立体几何线面角

合集下载

立体几何几个角的取值范围

立体几何几个角的取值范围

立体几何几个角的取值范围
嘿,朋友们!咱们今天来聊聊立体几何里几个角的取值范围。

先来说说线线角。

想象一下,两条直线就像两个调皮的小伙伴,它
们之间形成的夹角,范围是在 0 度到 90 度之间哟!这就好比两个人面
对面站着,要么平行互不干扰,要么就会有一定的“小摩擦”,但这“摩擦”最大也就到 90 度啦,再大就翻了个面啦!
再看看线面角。

一条直线和一个平面,它们的夹角就像是一只小鸟
想要飞进一个房间,能飞进去的角度可是有讲究的。

线面角的取值范
围是 0 度到 90 度。

是不是很神奇?这就好像小鸟飞进房间,要么平行
地滑过去,要么最大也就垂直冲进去。

接下来是面面角。

两个平面相交,形成的面面角,范围是 0 度到
180 度。

这就好像是两扇门打开的角度,从完全重合到完全相反,啥角度都有可能。

咱们在做题的时候,可一定要把这些取值范围牢记在心。

不然就像
在黑夜里走路没有手电筒,容易迷路呀!比如说,要是把线线角当成
能超过 90 度,那这题不就做错啦?就好像跑步跑错了方向,越努力离
终点越远。

还有啊,遇到具体的题目,咱们得灵活运用这些知识。

比如说给你
一个三棱锥,让你求其中两个面的夹角,那你就得先搞清楚是哪个角,然后再判断取值范围。

总之,立体几何里几个角的取值范围可是非常重要的,就像盖房子的基石,基石不稳,房子能牢固吗?大家一定要好好掌握,这样在解题的时候才能游刃有余,所向披靡!。

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.【方法点评】类型一 空间中线线角的求法方法一 平移法使用情景:空间中线线角的求法解题模板:第一步 首先将两异面直线平移到同一平面中;第二步 然后运用余弦定理等知识进行求解;第三步 得出结论.例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A. 6π B. 4π C. 3π D. 2π 【答案】B平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常转化为解三角形的问题处理,要注意异面直线所成角的范围为0,2π⎛⎤ ⎥⎝⎦。

