高层建筑结构分析与设计

合集下载

建筑中的高层结构设计和分析方法

建筑中的高层结构设计和分析方法

建筑中的高层结构设计和分析方法随着城市化进程的加速,高层建筑的数量不断增加,高层建筑的结构设计和分析成为了建筑领域中的重要课题。

高层建筑由于其建筑高度大、结构复杂,一旦发生事故后果严重,因此在高层建筑的结构设计和分析过程中应该非常谨慎,采用科学的方法。

本文将介绍建筑中的高层结构设计和分析方法。

1、高层建筑的结构特点高层建筑的结构设计和分析的前提是了解高层建筑的结构特点。

高层建筑的结构可分为两个部分:主体结构和外围结构。

主体结构为承受水平和竖直荷载的主要力学结构,外围结构承受风压和同心力的主要结构。

首先是高层建筑的主体结构。

高层建筑主体结构的最大特点是其高度大,楼体承受复杂多变的自重和外界荷载。

高层建筑主体结构索要承受水平和垂直荷载,如地震、风荷载等。

因此高层建筑主体结构设计应特别注意抗震抗风等问题。

其次,是高层建筑的外围结构。

高层建筑的外围结构主要是承受风压和同心力的主要结构,同时具有良好的隔热保温、防水、防火等能力。

通常,高层建筑外围结构的形式比较丰富,如幕墙、空气层、标准节、剪力墙等。

因此,高层建筑的外围结构设计应该结合建筑的整体风格、使用功能等要素进行综合考虑。

2、高层建筑的结构设计方法高层建筑的结构设计方法有多种,包括传统经验法、试验模拟法、强度设计法和有限元分析法等。

先说传统经验法。

传统经验法是传统建筑价值传承的重要方式之一。

在传统建筑的设计中,主要以工匠传统经验和流传下来的规范方法为主要参考,如普通钢筋混凝土、框架吊顶结构等。

传统经验法方便快捷,但不足之处是不能满足复杂高层建筑设计的需求。

试验模拟法通常使用电子计算机在综合考虑一些设计因素的条件下,通过模拟实验得出模型的力学行为和应力分布。

因此试验模拟法不依赖于任何具体结构,并且实现了全球优化设计,从而使得设计更加优化,更加科学。

强度设计法是一种经典的设计方法,是建筑领域的主流设计方法之一。

强度设计法适用于结构计算较为简单的建筑,强调结构的强度和刚度,是保证结构安全的必要手段。

高层建筑的抗震设计与结构分析

高层建筑的抗震设计与结构分析

高层建筑的抗震设计与结构分析高层建筑作为现代城市的标志性建筑,承载着人们的居住、工作和娱乐等活动。

然而,地震作为一种自然灾害,对高层建筑的稳定性和安全性提出了严峻的挑战。

因此,高层建筑的抗震设计与结构分析显得尤为重要。

一、高层建筑抗震设计的原则在进行高层建筑的抗震设计时,需满足以下原则:1.地震荷载计算:首先,需要根据建筑所处地区的地震烈度、地质条件以及建筑材料的特性来确定地震荷载的大小。

通过合理计算地震荷载,可以为建筑的结构稳定性提供参考依据。

2.结构形式选择:不同的结构形式具有不同的抗震能力。

常见的高层建筑结构形式包括框架结构、筒体结构、剪力墙结构等。

根据具体情况选择适合的结构形式,能够提高建筑的抗震性能。

3.材料选择:高层建筑中,混凝土、钢材等作为主要结构材料。

在抗震设计中,需要选择具有良好抗震性能的材料,如高强度混凝土和钢材等。

合理的材料选择对于提高建筑的抗震性能至关重要。

4.结构设防:通过采取一些特殊的结构措施,如加强柱底节点、设置耗能器等,可以增加建筑的抗震能力。

结构设防是抗震设计中的重要环节,对于确保建筑的安全性有着不可忽视的作用。

二、高层建筑结构分析的方法在高层建筑的结构分析中,常用的方法有:1.静力分析:静力分析是指根据结构受力平衡的原理,通过静力学的知识计算结构的内力和变形。

通过静力分析,可以获得结构在静力荷载下的响应,为结构的合理设计提供参考。

2.动力分析:动力分析是指通过模拟结构在地震作用下的动态响应,对结构的抗震性能进行评估。

常见的动力分析方法包括模态分析、时程分析等。

动力分析结果能够反映结构在地震加载下的位移、加速度和剪力等参数,对高层建筑的设计与改进提供指导。

3.数值模拟:数值模拟是通过计算机仿真手段对建筑结构进行分析。

利用有限元方法等数值方法,可以模拟结构在地震荷载下的响应,分析结构的强度、刚度等性能,并对结构进行优化设计。

三、高层建筑抗震设计的案例以某高层办公楼的抗震设计为例,该建筑采用的是钢筋混凝土框架结构。

高层住宅建筑剪力墙结构的设计与分析

高层住宅建筑剪力墙结构的设计与分析

高层住宅建筑剪力墙结构的设计与分析在现代城市的建设中,高层住宅建筑如雨后春笋般涌现。

剪力墙结构作为高层住宅建筑中一种常见且重要的结构形式,其设计的合理性和科学性直接关系到建筑物的安全性、稳定性以及使用功能的实现。

本文将对高层住宅建筑剪力墙结构的设计进行详细的探讨与分析。

一、剪力墙结构的基本概念与特点剪力墙结构是由一系列纵向和横向的钢筋混凝土墙体组成,这些墙体不仅承担着竖向荷载,还能有效地抵抗水平荷载,如风荷载和地震作用。

其主要特点包括:具有良好的抗侧刚度,能够有效控制建筑物在水平荷载下的变形;结构整体性强,空间整体性好,能够提供较为规则的建筑平面布局;墙体自身的承载能力较高,能够承受较大的竖向和水平荷载。

