数学建模 初等建模

合集下载

数学建模培训讲义-建模概论与初等模型

数学建模培训讲义-建模概论与初等模型

模型建立 建立t与n的函数关系有多种方法:
1. 右轮盘转过第 i 圈的半径为r+wi, m圈的总长度 等于录象带在时间t内移动的长度vt, 所以
m kn
模型建立
2. 考察右轮盘面积的 变化,等于录象带厚度 3. 考察t到t+dt录象带在 乘以转过的长度,即 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt
• 亲自动手,认真作几个实际题目
数学建模的论文结构
1、摘要——问题、模型、方法、结果
2、问题重述
3、模型假设
4、分析与建立模型
5、模型求解
6、模型检验
7、模型推广
8、参考文献
9、附录
谢 谢!
二、初等模型
例1 哥尼斯堡七桥问题
符号表示“一笔画问题”(抽象分析法) 游戏问题图论(创始人欧拉) 完美的回答连通图中至多两结点的度数为奇
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,
使椅子的任何位置至少有三只脚同时着地。
A
y A
椅脚连线为正方形ABCD(如右图).
模 型
t ——椅子绕中心点O旋转角度
构 f(t)——A,C两脚与地面距离之和 D
B
t
x
成 g(t)——B,D两脚与地面距离之和
O
B
f(t), g(t) 0
D
C
模型构成 由假设1,f和g都是连续函数 A
实际上, 由于测试有误差, 最好用足够多的数据作拟合。
若现有一批测试数据:
t 0 20 40 60 n 0000 1153 2045 2800 t 100 120 140 160 n 4068 4621 5135 5619

数学建模:初等分析建模法

数学建模:初等分析建模法

3.写出量纲矩阵
(f) (l) (h) (v) (ρ) (μ) (g)
1 1 1 1 3 1 1 (L)
A37
1
00
0
1
1
0
(
M
)
2 0 0 1 0 1 2 (T )
4.求解齐次线性方程组 AY=0,因Rank (A)=r=3
方程有m-r=7-3=4个基本解, 可取为
Y1 (0 Y2 (0 Y3 (0
下面用量纲分析法确定阻力与这些物理量 之间的关系.
1.航船问题中涉及物理量满足的物理关系记为
Ф(f, l, h, v,ρ,μ, g)=0
(8)
2.这是力学问题,基本量纲选为L、M、T, 各物理量的量纲表示为
[ f ] LMT 2 , [t] L, h L v LT 1, L3M , L1MT 1, g LT 2 ,
2. 合理选择基本量纲 一般,在力学中选取L、M、T即可, 热学问题 加上温度量纲Θ,电学问题加上电量量纲Q).
3. 应根据特定的建模目的恰当地构造基本解.
量纲分析建模方法有如下优缺点:
1.不需要专门的物理知识和高深的数学方法, 可以得到用其他复杂方法难以得到的结果.
2. 可将无关的物理量去掉. 3.可由原始物理量组合成一些有用的无量纲量. 4. 方法有局限性,PI定理中的等价方程F(·)=0, 仍然包含着一些未定函数、参数或无量纲量.
L3M 1T 2
部分物理量是无量纲的,称之为纯数字,如
[角度]=LL—1=L0
尽管角度是无量纲量,但它有单位(弧度).
量纲独立于单位
三. 量纲齐次性(Dimensional Homogeneity)
量纲齐次原则: 任一有意义的物理方程必定是量 纲一致的,即有

数学建模初等模型ppt课件

数学建模初等模型ppt课件
2.1.1 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
理学院 4
模型构成
xx
用数学语言把椅子位置和四只脚着地的关系表示出来
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
理学院 7
xx
2.1.2 分蛋糕问题
妹妹过生日,妈妈做了一块边界形状任意的 蛋糕,哥哥也想吃,妹妹指着蛋糕上的一点 对哥哥说,你能过这一点切一刀,使得切下 的两块蛋糕面积相等,就把其中的一块送给 你。哥哥利问题用归高结等为数如学下知一识道证解明决题了:这个问题,
11
理学院
xx
数学模型为
10
y y1 y2 10 x 41.6 10 x 5 2.4 15 41.6
0 x4
4 x 15 15 x

0.8
t 2.5
计算起来很简单。
理学院 12
xx
2.1.4 蚂蚁逃跑问题
数学建模
(Mathematical Modeling)
1
xx
第二章 初等模型
理学院 2

