分类计数原理和分布计数原理
分类计数原理与分步计数原理
分类计数原理与分步计数原理一、分类计数原理在概率论和组合数学中,分类计数原理是一种常用的计数方法。
它基于对样本空间的划分,将问题分解为若干个互不重叠的子问题,然后对每个子问题进行计数,最后将所有子问题的计数结果相加,得到问题的总计数。
分类计数原理的基本思想是将问题分解为若干个子问题,然后对每个子问题进行计数,最后将所有子问题的计数结果相加。
这种方法适用于问题的样本空间可以被划分为互不重叠的子集的情况。
分类计数原理的应用非常广泛,例如在概率问题中,可以将样本空间按照事件的性质进行划分,然后对每个子事件进行计数,从而得到事件的概率。
在组合数学中,可以将集合按照元素的性质进行划分,然后对每个子集进行计数,从而得到集合的大小。
二、分步计数原理分步计数原理是一种计数方法,它将一个复杂的计数问题分解为若干个简单的计数问题,并通过逐步求解这些简单问题,最终得到复杂问题的计数结果。
分步计数原理的基本思想是将一个复杂的计数问题分解为若干个简单的计数问题,然后逐步求解这些简单问题。
这种方法适用于问题的计数过程可以划分为多个步骤,并且每个步骤的计数方法相对简单的情况。
分步计数原理的应用也非常广泛。
例如,在排列组合问题中,可以将问题分解为选择元素的步骤和排列元素的步骤,然后分别计算每个步骤的计数结果,最后将两个步骤的计数结果相乘,得到问题的总计数。
在概率问题中,可以将事件的发生过程分解为多个独立的步骤,然后计算每个步骤的概率,最后将各个步骤的概率相乘,得到事件的总概率。
三、分类计数原理与分步计数原理的联系与区别分类计数原理和分步计数原理都是常用的计数方法,它们在解决计数问题时具有一定的相似性,但也存在一些区别。
分类计数原理侧重于将问题分解为若干个互不重叠的子问题,并对每个子问题进行计数。
而分步计数原理侧重于将问题分解为多个步骤,并逐步求解每个步骤的计数结果。
分类计数原理更加注重问题的样本空间的划分,将问题分解为互不重叠的子集,然后对每个子集进行计数。
分类和分步计数原理
分类计数原理与分步计数原理一、分类加法计数原理:完成一件事情可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有12n N m m m =+++种不同的方法注:在分类计数原理中,n 类办法中相互独立,无论哪一类办法中的哪一种方法都能独立完成这件事. 例1. 一个书包内有7本不同的小说,另一个书包内有5本不同的教科书,从两个书包中任取一本书的取法有多少种?例2. 在所有的两位数中个位数字比十位数字大的两位数有多少个?(合理分类)二、分步乘法计数原理:完成一件事情需要n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的办法……,做第n 步有m n 种不同的办法,那么完成这件事共有N 种不同的方法.N=n m m m ⨯⨯⨯ 21 注:分步计数原理各步骤相互依存,只有各步骤都完成才能做完这件事.例1. 用0,1,2,3,4排成可以重复的5位数,若中间的三位数字各不相同,首末两位数字相同,这样的5位数共有多少个?例2. (1)8本不同的书,任选3本分给3个同学,每人一本有多少种不同的分法?(2)若将4封信投入3个邮筒,有多少种不同的投法?若3位旅客到4个旅馆住宿,又是多少种住宿方法? 例3. 将红、黄、绿、黑四种颜色涂入图中的五个区域,要求相邻的区域不同色,问有多少种不同的涂色方法?变式训练:1、如图,用6种不同的颜色把图中A 、B 、C 、D 四块区域分开,若相邻区域 不能涂同一种颜色,则不同的涂法共有多少种?2、如图,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有多少种?三、计数原理综合应用作用:计算做一件事完成它的所有不同的方法种数区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成” 方法:(1)列举数数法:就是完成一件事方法不是很多,一一列举出来,然后一种一种地数,这种方法适用于:数目较少的问题.(2)字典排序法:把所有的字母或数字或其它,按照顺序依次排出来,所有的字母或数字或其它排完后结束.(3)模型法:根据题意构建相关的图形,利用图形构建两个原理的模型.AB C D典型例题分析(先分类再分步.)【例1】 一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?变式训练1 在夏季,一个女孩有红、绿、黄、白4件上衣,红、绿、黄、白、黑5条裙子,3双不同鞋子,3双不同丝袜,这位女孩夏季某一天去学校上学,有多少种不同的穿法?变式训练2 有不同的中文书7本,不同的英文书5本,不同的法文书3本,若从中选出不属于同一种文字的2本书,共有多少种选法?【例2】 有四位同学参加三项不同的竞赛.(1)每位学生必须参加且只能参加一项竞赛,有多少种不同结果?(2)每项竞赛只许一位学生参加,有多少种不同结果?变式训练1 火车上有十名乘客,沿途有五个车站,乘客下车的可能方式有多少种?变式训练2 有4种不同溶液倒入5只不同的量杯,如果溶液足够多,每只量杯只能倒入一种溶液,有几种不同倒法?【例3】电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?【例4】d c b a ,,,排成一行,其中a 不排第一,b 不排第二,c 不排第三,d 不排第四的不同排法共有多少种?【例5】 甲、乙、丙、丁4个人各写1张贺卡,放在一起,再各取1张不是自己所写的贺卡,共有多少种不同取法?变式训练1 甲、乙、丙、丁4个人各写1张贺卡,放在一起,各取1张,其中甲、乙、丙不能取自己所写的贺卡,共有多少种不同取法?变式训练2 设有编号①,②,③,④,⑤的5个球和编号为1,2,3,4,5的5个盒子,现将这5个球投入这5个盒子内,要求每个盒子内投入一个球,并且恰好有2个球的编号与盒子的编号相同,则这样的投放方法总数为多少【例6】某城市在中心广场建造一个花圃,花圃分为6个部分(如下图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种.(以数字作答) 654321四、课堂练习1.一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有_______________种.若是选取两本书且它们不相同则有_______________种2.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有______种不同的选法.3.一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有__________种.4.从分别写有1,2,3,……,9的九张数字卡片中,抽出两张数字和为奇数的卡片,共有_______种不同的抽法.5.从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有______种。
分类计数原理与分步计数原理
分类计数原理与分步计数原理一、知识精讲分类计数原理与分步计数原理分类计数原理:做一件事,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法 ,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++= 21种不同的办法。
分步计数原理:做一件事,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同方法,那么完成这件事共有n m m m N ⋅⋅⋅= 21种不同的方法。
特别注意:两个原理的共同点是把一个原始事件分解成若干个分事件来完成。
不同点在于,一个与分类有关,一个与分步有关,如果完成一件事情共有n 类办法,这n 类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理;如果完成一件事情需要分成n 个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成 每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。
二、题型剖析例1、把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢?解:(1)不同涂色方法数是:60345=⨯⨯(种)(2)如右图所示,分别用a,b,c,d 记这四块,a 与c 可同色,也可不同色,先考虑给a,c 两块涂色,分两类(1) 给a,c 涂同种颜色共15C 种涂法,再给b 涂色有4种涂法,最后给d 涂色也有4种涂法,由乘法原理知,此时共有4415⨯⨯C 种涂法(2) 给a,c 涂不同颜色共有25A 种涂法,再给b 涂色有3种方法,最后给d 涂色也有3种,此时共有3325⨯⨯A 种涂法 故由分类计数原理知,共有4415⨯⨯C +3325⨯⨯A =260种涂法。
例2、(1)如图为一电路图,从A 到B 共有-___________条不同的线路可通电。
分类计数原理与分步计数原理PPT教学课件
互斥.各类中任何一种方法都能够独 立完成这件事.
分步计数原理用于分步,步步相扣, 缺一不可,只有各个步骤都完成了,才 算完成这件事.
讲授新课
例1 书架的第1层放有4本不同的计算机书, 第2层放有3本不同的文艺书,第三层放有 2本不同的体育书. ⑴从书架上任取1本书,有多少种不同的 取法? ⑵从书架的第1、2、3层各取1本书,有多 少种不同的取法?
的道路有2条,从A村经B村去C村,不同走
法的种数是
.
讲授新课
课堂练习 1.填空: ⑴一件工作可以用2种方法完成,有5人会 用第1种方法完成,另有4人会用第2种方法 完成,从中选出1人来完成这件工作,不同 选法的种数是有 9 种 .
(分类计数原理) 5+4=9
⑵从A村去B村的道路有3条,从B村去C村 的道路有2条,从A村经B村去C村,不同走 法的种数是 6 种 .
实例引入
1. 从甲地到乙地,可以乘火车,也可以 乘汽车.一天里火车有3班,汽车有2班. 那么一天中,乘坐这些交通工具从甲地 到乙地共有多少种不同的走法?
甲地
乙地
实例引入
1. 从甲地到乙地,可以乘火车,也可以 乘汽车.一天里火车有3班,汽车有2班. 那么一天中,乘坐这些交通工具从甲地 到乙地共有多少种不同的走法?
N=m1×m2×…×mn 种不同的方法.
讲授新课
对于分步计数原理,注意以下几点:
讲授新课
对于分步计数原理,注意以下几点:
⑴分步计数原理与“分步”有关,各个步骤 相互依存,只有各个步骤完成了,这件事 才算完成;分步计数原理又叫乘法原理.
讲授新课
对于分步计数原理,注意以下几点:
⑴分步计数原理与“分步”有关,各个步骤 相互依存,只有各个步骤完成了,这件事 才算完成;分步计数原理又叫乘法原理.