【变式演练1】如图,四边形ABCD 是矩形, 沿直线BD 将ABD ∆翻折成'A BD ∆,异面直线CD 与'A D 所成的角为α, 则( )A .'A CA α<∠B .'A CA α>∠C.'A CD α<∠ D .'A CD α>∠【答案】B考点:异面直线所成角的定义及运用.【变式演练2】【2018年衡水联考】在棱长为1的正方体1111ABCD A B C D -中,点E , F 分别是侧面11AA D D 与底面ABCD 的中心,则下列命题中错误的个数为( )①//DF 平面11D EB ; ②异面直线DF 与1B C 所成角为60︒;③1ED 与平面1B DC 垂直; ④1112F CDB V -=. A. 0 B. 1 C. 2 D. 3【答案】A【解析】对于①,∵DF 11//B D ,DF ⊄平面11D EB , 11B D ⊂平面11D EB ,∴//DF 平面11D EB ,正确; 对于②,∵DF 11//B D ,∴异面直线DF 与1B C 所成角即异面直线11B D 与1B C 所成角,△11C B D 为等边三角形,故异面直线DF 与1B C 所成角为60︒,正确;对于③,∵1ED ⊥1A D , 1E D ⊥CD,且1A D ⋂CD=D ,∴1E D ⊥平面11A B DC ,即1E D ⊥平面1B DC ,正确;对于④,11CDF 1111133412F CDB B CDF V V S --==⨯⨯=⨯=,正确, 故选:A 【变式演练3】设三棱柱111ABC A B C -的侧棱与底面垂直,90BCA ∠=︒,2BC CA ==,若该棱柱的所有顶点都在体积为323π的球面上,则直线1B C 与直线1AC 所成角的余弦值为( )A .23-B .23C . 【答案】B【变式演练4】如图所示,正四棱锥P ABCD -的底面面积为3,, E 为侧棱PC 的中点,则PA 与BE 所成的角为( )A. 30︒B. 45︒C. 60︒D. 90︒【答案】C方法二 空间向量法使用情景:空间中线线角的求法解题模板:第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步 然后求出所求异面直线的空间直角坐标;第三步 再利用cos a ba bθ→→→→⋅=即可得出结论. 例2、如图,直三棱柱111ABC A B C -中,13AC BC AA ===,AC BC ⊥,点M 在线段AB 上.(1)若M 是AB 中点,证明:1//AC 平面1B CM ;(2)当BM =11C A 与平面1B MC 所成角的正弦值【答案】(1)详见解析(2(II )1,AC BC CC ABC ⊥⊥平面,故如图建立空间直角坐标系1(033),(300),(030),(000)B A B C ,,,,,,,,,BA =13BM BA = 1(1,1,0),(0,3,0)(1,1,0)(1,2,0)3BM BA CM CB BM ==-=+=+-=, 令平面1B MC 的法向量为(,,)n x y z =,由100n CB n CM ⎧⋅=⎪⎨⋅=⎪⎩,得020y z x y +=⎧⎨+=⎩ 设1z =所以(2,1,1)n =-,11(3,0,0)C A CA == ,设直线11C A 与平面1B MC 所成角为q1111||sin ||||3C A n C A n q ×===故当BM =11C A 与平面1B MC 考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.例3、如图,正方形AMDE 的边长为2,B C、分别为线段AM MD 、的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱PD PC 、分别交于点G H 、.(1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小.【答案】(1)详见解析(2)6π考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.【变式演练4】已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为______.考点:异面直线及其所成的角【变式演练5】如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,4AB =,16AA =.若E ,F 分别是棱1BB ,1CC 上的点,且1BE B E =,1113C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .6B .6C .10D .10【答案】D【解析】试题分析:以BC 的中点O为坐标原点建立空间直角坐标系如图所示,则A,1A ,(0,2,3)E ,(0,2,4)F -,1(3)A E =--,(2,4)AF =--,设1A E ,AF 所成的角为θ,则11||cos 10||||5A E AF A E AF θ⋅===⋅⨯. 考点: 线面角.类型二空间中线面角的求法方法一 垂线法使用情景:空间中线面角的求法解题模板:第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角;第三步 得出结论.例3如图,四边形ABCD 是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .GD BA(Ⅰ)求证:AF ⊥面BEG ;(Ⅱ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【答案】(Ⅰ)证明见解析;.证法2:(坐标法)证明1-=⋅BE AC K K ,得BE AC ⊥,往下同证法1.证法3:(向量法)以,为基底, ∵-=+=21,,0=⋅∴)21()(AB AD AB AD BE AC -⋅+=⋅221-=01221=-⨯= ∴BE AC ⊥,往下同证法1.(2)在AGF Rt ∆中,22GF AF AG +=36)33()33(22=+= 在BGF Rt ∆中,22GF BF BG +=1)33()36(22=+= 在ABG ∆中,36=AG ,1==AB BG ∴2)66(13621-⨯⨯=∆ABG S 656303621=⨯⨯=设点E 到平面ABG 的距离为d ,则GF S d S ABF ABG ⋅=⋅∆∆3131,∴ABG ABFS GF S d ∆⋅=1030653312221=⨯⨯⨯= 22)66()33(2222=+=+=EF GF EG ,设直线EG 与平面ABG 所成角的大小为θ,则 EG d=θsin .515221030== 考点:线面垂直的判定,直线与平面所成的角.【点评】解决直线与平面所成的角的关键是找到直线上的点到平面的射影点,构造出线面角.【变式演练6】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B.3 C. D .23【答案】B考点:直线与平面所成的角.【变式演练7】在四面体ABCD 中,AB AD ⊥,1AB AD BC CD ====,且ABD BCD ⊥平面平面,M 为AB 中点,则CM 与平面ABD 所成角的正弦值为( )A.2 B.3 C.2 D.3【答案】D考点:1.平面与平面垂直;2.直线与平面所成的角.方法二空间向量法使用情景:空间中线面角的求法解题模板:第一步首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步再利用a bsina bθ→→→→⋅=即可得出结论.例4 [2018衡水金卷大联考]如图,在四棱锥中,底面为直角梯形,其中,,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.(2)取的中点,连接.则.∵平面平面,平面平面,且,∴平面.∵,且,∴四边形为平行四边形,∴.又∵,∴.由两两垂直,建立如图所示的空间直角坐标系.则,,,,,.当时,有,【变式演练8】【2018浙江嘉兴市第一中模拟】如图,四棱锥,底面为菱形,平面,,为的中点,.(I)求证:直线平面;(II)求直线与平面所成角的正弦值.【解析】(I)证明:,又又平面,直线平面.(方法二)如图建立所示的空间直角坐标系..设平面的法向量,.所以直线与平面所成角的正弦值为【高考再现】1. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A C D 【答案】C【考点】 异面直线所成的角;余弦定理;补形的应用【名师点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角。