第二章 初等模型


生活中的问题


极限、最值、积分问题的初等模型

数学建模初等模型

数学建模初等模型

数学建模初等模型
数学建模是将现实世界的问题抽象化为数学模型,并利用数学方法和技巧来分析和解决这些问题的过程。

在数学建模中,初等模型是指使用基本的数学概念和方法来描述和解决问题的模型。

常见的初等模型包括线性模型、指数模型、对数模型、多项式模型等。

线性模型是最简单的初等模型之一,它假设变量之间的关系是线性的,可以用直线来表示。

指数模型描述的是变量之间的指数关系,对数模型则描述的是变量之间的对数关系。

多项式模型可以用多项式函数来描述变量之间的关系。

使用初等模型进行数学建模时,我们需要确定问题中的关键变量和它们之间的关系,然后建立数学方程或函数来表示这些关系。

通过对这些方程或函数进行求解和分析,我们可以得到问题的解答或结论。

初等模型的优点是简单易懂,容易理解和应用。

它适用于一些简单的实际问题,例如人口增长、物体运动、投资收益等。

但初等模型也有一些限制,它对问题的描述和解决方法有一定的限制性,不能很好地处理复杂的问题。

总之,初等模型是数学建模中的一种简单模型,通过使用基本的数学
概念和方法来描述和解决问题。

它易于理解和应用,适用于一些简单的实际问题。

但在处理复杂问题时,可能需要借助更高级的数学模型和技巧来进行建模和分析。

第二章 初等数学建模

第二章 初等数学建模
两个骰子朝上的面共有36 种可能,点数之和分别可为 2~12共11种。从图中可知, 7是最容易出现的和数,它 出现的概率是6次,卡当曾 予言说押7最好。
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
赌场如战场,有胜亦有败。 例5 常胜的赌徒 ,那么赌徒到底至少要 。但 要做到长胜, 要做到长胜 赌场如战场,有胜亦有败
假如每次赢的概率为p,则输的概率为q=1-p,显 k . = 2[ln(1−ξ )/ln q]+1 −1 然连输K次的概率为 q 因此开k次至少有一次赢 不难解出:QMIN k 的概率为 − q。不论“常胜的概率p0有多大,只 1 . k 要p0 >0且q <1,只要K充分大,必有 1− q > p0 。 即只要赌徒有足够多的本钱,则可百赌百胜。
是不是花6分钱 准可以得到 是不是花 分钱,准可以得到 粒红色的糖 分钱 准可以得到2粒红色的糖 或者她花去8分钱准可得到 粒白色的糖, 或者她花去 分钱准可得到2粒白色的糖 分钱准可得到 粒白色的糖 所以她需要花8分钱是吗 分钱是吗? 所以她需要花 分钱是吗 ---
如果出售机内有6粒红色的 粒白色 如果出售机内有 粒红色的,4粒白色 显然只要花4分钱即可 分钱即可. 显然只要花粒红色的 分钱即可 粒蓝色的.琼斯夫人最多要花多少 的,5粒蓝色的 琼斯夫人最多要花多少 粒蓝色的 如果琼斯夫人的孩子是三 钱? 胞胎 那该怎样呢 胞胎,那该怎样呢 那该怎样呢?
然应当把水池、 盘子大小相同, 然应当把水池、 ,你还应当调查 可见 ,假设条件 的提出不 :盘子大小相同, 易回答了,当然, 易回答了,当然 假设我们了解到 空气等吸热的因 我们了解到: 假设我们了解到 仅和你 研的 洗过的, 洗过的,其后可能还会再用清水 (4) ,素都考虑进去,但餐馆老板的原 ) 均为瓷质菜盘, 是一 有关,素都考虑进去, 问题 有关每个盘子的洗涤时间 △T是一 、 还和 ,更换热水并非因为水太脏 你准备利用哪些知 识 一下一池水的质量是多少, 一下一池水的质量是多少,查一 均为瓷质菜盘,洗涤时先将一叠 冲洗, 冲洗 个常数。( 。(这一假设甚至可以去掉 个常数。(这一假设甚至可以去掉 。 意只是想了解一下一池热水平均 准备建立什么样的模型以及你准 备研 一 下瓷盘的吸热系数和质量等。 下瓷盘的吸热系数和质量等 盘子浸泡在热水中, 盘子浸泡在热水中,然后 。 水不够热了。 了,而是因为 水不够热了 不要) 清洗。 即在你提出假设时, 不要) 清洗。 ,即在你提出假设时, 大约可以洗多少盘子, 大约可以洗多少盘子, 杀鸡 究的深入程度有关, 究的深入程度有关 焉用牛刀? 焉用牛刀? 你建模的框架已经基本搭好了。 你建模的框架已经基本搭好了。

初等数学建模试题极其答案

初等数学建模试题极其答案

1.你要在雨中从一处沿直线走到另一处.雨速是常数.方向不变。

你是否走得越快.淋雨量越少呢?2.假设在一所大学中.一位普通教授以每天一本的速度开始从图书馆借出书。

再设图书馆平均一周收回借出书的1/10.若在充分长的时间内.一位普通教授大约借出多少年本书?3.一人早上6:00从山脚A上山.晚18:00到山顶B;第二天.早6:00从B下山.晚18:00到A。

问是否有一个时刻t,这两天都在这一时刻到达同一地点?4.如何将一个不规则的蛋糕I平均分成两部分?5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家.家中的狗一直在二人之间来回奔跑。