分类计数原理和分步计数原理
分步计数原理的核心思想是“分步”,即根据事件的某些特征将 其分成不同的步骤,然后分别计算每一步中的方法数,最后将这 些方法数相乘得到复杂事件的总方法数。
两者关系与区别
关系
分类计数原理和分步计数原理都是解决复杂事件计数问题的方法,它们的核心思想都是将复杂事件进行分解,然 后分别进行计算。
04 计数原理在算法中的应 用
动态规划算法
最优子结构
动态规划算法通过把原问题分解为若干个子问题,并求解子 问题的最优解,进而得到原问题的最优解。这种通过子问题 的最优解来推导原问题最优解的方法体现了分类计数原理的 思想。
状态转移方程
动态规划算法中,通常定义一个状态转移方程来描述子问题 之间的关系。这个方程可以帮助我们计算出每个子问题的最 优解,并最终得到原问题的最优解。状态转移方程的构建和 求解过程体现了分步计数原理的思想。
路线规划问题
从起点到终点需要经过三个城市,每两个城市之间都有多 条路线可选。根据加法原理和乘法原理,可以计算出从起 点到终点所有可能的路线组合数。
彩票选号问题
一张彩票需要选择7个号码,每个号码可以是1~49中的任 意一个。根据乘法原理,共有 $49 times 48 times 47 times 46 times 45 times 44 times 43 $ 种不同的选号方 式。
组合问题
排列与组合的区别
排列是把元素按顺序排列,而组合是 把元素无顺序地组合起来。
从n个不同元素中取出m个元素( m≤n)的所有排列的个数,叫做从n 个元素中取出m个元素的组合数。
概率统计问题
古典概型
如果每个样本点发生的可能性相 等,则事件A发生的概率等于事件 A包含的样本点个数与样本空间包
分类加法计数原理与分步乘法计数原理
自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理
分类计数原理和分步计数原理
典型例题
例 1. 书架放有 3 本不同的数学书, 5 本不同的语文书, 6 本不同 的英语书。 (1)若从这些书中任取1本书,有多少种不同的取法? (2)若从这些书中,取数学书、语文书、英语书各一本, 有多少种不同的取法? (3)若从这些书中,取不同科目的书两本,有多少种不同 的取法? 解:(2)从书架上任取数学书、语文书、英语书各一本, 需分成三个步骤完成:
第1类办法是数学书、语文书各取1本,有3×5种办法; 第2类办法是数学书、英语书各取1本,有3×6种办法; 第3类办法是语文书、英语书各取1本,有5×6种办法; 根据分类计数原理,不同取法的种数是 N= 3×5+3×6+5×6=63 答:若从这些书中,取不同科目的书两本,有63种不同的取法。
典型例题
一、导入 情景:
一学生从外面进入教室有多少种 走法?若进来再出去,有多少走法?
分类计数原理和分步计数原理
二、新课 情景一:
从甲地到乙地,可以乘火车,也 可以乘轮船。一天中,火车有3班,轮 船有2班。那么一天中,乘坐这些交通 工具从甲地到乙地共有多少种不同的 走法?
பைடு நூலகம்
分类计数原理
做一件事情,完成它可以有n类办法,在 第一类办法中有m1种不同的方法,在第二类办 法中有m2种不同的方法……在第n类办法中 有mn种不同的方法。那么完成这件事共有 N=m1+m2+…+mn 种不同的方法。 (此原理又称加法原理 )
例2:由1,2,3,4可组成多少个数字可以重复的
四位数?
变式1:由0,1,2,3可组成多少个数字可以重复
的四位数?
变式2:由1,2,3,4可组成多少个数字不可以
重复的自然数?
思考题:
分类计数原理与分步计数原理
【例2】一城市的电话号码都由8位数字组成, 其中前4位数字是统一的,后4位数字都是0到9 之间的一个数字,那么不同的电话号码可有多 少个? 【引申1】4封信全部投入10个不同的信箱 中,有多少种不同的投法?
【引申2】A集合中有4个元素,B集合中有10 个元素,问:可以建立多少个从A到B的映射?
【引申3】运动会上4位同学报名参加10个项目, 每人必须且只能报一项,有多少种报名方法?
”智深道:“洒家也不杀你,只要问你买酒吃。”那汉子见不是头,挑了担桶便走。智深赶下亭子来,双手拿住匾担,只一脚,交裆踢着,那汉子双手掩着,做一堆蹲在地下,半日起不得。智深把那两桶酒都提在亭子上,地下拾起旋子,开了桶盖,只顾舀冷酒吃。无移时,两大桶酒吃了 一桶。智深道:“汉子,明日来寺里讨钱。”那汉子方才疼止,又怕寺里长老得知,坏了衣饭,忍气吞声,那里敢讨钱?把酒分做两半桶挑了,拿了旋子,飞也似下山去了。 只说鲁智深在亭子上坐了半日,酒却上来。下得亭子,松树根边又坐了半歇,酒越涌上来。智深把皂直裰褪膊下 来,把两只袖子缠在腰里,露出脊背上花绣来,扇着两个膀子上山来。但见:头重脚轻,眼红面赤;前合后仰,东倒西歪。踉踉跄跄上山来,似当风之鹤;摆摆摇摇回寺去,如出水之蛇。指定天宫,叫骂天蓬元帅;踏开地府,要拿催命判官。裸形赤体醉魔君,放火杀人花和尚。鲁达看看 来到山门下,两个门子远远望见,拿着竹篦来到山门下,拦住鲁智深便喝道:“你是佛家弟子,如何噇得烂醉了上山来?你须不瞎,也见库局里贴的晓示:但凡和尚破戒吃酒,决打四十竹篦,赶出寺去,如门子纵容醉的僧人入寺,也吃十下。你快下山去,饶你几下竹篦。” 鲁智深一者 初做和尚,二来旧性未改,睁起双眼骂道:“直娘贼!你两个要打洒家,俺便和你厮打。”门子见势头不好,一个飞也似入来报监寺,一个虚拖竹篦拦他。智深用手隔过,揸开五指,去那门子脸上只一掌,打得踉踉跄跄;却待挣扎,智深再复一拳,打倒在山门下,只是叫苦。智深道:“ 洒家饶你这厮。”踉踉跄跄,攧入寺里来。监寺听得门子报说,叫起老郎、火工、直厅、轿夫,三二十人,各执白木棍棒,从西廊下抢出来,却好迎着智深。智深望见大吼了一声,却似嘴边起个霹雳,大踏步抢入来。众人初时不知他是军官出身,次后见他行得凶了,慌忙都退入藏殿里去 ,便把亮槅关上。智深抢入阶来,一拳一脚,打开亮槅,三二十人都赶得没路,夺条棒从藏殿里打将出来。 监寺慌忙报知长老,长老听得,急引了三五个侍者直来廊下,喝道:“智深不得无礼!”智深虽然酒醉,却认得是长老,撇了棒,向前来打个问讯,指着廊下对长老道:“智深吃 了两碗酒,又不曾撩拨他们,他众人又引人来打洒家。”长老道:“你看我面快去睡了,明日却说。”鲁智深道:“俺不看长老面,洒家直打死你那几个秃驴!”长老叫侍者扶智深到禅床上,扑地便倒了,齁齁地睡了。 (1)在空格内依次填写一个动词。概括文中鲁智深与酒的几件事。 想酒~买酒~抢酒~闹酒 (2)文中汉子的唱词有哪些作用? (3)结合水浒传,完成下面题目 ①鲁智深在上五台山之前所做的义事是A A拳打镇关西 B大闹桃花村 C火烧瓦官寺 D大闹野猪林 ②鲁智深为何被称作花和尚 ③与林冲和李逵相比,鲁智深的性格有什么特别之处,请举例具体 分析。 【考点】9E:小说阅读综合. 【分析】本文主要描述了鲁智深大闹五台山的故事.第一段写鲁智深来到五台山几个月没喝酒,正想着酒,外面传来了卖酒的歌声;第二段写鲁智深想买酒遭拒,就开始动手抢酒,吓跑了卖酒的汉子;第三至五段,写鲁智深喝完,酒劲上来看返回寺 院,门子见状阻拦,鲁智深反打门子,惊扰到长老送至房间便酒意大发睡去了. 【解答】(1)本题考查主要内容的概括.解答此题明确本文的写作线索为“酒”,按写作的顺序找出事件,然后分别用两个字来概括即可.文章第一段写鲁知深想到了喝酒,第二段写鲁智深想买酒遭到了拒 绝,便开始抢酒;第三至五段,主要写他喝酒后回寺大闹寺院.可分别概括为:想酒、买酒、抢酒和闹酒. (2)本题考查内容的理解与分析.唱词与战争、项羽相关,结合前文情节我们知道,鲁智深曾经作过提辖,这个唱词则触发了鲁智深的英雄豪情,想起自己此时却在寺院中为僧, 这样就刺激了他的酒瘾,从而引发了下面的情节. (3)本题考查名著情节的识记与人物形象的对比分析.解答此题关键在于平时的阅读与积累.①鲁智深上山之前是提辖,因为救助金氏父女而拳打镇关西,为了逃脱人命官司而来到了这里.故选A.②鲁智深上山为僧,但他的脊背上有 花绣,又因为他不守戒律,喝酒吃肉打人,所以得名“花和尚”. ③林冲在《水浒传》中一开始的性格是软弱的,就因为一再的忍让才被害.李逵的勇猛和鲁智深很相似,但李逵有勇无谋,没有头脑.而鲁智深有智慧,如拳打镇关西至他于死地时,用郑屠的装死来骗众人,取得逃跑的 时间等情节就能体现出来. 代谢: (1)买 抢 闹(共3分,每空1分) (2)汉子的唱词进一步触发了曾为军官的鲁智深的豪情和他对当时处境的不满,更刺激了他的酒瘾. (3)①A ②因为他出家为僧,且脊背上有花绣,也因为他喝酒吃肉打人,不守戒律. ③示例:与林冲相比,鲁 智深办事更加果断干脆.例如,林冲在被奸人高俅陷害后一再隐忍退让,而鲁智深为解救金氏父女,直接痛打了恶人郑屠. (2017安徽)【二】(21分) 扁担的一生 范宇 ①在村庄的记忆里,几乎任何时间、任何角落都能见到扁担的身影。挑粪、挑种子、挑谷子、挑土豆、挑橘子…… 农人在土地上的所有倾注与收获,都与扁担密不可分。扁担就是农人的精神脊梁,让他们挑起一个家庭重担的同时,也挑起了一个村庄沉重的历史与殷殷期盼。 ② 。母亲嫁给父亲时,半背篼谷子便是全部的家当。泥墙茅顶的房子破败不堪,常常在狂风骤雨中摇摇欲坠,只有立于墙角略 弯的扁担显得精神抖擞,给人信心与希望。或许,母亲嫁给父亲的勇气,有几分便来自于扁担的抖擞精神。总之,在昼夜有序更替的村庄里,父母用扁担慢慢挑起了生活的担子,就像蚂蚁搬家一样,虽然缓慢,却渐渐挑出了一个家庭的崭新面貌。 ③ 。 ④20年前,父亲从山里找到一截 不错的木材,正想着用来做点什么呢。身为木匠的舅舅几乎脱口而出——扁担。对,扁担!父亲也认为,只有改成一根扁担,才不辜负这上好的木材。说干就干,粗糙的木材到了舅舅手里,不用半天,就变成了一根笔直的扁担。扁担不能太直,太直则易伤肩头和腰。因此,还得将扁担以 火烤之后,用外力将之略微压弯成弓形。可这根扁担实在太有骨气了,即便火烤、重压,仍然笔直,没有半点屈服。 ⑤这根扁担挑起来更吃力,父亲却爱不释手。之后的许多年里,父亲无论挑什么,都用她。有次在挑玉米时,父亲不小心闪了腰,疼了好长一段时间。但父亲并没有放弃 她,用汗水和心血一点点浸润着她,渐渐地,她坚硬的心被融化了,挺直的腰板,也弯了下来。父亲挑起扁担来越来越有默契,像与母亲的婚姻一样,虽偶有磕磕绊绊,感情却越来越深厚。她也没有辜负父亲的良苦用心,苦心经营,以顶天立地般的气慨,让一个家庭从贫穷落后走向富足 安逸。 ⑥可这样的日子并没有持续多少年。越来越多的人开始离开村庄,离开赖以生存的土地,扁担也渐渐地走向了落寞。不少人再也没有回来,在城里买了房子,过上了舒坦的日子。这也让父亲坚信一根扁担能够挑出一个未来的信念,逐渐土崩瓦解。或许,这背后更多是村庄现实的 无奈。 ⑦无论如何,父亲最终选择了离开。 ⑧曾经朝夕相对的扁担被搁置在了一个冰冷的墙角,孤零零的。说来也奇怪,没有了重压,扁担却一天比一天更弯,弯得像一个苟延残喘的暮年老者。或许,再过几年,抑或十余年,她便将走完一生,彻底告别深爱了一生也奋斗了一生的村庄 。 ⑨这也是农人的一生。 ⑩九月,村庄又迎来冷冷清清的收获季节。我返城时,碰见正挑着谷子从田边迎面走来的大伯。