二、高层住宅建筑中剪力墙结构的设计要点1、结构布置在设计过程中,剪力墙的布置应遵循均匀、对称、周边化的原则。

均匀布置可以使结构在各个方向上的刚度相近,减少扭转效应;对称布置有助于减小水平荷载作用下的偏心影响;周边化布置则能增强结构的抗扭性能,提高结构的整体稳定性。

同时,要注意避免出现短肢剪力墙,因为短肢剪力墙的抗震性能相对较弱。

对于较长的剪力墙,应设置洞口将其分成若干墙段,以避免墙段过长而导致脆性破坏。

2、墙体厚度剪力墙的厚度应根据建筑物的高度、抗震等级以及墙体所承担的荷载等因素来确定。

一般来说,底层剪力墙的厚度较大,随着楼层的增加逐渐减小。

在满足结构要求的前提下,应尽量减小墙体厚度,以增加建筑的使用面积。

3、混凝土强度等级混凝土的强度等级应根据结构的受力情况、耐久性要求以及施工条件等综合确定。

高强度等级的混凝土可以减小墙体的截面尺寸,但过高的强度等级可能会导致混凝土的脆性增加,不利于结构的抗震性能。

4、配筋设计剪力墙的配筋包括竖向分布钢筋和水平分布钢筋。

竖向分布钢筋主要承受墙体的竖向荷载,水平分布钢筋则主要用于抵抗水平荷载产生的剪力。

配筋量应根据计算结果和规范要求进行确定,同时要注意钢筋的间距和锚固长度等构造要求。

高层建筑结构优化设计案例分析(全文)

高层建筑结构优化设计案例分析(全文)

高层建筑结构优化设计案例分析(全文)范本一:正文:一:引言高层建筑结构优化设计是现代建筑设计中的重要环节,对于提高建筑的结构安全性、经济性和可持续性具有重要意义。

本文以某高层建筑项目为例,进行了结构优化设计案例分析,旨在探讨高层建筑结构在设计过程中的优化方法和技术。

二:背景该高层建筑项目位于城市中心地带,总高度达到200米,层数共计60层,包含商业、办公和住宅等功能。

项目地处地质条件复杂的地区,同时还需要考虑抗震、防风等因素,在设计过程中面临着诸多挑战。

三:结构设计3.1 结构形式本项目采用框架结构形式,通过立柱和梁的组合形成结构框架,然后再使用混凝土填充实现整体刚度的提升。

这种结构形式具有良好的承载能力和稳定性,能够满足高层建筑的要求。

3.2 结构材料主体结构材料采用高强度混凝土和钢材,其中混凝土强度等级为C50,钢材采用Q345B。

这种结构材料能够有效提高建筑的抗震性能和承载能力。

3.3 结构优化技术在设计过程中,采用了多种结构优化技术,包括有限元分析、参数化设计和多目标优化等。

通过有限元分析,对结构进行了力学计算和模拟,确定了合理的结构形态和尺寸。

参数化设计则通过调整参数来优化结构,使其在满足要求的前提下减少材料使用。

多目标优化则通过考虑多个指标因素来寻找最佳的结构设计方案。

四:设计成果经过优化设计,最终确定了高层建筑的结构方案。

该方案不仅满足了建筑的功能要求,还能够在地震和风载等自然力的作用下保证建筑的稳定性和安全性。

同时,该方案还有效降低了建筑的材料使用量,提高了经济性和可持续性。

五:结论通过本案例分析,我们可以得出结论:在高层建筑结构的优化设计过程中,采用框架结构形式,结合高强度混凝土和钢材等材料,运用有限元分析、参数化设计和多目标优化等技术,能够有效提高建筑的结构安全性、经济性和可持续性。