已知哥哥的速度为3公里/小时.妹妹的速度为2公里/小时.狗的速度为5公里/小时。

分析半小时后.狗在何处?6.甲乙两人约定中午12:00至13:00在市中心某地见面.并事先约定先到者在那等待10分钟.若另一个人十分钟内没有到达.先到者将离去。

用图解法计算.甲乙两人见面的可能性有多大?7.设有n个人参加某一宴会.已知没有人认识所有的人.证明:至少存在两人他们认识的人一样多。

8.一角度为60度的圆锥形漏斗装着10端小孔的面积为0.5平方厘米.9.假设在一个刹车交叉口.所有车辆都是由东驶上一个1/100的斜坡.计算这种情下的刹车距离。

如果汽车由西驶来.刹车距离又是多少?10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。

包扎时用很长的带子缠绕在管道外部。

为了节省材料.如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。

:顶=1:a:b.选坐.v>0,而设语雨L(1q -+v x ),v≤x Q(v)=L(v x -q +1),v>x2.解:由于教授每天借一本书.即一周借七本书.而图书馆平均每周收回书的1/10.设教授已借出书的册数是时间t 的函数小x(t)的函数.则它应满足(时间t 以周为单位)其中 初始条件表示开始时教授借出数的册数为0。

解该线性题得X(t) =70[1-e t 10 ]由于当t ∞时.其极限值为70,故在充分长的时间内.一位普通教授大约已借出70本书。

2.1 初等数学方法建模实例(一)

2.1 初等数学方法建模实例(一)
对音乐、影像、计算机文件等按顺序播放的信息,多用CLV; 对词典、数据库、人机交互等常要随机查找的信息,多用CAV.
模型构成:
CLV(恒定线速度)光盘
数据容量 C CLV LCLV ρ:线密度, LCLV :信道总长度 R1:光盘环形区域内圆半径, R2 :外圆半径, d :信道 间距
LCLV
(xt, yt) Rt (xl, yl) Rl Rr (x , y ) r r
• 连接三根圆杆的中心获 得一个三角形,用a,b,c 表示对应的三条边 • a = Rl + Rt • b = Rr + Rt
xt = xl + acos(+) = xl + a(coscos - sinsin) yt = yl + asin(+) = yl + a(sincos + cossin) • cos = d/c • sin=e/c • c = (d 2 + e 2)1/2 • d = xr – xl
• 则可以调用如上三杆问题的算法先由1,2号杆 算出4号杆坐标,接着再用2,3号杆算出5号杆 坐标,最后用4,5号杆算出6号杆坐标
2.1.2. 光盘的数据容量
• 问题: CD的数据容量: 单层 650MB (兆字节)
DVD的数据容量: 单层 4.7GB (千兆字节) 从数学建模的角度研究 : 光盘的数据容量是怎样确 定的?在一定条件下怎样使其最大化?
k1 k2
16,
Q Q

1 8h 1
,h
L d
若取最保守的估计,有
k1 k2
16,
Q Q

1 8h 1
,h
L d
• Q/Q’ 是仅与h有关的函数. 可以从图形来考察它的取值情况!

初等方法建模1双层玻璃窗的功效--数学建模案例分析

初等方法建模1双层玻璃窗的功效--数学建模案例分析

第一章 初等方法建模如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模目的时,我们基本上可以用初等数学的方法来构造和求解模型。

通过下面介绍的若干例子能够看到,用很简单的数学方法已经可以解决一些饶有兴味的实际问题。

需要强调的是,如果对于某个实际问题可以用初等的方法解决,就不要用更高等的方法。

§1 双层玻璃窗的功效背景 将双层玻璃窗与用同样多材料做成的单层窗的热传导进行对比,对双层窗能减少多少热量损失给出定量分析结果。

模型假设1、热量的传播只有传导,没有对流,即假定窗户的密封性能很好,两层玻璃间的空气是不流动的。

2、室内温度1T 和室外温度2T 保持不变,热传导过程已处于稳定状态,即沿热传导方向,单位时间通过单位面积的热量是常数。

3、玻璃材料均匀,热传导系数是常数。

模型构成与求解记 a T —内层玻璃的外侧温度b T —外层玻璃的内侧温度1K —玻璃的热传导系数2K —空气的热传导系数空气Q —单位时间通过双层窗单位面积的热量'Q —单位时间通过单层窗单位面积的热量 由热传导过程的物理定律:dT K Q ∆=,得到 dT T K l T T K d T T K Q b b a a 21211-=-=-= (1) d T T K Q 2211'-= (2) 从(1)中消去b a T T ,,可得dl h K K h S S d T T K Q ==+-=,,)2()(21211 (3) 22+='S Q Q (4) 显然Q Q '<,且S 越大,比例越悬殊,331108~104--⨯⨯=K (焦耳/CM ·秒·度),42105.2-⨯=K (焦耳/CM ·秒·度),于是31~1621=K K ,做最保守的估计,即取1621=K K ,由(3)、(4)即有 dl h h Q Q =+=',181 (5)下面是经典古文名句赏析!!不需要的朋友,可以下载后编辑删除!!谢谢经典古文名篇(一);1.陋室铭刘禹锡(唐)字梦得《刘梦得文集》;山不在高,有仙则名;2.马说韩愈(唐)字退之《昌黎先生集》;世有伯乐,然后有千里马;马之千里者,一食(shí)或尽粟一石(dàn);策之不以其道,食(sì)之不能尽其材(才),鸣之;3.师说韩愈(唐);古之学者必有师;嗟乎!师道之不传也久矣!欲人之无惑也难矣!古之圣;圣人无常师;李氏子蟠,年十七经典古文名篇(一)1. 陋室铭刘禹锡(唐)字梦得《刘梦得文集》山不在高,有仙则名。