专题一:立体几何中“线线角、线面角、面面角”的求法 课件

专题一:立体几何中“线线角、线面角、面面角”的求法 课件
专题一:立体几何中“线线角、 线面角、面面角”的求法
知识回顾
1. 异面直线所成角; 2. 直线与平面所成角; 3. 两平面所成角.
知识点一:线线角
关键:把空间角转化成平面角 步骤:①选点平移;
②定角; ③算角(解位线平移
知识点一:线线角
变式1. 已知四面体ABCD的各棱长均 相等,E、F分别为AB、CD的中点, 求AC与EF所成角的大小.
定义:以二面角的棱上任意一点为端点,
在两个面内分别作垂直于棱的两条射线,这两条 射线所成的角叫做二面角的平面角.
B
l
O
A
知识点三:面面角
方法:①定义法(点在棱上)
②三垂线法(点在一个平面内) 例3.在四面体ABCD中,平面ABD 平面BCD, ③射影法(找一个平面内对应的点 AB BD DA a, CD BD,DBC=30. 在另一个平面内的射影)
定义:过斜线AP上且斜足以外的一点P向平面引 垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平 面上的射影.平面的一条斜线和它在平面上的射影所 成的锐角,叫做这条直线和这个平面所成的角.
知识点二:线面角 关键:①找垂足 ②等体积法求高
例2.如图,设正方体ABCD A1B1C1D1的棱长为a, (1)求直线AB1与平面A1B1CD所成的角; (2)求直线AB与平面ACB1所成角的正弦值.
(1)求二面角A DC B的大小;
④垂面法(点在面外)
(2)求二面角A BC D的平面角的正切值.
⑤补形法
通过本节课的学习谈谈你的收获或感想:
作业:

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

专题5:向量法做立体几何的线面角问题(解析版)

专题5:向量法做立体几何的线面角问题(解析版)

专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。

专题35 空间中线线角、线面角,二面角的求法-

专题35   空间中线线角、线面角,二面角的求法-

专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。

浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想

浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想

浅谈线线角、线面角、面面角的定义方式北京市顺义区第九中学101300高中阶段在学习空间线、面位置关系的时候,会给出线线角、线面角及面面角的定义,本文以角形成的定义方式及蕴含的基本思想为主,进行研究。

1、直线与直线所成的角:(1)共面:同一平面内的两直线所成角,是利用两直线位置关系,平行、重合所成角为0度,如果相交就取交线所构成的锐角(或直角)。

(2)异面:如图所示,已知两条异面直线a和b,经过空间任一点O分别作直线a′∥a,b′∥b,我们把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角)。

θ定义方式:是发生定义法(即构造定义方式)定义中的“空间中任取一点O”,意味着:角的大小与O 点选取的位置无关;通过平移把异面直线所成角转化成两相交直线,是将空间图形问题转化成平面图形问题的定义方式,体现了定义的纯粹性和完备性。