附件:1. 结构设计图纸2. 有限元分析报告3. 结构参数化设计数据法律名词及注释:1. 结构形式:指高层建筑的整体结构组成形式,如框架结构、剪力墙结构等。

高层建筑钢筋混凝土的结构设计分析

高层建筑钢筋混凝土的结构设计分析

高层建筑钢筋混凝土的结构设计分析随着城市化进程的不断加快,高层建筑已经成为城市发展的重要标志和特色之一。

高层建筑的结构设计不仅影响建筑的稳定性和安全性,还直接关系到建筑的经济性和实用性。

在高层建筑的结构设计中,钢筋混凝土结构因其优良的性能和适应性,已经成为了主流选择。

本文将就高层建筑钢筋混凝土的结构设计进行分析,并探讨其设计要点和特点。

一、高层建筑的结构特点1.1. 高层建筑的承载力要求高高层建筑一般具有较大的自重和风荷载,同时还需要承受地震和动荷载等多种外部力的作用。

高层建筑的结构设计要求具有较高的承载能力和抗震性能。

1.2. 高层建筑的结构形式多样为了满足不同的使用需求和设计要求,高层建筑的结构形式多样,包括框架结构、筒体结构、框筒结构、悬挑结构等。

不同的结构形式对于结构设计和构件设计都有不同的要求。

1.3. 高层建筑的变形和挠度要求严格高层建筑的变形和挠度控制直接关系到建筑的使用性能和外观效果。

结构设计需要根据建筑的使用功能和外观要求合理控制建筑的变形和挠度。

1.4. 高层建筑的材料和施工要求高高层建筑的结构设计对材料和施工质量有较高的要求,需要选择具有高强度和耐久性的材料,并严格控制施工工艺和质量。

二、钢筋混凝土结构设计要点2.1. 结构稳定性钢筋混凝土结构的稳定性是结构设计的首要考虑因素。

在高层建筑的结构设计中,需要采用适当的结构形式和构件布局,合理分配荷载,确保结构的稳定性和可靠性。

2.2. 抗震性能高层建筑通常处于地震频繁的地区,因此抗震性能是结构设计的重要考虑因素。

钢筋混凝土结构在设计中需要采用合理的抗震措施,包括设置剪力墙、增加节点刚度和采用横向抗力系统等,提高建筑的抗震性能。

3.1. 结构形式选择在高层建筑的结构设计中,需要根据建筑的使用功能和周边环境选择合适的结构形式。

一般情况下,高层建筑常采用框架结构或筒体结构,以满足较高的承载能力和抗震性能要求。

3.2. 支撑系统设计高层建筑的支撑系统设计是结构设计中的关键环节。

高层建筑结构的静力分析与设计

高层建筑结构的静力分析与设计

高层建筑结构的静力分析与设计随着现代城市化进程的不断推进,高层建筑在城市的地标性和空间利用上发挥着重要的作用。

高层建筑的设计必须考虑到多种因素,其中最重要的是静力学分析与设计。

本文将探讨高层建筑结构的静力分析与设计方法,以及在实践中应遵循的原则。

首先,静力学分析是高层建筑设计的首要任务之一。

静力学是研究物体处于平衡状态时所受的力学问题。

在高层建筑中,各个构件之间的力学平衡非常重要。

通过静力学分析,可以确定各个构件的受力情况,从而保证整个建筑的结构稳定。

高层建筑结构的静力分析主要包括以下几个方面。

首先是重力分析,即建筑物受到地心引力的作用。

通过测量建筑物的质量和计算重力的分布情况,可以确定建筑物所受的重力及其分布情况。

其次是风荷载分析,即建筑物受到风压力的作用。

由于建筑物的形态复杂多样,风的作用也是不均匀分布的,因此需要通过风洞试验和数值模拟等手段来确定建筑物所受的风荷载。

此外,还需要考虑地震力分析,即建筑物在地震过程中所受的力。

地震力是由于地震波传播至建筑物上而造成的。

通过分析地震波传播过程和建筑物的结构响应,可以确定建筑物在不同地震强度下的受力情况。

最后,还需要进行温度效应分析,即建筑物在温度变化过程中的收缩和膨胀。

由于建筑物材料的热膨胀系数不同,温度变化会导致各构件的尺寸发生变化,从而引起内部应力的变化。

在高层建筑结构的设计中,应遵循一些基本原则。

首先是平衡原则。

平衡是指建筑物各构件之间的受力状态达到平衡,即受力物体的合力和合力矩均为零。

通过平衡原则,可以保证建筑物的结构稳定。

其次是刚度原则。

刚度是指建筑物各构件的刚度大小及其分布情况。

通过合理的刚度设计,可以保证建筑物在受到外力作用时不发生明显的变形。

再次是强度原则。

强度是指建筑物各构件的抗弯、抗压和抗剪能力。

通过合理的强度设计,可以确保建筑物在受到外力作用时不发生破坏。

最后是稳定原则。

稳定是指建筑物在受到外力作用时不失去平衡的能力。

通过稳定设计,可以确保建筑物在受到侧向风压力或地震力作用时不倒塌。

高层建筑结构设计难点分析

高层建筑结构设计难点分析

高层建筑结构设计难点分析高层建筑作为城市的地标和象征,其结构设计一直是建筑领域的一个重要课题。

随着城市化进程的不断加快,高层建筑的数量和高度也在不断增加,因此高层建筑结构设计的难点也逐渐凸显出来。

本文将对高层建筑结构设计的难点进行分析,并探讨如何克服这些难点。

一、受力分析复杂高层建筑由于其高度较大,受力分析通常会比较复杂。

在高层建筑的结构设计中,受力分析是基础和关键,只有深入研究高层建筑所承受的荷载和受力状况,才能有效地解决高层建筑结构设计中的难题。

在受力分析方面,高层建筑在不同楼层和不同构件上所受的荷载和力的分布都会有所不同,需要对整个建筑结构进行全方位的受力分析,确保每一个构件都能满足受力要求。

高层建筑的结构设计还需要考虑各种不同作用下的受力情况,包括静载荷、动载荷、风荷载等,这些都增加了受力分析的复杂性。

针对受力分析复杂的难点,结构设计师需要运用先进的受力分析方法和工具,如有限元分析、结构动力学分析等,对高层建筑的受力状况进行准确的模拟和计算,为结构设计提供科学的依据。

二、抗震设计要求高高层建筑所处的地理位置和环境不同,其抗震设计要求也会有所不同。

一般来说,地震是高层建筑面临的最大威胁之一,因此抗震设计是高层建筑结构设计中的一个重要难点。

高层建筑的抗震设计要求通常比较严格,需要考虑地震波的作用、建筑结构的受力状态、结构的位移要求等多个方面。

抗震设计需要考虑建筑结构在地震作用下的变形和破坏情况,要求建筑结构在地震发生时能够安全稳定地承受地震力的作用,减小地震对建筑结构的影响。

对于高层建筑抗震设计的难点,结构设计师需要根据建筑所处地区的地震烈度和其他地质条件,结合抗震设计规范,进行合理的抗震设计方案设计和结构计算。

还需要采用高性能材料和先进技术,提高建筑结构的抗震能力,确保建筑在地震发生时能够安全稳定地运行。

三、构造系统选择和优化高层建筑的构造系统选择和优化也是结构设计的难点之一。

构造系统的选择直接影响到建筑的结构性能和经济性,因此需要根据建筑的形式、功能和受力特点,合理选择和优化构造系统。

高层建筑结构设计案例分析(全文)

高层建筑结构设计案例分析(全文)

高层建筑结构设计案例分析(全文)第一篇范本:高层建筑结构设计案例分析一:前言本文档旨在对高层建筑结构设计进行案例分析,以便更好地了解和掌握高层建筑结构设计的相关知识和技术。

本文将从以下几个方面进行详细介绍和讨论。

二:背景介绍2.1 高层建筑的定义与分类2.2 高层建筑结构设计的重要性和挑战三:结构设计理论与方法3.1 高层建筑结构设计的基本原理3.2 结构设计的常用方法和工具四:案例分析4.1 高层建筑结构设计案例14.1.1 建筑背景介绍4.1.2 结构设计目标和要求4.1.3 结构设计方案分析4.1.4 结构材料选择和参数设计4.1.5 结构计算和优化4.1.6 结构施工和监控4.2 高层建筑结构设计案例24.2.1 建筑背景介绍4.2.2 结构设计目标和要求4.2.3 结构设计方案分析4.2.4 结构材料选择和参数设计4.2.5 结构计算和优化4.2.6 结构施工和监控五:结论与展望六:附件本文档涉及的附件包括:- 高层建筑结构设计案例1相关图纸和计算表格 - 高层建筑结构设计案例2相关图纸和计算表格七:法律名词及注释本文档中涉及的法律名词及其注释可见附件。

第二篇范本:高层建筑结构设计案例分析一:引言本文档旨在对高层建筑结构设计进行案例分析,以便更好地了解和掌握高层建筑结构设计的相关知识和技术。

通过详细的案例分析,我们可以探讨高层建筑结构设计的理论基础、设计方法、实际应用等方面的问题。

二:背景介绍2.1 高层建筑的定义与分类2.1.1 高层建筑的定义2.1.2 高层建筑的分类2.2 高层建筑结构设计的重要性和挑战2.2.1 高层建筑结构设计的重要性2.2.2 高层建筑结构设计面临的挑战三:结构设计理论与方法3.1 高层建筑结构设计的基本原理3.1.1 荷载分析与计算3.1.2 结构承载体系选择3.2 结构设计的常用方法和工具3.2.1 结构设计的常用方法3.2.2 结构设计的工具和软件四:案例分析4.1 高层建筑结构设计案例14.1.1 建筑背景介绍4.1.1.1 建筑用途和功能 4.1.1.2 建筑地理环境4.1.2 结构设计目标和要求4.1.3 结构设计方案分析4.1.4 结构材料选择和参数设计 4.1.5 结构计算和优化4.1.6 结构施工和监控4.2 高层建筑结构设计案例24.2.1 建筑背景介绍4.2.1.1 建筑用途和功能4.2.1.2 建筑地理环境4.2.2 结构设计目标和要求4.2.3 结构设计方案分析4.2.4 结构材料选择和参数设计4.2.5 结构计算和优化4.2.6 结构施工和监控五:结论与展望六:附件本文档涉及的附件包括:- 高层建筑结构设计案例1相关图纸和计算表格 - 高层建筑结构设计案例2相关图纸和计算表格七:法律名词及注释本文档中涉及的法律名词及其注释可见附件。