第五讲 初等方法建模

第五讲 初等方法建模
转入其他两系学习,甲系成为103名学生,乙系成为63名学生 ,丙系成为34名学生,仍按比例分配,就会出现小数,但成员
数必须是整数,一个自然的想法就是“四舍五入”,即“去掉
尾数取整”.而这样的话,常常导致名额多余或不够分配,更 严重的是,这种似乎公平的分配方法有时会出现不公平的结果
.表2-1和表2-2分别是学生会成员为20个名额和21个名额时的分
2
2.1 比例与函数
本节给出利用比例和函数建立数学模型的例子.我们将会 看到,在日常生活中,到处都会遇到应用数学方法来解决的问 题.
3
2.1.1 四足动物的身长和体重关系问题 四足动物躯干(不包括头尾)的长度和它的体重有什么关系 ?这个问题有一定的实际意义.比如,生猪收购站的人员或养 猪专业户如果能从生猪的身长估计它的重量,则可以给他们带 来很大的方便. 四足动物的生理构造因种类不同而异,如果陷入生物学对 复杂的生理结构的研究,将很难得到什么有价值的模型.为此 ,我们可以在较粗浅的假设的基础上,建立动物的身长和体重
分析

此类智力问题当然可以通过一番思考,拼凑出一 个可行方案来。 但是,我们现在希望能找到求解这类问题的规律性、建
立数学模型,用以解决更为广泛的问题。
模型建立

此问题可视为一个多步决策问题,每一步就是一次 渡河,每次渡河就是一次状态转移。 用三维变量(x,y,z)表示状态: x ------商人数, y ------随从数 x,y的取值范围:{0,1,2,3} z ------船 z的取值范围:{0,1} 那么安全状态可表示为 x=0,3, y=0,1,2,3 或 x=1,2, y=x
存在,只有可能性存在才谈得上用什么方法铺设的问题.为此
,在图2-4上黑、白相间染色,我们发现共有19个白格和21个 黑格,一块长方形瓷砖可盖住一白一黑两格,所以铺上19块长

数学建模-初等模型讲义

数学建模-初等模型讲义

123
2083.3
1341.8
3425.2 256250.0 250365.4
237
2083.3
45.5
2128.8 493750.0 328794.3
238
2083.3
34.1
2117.4 495833.3 328828.5
239
2083.3
240
2083.3
22.7
2106.1 497916.7 328851.2
9
7
9
11.3
4
8.5
21
21 21
ai比惯例 分配的要小
第21席应该分配乙系, 标准1的分配方案:10, 7, 4.
可用列表方法解决标准1(类似可解决标准2与3) 计算 ni 成表, k 1,2, k
1 2 3 4 5 6 7 8 9 10 11 甲 103 51.5 34.3 25.8 20.6 17.2 14.7 12.9 11.4 10.3 9.4 乙 63 31.5 21.0 15.8 12.6 10.5 9.0 7.9 7.0 6.3 5.7 丙 34 17.0 11.3 8.5 6.8 5.7 4.9 4.3 3.8 3.4 3.1
2. 按揭还款
用房产在银行办理的贷款, 该贷款要按照银行规
定的利率支付利息。 贷款形式
商业贷款和公积金贷款. 还款形式
等额本息和等额本金.
如贷款50万, 分20年还清, 年利率r , 问月供是多少?
调整日期
2015.08.26 2015.06.28 2015.05.11 2015.03.01 2014.11.22 2012.07.07 2012.06.09 2011.07.07 2011.04.06 2011.02.09 2010.12.26 2010.10.20 2008.12.23

数学建模的主要方法

数学建模的主要方法

数学建模的主要方法2数学建模主要分析方法初等数学法。

主要用于一些静态、线性、确定性的模型。

例如,席位分配问题,同学成绩的比较,一些简单的传染病静态模型。

层次分析法。

主要用于有关经济计划和〔管理〕、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领域,以便进行决策、评价、分析、猜测等。

该方法关键的一步是建立层次结构模型。

数据分析法。

从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。

仿真和其他方法。

主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,依据试验结果进行不断分析修改,求得所必须模型结构),人工现实法(基于对系统的了解和所要达到的目标,人为地组成一个系统)。