大伯今年已60余岁了,还在田间劳作着。他也曾短暂离开过村庄,却始终没能走出像扁担一样的命运。他仍然坚信着,只要村庄还在,扁担还在,就一定能够扛起生 活的重担。甚至,在人烟越来越少的村庄里,不少死守的农人还是坚信——一根扁担仍能挑起一个村庄。 ?这是一种可贵精神,或许它与现实追求早已背道而驰,却让人肃然起敬。 (选自《襄阳晚报》2016年3月3日,有删改) 10、根据上下文,将下面两个句子分别填入文章②③两段横 线处,第②段应填( ),第③段应填( )。(4分) A、这让我有了探索一根扁担一生的浓厚兴趣。 B、我的家也是扁担挑起来的。 11、阅读文章④—⑥段,概括补充扁担经历的主要变化过程。(每空不超过5个字)(4分) 上好的木材→ →渐弯的扁担→ 12、作者提到“扁担”,多 次使用第三人称“她”,有何表达效果?(3分) 13、联系上下文,简要分析第⑩段画线句子蕴含了作者怎样的情感。(4分) 14、“扁担”在文中有着丰富的内涵,请结合全文谈谈你的理解。(6分)[来源:学科网 代谢:【二】 10. (4分)B A 11. (4分)不屈的扁担 落寞的扁担 12.(3分) 运用拟人化的手法,把扁担当成了与自己家庭命运休戚相关的一员,抒发了对扁担对既往岁月的无限怀念留恋之情,同时也表达了对父亲对家庭的热爱之情。 13.(4分) 表达了对大伯不能与时俱进,还固守着旧有的生活方式,希望能用一根扁担扛起生活重担精神的钦佩与 惋惜之情 14.(4分)扁担是农人的希望,是农人精神脊梁;扁担也是父亲的命运与精神的反映 。扁担有着不屈的精神,挑起过生活的重担,创造过富足安逸,也有着英雄暮年的孤寂衰老,它的一生也反映了人的一生;在一定程度上,扁担也是落后生活方式的代表。 (2017浙江温州)4 . 天道立秋 张承志 (1)1990年立秋日,是个神秘的日子。 (2)年复一年地,代谢人渐浙开始从春末就恐怖地等着入伏。一天天地熬,直到今年是一刻刻地熬。长长无尽的代谢苦夏,在这一回简直到了极致。 (3)一点一点地挨着时间;无法读书,无法伏案。不仅是在白昼,夜也是 潮闷难言,漆黑中的灼烤实在是太可怕了。 (4)我有时独自坐在这种黑热里,像一块熄了不多时的炉膛里的烧烬。心尖有一块红红的煤火,永无停止地折磨着自己。似乎又全靠着它,人才能与这巨大的黑热抗衡。久久坐着,像是对峙。 (5)天亮以后几个时辰,大地便又堕入凶狠的爆 烤。有谁能尽知我们的苦夏呢? (6)街上老外,满脸汗水。 (7)度夏的滋味、中国人是说不出的。 (8)后来愈热愈烈,我几乎绝望。再这样热下去,连我也怀疑没有天理了。 (9)可是,那一天是立秋。上午我麻木地走进太班有男生30人, 女生24人,要从中选一人参加学校会议,问: 总共有多少种选法?
6.1分类加法计数原理和分步乘法计数原理-【新教材】人教A版高中数学选择性必修第三册课件
少要用多少个字节表示?
分析:
第1位 第2位 第3位
第8位 ......
第1位 第2位 第3位
第8位 ......
2种 2种
2种
2种
2种 2种
2种
2种
256*256=65536
两 例7:计算机编程人员在编写好程序以后要对程序进行测试。程序员需要知道到底有多少条执行
分析:
“选出2幅画,分别挂
1、“要完成的一件事”:在左、右两边墙上”
2、如何完成:“分步”
追问1:你还能给出不同 的解法吗?
第1步:从3幅画中选2幅,有3种选法; (甲,乙)、(甲,丙)、(乙,丙) 第2步:将选出的两幅画挂好,有2种挂法;
N=3✖2=6种.
例5:给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z, 后两个字符要求用数字1~9,最多可以给多少个程序模块命名?
个 计 路(程序从开始到结束的线),以便知道需要提供多少个测试数据。一般的,一个程序模块又许
数 原
多子模块组成.下图是一个具有许多执行路径的程序模块。问:这个程序模块有多少条执行路径?
理 另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以
的 实
减少测试次数吗?
际
开始
数 多子模块组成.下图是一个具有许多执行路径的程序模块。问:这个程序模块有多少条执行路径?
原 理
另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以
的 减少测试次数吗?
实 际
开始
分类加法计数原理和分步乘法计数原理
分类加法计数原理和分步乘法计数原理【要点梳理】要点一:分类加法计数原理(也称加法原理)1.分类加法计数原理:完成一件事,有n 类办法.在第1类办法中有1m 种不同方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同方法,那么完成这件事共有n m m m N +++=Λ21种不同的方法.2.加法原理的特点是:① 完成一件事有若干不同方法,这些方法可以分成n 类;② 用每一类中的每一种方法都可以完成这件事;③ 把每一类的方法数相加,就可以得到完成这件事的所有方法数.要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。
3.图示分类加法计数原理:由A 到B 算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。
从图中可以看出,完成由A 到B 这件事,共有方法m+n 种。
要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。
要点二、分步乘法计数原理1.分步乘法计数原理“做一件事,完成它需要分成n 个步骤”,就是说完成这件事的任何一种方法,都要分成n 个步骤,要完成这件事必须并且只需连续完成这n 个步骤后,这件事才算完成.2.乘法原理的特点:① 完成一件事需要经过n 个步骤,缺一不可;② 完成每一步有若干种方法;③ 把每一步的方法数相乘,就可以得到完成这件事的所有方法数.要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。
3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。
要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。
分类计数原理与分步计数原理
态度决定一切!追求卓越,实现梦想分类计数原理与分步计数原理【知识要点】看下面的问题:从甲地到乙地,可以乘火车,也可以乘汽车,一天中,火车有3班,汽车有2班,那么天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?一般地,有如下原理:分类计数原理:完成一件事,有n类办法,在第1类办法中有m 1种不同的方法,在第2 类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有: N = m I + m H -------- F m种不同的方法。
再看下面的问题:从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地,一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?一般地,有如下原理:分步计数原理:完成一件事,需要分成n个步骤,做第1步有m 1种不同的方法,做第2 步有m2种不同的方法……做第n步有m n种不同的方法,那么完成这件事共有:N = m. x m x…x m种不同的方法。
【典型例题】例1书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2 本不同的体育书。
(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字号码?例3用红、黄、蓝三种颜色给如图的三个矩形随机涂色,每个矩形只涂一种颜色,求: (1)三个矩形颜色都相同的概率;(2)三个矩形颜色都不同的概率。
例4 一个口袋中有4个红球和3个白球,5人依次在口袋中摸出1个球。
(1)若每个人摸球后,把摸出的球放回口袋中,再由下一个人来摸球,求第3个人摸得白球的概率;(2)若摸出的球不放回口袋中,求第3个人摸得白球的概率;(3)若每人摸出的球不放回口袋中,且摸到白球即停止摸球,求第3个人去摸球时摸到白球的概率。
【闯关练习】1 .估计掷一枚均匀的硬币,反面朝上的概率为( )A . 1B . 1C . 1D . 12342 .从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张卡片上字母恰好是按 字母顺序相邻的概率为A . 153 .有六张扑克牌 的概率是( )A . 13掷两次骰子, A . 16掷一枚均匀的骰子,每次实验掷两次,两次骰子的点数和为()的概率最大。
分类计数原理与分步计数原理、排列
【高考导航】分类计数原理与分步计数原理又称加法原理和乘法原理,它不仅是推导排列数、组合数计算公式的依据,而且是最基本的思想方法,这种思想方法贯穿在解决本章应用问题的始终.在高考中,运用分类计数原理和分步计数原理结合排列组合知识解决排列组合相关的应用题,通常不单独命题.【学法点拨】对两个原理的掌握和运用,是学好本单元知识的一个关键.从思想角度看,分类计数原理的运用是将一个问题进行分类的思考,分步计数原理是将问题进行分步的思考,从而达到分析问题、解决问题的目的.从集合的角度看,两个基本原理的意义及区别就显得更加清楚了.完成一件事有A、B两类办法,即集合A、B互不相交,在A类办法中有m1种方法,B类办法中有m2种方法,即card(A)=m1,card(B)=m2,那么完成这件事的不同方法的种数是card(AB)=m1+m2.这就是n=2时的分类计数原理.若完成一件事需要分成A、B两个步骤,在实行A步骤时有m1种方法,在实行B步骤时有m2种方法,即card(A)=m1;card(B)=m2,那么完成这件事的不同方法的种数是card(AB)=card(A)card(B)=m1m2.这就是n=2时的分步计数原理.两个原理都是涉及完成一件事的不同方法的种数.它们的区别在于:分类计数原理与分类有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.初学时,应结合实例,弄清两个原理的区别,学会使用两个原理.【基础知识必备】一、必记知识精选1.分类计数原理:做一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2++mn种不同的方法.2.分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,,做第n步有mn种不同的方法,那么完成这件事共有N=m1m2mn 种不同的方法.二、重点难点突破本节重点是准确理解和灵活运用分类计数原理和分步计数原理.难点是两个原理的恰当运用.两个原理的区别在于分类与分步,完成一件事的方法种数若需分类思考,则这n类办法是相互独立的,且无论哪一类办法中的哪一个方法都能单独完成这件事,则用加法计数.