多、高层房屋结构的分析和设计计算

多、高层房屋结构的分析和设计计算
按主体结构弹性刚度所得钢结构的计算周期,由 于非结构构件及计算简图与实际情况的差异,建议 计算周期考虑非结构构件影响的修正系数ξT取0.9。
对质量及刚度沿高度分布比较均匀的结构,基本 自振周期可用下列公式近似计算:
Un——结构顶层假想侧移(m)。
多、高层房屋结构的分析和设计计 算
初步计算时,结构的基本自振周期按经验公式估算: n—建筑物层数(不包括地下部分及屋顶小塔楼) 。
Tg=0.4s (Ⅱ类场地,第二组)
T=1.5s(Tg∽5Tg)地震影响系数
T=4s(5Tg∽6s)地震影响系数 T=0~0.1s 地震影响系数 0.45 max∼2 max T=0.1s~Tg地震影响系数2 max
0.015 0.012
0.023∼0.05 0.05
0.027 0.021
0.036∼0.09 0.09
多、高层房屋结构的分析和设计计 算
(2)振型分解反应谱法
对不计扭转影响的结构,振型分解反应谱法可仅考虑 平移作用下的地震效应组合,并应符合下列规定: (a) j振型i层质点的水平地震作用标准值
多、高层房屋结构的分析和设计计 算
(b) 水平地震作用效应(弯矩、剪力、轴向力和变形) :
突出屋面的小塔楼,应按每层一个质点进行地震作用计 算和振型效应组合。
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
顶部突出物:底部剪力法计算顶部突出物的地震作用, 可按所在的高度作为一个质点,按其实际定量计算所得水平 地震作用放大3倍后,设计该突出部分的结构。
增大影响宜向下考虑1~2层,但不再往下传递。
多、高层房屋结构的分析和设计计 算
基本自振周期 T1:
(3)竖向地震作用

高层建筑的结构设计与安全性分析

高层建筑的结构设计与安全性分析

高层建筑的结构设计与安全性分析高层建筑的结构设计与安全性一直是建筑师、工程师以及政府监管部门关注的重点。

随着城市人口的增长和城市化进程的加快,高层建筑成为了解决人口住房需求的重要选择。

然而,由于高层建筑存在的特殊性,其结构设计必须充分考虑到安全性。

本文将就高层建筑的结构设计与安全性进行分析和探讨。

一、高层建筑的结构设计1. 结构设计原则与考虑因素高层建筑的结构设计需要遵循一系列原则和考虑因素,以确保其结构的稳定性和安全性。

首先,高层建筑的结构设计应满足承载能力要求,即能够承受自身重量以及外部荷载的作用。

其次,高层建筑的结构设计应具备一定的柔度和适应性,能够在面对自然灾害(如地震、风暴等)时有所抵抗和吸能。

此外,结构设计还需考虑建筑的使用寿命、抗震性能、防火性能等因素。

2. 结构设计方法与技术在高层建筑的结构设计中,常用的方法和技术包括草图设计、三维模型设计、结构分析和模拟等。

草图设计是在建筑师和工程师协同工作的基础上进行初步设计,以探索建筑形态和结构的潜力;三维模型设计能够更加直观地展示建筑的形态和结构;结构分析和模拟则能够对建筑结构在静态和动态条件下的行为进行评估和优化。

二、高层建筑的安全性分析1. 火灾安全性分析高层建筑的火灾安全性分析是其中一项重要内容。

在高层建筑中,火灾的蔓延速度和烟气的扩散是主要的安全隐患。

因此,在高层建筑的设计和建造过程中应采取有效的防火措施,如设置防火墙、防火门、疏散通道等,以确保人员的安全疏散和消防人员的有效救援。

2. 抗震安全性分析地震是威胁高层建筑安全的另一个主要因素。

高层建筑的结构设计需要考虑抗震能力,以确保在地震发生时建筑结构的稳定性和安全性。

在抗震安全性分析中,建筑师和工程师会考虑到地震作用的影响、建筑材料的选择、结构的几何形态等因素,并采取相应的设计和构造措施提高建筑的抗震能力。

3. 风险评估与安全管理高层建筑的安全性还需要进行风险评估和安全管理。

风险评估是指针对高层建筑可能面临的灾害风险进行分析和评估,以制定相应的应急预案和安全措施。

高层建筑结构分析与设计

高层建筑结构分析与设计

对计 算模 型引入不同程度的简化 。下面
是 常 见 的一 些 基 本 假定 : ( )弹性 假 定 1
关键 词 : 高层建筑 结构 设计
目前 工程上实用的高层建筑结构分
析方法均采用 弹性计算方法。在垂直荷 载或一般风力作用下 ,结构通常处于弹 性工作阶段 ,这一假定基本符合结构的 实际工作状况 ,但是在遭受 罕见地震或 强台风作用时 ,高层建筑结构往往会产 生较大的位移 ,出现裂缝 ,结构进入到 弹塑性工作 阶段 。此时仍按 弹性方法计
腹 筒 是 由 密 排 柱 和 窗裙 梁 或 开 孑 钢 筋 混 L
小变形假定也是普遍采用 的基本假 定 。但 有人对几何非 线性 问题 (一 P △效 应) 进行 了一些 研究 。一 般认为 ,当顶
2 高层建筑结构体系类型
21 .框架一 剪力墙体系
点水平位移 △与建筑物高度H的 比值 △
高层 建筑结构分析与设 计
文/ 肖峻
摘 要 : 本文从分析 高层建筑结 构的设 计特 点 出发 ,以高层建筑 结构设 计理论 为基
础 ,结合 实际经验 ,对 高层建筑结构分析与设 计进行 了深入探讨,归纳出一些具有 实用价 值的思路 ,对 高层建筑的结构设计优化 具有一定的实用意义。
( )刚性 楼 板 假定 3
许 多高 层建 筑结 构 的分 析方法 均 假定楼板在 自身平面 内的刚度无 限大 , 而平面外的刚度则忽略不计。这一假定 大大减少了结构 的自由度 ,简化 了计算 方法。并为采用空 间薄壁杆件理论提供
平力时 ,框架和剪力墙通过有足够刚度
的楼 板和连 梁组 成协 同工 作 的结构 体
的水平荷载 ,还要具有抵抗地震作用的 能力。一般低层结构的水平荷载对结构