3数学建模常用方法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。

类比法:数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。

类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。

差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。

量纲分析法:量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。

数学建模_初等模型

数学建模_初等模型
模型1:谁将是胜利者
1805年,英国和法国进行了一场惨烈的海战。其中,尼尔 森担任英国统帅,他的对手则是大名鼎鼎的拿破仑。尼尔森的 舰队有27艘战舰,而拿破仑的舰队却有33艘战舰。根据以往的 战争经验,若两军相遇,一方损失兵力大约是对方兵力的10%。 如果按照这一公式计算,显然人多势众的法军将获胜,而且在 第11次遭遇战中全歼英军,如表所示。
(k3 ∈ R+ ) (k4 ∈ R+ )
⎧⎨⎩TOnn++11
= On + ΔOn = Tn + ΔTn =

= (1 (1 +
+ k1)On k2 )Tn −
− k3OnTn k4OnTn
现在,取k1=0.2、 k2=0.3、 k3=0.001、 k4=0.002,解得平衡 点(O,T)=(150,200)或(0,0)【舍去】
在什么情况下双方的核军备精神才不会无限扩张而存在暂 时的平衡状态,处于这种平衡状态下双方拥有最少的核武器数 量是多大,这个数量受哪些因素影响,当一方采取诸如加强防 御、提高武器精度、发展多弹头导弹等措施时,平衡状态会发 生什么变化?
最后英军战胜了法军,而且双方伤亡情况与历史事实也很 相近。当年,英军在战役A和战役B中战胜法军,但法军没有增 援C,而是选择了撤退,大约有13艘战舰退回法国海港。
点评:数学建模以解决某现实问题为目的,从问题中抽象 并归结出来的数学问题。从现象到模型,数学建模必须反映现 实,既然是一种模型,它就不是现实问题的全部复制,常常会 忽略一些次要因素,作一些必要的简化,但本质上必须反映现 实问题的数量规律。
斑点猫头鹰
老鹰 天数 老鹰 斑点猫头鹰 天数
情况4:老鹰仍然成为胜利者, 斑点猫头鹰最后还是灭绝了。与 数量 前面三种情况相比,两个种群的 初始数量相同,可以说是站在同 一条起跑线上。但是,老鹰种群 以绝对的优势赢得胜利,而斑点 10 猫头鹰种群惨遭灭绝。

数学建模算法与应用第3版

数学建模算法与应用第3版

数学建模算法与应用第3版摘要:一、数学建模概述1.数学建模的基本概念2.数学建模的步骤与方法二、数学建模算法与应用1.初等模型2.微分方程模型3.种群生态学模型4.线性规划模型5.非线性规划模型6.层次分析模型7.随机模型8.动态规划模型9.图论模型10.最短路模型11.网络流模型三、支持向量机与偏最小二乘回归分析1.支持向量机原理与应用2.偏最小二乘回归分析方法四、现代优化算法与应用1.现代优化算法概述2.优化算法在实际问题中的应用五、数字图像处理与应用1.数字图像处理基本概念2.图像处理算法与应用六、综合评价与决策方法1.综合评价方法2.决策方法与应用七、预测方法与应用1.预测方法概述2.预测方法在实际问题中的应用八、数学建模经典算法与应用1.数学建模经典算法概述2.经典算法在实际问题中的应用正文:一、数学建模概述数学建模是将实际问题抽象为数学问题,并通过数学方法求解实际问题的过程。

数学建模的过程通常包括以下几个步骤:问题分析、建立数学模型、求解数学模型、检验与修正模型、应用与优化模型。

在数学建模中,各种数学方法都发挥着重要作用。

二、数学建模算法与应用1.初等模型:初等模型主要包括线性回归模型、多项式回归模型等。

这些模型可以应用于股价预测、房价分析等领域。

2.微分方程模型:微分方程模型可以描述种群数量变化、物质传输等问题。

例如,利用微分方程模型研究病毒传播规律。

3.种群生态学模型:种群生态学模型主要用于研究生物种群数量的变化,如Logistic模型、Ricker模型等。

4.线性规划模型:线性规划模型是一种求解最优化问题的方法,广泛应用于资源分配、生产计划等领域。

5.非线性规划模型:非线性规划模型主要用于解决非线性优化问题,如二次规划、凸优化等。

6.层次分析模型:层次分析模型是一种多准则决策方法,可以用于评估各种方案的优劣。

7.随机模型:随机模型用于描述随机现象,如马尔可夫链、泊松过程等。

8.动态规划模型:动态规划模型是一种求解多阶段决策问题的方法,如背包问题、最长公共子序列等。

数学建模 第一章 初等模型

数学建模 第一章 初等模型
2 2
型. 由此模型可解决这两个问题.
2V0
⑴炮弹发射后落地时纵坐标 y
2
0,
2


kx l (k 1) x , ( x 0), k x . 2 l (k 1)
dx 1 1 k 0 k 1. 2 2 dk l (k 1) k 1为函数的极大值点, 即最佳角度满足
第一章 初等模型
在这一章中, 我们介绍几个初等模型及相应的求解方法. 所谓初等模型, 指的是该模型并不涉及高深的数学问题,
用常用的数学工具即可求解此类问题.
一、微积分方法寻找最优点
问题一
铁路线上 AB 段的距离为100km, 工厂C 距 A 处
20km, 并且 AC AB.(见下图) 为了运输需要, 要在 AB上选定一点 D, 向工厂修筑一条公路. 已知铁路每公里 货运的运费与公路每公里货运的运费之比为3: 5, 问D 点