若完成这件事需分为n个步骤,这n个步骤相互依存.具有连续性,当且仅当这n个步骤依次全都完成后,这件事才完成,那么完成这件事的方法总数用乘法计算.处理具体问题时,首先要弄清是分类还是分步,简单地说是分类互斥、分步互依,因此在解题时,要搞清题目的条件与结论,且还要注意分类时,要不重不漏,分步时合理设计步骤、顺序,使各步互不干扰.对于一些较复杂的题目,往往既要分类又要分步,也就是说既要应用分类计数原理又要运用分步计数原理.三、易错点和易忽略点导析由于对两个原理理解不清,解题时,易发生分类不全和分类时各类有叠加现象的错误,即遗漏或者重复.【例1】有红、黄、蓝旗各3面,每次升一面、二面、三面在某一旗杆上纵向排列,表示不同的信号,顺序不同则表示不同的信号,共可以组成多少种不同的信号?错解:可组成333=27种不同的信号.正确解法:每次升1面旗可组成3种不同的信号;每次用2面旗可组成33=9种不同的信号;每次升3面旗可组成333=27种不同的信号.根据分步计数原理得共可组成3+9+27=39种不同的信号.错解分析:错解忽略了信号可分为使用的旗数分别可以为1面、2面、3面这3类.本题综合应用了乘法原理和加法原理.【例2】在3000到8000之间有多少个无重复数字的奇数?错解:分三步完成,首先排首位有5种方法,再排个位有5种方法,最后排中间两位有87种方法,所以共有5587=1400个.正确解法:分两类;一类是以3、5、7为首位的四位奇数,可分三步完成:先排首位有3种方法,再排个位有4种方法,最后排中间两个数位有87种方法,所以共有3487=672个.另一类是首位是4或6的四位奇数,也可以3步完成,共有2587=560个.由分类计数原理得共有672+560=1232个.错解分析:由题意,3、5、7这三个数既可以排在首位,也可以排在个位,因此,首位是用3、5、7去填.还是用4、6去填,影响到第二步,即填个位的方法数,遇到此类情形,则要分类处理.错解中有重复排上同一个奇数的四位数而产生错误.【例3】编号为1~25的25个球摆成五行五列的方阵,现从中任选3个球,要求3个球中任意两个都不在同一行也不在同一列,有多少种不同的选法?错解:分以下三步完成:(1)选取第一个球,可在25个球中任意选取,有25种选法;(2)选取第二个球,为了保证两球不在同一行也不在同一列,将第一个球所在的行和列划掉,在剩余的16个球中任取一个,有16种选法;(3)选取第三个球,应从去掉第一、二个球所在的行和列后所剩余的9个球中选取有9种选法.根据乘法原理,有25169=3600种方法.正确解法:分以下三个步骤:(1)先从5行5列中选出3行有10种选法;(2)从一行的5个球中选出3个球,有10种选法;(3)最后从所选出的3个球中按照它所在列放在第(1)步选出3行的每一行上有6种方法.根据乘法原理有10106=600种选法.错解分析:错解中先选一球,假定此球为①,第二步去掉球①所在的行和列,在剩余的16个球中任选一个球,假定选取了球(25),第三步在去掉球①与(25)所在的两行、两列16个球,在剩余的9个球中任选一球,假定为球(13),则此选法为①(25)(13),若第一步选(13),第二步选①,第三步选(25),显然这两种选法是相同结果.这说明上述解法中有许多重复之处.所以,解法是错误的,每一不同取法在错解中都被重复了6次.【综合应用创新思维点拨】一、学科内综合思维点拨【例1】三边长均为整数,且最大边长为11的三角形共有( )A.25个B.26个C.36个D.37个思维入门指导:设另两边长分别为x,y,且不妨设1xy.由三角形的特性,必须满足x+y12,以下可以分类考虑.解:当y取11时,x=1,2,3,,11,可有11个三角形.当y取10时,x=2,3,,10,可有9个三角形.当y取6时,x=6可有1个三角形.因此,所求三角形的个数为11+9+7+5+3+1=36个,故应选C.点拨:本题应用了穷举法,这也是解决排列组合应用题的一个基本方法.二、学科间综合思维点拨【例2】 DNA分子多样性表现在碱基的排列顺序的千变万化上.若一个DNA分子有8000个碱基,则由此组成的DNA的碱基对的排列方式共有( )种.A.2100B.24000C.48000D.44000解:选D.点拨:每个碱基可互配对及自配对.三、应用思维点拨【例3】 (1)有5名同学报名参加4个课外活动小组,若每人限报1个,共有多少种不同的报名方法?(2)5名同学争夺4项竞赛冠军,冠军获得者共有多少种可能?思维入门指导:(1)每名同学确定参报课外活动小组项目可依次让每个同学去报.因此,可划分为五个步骤.(2)可依次为四项冠军确定人选,这样,可分4步完成.解:(1)每名同学在四个项目中可任报一项,即每一步有4种方法,根据分步计数原理,不同的报名方法共有:N=44444=45=1024种.(2)为每一个冠军寻找人选均有5种可能,因此,根据分步计数原理,冠军获得者共有:N=5555=54=625种.四、创新思维点拨【例4】 (1)有面值为五分、一角、二角、五角、一元、二元、五十元、一百元人民币各一张,共可组成多少种不同的币值?(2)有一角、二角、五角人民币各一张,一元人民币3张,五元人民币2张,一百元人民币2张,由这些人民币可组成多少种不同的币值?思维入门指导:(1)中的8张人民币的面值各不相同,并且这8张人民币中任意几张的面值之和各不相同.因此,8张人民币所组成的不同币值的数种就是人民币所有可能取法的数种.对每一张人民币而言,都有取与不取两种可能.因此,可按这样的程序:(2)中这10张人民币一元的有3张,五元的有2张,一百元的有2张.因此取人民币的程序应该是:解:(1)每张人民币均有取与不取两种可能,所以有22222222=28.而其中每一张都不取,不组成币值,所以不同的币值数为;N=28-1=255(种).(2)第一、二、三步都只有取与不取这两种情况,第四步取一元的3张中,可分不取、取一张、取二张、取三张这四种情况,第五步与第六步都有3种情况,且每步都不取不构成币值.所以不同的币值数:N=222433-1=287种.点拨:此题若分类思考,特别是第(2)问,则较麻烦.此法为间接法.五、高考思维点拨【例5】 (2003,河南)将3种作物种植在如图10-1-1所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______ 种(以数字作答).解:设从左到右五块田中要种a、b、c三种作物,不妨先设第一块种a,则第2块可种b或c,有两种选法.同理,如果第二块种b,则第三块可种a和c,也有两种选法,由乘法原理共有:12222=16.其中要去掉ababa和acaca两种方法,故a种作物种在第1块田时有16-2=14种方法.同样b和c也可种在第1块田中,故共有:143=42种.点拨:本小题主要考查运用乘法原理分析解决问题的能力.六、经典类型题思维点拨【例6】如图10-1-2所示,从A地到B地有3条不同的道路,从B地到C地有4条不同的道路,从A地不经B地直接到C地有2条不同的道路.(1)从A地到C地共有多少种不同的走法?(2)从A地到C地再回到A地有多少种不同的走法?(3)从A地到C地再回到A地,但回来时要走与去时不同的道路,有多少种走法?(4)从A地到C地再回到A地,但回来时要走与去时完全不同的道路,有多少种走法?思维入门指导:要综合应用两个原理.解:(1)从A到C地的走法分为两类:第一类经过B,第二类不经过B.在第一类中分两步完成,第一步从A到B,第二步从B到C,所以从A地到C地的不同走法总数是34+2=14种.(2)该事件发生的过程可以分为两大步,第一步去,第二步回.由(1)可知这两步的走法都是14种,所以去后又回来的走法总数是1414=196种.(3)该事件的过程与(2)一样可分为两大步,但不同的是第二步即回来时的走法比去时的走法少1种,所以,走法总数是1413=182种.(4)该事件同样分去与回两大步,但须对去时的各类走法分别讨论:若去时用第一类走法,则回来时,用第二类方法或用第一类中的部分走法,即第一类中的两步各去掉1种走法中的走法,这样的走法数是:34(2+32)=96种;若去时用第2类走法,则回来时可用第一类走法或用第二类中的另一种走法.这样的走法数是:2(43+1)=26种.所以,走法总数为96+26=122种.点拨:正确区分不同与完全不相同两种含义是解题的另一个关键,前者的含义是回来时不能原路返回,但允许有部分是原路,后者的含义是去时走过的路,回来时都不能走,前者包含后者.七、探究性学习点拨允许元素重复出现的排列,叫做有重复的排列.在m个不同的元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一,第二,,第n位上选取元素的方法都是m个,所以从m个不同的元素中,每次取出n个元素的可重复的排列数为=mn.【例7】有数学、物理、文学3个课外活动小组,6个同学报名,每人限报一组,一共有多少种报名的方法?解:这就是有重复的排列.第一个同学有3种报名的方法,无论他报了哪一个组,第二个同学还是有3种报名的方法,其余类推.所以,一共有36=729种报名的方法.思考题:用0,1,2,,9共10个数字中的4个数字组成电话号码,但0000不能作号码,问可编成多少个号码?【强化练习题】A卷:教材跟踪练习题(100分 45分钟)一、选择题(每题5分,共50分)1.把10个苹果分成三堆,每堆至少1个,至多5个,则不同的分堆方法共有( )A.4种B.5种C.6种D.7种2.现有四种不同款式的上衣与三件不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的选法数为( )A.7B.64C.12D.813.有4位教师在同一年级的4个班中各教一个班的数学,在数学考试时,要求每位教师均不在本班监考,则安排监考的方法总数是( )A.8B.9C.10D.114.某体育彩票规定:从01至36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成1注,则这人把这种特殊要求的号买全,至少要花( )A.3360元B.6720元C.4320元D.8640元5.如图10-1-3,在儿童公园中有四个圆圈组成的连环道路,从甲走到乙,不同路线的走法有( )A.2种B.8种C.12种D.16种6.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有( )A.34种B.43种C.18种D.36种7.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球投入这五个盒内,要求每个盒内投放一个球,并且恰好有两个球的编号与盒子的编号相同,则这样的投放方法的总数为( )A.20B.30C.60D.1208.已知集合A={1,-2,3},B={-4,5,6,-7},从两集合中各取一个元素作为点的坐标,则在直角坐标系中第一、第二象限内不同点的个数有( )A.18B.16C.10D.149.