高层建筑连体结构设计与分析

高层建筑连体结构设计与分析

高层建筑连体结构设计与分析一、工程概况中国博兴CBD项目金融商务大厦,位于山东省博兴县,为集商业、办公、公寓、酒店等多功能为一身商业综合体,总建筑面积18万m2。

地上由A、B、C、D四栋高层塔楼组成,其中A、B栋塔楼地上27层,地下二层,建筑总高度119.12m,结构总高度99.72m。

地下2层层高3.6m,地下1层层高5.5m,1、2层层高4.8m,3层层高4.2m,标准层层高3.58m。

因建筑功能需要于A、B座塔楼之间设置造型连廊,造型连廊采用钢结构。

造型连廊的结构尺寸为25(长)x7.5(宽)x55(高),分别与塔楼12、15、18、21、24、27相连,设置位置较高,最低处位于12层(42.440m),最高处位于27层(96.140m)。

建筑效果图见图1。

本文将以A、B栋塔楼进行分析。

图1 建筑立面效果图图2 桁架立面布置图二、结构方案1.结构体系。

A、B两栋塔楼采用框架-核心筒结构,由外周框架与核心筒组成双重抗侧力体系。

充分利用刚性核心筒的阻尼、质量特性及周边抗弯框架以抵抗动态风荷载和消散地震能量,核心筒承担了大部分的风荷载和地震作用,外框架柱按相应比例承担了部分风荷载和地震作用。

A、B两栋塔楼柱网为对称关系,核心筒为平移关系,两栋塔楼主要构件竖向构件的截面尺寸及材料强度完全一致。

核心筒外墙底部厚度500mm,5层及以上外墙厚度400mm;内墙厚度300mm、250mm、200mm三种,且5层及以上较底部有适当收减。

主要框架柱截面尺寸:南北两侧从1000x1200逐层收进到1000x700;东西两侧及角柱从1100x1200逐层收进到1000x1000;支撑钢连廊的框架柱截面尺寸最小为1100x1100,并设置钢骨以提高柱的延性。

2.连接体结构布置。

连接体采用钢桁架结构,结合工程的自身特点,本工程连接体整体的刚度较弱,无法将两侧塔楼连接为整体协调受力、变形,故连接体采用弱连接方式与两侧塔楼相连。

高层建筑结构分析与设计

高层建筑结构分析与设计

试论高层建筑结构分析与设计摘要:结合施工实践, 通过大量工程经验的日积月累, 精心设计才能够作出技术先进、安全可靠、经济合理的各种高层建筑的结构设计。

本文阐述了高层建筑结构体系类型,探讨了高层建筑结构设计。

关键词:高层;建筑结构;类型;设计中图分类号:[tu208.3] 文献标识码:a 文章编号:高层建筑是随着社会生产的发展和人们生活的需要而发展起来的, 是城市和工商业发展的结果。

一、高层建筑结构体系类型1、框架-剪力墙体系当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架-剪力墙体系。

在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系,由框架体系主要承受垂直荷载,剪力墙主要承受水平荷载。

框架-剪力墙体系的位移曲线呈弯剪型。

剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架-剪力墙体系的能建高度要大于框架体系。

2、巨型结构: 巨型结构一般由两级结构组成,第一级结构超越楼层划分,形成跨若干楼层的巨梁、巨柱或巨型衍架杆件,以这巨型结构来承受水平力和竖向荷载,楼面作为第二级结构,只承受竖向荷载并将荷载所产生的内力传递到第一级结构上。

常见的巨型结构有巨型框架结构和巨型桁架结构,不同的结构体系所具有的强度和刚度是不一样的,因而它们适合应用的高度也不同。

一般说来,框架结构适用于高度低,层数少,设防烈度低的情况; 框架—剪力墙结构和剪力墙结构可以满足大多数建筑物的高度要求; 在层数很多或设防烈度要求很高时,可用筒体结构。

3、剪力墙结构体系: 剪力墙结构体系于钢筋混凝土结构中,由墙体承受全部水平作用和竖向荷载现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求也容易满足; 剪力墙结构体系主要缺点: 剪力墙间距不能太大,平面布置不灵活,不能满足公共建筑的使用要求。

高层建筑结构的计算分析和设计要求

高层建筑结构的计算分析和设计要求

补充内容3:水平力作用方向
实际风荷载及地震作用的方向是任意的,但是在规范 中规定:
结构计算只考虑x、y两个正交方向作用的水平力,各 方向水平地震力全部由该方向抗侧力结构承担,这是一 种简化。
注:x、y 方向通常是指结构的主轴方向。
主轴方向定义:当水平力在主轴方向作用时,只产生 主轴方向的位移,且位移最大。
有时结构主轴不易判断,则应根据经验判断取最接近 主轴的x、y两个方向,或通过计算确定。
补充内容4:计算基本假定
对结构进行分析时,首先分析结构的动力特性,再分析 结构的内力及变形。
首先,按简化方法分析;在必要时,再进行时程分析。 对结构工程师的基本要求:合理运用简化假定,善于 抓住主要的,忽略次要的,正确选用恰当计算方法。 规范中对结构计算作了一些基本假定,不同的方法采 用的假定会有所不同,应根据设计要求,选用符合实际 的假定与方法。
两类调幅(调整)的方法: (1)用弹性计算所得到的内力乘以系数(大于或小于1); (1)在计算时降低杆件刚度:构件刚度降低愈多,内力愈小。
《高规》中规定的调幅方法: 框架梁(连续梁)在竖向荷载下的调幅,采用方法(1)进行: 框架-剪力墙结构中框架的内力调整,采用方法(1)进行: 框架-剪力墙结构中框架与剪力墙间的联/连系梁的调幅, 采用方法(2)进行: 联肢剪力墙中连梁的调幅,采用方法(1)或方法(2)进行。
/计算与构造的特殊要求)
4.1 高层建筑结构的计算分析
4.1.1 结构计算分析方法
1. 线弹性法:常用的成熟法,计算精度和结构安全性基本可得到保证。 2. 考虑塑性内力重分布法:框架梁和连梁等构件宜对竖向载下内力进
行调整。 3. 非线性分析法:精度高,但复杂,常用于复杂结构整体受力分析。 5. 模型试验法:精度更高,但费用高,常用于复杂结构整体或局部受