2、直线和平面所成的角:如图,一条直线和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角。

规定:一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角。

3、面面所成的角:(1)在二面角的棱l上任取一点O,以该点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的角称为二面角的平面角.( 2)作二面角的平面角的方法方法一:(定义法)在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB为二面角α­a­β的平面角.方法二:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠ACB为二面角α­m­β的平面角.4、线线、线面、面面所成角的定义方式线线、线面、面面所成角的定义方式是“属加种差定义法”。

第8章立体几何专题7 线面角的求解常考题型专题练习——【含答案】

第8章立体几何专题7 线面角的求解常考题型专题练习——【含答案】

线面角的求解【方法总结】1、线面角的范围:[0°,90°]2、线面角求法(一):先确定斜线与平面,找到线面的交点A为斜足;找线在面外的一点B,过点B向平面α做垂线,确定垂足O;连结斜足与垂足为斜线AB在面α上的投影;投影AO与斜线AB之间的夹角为线面角;把投影AO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

注意:以上第二步过面外一点向平面做垂线的方法有一下几种:1)线在面外的一点B与平面上某点的连线正垂直于面α,无需再做辅助线;2)题中已知有与面α垂直的直线,过线在面外的一点B直接做此垂线的平行线;3)过线在面外的一点B做两垂直平面交线的垂线,利用面面垂直的性质证明OB⊥面α(这两个垂直平面一个是面α,另一个是过点B且与α垂直的平面)。

3、线面角求法(二)用等体积法,求出斜线PA在面外的一点P到面的距离,利用三角形的正弦公式进行求解。

114、线面角求法(三)利用空间向量进行求解,高二再学。

【巩固练习】1、已知正方体1111ABCD A B C D -的体积为162,点P 在正方形1111D C B A 上,且1,A C 到P 的距离分别为2,23,则直线CP 与平面11BDD B 所成角的正切值为( )A.2 B.3 C.12D.13【答案】A【解析】易知22AB =;连接1C P ,在直角1CC P ∆中,可计算22112C P CP CC =-=;又1112,4A P A C ==,所以点P 是11A C 的中点;连接AC 与BD 交于点O ,易证AC ⊥平面11BDD B ,直线CP 在平面11BDD B 内的射影是OP ,所以CPO ∠就是直线CP 与平面11BDD B 所成的角,在直角CPO ∆中,2tan 2CO CPO PO ∠== .2、把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为A.B.C.D.[来源网ZXXK]【答案】C【解析】如图所示,当平面平面时,三棱锥的体积最大,取的中点,则平面,故直线和平面所成的角为,则,所以,故选C.3、如图,在三棱锥P-ABC中,,PA AB⊥PC BC⊥,,AB BC⊥22,AB BC==5PC=,则PA与平面ABC所成角的大小为_______.【答案】45︒【解析】如图,作平行四边形ABCD,连接PD,由AB BC⊥,则平行四边形ABCD是矩形.由BC CD⊥,BC PC⊥,PC CD C=,∴BC⊥平面PCD,而PD⊂平面PCD,∴BC PD⊥,同理可得AB PD⊥,又AB BC B⋂=,∴PD⊥平面11ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,5CD AB PC ===得1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.4、已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心O ,则AB 1与底面ABC 所成角的正弦值为( )A .23B .13C .33D .23【答案】A【解析】作1A H ⊥面ABC 于点H ,延长11B A 到D ,延长BA 到E 使得111B A A D =,,BA AE =如图则有11A EAB ,又因为1A O ⊥面ABC ,故1A EO ∠为所求角,且111sin AO A EO A E∠=。