北京某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到两台,不同送法的种数共有( )A.10种B.9种C.8种D.6种10.某大学的信息中心A与大学各部门、各院系B、C、D、E、F、G、H、I之间拟建立信息联网工程,实际测算的费用如图10-1-4所示(单位:万元),若不建立部分网线也能使中心与各部门、各院系都能相通(直接或中转),则最小的建网费用(万元)是( )A.12B.13C.14D.16二、填空题(每题5分,共10分)11.已知集合A={a,b,c,d,e},B={-1,0,1},则从集合A到集合B的不同映射有____个.12.72的正约数(包括1与72)有________个.三、解答题(每题20分,共40分)13.(1)由数字1,2,3可组成多少个三位数?(2)由0,1,2,,9可组成多少个不同的四位数码?(数字可重复使用)(3)由0,1,2,,9可组成多少个不同的四位数码?(数字不可重复使用)14.用n种不同颜色为下列两广告牌着色(如图10-1-5),要求①②③④个区域中相邻(有公共边界)的区域不用同一种颜色.(1)n=6时,为甲着色时,共有多少种不同方法?(2)若为乙着色时,共有120种不同方法,求n的值.B卷:综合应用创新练习题(100分 60分钟)一、学科内综合题(每题8分,共16分)1.从{-3,-2,-1,0,1,2,3}中任取3个不同的数作为抛物线方程y=ax2+bx+c(a0)的系数,如果抛物线过原点且顶点在第一象限,则这样的抛物线共有多少条?2.正方体ABCD一A1B1C1D1中,与对角线AC1异面的棱有( )A.3条B.12条C.6条D.9条二、学科间综合题(6分)3.如图10-1-6为一电路图,从A到B共有______条不同的单线路可通电.4.用1克砝码1个,2克码1个,5克码5个,50克码4个,共可称量多少种不同重量(按天平使用规则,砝码只能放在右边)?四、创新题(54分)(一)教材变型题(12分)5.(P85例1变型)设有5幅不同的国画,2幅不同的油画,7幅不同的油彩画.(1)从中任选一幅布置房间,有多少种不同的选法?(2)从这些画中,各选一种不同类的三幅画布置房间,有几种不同的选法?(3)从这些画中,选出两种不同类的各一幅画布置房间,有多少种不同的选法?(二)一题多解(8分)6.甲、乙、丙、丁4人各写一张贺年卡,放在一起,再各取一张不是自己的贺年卡,共有多少种不同取法?(三)一题多变(9分)7.某组有3名男生,4名女生.(1)从中选男生、女生各一名去开会,有多少种不同选法?(2)从中选一人去领奖,有多少种选法?(3)从中选正副组长各一人,男女不限,有多少种不同的选法?(四)新解法题(9分)8.如图10-1-7,在某个城市中,M、N两地之间有整齐的道路网,若规定只能向东或向北两个方向沿图中路线前进,则从M到N不同的走法总数有多少种?(五)新情境题(每题8分,共16分)9.用10元,5元,1元来支付20元,不同支付方法共有多少种?10.如图10-1-8,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以沿不同路线同时传递,则单位时间内传递的最大信息量为( )A.26B.24C.20D.19五、高考题(每题8分,共16分)11.(2003,北京)某班试用电子系统选举班干部候选人,全班k名同学都有选举权和被选举权;他们的编号分别为1,2,3,,k,规定:同意按1,不同意(舍弃权)按0,令aij=其中i=1,2,,k,j=1,2,,k,则同时同意第1、2号同学当选的人数为( )A.a11+a12++a1k+a21+a22++a2kB.a11+a21++ak1+a12+a22++ak2C.a11a12+a21a22++ak1ak2D.a11a21+a12a22++a1ka2k12.(1997,上海)从集合{0,1,2,3,5,7,11}中任选3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过原点的直线有______ 条(结果用数值表示).【课堂内外】费马大定理1637年左右,17世纪最伟大的数学家之一费马,在阅读古希腊人丢番图的巨著《算术》中第二卷的第八个问题将一个平方数分为两个平方数时,在问题旁边的空白处,写道然而此外,一个立方数不能分拆成两个立方数,一个四次方数不能分拆成两个四次方数,一般地说,任何次数大于二的高次方数都不可分拆成两个幂次相同的数.我已经找到这一定理的绝妙证明,可惜这里空白太狭小,写不下用现代数学术语描述就是xn+yn=zn,当n2时,无整数解.这一段看似平淡的注解就是著名的费马大定理.自1665年费马大定理发表后,多少数学家为之花费了大量时间乃至毕生精力,他们的研究或是失败或是将定理向前推进,但一直未彻底解决,直到有了高速计算机后,费马大定理的证明才有了突破性进展.1955年前后,三位日本数学家曾猜想:有理数域上所有椭圆曲线都是模曲线.到了80年代中期,德国数学家费雷证明了若干猜想成立,则可以推出费马大定理.1994年普林顿大学的数学教授维尔斯成功地证明了此猜想,从而证明了这一千古难题.参考答案A卷一、1.A 点拨:按每堆苹果的数量可分为4类,即1,4,5;2,3,5;3,3,4;2,4,4,且每类中只有一种分法,故选A.2.C 点拨:因为在四件上衣中任取一件有4种不同的方法,再在三件长裤中任取一件有3种不同的取法,要完成配套,由分步计数原理可得有43=12种不同的方法.3.B 点拨:由分步计数原理可得33=9种.此题也可以用穷举法把情况一一列举出来.4.D 点拨:这种特殊要求的号共有89106=4320注,因此至少需花钱43202=8640元.5.D 点拨:在每圆圈两侧均各有一条路可供选择,因此从甲地到乙地共有2222=16种不同的路线.6.D 点拨:将4个不同的小球放入3个盒子中,每个盒子至少放1个,则必有一个盒子放两个球,另两个盒子各放入1个球.因此可先将4个球分为2,1,1的三堆,设四个小球为A,B,C,D,则可分为:AB,C,D;AC,B,D;AD,B,C;BC,A,D;BD,A,C;CD,A,B 共6种.又将它们装入三个不同的盒子中,选一种情况放入编号盒中,1,2,3,AB,C,D;AB,D,C;C,AB,D;C,D,AB;D,AB,C;D,C,AB共6种放法.故共有66=36种放法.7.A 点拨:先从5个球中选出2个球放入与它们编号相同的盒子中,有10种方法,再把余下的三个球放入与它们编号不相同的3个盒子中,有2种放法,根据分步计数原理知共有210=20种放法.8.D 点拨:第一、第二象限点须y0,这些点可分为xA,yB与xB,yA的两类.前者有32=6种,后者有24=8种,所以共有6+8=14种.9.A 点拨:每所学校可得电视台数有3类情形:①5,2,2台,有3种送法;②4,3,2台,有6种送法;③3,3,3台,有1种送法.所以一共有3+6+1=10种不同的送法.10.B 点拨:最小费用时信息联网工程如答图10-1-1,还有其他情形未画出.二、11.243 解:由映射定义,A中每一个元素在B中的象都有3个可能,所以可建立不同映射个数为35=243.12.12 解:72=2232,72的正因数具有形式为2a3b的数,其中a{0,1,2,3},b{0,1,2},因此,共有正因数43=12个.三、13.解:(1)利用填框图的方法,分三步完成填得一个三位数,百位数,十位数,个位数每一个数位均有3个填法,依分步计数原理,共有33=27个三位数.(2)可组成104=10000个四位数码.(3)因数字不可重复使用,故可组成10987=5040个四位数码.14.解:(1)完成着色这件事共分四个步骤:为①着色有6种,为②着色有5种,为③着色有4种,为④着色也有4种,故共有着色方法6544=480种.(2)与(1)不同在于④有三块相邻的区域了,则不同的着色是n(n-1)(n-2)(n-3).由题设,n(n-1)(n-2)(n-3)=120,(n2-3n)(n2-3n+2)=120.令n2-3n=t,则t2+2t-1210=0,t=10.n2-3n=10.n=5.(n=-2舍去)B卷一、1.解:抛物线y=ax2+bx+c过原点,且顶点在第一象限,a、b、c应满足所以分三步,a=-3,-2,-1,b=1,2,3,c=0.所以,抛物线的条数为331=9.2.C 解:在底面有BC,CD,B1C1,C1D1,在侧面有BB1,DD1与对角线AC1异面.二、3.解:从A到B共有3+1+22=8条不同的单线路可通电.三、4.解:每一重量只能由砝码的一种组合构成,因不同的重量数仅仅与所选用的不同砝码的个数有关,不同的砝码数构成不同的重量数,同一重量数不会有多种称法.这样本题可转化为怎样选取这些砝码.对1克的砝码有取与不取两种方法,对2克砝码也有2种,对5克砝码有6种取法,50克砝码有5种取法,但均不取是无法称重的,所以.可称重的不同质量数为2265-1=119种.四、(一)5.解:(1)做完这件事有三类方法:选国画、油画或选水彩画,根据分类计数原理,一共有5+2+7=14种方法.(2)完成选三幅不同的画布置房间有三个步骤:第一步选国画,第二步选油画,第三步选水彩画.根据分步计数原理,共有527=70种方法.(3)一共有52+57+27=59种方法.(二)6.解:如下表:人甲乙丙丁卡乙甲丙丁丁丁甲丙甲丙思路1:排出所有的分配方案,用穷举法得本题解.思路2:甲取乙卡分配方案如表所示,此时乙有甲、丙、丁3种取法,若乙取甲,则丙取丁,丁取丙,故有3种分配方案.由分类计数原理,共有3+3+3=9种.思路3:分步法:第一步甲取1张不是自己的卡,有3种取法,第2步由甲取出的那张贺卡的供卡人取,也有3种取法,第三步由剩余两人中任一人去取,此时,只有一种取法,第四步最后一人取也只有一种取法,所以共有3311=9种.点拨:这类问题一般情况是:n个编号为1,2,,n的小球放入编号为1,2,,n的盒子中,而限制第i(i=1,2,,n)个球不放入第i个盒子里,问共有多少种放法?一般结论是A-A+A-+(-1)nA.(此点用到下节排列的知识)(三)7.解:(1)34=12种.(2)3+4=7种.(3)76=42种.(四)8.解:如答图10-1-2,从M到A1,A2,A3,A4,A5的走法分别有1,2,3,4,5种,然后从Ai(i=1,2,3,4,5)到N的走法都只有一种,所以,由两个原理得从M到N 的走法共有11+21+31+41+51=15种.点拨:本题求解的关键是把M到N分成两步走.(五)9.解:支付方法可分为三类:第一类为只使用10元或只使用5元或只用1元来支付,有3种方法;第二类是使用其中的两样,使用10元和5元的支付与使用10元和1元的支付,都各有1种方法,使用5元和1元的支付有3种方法,若使用10元、5元,1元三样支付,则只有1个方法,所以共有3+5+1=9种支付方法.10.D 点拨:该题是规划问题,对于我们是一个陌生情境,其实只要把传递的最大信息量类比成水流量的瓶颈问题,即一条水管所流过的水量等于水管中最窄地方流过的水量问题,而A到B所传递信息等于每条路线所传递的信息量之和,故从A到B传递的最大信息为3+4+6+6=19.五、11.C 点拨:由题意,ak1,ak2分别表示第k号同学选举第1号,第2号同学的情况.由于所求的是同时同意第1、2号同学当选的人数,而ak1ak2即可表示第k号同学是否同意第1、2号同学当选,若同时同意,则ak1ak2=1,若不同时同意,则ak1ak2=0,故所求人数为.本题难点在于理解题意,题意一旦读懂,选项则一目了然了.12.30 点拨:因直线过原点,所以C=0,从0,1,2,3,5,7,11这6个数中任取2个作为A,B两数,且顺序不同,表示直线不同,所以直线的条数为65=30.。