该方法就称为最小二乘法.
最小二乘法的几何意义
y
y ax b
O
x
进一步地, 若所求曲线为以多项式时, 则也有相应的方 程.
曲线拟合关系中的方程⑼常称为法式方程.
利用软件MatLab,可以简单地得到拟合多项式中的各 项系数. MatLab中曲线拟合命令是 polyfit.
基本格式 polyfit
应选在何处? 建模 设 AD xkm, 则
A x D B
DB 100 x,
20km
C
CD 400 x 2 .
再设铁路上货运的运费为 3k / km, 公路上货运的运费为
5k / km, 从 B 到 C 的总运费为 y, 则
y 5k CD 3k DB

初等数学建模论文常见的题目和要求

初等数学建模论文常见的题目和要求


,得
于是当 一定时,有不等式最值定理得
可使 最小

4, m
代入上式得 =5 ~6
一般情况下,人的步行速度不可能每秒五步,所以这个结果不合理。
3.3 模型修改
将( 3 )的假设修改为: 腿的质量集中在脚部,行走看作脚的直线运动时,动能将变为
= 当 v 一定, W 最小时有
4 , m 时,
此结果较合适,所以此模型成立。
设腿长 ,步长 s (s< ):
( 2 )人行走时人体重心升高 ,腿的质量 m ,行走速度 v; ( 3 )人体质量 M ,每秒行走步 n 。
3.模型的建立与求解
如图,通过近似图形分析和直角三角形性质易知人重心在行走时升高。 所以,动能增加的同时也重力势能会增加。以下对此求解:
3.1. 人行走时的动能
a) 、现因学生转系,三系人数为 103, 63, 34, 问 20 席如何分配? b) 、若增加为 21 席,又如何分配?
四、汽车刹车距离

美国的某些司机培训课程中的驾驶规则:正常驾驶条件下 , 车速每增 10 英里
/ 小时,
后面与前车的距离应增一个车身的长度。

实现这个规则的简便办法是 “2 秒准则 ” :
车距离。5. 人行走最省力模型。 论文的要求。论文的关键环节。 论文正题。 初等模型题目
一、贷款购房方案的选择 贷款买房这一消费方式已被越来越多的市民接受,但是在“花明天的钱,享受今天的幸福” 的同时,许多购房者希望能有一个较好的理财方案。中国人民银行 1998 年 5 月出台了《个 人住房贷款管理办法》中明确规定,住房贷款主要有两种不同的还款方式:等额本息和、等 额本金,并允许借款人和贷款人在双方协商基础上进行选择,但一笔借款合同只能选择一种 还款方式,而合同签订后,不得更改。对一位购房者来说,最终选择哪一种还款方式,而合 同签订后,不得更改。对一位购房者来说,最终选择哪一种还款方式呢?哪一种还款方式更 有利于自己呢?为了寻根究底,我们开始探索研究——贷款者在每期偿还相等的款额情况 下,如何选择还款方式?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等数学方法建模现实世界中有很多问题,它的机理较简单,用静态,线性或逻辑的方法即可建立模型,使用初等的数学方法,即可求解,我们称之为初等数学模型。

本章主要介绍有关自然数,比例关系,状态转移,及量刚分析等建模例子,这些问题的巧妙的分析处理方法,可使读者达到举一反三,开拓思路,提高分析, 解决实际问题的能力。

第一节 有关自然数的几个模型1.1鸽笼原理鸽笼原理又称为抽屉原理,把N 个苹果放入)(N n n < 个抽屉里,则必有一个抽屉中至少有2个苹果。

问题1:如果有N 个人,其中每个人至多认识这群人中的)(N n n <个人(不包括自己),则至少有两个人所认识的人数相等。

分析:我们按认识人的个数,将N 个人分为n ,2,1,0 类,其中)0(n k k ≤≤类,表示认识k 个人,这样形成 1+n 个“鸽笼”。

若 1-<N n ,则N 个人分成不超过1-N 类,必有两人属于一类,也即有两个人所认识的人数相等;若1-=N n ,此时注意到0类和N 类必有一个为空集,所以不空的“鸽笼”至多为1-N 个,也有结论成立问题2:在一个边长为1的正三角形内最多能找到几个点,而使这些点彼此间的距离大于5.0.分析:边长为1的正三角形 ABC ∆,分别以C B A ,,为中心,5.0为半径圆弧,将三角形分为四个部分(如图1-1 ),则四部分中任一部分内两点距离都小于5.0 ,由鸽笼原理知道,在三角形内最多能找四个点,使彼此间距离大于5.0 ,且确实可找到如C B A ,,及三角形中心四个点。