高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。

过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。

平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。

一条直线垂直于平面,我们就说它们所成的角是直角。

一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。

二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。

常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。

立体几何中的向量方法线面角课件

立体几何中的向量方法线面角课件
①向量法
D1
C1 ② 传统法
A1
B1
O
D A
C B
课堂小结:
1.异面直线所成角:
cos |cos CD, AB |
2.直线与平面所成角:
sin | cos n, AB |
C
D
A D1
B
A
n
B O
证明: 如图建立空间直角坐标系 B-xyz
设 AB=1,则 B(0,0,0),
E12,0,0,F0,0,12,C1(0,1,1),
所以E→F=-12,0,12,B→C1=(0,1,1).
1
cos〈E→F,B→C1〉=
2 22×
=12,〈E→F,B→C1〉=60° 2
所以直线 EF 和 BC1 所成角的大小为 60°.
练习:如图,在三棱锥 V-ABC 中,顶点 C 在空间直角坐标系 的原点处,顶点 A,B,V 分别在 x 轴,y 轴,z 轴上,D 是线 段 AB 的中点,且 AC=BC=2,∠VDC=θ.当 θ=π3时,
求异面直线 AC 与 VD 所成角的余弦值.
解:由于 AC=BC=2,D 是 AB 的中点,
范围:
0,
2
C
D 思考:空间向量的夹角与
A D1 异面直线的夹角有什么关系? B
设直线CD的方向向量为a,AB的方向向量为b
a
b
结论:
a,b
aa,b
b
| ab
|
cos
ab
1.若异面直线l1的方向向量与l2的方向向量
A 的夹角为150°,则l1与l2夹角( )
A.30° B.150°C.30°或150° D.以上均不对
所以 C(0,0,0),A(2,0,0),B(0,2,0),D(1,1,0).

立体几何中的向量方法-人教版高中数学

立体几何中的向量方法-人教版高中数学

知识图谱-利用向量方法求线线角与线面角-利用向量方法求二面角-利用向量方法求距离直线与直线的夹角直线与平面的夹角向量法求二面角含有参数的二面角求法点到点线面的距离线与线面的距离第03讲_立体几何中的向量方法错题回顾利用向量方法求线线角与线面角知识精讲一.用向量方法求线线角与线面角1.两条异面直线所成的角(1)定义:设是两条异面直线,过空间任一点作直线,则与所夹的锐角或直角叫做所成的角;(2)范围:两异面直线所成的角的取值范围是;(3)向量求法:设直线的方向向量为,其夹角为,则有.2.直线与平面所成的角(1)定义:直线与平面所成的角,是指直线与它在这个平面内的射影所成的角;(2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所称角中最小的角;(3)范围:直线和平面所成角的取值范围是;(4)向量求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为,则有或,此外还可以根据定义得到直线与平面所成的角如下图:.三点剖析一.方法点拨1.在用向量法求两条直线的夹角时,如果两条直线方向向量的夹角余弦值是负数时,则取绝对值,要正数,因为两条直线的夹角范围是.2.在用向量法求直线与平面的夹角时,如果算出的是负值时,则线面角的正弦值也需要取正值.题模精讲题模一直线与直线的夹角例1.1、已知是异面直线,,且,则所成的角是( )B、A、C、D、例1.2、如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,A B=,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.例1.3、如图所示,正四面体的高的中点为的中点为.(1)求证:两两垂直;(2)求.题模二直线与平面的夹角例2.1、若斜线段的长度是它在平面内的射影长的倍,则与所成角的正切值为__________.例2.2、直三棱柱中,底面是等腰直角三角形,,侧棱,分别是的中点,点在平面上的射影是.求与平面所成角的大小(结果用正弦值表示).例2.3、已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.例2.4、如图,在三棱锥中,底面,,为的中点,为的中点,,.(1)求证:平面;(2)求与平面成角的正弦值;(3)设点在线段上,且,平面,求实数的值.随堂练习随练1.1、若异面直线的方向向量分别是,则异面直线与的夹角的余弦值等于( )A、B、C、D、随练1.2、在棱长为1的正方体中,分别是的中点,在棱上,且,的中点,应用空间向量方法求解下列问题。

2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)

2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)