分类计数原理与分步计数原理课件
在决策分析中,分步计数原理可以帮助我们分析问题并制定最优策略。例如,在制定一个 计划或方案时,可以将整个任务分解成若干个步骤,然后根据分步计数原理计算每一步的 成本和效益,最终确定最优方案。
分步计数原理的实例解析
例子1
工厂生产线上有3个工人分别负责3个不同的工序,每个工人完成自己的工序需要1小时。求完成整条生产线需要 多少小时?根据分步计数原理,最终需要的时间是每个工人完成工序所需时间的乘积,即1小时 × 1小时 × 1小 时 = 1小时。
在软件测试中,分类计数原理可以 用于确定不同测试用例的数量和覆 盖范围。
在物理学中的应用
粒子运动
在研究粒子在封闭容器内的运动 时,分步计数原理可以用于计算 粒子在不同状态下的数量和分布
情况。
原子结构
在研究原子结构时,分类计数原 理可以用于确定不同电子层和亚
层的电子数量和分布情况。
量子力学
在量子力学中,分类计数原理和 分步计数原理可以用于描述微观
在某些情况下,分类计数原理和 分步计数原理可以相互转化。
两者都基于组合数学的基本思想, 即从n个不同元素中取出m个元
素的所有组合方式。
原理之间的区别
分类计数原理
考虑的是完成一件事情的不同类的方式,各类方式之间是相 互独立的,即不论采取哪一类方式,都能独立完成这件事情 。计算方法是各类方式数之和。
分步计数原理
04
分类计数原理与分步计数原理的实际
应用
在日常生活中的应用
购物选择
在超市购物时,我们常常面临多种品 牌和种类的选择。分类计数原理可以 帮助我们快速计算出不同品牌和种类 商品的数量。
旅行计划
社交活动
在组织社交活动时,我们可以使用分 类计数原理来安排不同类型的人员参 与活动,以满足不同的需求和期望。
分类计数原理和分步计数原理的理解与简单应用
分类计数原理和分步计数原理的理解与简单应用(833200)新疆奎屯市第一高级中学特级教师 王新敞分类计数原理与分步计数原理是计数问题的基本原理,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有12n N m m m =+++ 种不同的方法分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法两个基本原理的作用:计算做一件事完成它的所有不同的方法种数两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”原理浅释:①分类计数原理(加法原理)中,“完成一件事,有n 类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.②分步计数原理(乘法原理)中,“完成一件事,需要分成n 个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m 种不同的方法,那么完成这件事的方法数就可以直接用乘法原理.可以看出“分”是它们共同的特征,但是,分法却大不相同.两个原理的公式是: 12n N m m m =+++ , 12n N m m m =⨯⨯⨯这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要灵活而巧妙地分类或分步.强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比.例1 电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? 解:分两类:(1)幸运之星在甲箱中抽,再在两箱中各定一名幸运伙伴,有30×29×20=17400种结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11400种结果.因此共有17400+11400=28800种不同结果.点评:在综合运用两个原理时,既要合理分类,又要合理分步,一般情况是先分类再分步. 例2 从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?解:和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32.点评:解本题的关键是找出和为11的5组数,然后再用分步计数原理求解. 例2中选出5个数组成子集改为选出4个数呢? (答案:C 45·24=80个).例3 某城市在中心广场建造一个花圃,花圃分为6个部分(如下图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种.(以数字作答) 解法一:从题意来看6部分种4种颜色的花,又从图形看知必有2组同颜色的花,从同颜色的花入手分类求. (1)②与⑤同色,则③⑥也同色或④⑥也同色,所以共有N 1=4×3×2×2×1=48种;(2)③与⑤同色,则②④或⑥④同色,所以共有N 2=4×3×2×2×1=48种;(3)②与④且③与⑥同色,则共有N 3=4×3×2×1=24种.所以,共有N =N 1+N 2+N 3=48+48+24=120种.解法二:记颜色为A 、B 、C 、D 四色,先安排1、2、3有A 34种不同的栽法,不妨设1、2、3已分别栽种A 、B 、C ,则4、5、6栽种方法共5种,由以下树状图清晰可见.根据分步计数原理,不同栽种方法有N =A 34×5=120. 答案:120点评:①解法一是常规解法,解法二安排4、5、6时又用了分类和列举的方法. ②较复杂的应用题,需确定或设计出完成事件的程序,依需要分类或分步(“类”与“类”之间独立且并列,“步”与“步”相依且连续)而每个程序都是简单的排列组合问题.例4 (1)有红、黄、白色旗子各n 面(n >3),取其中一面、二面、三面组成纵列信号,可以有多少不同的信号?(2) 有1元、5元、10元的钞票各一张,取其中一张或几张,能组成多少种不同的币值?(1) 解 因为纵列信号有上、下顺序关系,所以是一个排列问题,信号分一面、二面、三面三种情况(三类),各类之间是互斥的,所以用加法原理:①升一面旗,共有3种信号;②升二面旗,要分两步,连续完成每一步,信号方告完成,而每步又是独立的事件,故用乘法原理,因同色旗子可重复使用,故共有3×3=9种信号;③升三面旗,有3×3×3=27种信号.所以共有3+9+27=39种信号.(2) 解:计算币值与顺序无关,所以是一个组合问题,有取一张、二张、三张、四张四种情况,它们彼此是互斥的,用加法原理.因此,不同币值有=15(种)点评 (1) 排列、组合的区别在于顺序性,前者“有序”而后者“无序”;加法原理与654321D D C C D C BD 654C B D乘法原理的区别在于联斥性,前者“斥”——互斥独立事件,后者“联”——相依事件.因而有“顺序”决“问题”,“联斥”定“原理”的说法.(2)加、乘原理是排列、组合问题的理论依据,在分析问题和指导解题中起着关键作用,运用加法原理的关键在于恰当地分类(分情况),要使所分类别既不遗漏,也不重复;运用乘法原理的关键在于分步,要正确设计分步的程序,使每步之间既互相联系,又彼此独立.例5 d c b a ,,,排成一行,其中a 不排第一,b 不排第二,c 不排第三,d 不排第四的不同排法共有多少种?解:依题意,符合要求的排法可分为第一个排b,c,d 中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:符合题意的不同排法共有9种点评:按照分“类”的思路,本题应用了分类计数原理,为把握不同排列的规律,“树图”是一种具有直观现象的有效做法.分类计数和分步计数两个原理是排列组合计数的理论依据,类与类之间独立且并列,步与步相依且连续;计算关键:审题、判断分类还是分步?(分类相加,分步相乘)、判断排列还是组合?(有序排列、无序组合).。
分类计数与分步计数原理
数据分析与决策
在数据分析中,分类计数原理可以帮助我们将数据按照不 同的特征进行分类,例如按照销售渠道、客户类型、产品 类别等进行分类,然后对每个类别的数据进行统计和分析 ,以了解不同类别的特点和差异。
分步计数原理则可以帮助我们将整个数据分析过程分解为 若干个步骤,例如数据收集、清洗、整理、分析和可视化 等,然后对每个步骤进行详细规划,确保每个步骤都能按 时完成,最终为决策提供准确的数据用
生产计划制定
生产计划制定过程中,企业可以根据分类计数原理,将生产 任务按照产品类型、生产流程、生产阶段等进行分类,然后 分别计算每个类别所需的时间、资源和成本,从而制定出合 理的生产计划。
在实际执行过程中,企业可以根据分步计数原理,将整个生 产过程分解为若干个步骤,然后对每个步骤进行详细规划, 确保每个步骤都能按时完成,最终实现整个生产计划的顺利 完成。
解
根据分类计数原理,我们可以将 问题分解为三个步骤:先选择3 名学生组成一个小组,再从剩下 的7名学生中选择3名学生组成另 一个小组,最后从剩下的4名学 生中选择2名学生组成第三个小 组。第一个步骤有C(10,3)种方法 ,第二个步骤有C(7,3)种方法, 第三个步骤有C(4,2)种方法。因
02 分步计数原理
03 分类计数与分步计数原理 的比较
差异点分析
基本概念
适用场景
实例对比分析
分类计数原理(加法原理)强调将问 题分成不重叠、互斥的n类,然后分 别对每类进行计数,最后累加得到总 数。而分步计数原理(乘法原理)则 是将问题分成连续的步骤,每一步都 有若干种选择,然后根据步骤顺序, 将每一步的选择数相乘得到总数。
01
02
03
组合数学问题
分步计数原理在组合数学 中有着广泛的应用,例如 排列组合、二项式定理等。
10.1.2 分类计数原理与分步计数原理
甲 乙丙
第1位 第2位
例3 要从甲、乙、丙3名工人中选出2名分别上日班和 晚班,有多少种不同的选法? 解:完成这件事可以分成两个步骤 第一步,选出一名上日班, 种选法 种选法; 第一步,选出一名上日班,有3种选法; 第二步,从剩余人中选出一名上晚班, 种选法 种选法。 第二步,从剩余人中选出一名上晚班,有2种选法。 分步计数原理知 由分步计数原理知,不同的选法种数有
作 业 P94 4.5.6
问题探究 1 .如图 要给地图 、B、C、D四个区域分 如图,要给地图 如图 要给地图A、 、 、 四个区域分 别涂上3种不同颜色中的某一种 种不同颜色中的某一种,允许同一种颜 别涂上 种不同颜色中的某一种 允许同一种颜 色使用多次,但相邻区域必须涂不同的颜色 但相邻区域必须涂不同的颜色,不 色使用多次 但相邻区域必须涂不同的颜色 不 同的涂色方案有多少种? 同的涂色方案有多少种?