图1—1问题3:能否在88⨯的方格表的各个空格中,分别填写3,2,1这三个数中的任一个,使得每行,每列及对角线的各个数的和都不相同?为什么?分析:若从考虑填法的种类入手,情况太复杂;这里我们注意到,方格表中行,列及对角线的总数为18个;而用3,2,1填入表格,每行,列及对角线都是8个数,8个数的和最小为8,最大为24,共有171824=+-种;利用鸽笼原理,18个“鸽”放入17个“鸽笼”,必有两个在一个“鸽笼”,也即必有两个和相同。

所以题目中的要求,无法实现。

思考题:在一个边长为1的正三角形内,若要彼此间距离大于1()n n为正整数 ,最多能找到几个点?1.2 “奇偶校验”方法 所谓 “奇偶校验”,即是如果两个数都是奇数或偶数,则称这两个数具有相同的奇偶性;若一个数是奇数,另一个数是偶数,则称具有相反的奇偶性。

在组合问题中,经常使用“奇偶校验”考虑配对问题。

问题1(棋盘问题):假设你有一张普通的国际象棋盘,一组对角上的两个方格被切掉,这样棋盘上只剩下62个方格(如图1—2)。

若你还有31块骨牌,每块骨牌的大小为21⨯方格。

试说明用互不重叠的骨牌完全覆盖住这张残缺的棋盘是不可能的。

分析:关键是对图1—2的棋盘进行黑白着色,使得相邻的两个方格有不同的颜色;用一块骨牌覆盖两个方格,必是盖住颜色不同的方格。

我们计算一下黑白着色棋盘的黑格,白格个数,分别为30和32;因此不同能用31块骨牌盖住这张残缺的棋盘。

用奇偶校验法,我们可以把黑色方格看成奇数方格,白色方格看成偶数方格;因为奇偶个数不同,所以不能进行奇偶配对,故题中要求的作法是不可能实现的。

问题2(菱形十二面体上的H 路径问题):沿一菱形十二面体各棱行走,要寻找一条这样的路径它通过各顶点恰好一次,该问题被称为Hamilton 路径问题。

分析:我们注意到菱形十二面体每个顶点的度或者为3或者为4,所谓顶点的度是指通过这一顶点的棱数,如图1—3;且每3度顶点刚好与3个4度顶点相连,而每个4度顶点刚好与4个3度 顶点相连。

因此一个Hamilton 路径必是3度与4度顶点交错,故若存在Hamilton 路径,则3度顶点个数,与4度顶点个数要么相等,要么相差1。

用奇偶校验法3度顶点为奇数顶点,4度顶点为偶数顶点,奇偶配对,最多只能余1个;而事实上菱形十二面体中,有3度顶点8个,4度顶点6个;可得结论,菱形十二面体中不存在Hamilton 路径.图1-2图1-3思考题:1、设一所监狱有64间囚室,其排列类似88⨯棋盘,看守长告诉关押在一个角落里的囚犯,只要他能够不重复地通过每间囚室到达对角的囚室(所有相邻囚室间都有门相通),他将获释,问囚犯能否获得自由?2、某班有49个学生,坐成7行7列,每个坐位的前后左右的坐位叫做它的邻座,要让49个学生都换到他的邻座上去,问是否有这种调换位置的方案?1.3 自然数的因子个数与狱吏问题令)(nd有的为奇数,有的为偶数,见下表:d为自然数n的因子个数,则)(n我们发现这样一个规律,当且仅当n为完全平方数时,)(nd为奇数;这是因为n的因子是成对出现的,也即abn=; 只有n为完全平方数, 才会出现2an=的情形,)(nd才为奇数。

下面我们利用上述结论研究一个有趣的问题.狱吏问题:某王国对囚犯进行大赦,让一狱吏n次通过一排锁着的n间牢房,每通过一次按所定规则转动门锁, 每转动一次, 原来锁着的被打开, 原来打开的被锁上;通过n次后,门锁开着的,牢房中的犯人放出,否则犯人不得获释。

转动门锁的规则是这样的,第一次通过牢房,要转动每一把门锁,即把全部锁打开;第二次通过牢房时,从第二间开始转动,每隔一间转动一次;第k次通过牢房,从第k间开始转动,每隔k-1 间转动一次;问通过n次后,那些牢房的锁仍然是打开的?问题分析: 牢房的锁最后是打开的,则该牢房的锁要被转动奇数次;如果把n 间牢房用n ,,2,1 编号,则第k 间牢房被转动的次数,取决于k 是否为n ,,2,1 整除,也即k 的因子个数,利用自然数因子个数定理,我们得到结论:只有编号为完全平方数的牢房门仍是开着的。