专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。

这是空间向量求解的巨大优点,也是缺点,就这么共存着。

其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。

方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

第2讲 立体几何中的空间角问题

第2讲 立体几何中的空间角问题

(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),

027:选修2-1 3.2.3 利用法向量解决立体几何中的线面角问题和求点到平面的距离问题

027:选修2-1  3.2.3  利用法向量解决立体几何中的线面角问题和求点到平面的距离问题

选修2-1 第三章 空间向量与立体几何§3.2.3 利用法向量解决立体几何中的线面角,求点到平面的距离问题班级 姓名一、目标导引1.会利用法向量解决立体几何中的线面角; 2.会求点到平面的距离问题. 二、教学过程题型一 利用法向量解决立体几何中的线面角 【知识准备】如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ,则有 ,OP AP θ+<>= ,由此,在Rt AOP ∆中,sin |sin(,)|2OP AP πθ=-<>= = .【注意】直线与平面所成的角的范围是θ∈例1 如图所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.11【变式1】在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,求AD 与平面AA 1C 1C 所成角的正弦值.C1题型二 利用法向量求点到平面的距离问题【知识准备】设P 是平面α外一点,P A 是α的一条斜线,交平面α于点A , n 是平面α的法向量,那么向量PA 在n 方向上的正射影长OP 就是点A 到平面α的距离h ,在Rt AOP ∆中,OP = = .例2 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.A1【课时作业027】班级 姓名 作业等级A 级 学业水平达标1.在正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面A 1BD 所成的角的正弦值.【答案:63】12.正三角形ABC 与正三角形BCD 所在的平面互相垂直,求直线CD 与平面ABD 所成角的正弦值.【答案:155】3.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BC ,A 1D 1的中点.(1)求直线A 1C 与DE 所成角的余弦值;【答案:1515】(2)求直线AD 与平面B 1EDF 所成角的余弦值;【答案:33】(3)求平面B 1EDF 与平面ABCD 所成锐二面角的余弦值.【答案:66】B 级 应试能力达标4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1; (2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.(答案k=1)5.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面P AC ;(2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.(答案32)1选修2-1 第三章 空间向量与立体几何§3.2.3 利用法向量解决立体几何中的线面角,求点到平面的距离问题一、目标导引1.利用法向量解决立体几何中的线面角;2.求点到平面的距离问题二、教学过程题型一 利用法向量解决立体几何中的线面角 【知识准备】如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ,则有 ,OP AP θ+<>= ,由此,在Rt AOP ∆中,sin |sin(,)|2OP AP πθ=-<>= =【注意】直线与平面所成的角的范围是θ∈例1 如图所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. ①证明:AB ⊥A 1C ;②若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. ①证明 取AB 的中点O ,连接OC ,OA 1,A 1B . ∵CA =CB ,∴OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形,∴OA 1⊥AB .∵OC ∩OA 1=O , ∴AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .②解 由①知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,OC ⊂平面ABC , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两垂直.以O 为坐标原点,OA ,OA 1,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Oxyz .设AB =2,则A (1,0,0),A 1(0,3,0), C (0,0,3),B (-1,0,0),则BC →=(1,0,3),BB 1→=AA 1→=(-1,3,0), A 1C -→=(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC →=0,n ·BB 1→=0,即⎩⎨⎧x +3z =0,-x +3y =0,可取n =(3,1,-1).