3 × 3 ×1×1 = 9 种.
练习1
如图,该电路 如图 该电路, 该电路 从A到B共有 到 共有 多少条不同 的线路可通 电?
A
B
从总体上看由A到 的通电线路可分三类 的通电线路可分三类, 解: 从总体上看由 到B的通电线路可分三类 第一类, 第一类 m1 = 3 条 第二类, 第二类 m2 = 1 条 第三类, 第三类 m3 = 2×2 = 4, 条 × 所以, 根据分类原理, 所以 根据分类原理 从A到B共有 到 共有 N=3+1+4=8 条不同的线路可通电。 条不同的线路可通电。
按地图A、 、 、 四个区域依次分 解: 按地图 、B、C、D四个区域依次分 四步完成, 四步完成 第一步, m1 = 3 种, 第一步 第二步, m2 = 2 种, 第二步 第三步, m3 = 1 种, 第三步 第四步, m4 = 1 种, 第四步 所以根据乘法原理, 所以根据乘法原理 得到不同的涂色方案 种数共有 N = 3 × 2 ×1×1 = 6 种。 ×
分类计数原理和分步计数原理
分步时做到不缺步
例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?
本题的特点是数字可以重复使用,例如0000,1111,1212等等,与分步计数原理比较,这里完成每一步的方法数 m=10,有n=4个步骤,结果是总个数
2002年夏季在韩国与日本举行的第17届世界杯足球赛共有32个队参赛.它们先分成8个小组进行循环赛,决出16强,这16个队按确定的程序进行淘汰赛后,最后决出冠亚军,此外还决出了第三、第四名.问一共安排了多少场比赛?
要回答上述问题,就要用到排列、组合的知识.排列、组合是一个重要的数学方法,粗略地说,排列、组合方法就是研究按某一规则做某事时,一共有多少种不同的做法.
02
例题
例1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书。 (1)从书架上任取一本书,有多少种取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
注意区别“分类”与“分步”
解 : (1)从第1层任取一本,有4种取法,从第2层任取一本,有3种取法,从第3层任取一本,有2种取法,共有 4+3+2=9 种取法。 答:从书架上任意取一本书,有9种不同的取法。
乙
丙
丙
乙
甲
乙
甲
丙
相应的排法
甲 乙
甲 丙
乙 甲
乙 丙
丙 甲
丙 乙
日班 晚班
练 习
P86 练习 2、3、4、5
例4 有数字 1,2,3,4,5 可以组成多少个三位数(各位上的数字许重复)?
(2) 从书架的1 、 2 、 3层各取一本书,需要分三步完成, 第1步,从第1层取1本书,有4种取法,第2步,从第2层取1本书,有3种取法,第3步, 从第3层取1本书,有2种取法.由分步计数原理知,共有 4×3×2=24 种取法。 答:从书架上的第1、2、3层各取一本书,有24种不同的取法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A村 B村
C村
分析: 从A村经 B村去C村有2步, 第一步, 由A村去B村有2种方法, 第二步, 由B村去C村有3种方法, 所以 从A村经 B村去C村共有 2×3 = 6 种 不同的方法
A村 B村
C村
2.分步计数原理(乘法原理):完成一件事,需要分成n个步 骤,做第一步有 m1种不同的方法,做第二步有 m2种不同的方 法,……,做第n步有种 m 不同的方法,那么完成这件事有 n N m1 m2 mn种不同的方法
例4.甲厂生产的收音机外壳形状有3种,颜色有4种, 乙厂生产的收音机外壳形状有4种,颜色有5种(两厂生产 的外壳和颜色不能交换使用),这两厂生产的收音机仅从 外壳的形状和颜色看,共有所少种不同的品种? 解:收音机的品种可分两类:
第一类:甲厂收音机的种类,分两步:形状有3种, 颜色有4种,共种;
第二类:乙厂收音机的种类,分两步:形状有4种, 颜色有5种,共种所以,共有个品种 说明:分类和分步计数原理,都是关于做一件事的不同 方法的种数的问题区别在于:分类计数原理针对“分类”问 题,用其中任何一种方法都可以做完这件事;分步计数原理 针对“分步”问题,只有各个步骤都完成才算完成了这件事。
(2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1 步从第1层取1本计算机书,有4种方法;第2步从第2层取1本艺术书,有3 种方法;第3步从第3层取1本体育书,有2种方法根据分步计数原理,从 书架的第1、2、3层各取1本书,不同取法的种数是种N= 4 3 2 24 所以,从书架的第1、2、3层各取1本书,有24种不同的取法
(2)
2. 某班级有男学生5人,女学生4人 (1)从中任选一人去领奖, 有多少种不同的选法? (2) 从中任选男、女学生各一人去参加座谈会,有多少种不 同的选法?
解:(1) 完成从学生中任选一人去领奖这件事,共有2类办法, 第一类办法,从男学生中任选一人, 共有 = 5种不同的方法; 第二类办法,从女学生中任选一人, 共有 = 4种不同的方法 所以, 根据加法原理, 得到不同选法种数共有 N = 5 + 4 = 9 种 (2) 完成从学生中任选男、女各一人去参加座谈会这件事, 需分2步完成, 第一步, 选一名男学生,有 = 5种方法; 第二步, 选一名女学生,有= 4种方法; 所以,根据乘法原理, 得到不同选法种数共有 N = 5 × 4 = 20 种
(3)两个基本原理的异同点 相同点:分类计数原理与分步计数原理都是涉及完成 一件事的不同方法的种数的问题。 不同点:分类计数原理与“分类”有关,用其中任何 一种方法都可以完成这件事;分步计数原理与“分步”有关, 各个步骤相互依存,只有各个步骤都完成了,这件事才算完 成. (4)两个原理,可以与物理中电路的串联、并联类比.
问题一 (1)从甲地到乙地,可以乘火车,也可以乘汽车, 一天中火车有3班,汽车有2班,那么一天中,乘坐这些 交通工具从甲地到乙地共有多少种方法?
分析:因为一天中乘火车有3种走法,乘汽车有2种 走法,每一种走法都可以从甲地到乙地,所以,共有 3+2=5种不同的走法.
(2) 从甲地到乙地,可以乘火车,也可以乘汽车, 还可以乘轮船一天中,火车有4 班, 汽车有2班,轮船 有3班那么一天中乘坐这些交通工具从甲地到乙地共 有多少种不同的走法?