超高层建筑的结构设计与分析

超高层建筑的结构设计与分析

超高层建筑的结构设计与分析随着城市化的快速发展,超高层建筑成为了现代城市的地标式建筑,它不仅是提高城市用地效率的重要手段,还能够彰显城市的发展实力。

然而,随着建筑高度的增加,对于超高层建筑的结构设计和分析就提出了更高的要求。

那么,在超高层建筑的结构设计与分析中,有哪些需要注意的问题呢?I、超高层建筑的结构设计超高层建筑的结构设计需要从以下几个方面加以考虑:1.承载力安全性超高层建筑的自重和荷载非常大,因此在结构设计中,需要保证其承载力的安全性。

主要是要有足够的极限破坏荷载。

同时,控制变形也是至关重要的,结构变形应该在可控的范围内。

2.结构稳定性超高层建筑的结构稳定性问题较为复杂,需要考虑地震、风荷载等因素。

地震荷载是超高层建筑中非常重要的设计考虑因素之一,因此结构设计中需要考虑地震对建筑物的影响并进行相应的抗震措施。

3.施工性超高层建筑的结构设计需要保证施工的可行性,并需要考虑施工的安全和效率。

需要在结构设计过程中,提高结构的模块化程度,采用标准化的件式和构件。

II、超高层建筑的结构分析超高层建筑的结构分析需要从以下几个方面进行:1.荷载分析荷载分析需要考虑自重荷载、活荷载和作用在建筑结构上的各种荷载。

这些荷载会对超高层建筑的结构和变形产生影响。

2.稳定性分析稳定性分析是超高层建筑结构分析中必须要考虑的问题,需要根据荷载和地震等因素进行分析,确保超高层建筑的结构稳定性满足要求并有充足的稳定裕量。

3.受力分析超高层建筑的受力分析需要考虑各个构件和部位的受力情况,包括弯矩、剪力、轴力和扭矩等。

4.变形分析超高层建筑在受到荷载和地震等因素的影响下会产生一定的变形,因此变形分析也是结构分析中必须要考虑的问题。

需要通过模型分析,计算得出结构的扭转角度、变形程度等参数。

综上所述,超高层建筑的结构设计和分析需要综合考虑各个方面的因素,确保超高层建筑的结构承载能力、稳定性和施工性都能够得到合理的保证。

同时,需要运用现代工程技术和结构设计理论,不断提高超高层建筑的设计水平,为城市的发展和进步做出更加积极的贡献。

高层建筑结构的分析与设计

高层建筑结构的分析与设计

l, 5对多塔结构 的振 型数不应小于塔楼 的9 , 倍 且计算振型数应使 振型参 建筑 设计 应 符合 抗 震概 念设 计 的要 求 , 廊 采J 严 藿不 规 则 的 不 } } j 与质量不 小于总质量 的9 %。必须指 出的是, 的振型组合数并 不是 0 结构 设计 方案 。实 际上, 结构 的概念设 计 建筑 师 的方 案设计 也足 相互影 越大越好, 大值不能超过结构的总 自由度数 。例如对 采用刚性板假 其最


●_E ■
|- ._
振周期T( 。 用于风振计算) 可按下列公式估算: a 5 x 1 I/ 0 : .5 .3 0 I
b 、钢筋混凝土剪力墙( 包括筒 中筒 剪力墙 ) 结构
, : 0 o 十 0 0 x 1 r} . 3 . 3 1t
1 认真做好结构方案的概念设 计 .
计 和施工过 程中, 放坡无需 支护的结 构方案肯 定是最为 经济 的, 直接 但 果 白上而 下也应均 匀变化, 不应有较 大的突变 , 否则应 检查结构 截面尺 这 样就会 出现基坑 变形变 大, 工周期 长导致 资金的 回报慢 等不利 因 施 寸或 者输 入的数据是否正确 、合理 。 。
素。
2 柱 、 等竖向受力构件 的计 算轴力N . 5 墙 基本符合柱 、墙受荷 面积
A的与近似应 力q 的乘 积。 IN q  ̄ = A。q 1 为单位 面积重力 荷载, 于框架 对
2 结构整体计算准确与计算结果分析无误 .
结构 约为 1~1 k m2对 于框 架一 2 4 N/ , 剪力墙结构 约为 1~ 5 N/ 对 于剪 3 1 k m 21 构基本周 期是计 算风荷 载的重 要指标 。周期 的大小 与结构 力墙结构 和简体结 构约为 1~ 6 N/ 。 . 结 4 1k m 在地 震中 的反应有着 密切关 系, 基本 的是 能 与场地 土的卓越 刷期 最 ^ 致, 否则 会发生共 振 。一般 情况下 , 多层和高 层钢筋砼 房屋 的基 本 自

