差,被开方数的差相同,因此可取这两个数的倒数,再进行分母有理化,先比较它们倒数的大小,然后再比较它们本身的大小。
3、做差法规律方法:把两数的差与“0”做比较即可,做差法是最常用的比较方法。
4、作商法规律方法:当两个含二次根式的数或式(均为正数)都是分式形式时,常用作商比较它们的大小,将它们的商与1做比较5、放缩法原理:不等式的传递性。
规律方法:即把要比较的两个数适当的放大或缩小,使复杂的问题简单化,进而达到比较两个实数的大小的目的。
6、平方法原理:当a>0,b>0时,若a>b,则a>b;若a=b,则a=b;若a规律方法:此种方法一般适用于四个无理数两两之和(或差)之间比较大小,且其中两个被开方数的和等于另两个被开方数的和.7、估算法规律方法:当要比较的实数含有平方根容易算出时,可考虑使用估算法,使用这种方法需8、根号内比较法规律方法:对于一些简单的含根号的数字,有时可以直接把数化入到根号里面,然后比较根号内数字的大小即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于两个任意实数a 和b,有
a-b>0 a>b a-b=0 a=b a-b<0 a<b
因此,比较两个实数的大小,只需 要考察它们的 差 即可。
例1:①比较 2
3
5
和6
以及3 和 5
23
的大小 。
练习:比较
11
5和
23 10
比较两个单项式大小的步骤 ①作差 ②因式分解(和差转化成乘积) ③判断结果与0的大小关系 ④得出结论
课堂小结:
• 1、本节课我们学习了比较实数大小的 什么方法? 作差法
• 2、在比较两个代数式大小的过程中要注 意什么?
⑴、比较多项式大小时,①作差,加括号 ②去括号,要变号
⑵、比较单项式大小时, ①作差 ②因 式分解
、
4
7和
5 的大小。
9
例2:比较两个代数式的大小
①比较a+2和a-1的大小。 ②当a>b>1时,比较a-b与a+b-2的大小. 练习:当时a>b>0时,比较a+2和b-1的大小
总结比较两个多项式大小的步骤。 ①作差,加括号 ②去括号,要变号 ③判断结果与0的大小关系 ④得出结论
例3,当a>b>0时 ①比较7a与7b的大小。 ②比较a2与ab的大小。 ③比较a2b与ab2的大小。
作业
课本P27 1(1)(2)
1、练习1,比较以下各数的大小 ①、13和14 ②、-1和1 ③、0和-30 ④、32和0
2、练习2、比较-2和-3,-2.5和-1.5的大小
比较实数大小的方法
授课人:xx
复习引入
1、练习1,比较以下各数的大小 ①、13和14 ②、-1和1 ③、0和-30 ④、32和0
2、练习2、比较-2和-3,-2.5和-1.5的大小
.. -2.5 -1.5
3、能用以上两种方法比较 a+1和b-1的大小吗?
2 3
和
5 以及代数式
6
引例:
• 小明今年5岁,他的爸爸和妈妈都是34岁, 请根据以下问题列出算式