火车 汽车
甲地
乙地
轮船
分析:从甲地到乙地有3类方法:第一类方法, 乘火车,有4种方法;第二类方法,乘汽车,有2种方 法;第三类方法,乘轮船,有3种方法;所以,从甲 地到乙地共有4+2+3=9种方法
火车
甲地
汽车
乙地
轮船
1.分类计数原理(加法原理):完成一件事,有n类办法, 在第一类办法中有 m1 种不同的方法,在第二类办法中有 m2种 不同的方法,……,在第n类办法中有 m n种不同的方法那么 完成这件事共有 N m1 m2 mn种不同的方法
解:从3名工人中选1名上日班和1名上晚班,可以看成是
经过先选1名上日班,再选1名上晚班两个步骤完成,先 选1名上日班,共有3种选法;上日班的工人选定后,上 晚班的工人有2种选法根据分步技数原理,不同的选法 数是N=3×2=6种 6种选法可以表示如下: 日班 晚班 日班 晚班 甲 乙 甲 丙 乙 甲 乙 丙 丙 甲 丙 乙 所以,从3名工人中选出2名分别上日班和晚班,6种不同的 选法
例题讲解: 例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同 的文艺书,第3层放有2本不同的体育书, (1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
解:(1)从书架上任取1本书,有3类办法: 第1类办法是从第1层取1本计算机书,有4种方法; 第2类是从第2层取1本文艺书,有3种方法;第3类 办法是从第3层取1本体育书,有2种方法根据分类 计数原理,不同取法的种数是4+3+2=9种 所以,从书架上任取1本书,有9种不同的取法;
A
m1 m2 mn
B
分类计数原理
A m1 m2 …… mn B
分步计数原理
返回
1 A 2 3 5 4 6 返回 B
/ 福建惠安墓碑石材厂家
会在您身边の///嗯//邱亚潇重重地点咯下头/当晚/邱亚潇就给许文坷打咯电话//许哥哥/您明天有空吗?/许文坷老实地回答道:/我明天休息/怎么咯?/邱亚潇胡扯道:/我料去买点东西/可是最近公司事情比较多/哥哥跟嫂子还有露 露姐都没时间陪我///您料去哪里?我陪您吧//许文坷也没多料就答应咯//好の/谢谢许哥哥//挂咯电话/邱亚潇就开始喜滋滋地挑衣服咯/明天她壹定要穿の美美の/那样料着/邱亚潇觉得自己壹定还是喜欢许文坷の/第087分页/洛彦刘 松雨那次来H市是有任务の/顾圆圆把她派去LAS/让她监督/顺便看看有啥啊能帮上封噢の/毕竟之前是她们失约咯/她准备咯壹下/就壹各人去咯LAS总部/刘松雨首先去林哈好の办公室/还没进去/里面就走出壹各女人/看上去三四十岁/ 棕色の卷发/皮肤保养の别错/穿着黑色休闲装/全身上下都散发着の气质/刘松雨觉得对方气质很好/别由地多看咯壹眼/刚好那女人也看到咯她/女人脸上露出惊讶の表情/问道:/小雨?/刘松雨刚料越过女人进去/就听到对方叫咯她の 小名/壹愣/回过头问道:/您是?//小雨/我是洛阿姨啊/吖德の妈妈//洛彦说//以前吖德经常带您回家の/您别记得咯吗?/洛彦并别晓得刘松雨失忆咯/以为对方只是太久没见所以认别出她而已/洛彦突然料起咯啥啊/又说道:/小雨/ 您帮阿姨劝劝吖德吧/她已经五年没回过家咯//刘松雨脑袋壹片空白/她跟吖德以前是朋友?那为啥啊吖德别告诉她?别过/假设吖德壹开始告诉自己她们以前认识/那她还会别会跟吖德交朋友?/怎么咯?是哪里别舒服吗?/洛彦见刘 松雨没什么说话/而且脸色有些发白/十分担心地问道//没/没事//刘松雨摆咯摆手/随后又问道:/洛阿姨/我跟吖德以前是很好の朋友吗?我之前出过车祸/所以很多事情都别记得咯///您失忆咯?/洛彦瞪大咯双眼//抱歉/我没听您爸 妈没说过那件事//刘松雨急忙道:/别/他们还别晓得/我没告诉他们/阿姨您可以对我爸妈保密吗?/洛彦点咯点头:/傻孩子/您还是那么善良///对咯/洛洛为啥啊别愿意回家?/刘松雨料起咯洛彦刚才拜托她の事/在她看来/吖德是各 很善良の人/别应该做那种事の/洛彦沉默咯壹下/缓缓道:/是我们对别起她/您别是有事吗?还是等下次再告诉您吧//洛彦还别晓得该怎么讲出那件事/只好先敷衍咯壹下/刘松雨也别逼洛彦/跟对方互留咯联系方式/洛彦就先走咯/她 也定咯定神/推开林哈好办公室の门//小雨?/林哈好抬起头/微微愣咯壹下//您怎么来咯?/因为那里隔音效果很好/所以刚才刘松雨跟洛彦在外面の谈话林哈好并没什么听到/刘松雨简单地跟林哈好说明咯自己来那里の原因/林哈好听 完后/皱咯皱眉:/您是说您以后在那里做督察员?/刘松雨点咯点头:/可以那么说/毕竟我们在贵公司投资咯那么多钱/自然是要监督壹下の///那好吧/我明天给您安排壹下//林哈好说完/见对方没什么要走の样子/又问道:/还有啥啊 事吗?/刘松雨犹豫咯壹下/问道:/您之前说我们以前认识对吧?/林哈好点咯点头:/您料起咯啥啊吗?/刘松雨摇摇头/说:/那吖德跟我也是认识の吗?/刘松雨料确认壹下/第088分页/秘密被晓得林哈好看着刘松雨好壹会儿/才道: /既然您会问出那各问题/就证明您已经晓得咯/是阿姨告诉您の吧//顿咯顿/又讲到:/我并别晓得吖德为啥啊要瞒着您/您那么料晓得答案/别如直接去问她///谢谢//刘松雨面无表情地朝林哈好点咯点头/就离开咯/壹路上/她都在料着 洛彦和林哈好の话/别知别觉就走到咯VVA楼下/刘松雨抬头看着那栋高大の建筑/脑海中浮现出吖德伏案工作の样子/刘松雨就壹直在楼下呆着/直到看见吖德跟封噢结伴出来/吖德第壹时间就看到咯刘松雨/微微壹愣/走上前去问道:/ 小雨/您有啥啊事吗?/刘松雨看着吖德/双眼马上亮咯起来/随即又像是料到咯啥啊/眼神又黯咯下去//吖德/我能跟您说几句话吗?/刘松雨看咯眼站在后面の封噢/对方见状/很识趣地先离开咯/吖德觉得刘松雨别太对劲/询问道:/您 是哪里别舒服吗?/刘松雨摇咯摇头/说:/我们找各合适の地方聊吧//正好两人都还没什么吃晚饭/吖德便带刘松雨去咯壹家小饭馆/点咯几各菜/在等上菜の期间/两人才开始咯谈话//说吧//吖德首先开口/刘松雨深深地吸咯壹口气/ 道:/我们很久以前就认识咯/是吗?/吖德愣住咯/她没什么料到刘松雨找她是因为那各/刘松雨见吖德没什么说话/继续道:/我今天见到洛阿姨咯//吖德脸色壹变/虽然她晓得那件事迟早会被刘松雨晓得の/但她壹直料自己亲口告诉刘 松雨の/吖德定咯定神/缓缓道:/小雨/我别是有意要瞒您の///那您为啥啊别告诉我?/刘松雨质问道//我……/吖德停咯停/继续说//我怕您晓得我们以前认识/会远离我//刘松雨怔咯怔/脸色有些难看/从她失忆后/她确实跟以前认识 の却被她忘记咯の人保持咯距离//既然那样/那我们还是别要再见面好咯//刘松雨心里有些别舍/她真の是很喜欢吖德那各朋友/可是她觉得/对方记得の事/自己却别记得/那样太别公平咯/她觉得自己无法面对那样の情况/既然别能面 对/那就逃离吧/刘松雨是那样料の/所以她拒绝跟被她忘记咯の人有深入の来往//等吃完那顿饭/我们以后就各走各の路吧//刘松雨说完/把视线偏开/别再看吖德/吖德久久没什么做声/她跟刘松雨の友谊真の就到此为止咯吗?/为啥 啊?/吖德小声地问道/刘松雨听到咯/但是她没什么回答//小雨//吖德盯着刘松雨の眼睛十分坚决地说//我别接受您の提议///为啥啊忘记咯就别能再做朋友?就算以前の事忘记咯又怎样?我们现在别是又相识咯吗?//就算您别理我/ 我也别会罢休の/我会壹直壹直纠缠您の//壹口气说完那些/吖德脸有些红咯/刘松雨壹直听着/沉默着/而且从头到尾都没什么看过吖德壹眼/终于/刘松雨抬头看咯吖德:/抱歉/让我静壹段时间//吖德张咯张口/最后还是没再说话/第 089分页/敞开心扉在那之后/吖德就没再见过刘松雨/发生咯那样の事/吖德の工作效率也大大降低咯/发售会将近/吖德却还没设计好服装/虽然她也料尽快完成任务/但她总是没什么办法让大脑平静下来/封噢也料催/毕竟那次の发售会 关系到吖德の前程/但是每次看到吖德那副憔悴の样子/他就没什么办法狠下心/而且就算他问吖德发生咯啥啊/吖德也是十分勉强地笑着跟他说/没啥啊//终于/封噢忍别住咯/他别希望吖德把啥啊事都憋在心里/明明他们已经交往咯那 么久咯//吖德//封噢去找吖德时/对方正在发呆/吖德过咯壹会/才发现封噢/忙问道:/怎么咯吗?/末咯/又补充道:/设计稿我还没料出来/实在别行还是让老师来吧//封噢看着吖德/说:/吖德/您别信我吗?/吖德壹怔/呆呆地回道:/ 没什么啊///既然您相信我/为啥啊啥啊事都别愿意跟我说?/封噢露出十分伤心の表情//以前の事过去咯/我也别逼您告诉我/但是/为啥啊现在出咯啥啊事您也别告诉我?/封噢说:/难道我就那么让您觉得靠别住吗?//我……/吖德看 着封噢/许久说别出话/封噢也看着吖德/最后苦笑壹声:/算咯/就当我啥啊都没说吧/您先忙/我走咯//吖德看着转身要离开の封噢/下意识地伸出手拉住咯对方の衣角/封噢回头/看着壹脸吃惊の吖德/问道:/怎么咯?/吖德被自己无意 识の举动吓到咯/定咯定神/道:/对别起/我别是有意要瞒着您の//顿咯顿继续说:/我只是别晓得怎么跟您说///那您现在要告诉我吗?/封噢满怀希望地问道/吖德迟疑咯壹下/还是点咯点头:/嗯///说吧//封噢摸咯摸吖德の头/安抚 她/吖德料咯料/简单地将刘松雨之前跟自己说の话告诉咯封噢//就是那样//吖德说/语气有些哽咽//我别晓得怎么办才好/我真の真の很害怕再次失去小雨//封噢把吖德按到自己怀里/温柔地说道:/会没事の/我会帮您の/没事の//封 噢感觉到自己胸前の衣服有些湿咯/嘴角微微上扬/吖德她是别是更加信任自己咯呢?过咯壹会儿/吖德才挣脱开封噢の怀抱:/对别起/我失态咯//封噢看着吖德揉着微微泛红の眼睛/温柔地说:/没事/哭出来就好咯/我希望您以后别要 再将事情憋在心里咯/我会很难过の//吖德呆呆地看着封噢/道:/谢谢///您先休息壹下吧/别太勉强自己咯//封噢拍咯拍吖德の肩膀/然后就离开咯/既然晓得咯那件事/封噢也别能袖手旁观/他打咯咯刘松雨の电话/将对方约出来/壹切 都还很顺利/刘松雨也没料太多/她以为封噢是有啥啊需要帮助の地方/毕竟顾圆圆也叫她多多帮壹下封噢/第090分页/谈话/您们公司现在怎么样咯?/刘松雨首先开咯口//还好/现在情况还能控制//封噢说//我今天找您别是为咯公司の 事//刘松雨壹愣/立刻就料到咯吖德//是为咯吖德吗?/封噢点点头:/我只料问您壹句话///啥啊?//别管是以前还是现在/您都能和吖德那么亲密/那您为啥啊还要纠结那么多?//我只是别料让她伤心……/刘松雨还没说完/就被封噢 打断咯:/难道您别觉得您现在の做法更加让吖德伤心吗?//而且//封噢说//您那样做/伤心の别止是吖德壹各人/您敢说您自己别伤心?/刘松雨低着头/也别说话/封噢也停咯下来/静静地看着对方//所以说/我做の壹切都是错の吗?/ 良久/刘松雨才问道/封噢叹咯口气/说:/那别是对与错の问题/只是大家并别像您料の那样/别跟您见面就能忘记那些痛苦//封噢说:/已经发生の事是改变别咯咯の/既然如此/为啥啊您们别能重新开始?/封噢刘松雨没什么说话/封噢 也别好逼她//就先那样吧/您自己料料//封噢说//我先走咯///嗯//刘松雨点咯点头//谢谢您今天给我说那些//刘松雨抬头对封噢��