某高层建筑结构设计实例分析

某高层建筑结构设计实例分析

某高层建筑结构设计实例分析随着城市的快速发展,高层建筑如雨后春笋般涌现。

高层建筑的结构设计不仅关系到建筑的安全性和稳定性,还影响着建筑的使用功能和经济性。

本文将通过一个具体的高层建筑结构设计实例,对其进行详细的分析,以期为相关设计提供参考。

一、工程概况该高层建筑位于城市中心商务区,总建筑面积为_____平方米,地上_____层,地下_____层。

建筑高度为_____米,主要用途为商业和办公。

二、结构选型根据建筑的功能和高度要求,本工程采用了框架核心筒结构体系。

框架柱采用钢筋混凝土柱,核心筒采用钢筋混凝土剪力墙。

这种结构体系能够有效地抵抗水平荷载,保证结构的稳定性。

框架柱的布置充分考虑了建筑的平面布局和受力要求,柱距均匀合理,既满足了建筑使用功能的要求,又保证了结构的受力性能。

核心筒位于建筑的中心部位,其剪力墙的厚度和配筋根据不同楼层的受力情况进行了优化设计。

三、荷载取值在结构设计中,准确的荷载取值是至关重要的。

本工程考虑的荷载主要包括恒载、活载、风荷载和地震作用。

恒载包括结构自重、建筑装修和设备重量等。

活载根据不同的使用功能,按照相关规范进行取值。

风荷载根据当地的气象资料和建筑的体型系数进行计算。

地震作用根据抗震设防烈度和场地类别,采用反应谱法进行计算。

四、结构分析采用专业的结构分析软件对结构进行了整体计算分析。

分析结果表明,结构的各项指标均满足规范要求。

在水平荷载作用下,框架和核心筒协同工作,有效地抵抗了风荷载和地震作用。

结构的位移比、周期比、层间位移角等指标均在规范允许的范围内。

五、构件设计(一)框架柱根据计算结果,框架柱的截面尺寸和配筋进行了合理设计。

柱的纵筋采用高强度钢筋,箍筋采用复合箍筋,以保证柱的承载能力和延性。

(二)核心筒剪力墙剪力墙的厚度和配筋根据不同楼层的受力情况进行变化。

底部加强区的剪力墙厚度较大,配筋率较高,以提高其抗震性能。

(三)梁梁的截面尺寸和配筋根据跨度和受力情况进行设计。

高层住宅建筑设计及结构方式分析

高层住宅建筑设计及结构方式分析

高层住宅建筑设计及结构方式分析随着城市化进程的加速,高层住宅建筑的需求日益增长。

设计师和建筑师在提高房屋的稳定性、安全性和舒适度方面面临着越来越大的挑战。

本文将分析高层住宅建筑的设计及结构方式,以期为人们更好地理解高层住宅建筑的特点,为建筑师提供建议和指导。

设计分析高层住宅建筑的外形设计要以美观大方、线条简洁为主,整体结构要紧密、精细、适应高空强风与地震扰动,同时要尽可能地减小对下方街道和其他建筑的阴影和噪音影响。

高层住宅建筑的设计面临许多挑战,如楼层高度、建筑外形、开窗面积、玻璃幕墙、阳台设计等,需要考虑安全、适用性以及舒适性等因素。

借助现代化技术,建筑师和设计师可以采用多样化的建筑材料和新型结构系统,如钢结构、混凝土钢筋等来提高建筑的抗震能力和防火性,同时可以减轻建筑自身重量,使建筑更加坚固耐用,提高建筑的可持续性。

结构分析高层住宅建筑物结构通常采用框架剪力墙结构,其主要特点是在地震和台风等自然灾害中表现出较高的抗震性能,保证了建筑物的安全性。

另一种结构方式是框架-筒体混合结构,它可结合框架在剪力墙中加入抗震筒体以减少单元震动,达到平衡整个建筑的受力状况。

高层住宅建筑物的结构设计应该借鉴先进技术,优化设计,让建筑物的结构更加合理,让整个建筑物在承受自身重量、外力作用等方面都能表现出较高的稳定性和耐久性。

在结构设计中,需要考虑建筑物的基础、柱子、地板、墙面等重点部分的设计和材料选用,力求达到符合建筑物使用要求的结构效果。

总的来说,高层住宅建筑的设计和结构方式相辅相成,建筑师和设计师需要综合考虑建筑的使用功能、安全性、舒适性、美观度和结构稳定性等因素,才能创造出安全、健康、舒适的居住环境。

我们希望更多建筑师和设计师在探索的道路上不断创新、开拓进取、为城市的发展和住宅的建设做出更多有价值的贡献。

高层建筑结构分析与设计理论

高层建筑结构分析与设计理论

高层建筑结构分析与设计理论摘要:文章就针对高层建筑的结构以及设计的这一问题,进行了详细的分析,并对于相应的设计理念分析以及设计进行了相关探讨。

关键词:高层建筑;结构;设计理论中图分类号:tu318文献标识码: a 文章编号:一、常见高层建筑结构设计特点1、建筑框架结构设计对于高层建筑来说必须有一个整体的严谨的框架结构,所以对于框架结构的设计可以说是重中之重,对于框架结构来说,他的主要组成部分有建筑结构基础、结构楼板、柱以及建筑梁体这几种重要的承重部件构成,而对于建筑结构基础、柱子以及建筑梁体来说,这三者主要是建筑平面框架的重要承重部件,建筑框架整体布置上比较灵活,能够在很大程度上流出建筑的空间,而另一方面对于立面的处理也是比较简单灵活的,但是重要的是建筑框架结构的侧向的刚度比较小,所以一旦建筑体本身过于高的时候,整体来说就会出现比较大程度上的侧移,这就会限制整体的高度。

2、决定性因素对于高层建筑的结构设计来说,有很多的影响因素,但是决定性的因素是水平的荷载。

讲到高层建筑的水平荷载在结构设计中的作用首先是因为高层建筑本身的重量以及建筑体面本身使用的载荷在建筑竖构建中能勾起的轴力以及弯矩只是和建筑的高度成正比,但是水平荷载对于建筑本身结构产生的力是和本身高度的平方成正比关系;另外对于一个建筑体本身来说,竖向上的载荷力一般情况下都是一定的,但是水平的荷载是伴随着很多因素的变化产生相应的变化的。

3、剪力墙结构的设计特点对于高层建筑来说剪力墙本身也是框架的组成部分,在高层建筑结构的设计中一般情况下使用的都是这种框架形式,也就是剪力墙结构,而剪力墙设计结构就是将建筑的整体框架和剪力墙本身按照规定进行一种巧妙地结构结合,形成一个整体的结构,所以这种情况下上面我们提到的决定性因素水平的荷载就由剪力墙本身来承担的,因为剪力墙按照这样的设计结构的情况下具有很大的刚度,能够抗拒很大的建筑测力,另一方面竖向上的荷载就有剪力墙和整体的框架来进行承担,所以我们看到剪力墙会受到来自于竖向以及水平方向上的压力,所以对于剪力墙结构的设计是至关重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高层建筑结构分析与设计
发表时间:2009-02-19T14:23:57.107Z 来源:《黑龙江科技信息》2008年10月下作者:马跃赵鹏
[导读] 摘要:围绕高层建筑结构,总结了高层建筑结构设计的特点以及提出了高层建筑结构分析和各种体系相对应的方法。