1.4 相识问题问题:在6人的集会上,总会有3人互相认识或互相不认识。

分析:设6人为621,,,A A A ;下面分二种情形,1.1A 至少和三个人不相识,不妨设1A 不认识432,,A A A ;若432,,A A A 互相都认识,则结论成立,若432,,A A A 中有两人不认识,则加上1A ,有三人互不相识. 2.1A 至少和三人相识,不妨设1A 认识432,,A A A ;若432,,A A A 互不相识结论成立,若432,,A A A 有两人相识,加上1A 则有三人互相认识 。

这样,我们就证明了结论成立第二节 状态转移问题本节介绍两种状态转移问题,解决这种问题的方法,有状态转移法,图解法及用图的邻接距阵等。

2.1 人、狗、鸡、米问题人、狗、鸡、米均要过河,船上除1人划船外,最多还能运载一物,而人不在场时,狗要吃鸡,鸡要吃米,问人,狗、鸡、米应如和过河?分析:假设人、狗、鸡、米要从河的南岸到河的北岸,由题意,在过河的过程中, 两岸的状态要满足一定条件,所以该问题为有条件的状态转移问题。

1. 允许状态集合 我们用(w, x, y, z ),w, x, y, z=0或1,表示南岸的状态,例如(1,1,1,1)表示它们都在南岸,(0,1,1,0)表示狗,鸡在南岸,人,米在北岸;很显然有些状态是允许的,有些状态是不允许的,用穷举法可列出全部10个允许状态向量,(1, 1, 1, 1) (1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (1, 0, 1, 0) (1, 1, 1, 1) (1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (1, 0, 1, 0) 我们将上述10个可取状态向量组成的集合记为S ,称S 为允许状态集合 2、状态转移方程对于一次过河,可以看成一次状态转移,我们用向量来表示决策,例(1,0,0,1)表示人,米过河。

令D 为允许决策集合,D={ (1, x, y, z) : x+y+z=0 或 1}另外,我们注意到过河有两种,奇数次的为从南岸到北岸,而偶数次的为北岸回到南岸,因此得到下述转移方程,k kk k d S S )1(1-+=+ ------------------------(2.1)),,,(k k k k k z y x w S =表示第k 次状态,D d k ∈ 为决策向量.图2-12. 人、狗、鸡、米过河问题,即要找到D d d d m ∈-121,,, ,S S S S m ∈,,,10 )0,0,0,0(0=S)1,1,1,1(=m S 且满足(2.1)式。

下面用状态转移图求解将10个允许状态用10个点表示,并且仅当某个允许状态经过一个允许决策仍为允许状态,则这两个允许状态间存在连线,而构成一个图, 如图2—1 , 在其中寻找一条从(1,1,1,1)到(0,0,0,0)的路径,这样的路径就是一个解, 可得下述路径图,由图2—2,有两个解都是经过7次运算完成,均为最优解 2.2 商人过河问题三名商人各带一个随从乘船渡河,现有一只小船只能容纳两个人,由他们自己划行,若在河的任一岸的随从人数多于商人,他们就可能抢劫财物。

但如何乘船渡河由商人决定,试给出一个商人安全渡河的方案。

首先介绍图论中的一个定理G 是一个图,V (G )为G 的顶点集,E(G)为G 的边集。

设G 中有n 个顶点n v v v ,,,21 ;n n ij a A ⨯=)(为G 的邻接距阵,其中⎩⎨⎧∉∈=)(0)(1G E v v G E v v a j i j i ij n j i ,,2,1, =定理1:设)(G A 为图G 的邻接距阵,则G 中从顶点i v 到顶点j v ,长度为k 的道路的条数为kA 中的i 行j 列元素.证: 对k 用数学归纳法1=k 时,显然结论成立; 假设k 时,定理成立, 考虑 1+k 的情形.记lA 的i 行j 列元素为 2)(≥l a l ij, 因为 1+=⋅l l AA A , 所以nj lin j li j l i l ija a a a a a a +++=+ 2211)1( (2.2)而从 i v 到 j v 长1+k 的道路无非是从i v 经k 步到某顶n l v l ≤≤1,再从l v 走一步到j v ;由归纳假设从i v 到l v 长为k 的道路共计kil a 条,而从l v 到j v 长为1的道路为lj a 条,所以长为1+k 的从i v 经k步到l v 再一步到j v 的道路共有lj k il a a )(条,故从i v 经1+k 步到j v 的路径共有∑=+=nl lj k ilk ija aa 1)()1(条.下面分析及求解假设渡河是从南岸到北岸,(m ,n )表示南岸有m 个商人,n 个随从,全部的允许状态共有10个)2,2()0,3()1,3()2,3()3,3(54321=====v v v v v )0,0()1,0()2,0()3,0()1,1(109876=====v v v v v以{}1021,,v v v V =为顶点集,考虑到奇数次渡河及偶数次渡河的不同,我们建立两个邻接距阵图2-2TA B A A A A =⎥⎦⎤⎢⎣⎡=3210其中 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=00010********011001100000110000000001000000000000000000010001110010110321A A A其中A 表示从南岸到北岸渡河的图的邻接距阵,TA B =表示从北岸到南岸渡河的图的邻接距阵。

相关文档
最新文档