摘要:围绕高层建筑结构,总结了高层建筑结构设计的特点以及提出了高层建筑结构分析和各种体系相对应的方法。

为实际高层建筑结构分析与设计提供一定参考。

关键词:高层建筑结构;结构体系;剪力墙
1 高层建筑结构设计特点
1.1 水平荷载成为决定因素。

一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。

1.2 轴向变形不容忽视。

高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。

1.3 侧移成为控制指标。

与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。

随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

1.4结构延性是重要设计指标。

相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。

为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。

2 高层建筑结构分析
2.1 高层建筑结构分析的基本假定
高层建筑结构是由竖向抗侧力构件(框架、剪力墙、筒体等)通过水平楼板连接构成的大型空间结构体系。

要完全精确地按照三维空间结构进行分析是十分困难的。

各种实用的分析方法都需要对计算模型引入不同程度的简化。

下面是常见的一些基本假定:
2.1.1 弹性假定。

目前工程上实用的高层建筑结构分析方法均采用弹性的计算方法。

在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况。

但是在遭受地震或强台风作用时,高层建筑结构往往会产生较大的位移,出现裂缝,进入到弹塑性工作阶段。

此时仍按弹性方法计算内力和位移时不能反映结构的真实工作状态的,应按弹塑性动力分析方法进行设计。

2.1.2 小变形假定。

小变形假定也是各种方法普遍采用的基本假定。

但有不少人对几何非线性问题(P-Δ效应)进行了一些研究。

一般认为,当顶点水平位移Δ与建筑物高度H的比值 Δ/H > 1/500时, P-Δ效应的影响就不能忽视了。

2.1.3 刚性楼板假定。

许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。

这一假定大大减少了结构位移的自由度,简化了计算方法。

并为采用空间薄壁杆件理论计算筒体结构提供了条件。

一般来说,对框架体系和剪力墙体系采用这一假定是完全可以的。

但是,对于竖向刚度有突变的结构,楼板刚度较小,主要抗侧力构件间距过大或是层数较少等情况,楼板变形的影响较大。

特别是对结构底部和顶部各层内力和位移的影响更为明显。

可将这些楼层的剪力作适当调整来考虑这种影响。

2.1.4 计算图形的假定。

高层建筑结构体系整体分析采用的计算图形有三种:a.一维协同分析。

按一维协同分析时,只考虑各抗侧力构件在一个位移自由度方向上的变形协调。

在水平力作用下,将结构体系简化为由平行水平力方向上的各榀抗侧力构件组成的平面结构。

根据刚性楼板假定,同一楼面标高处各榀抗侧力构件的侧移相等,由此即可建立一维协同的基本方程。

在扭矩作用下,则根据同层楼板上各抗侧力构件转角相等的条件建立基本方程。

一维协同分析是各种手算方法采用最多的计算图形。

b.二维协同分析。

二维协同分析虽然仍将单榀抗侧力构件视为平面结构,但考虑了同层楼板上各榀抗侧力构件在楼面内的变形协调。

纵横两方向的抗侧力构件共同工作,同时计算;扭矩与水平力同时计算。

在引入刚性楼板假定后,每层楼板有三个自由度u,v,θ(当考虑楼板翘曲是有四个自由度),楼面内各抗侧力构件的位移均由这三个自由度确定。

剪力楼板位移与其对应外力作用的平衡方程,用矩阵位移法求解。

二维协同分析主要为中小微型计算机上的杆系结构分析程序所采用。

c.三维空间分析。

二维协同分析并没有考虑抗侧力构件的公共节点在楼面外的位移协调(竖向位移和转角的协调),而且,忽略抗侧力构件平面外的刚度和扭转刚度对具有明显空间工作性能的筒体结构也是不妥当的。

三维空间分析的普通杆单元每一节点有6个自由度,按符拉索夫薄壁杆理论分析的杆端节点还应考虑截面翘曲,有7个自由度。

2.2高层建筑结构静力分析方法
2.2.1 框架-剪力墙结构
框架-剪力墙结构内力与位移计算的方法很多,大都采用连梁连续化假定。

由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间关系的微分方程来求解。

由于采用的未知量和考虑因素的不同,各种方法解答的具体形式亦不相同。

框架-剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。

2.2.2 剪力墙结构
剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。

单片剪力墙按受力特性的不同可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等各种类型。

不同类型的剪力墙,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。

剪力墙结构的机算方法是平面有限单元法。

此法较为精确,而且对各类剪力墙都能适用。

但因其自由度较多,机时耗费较大,目前一般只用于特殊开洞墙、框支墙的过渡层等应力分布复杂的情况。

2.2.3 筒体结构
筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析。

等效连续化方法是将结构中的离散杆件作等效连续化处理。

一种是只作几何分布上的连续化,以便用连续函数描述其内力;另一种是作几何和物理上的连续处理,将离散杆件代换为等效的正交异性弹性薄板,以便应用分析弹性薄板的各种有效方法。

具体应用有连续化微分方程解法、框筒近似解法、拟壳法、能量法、有限单元法、有限条法等。

等效离散化方法是将连续的墙体离散为等效的杆件,以便应用适合杆系结构的方法来分析。

这一类方法包括核心筒的框架分析法和平面框架子结构法等。

具体应用包括等代角柱法、展开平面框架法、核心筒的框架分析法、平面框架子结构法。

比等效连续化和等效离散化更为精确的计算模型是完全按三维空间结构来分析筒体结构体系,其中应用最广的是空间杆-薄壁杆系矩阵位移法。

这种方法将高层结构体系视为由空间梁元、空间柱元和薄壁柱元组合而成的空间杆系结构。

空间梁柱每端节点有6个自由度。

核心筒或剪力墙的墙肢采用符拉索夫薄壁杆件理论分析,每端节点有7个自由度,比空间杆增加一个翘曲自由度,对应的内力是双弯矩。

三维空间分析精度较高,但它的未知量较多,计算量较大,在不引入其它假定时,每一楼层的总自由度数为6Nc+7Nw(Nc、Nw为柱及墙肢数目)。

通常均引入刚性楼板假定,并假定同一楼面上各薄壁柱的翘曲角相等,这样每一楼层总自由度数降为3(Nc+Nw)+4,这是目前工程上采用最多的计算模型。

3 结论
随着高层建筑进一步的发展,满足高层建筑的形式,材料,力学分析模型都将日趋复杂多元,为了革新高层建筑,体现其魅力,追求新的结构形式和更加合理的力学模型将是土木工程师们的目标和方向。

参考文献
[1] 梅洪元,付本臣.中国高层建筑创作理论发展研究,高层建筑与智能建筑国际学术研讨会,2002.
[2]覃力.高层建筑设计的一种倾向——大规模高层建筑的集群化和城市化,高层建筑与智能建筑国际学术研讨会,2002.。

相关文档
最新文档