故cos 〈n ,A 1C -→〉=n ·A 1C -→|n ||A 1C -→|=-105,∴A 1C 与平面BB 1C 1C 所成角的正弦值为105.【变式1】在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,求AD 与平面AA 1C 1C 所成角的正弦值解析 取AC 的中点E ,连接BE ,则BE ⊥AC ,以B 为坐标原点,BE ,BB 1所在直线分别为x 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则A ⎝⎛⎭⎫32,12,0,D (0,0,1),B (0,0,0),E ⎝⎛⎭⎫32,0,0,则AD →=⎝⎛⎭⎫-32,-12,1,BE →=⎝⎛⎭⎫32,0,0. ∵平面ABC ⊥平面AA 1C 1C ,平面ABC ∩平面AA 1C 1C =AC ,BE ⊥AC ,BE ⊂平面ABC , ∴BE ⊥平面AA 1C 1C ,∴BE →=⎝⎛⎭⎫32,0,0为平面AA 1C 1C 的一个法向量.设AD 与平面AA 1C 1C 所成角为α,∵cos 〈AD →,BE →〉=-64,∴sin α=|cos 〈AD →,BE →〉|=64.题型二 利用法向量求点到平面的距离问题【知识准备】设P 是平面α外一点,P A 是α的一条斜线,交平面α于点A ,n 是平面α的法向量,那么向量PA 在n 方向上的正射影长OP 就是点A 到平面α的距离h ,在Rt AOP ∆中,OP = =例2 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Dxyz , 则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0).所以AG →=(0,1,0),GE →=(-2,1,1),GF →=(-1,-1,2).设n =(x ,y ,z )是平面EFG 的法向量,点A 到平面EFG 的距离为d , 则⎩⎪⎨⎪⎧n ·GE →=0,n ·GF →=0,所以⎩⎪⎨⎪⎧ -2x +y +z =0,-x -y +2z =0,所以⎩⎪⎨⎪⎧x =z ,y =z .令z =1,此时n =(1,1,1),所以d =|AG →·n ||n |=13=33,即点A 到平面EFG 的距离为33.A 级 学业水平达标1.在正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面A 1BD 所成的角的正弦值. 【答案:63】解析 以D 为坐标原点,DA →,DC →,DD 1→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),C 1(0,1,1),A (1,0,0),∴BC 1→=(-1,0,1),AC 1→=(-1,1,1),A 1B -→=(0,1,-1), A 1D -→=(-1,0,-1).∴AC 1→·A 1B -→=1-1=0,AC 1→·A 1D -→=1-1=0.∴AC 1⊥A 1B ,AC 1⊥A 1D .又A 1B ∩A 1D =A 1,且A 1B ,A 1D ⊂平面A 1BD ,∴AC 1⊥平面A 1BD . ∴AC 1→是平面A 1BD 的一个法向量.∴cos 〈BC 1→,AC 1→〉=BC 1→·AC 1→|BC 1→||AC 1→|=1+12×3=63.2.正三角形ABC 与正三角形BCD 所在的平面互相垂直,求直线CD 与平面ABD 所成角的正弦值.解析:取BC 的中点O ,连接AO ,DO ,建立如图所示的空间直角坐标系O -xyz .设BC =1,A ⎝⎛⎭⎫0,0,32,B ⎝⎛⎭⎫0,-12,0,C ⎝⎛⎭⎫0,12,0,D ⎝⎛⎭⎫32,0,0,所以BA ―→=⎝⎛⎭⎫0,12,32, BD ―→=⎝⎛⎭⎫32,12,0,CD ―→=⎝⎛⎭⎫32,-12,0. 设平面ABD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BA ―→=0,n ·BD ―→=0,所以⎩⎨⎧12y +32z =0,32x +12y =0,取x =1,则y=-3,z =1,所以n =(1,-3,1),所以cos 〈n ,CD ―→=32+325×1=155,因此直线CD 与平面ABD 所成角的正弦值为155.3.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BC ,A 1D 1的中点.(1)求直线A 1C 与DE 所成角的余弦值;【答案:1515】(2)求直线AD 与平面B 1EDF 所成角的余弦值;【答案:33】(3)求平面B 1EDF 与平面ABCD 所成锐二面角的余弦值.【答案:66】解 以A 为坐标原点,分别以AB ,AD ,AA 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz . 则A 1(0,0,a ),C (a ,a,0),D (0,a,0),E ⎝⎛⎭⎫a ,a2,0, (1) A 1C -→=(a ,a ,-a ),DE →=⎝⎛⎭⎫a ,-a 2,0,∴cos 〈A 1C -→,DE →〉=A 1C -→·DE →|A 1C -→||DE →|=1515,故A 1C 与DE 所成角的余弦值为1515.(2)连接DB 1,∵∠ADE =∠ADF ,∴AD 在平面B 1EDF 内的射影在∠EDF 的平分线上.又B 1EDF 为菱形,∴DB 1为∠EDF 的平分线,故直线AD 与平面B 1EDF 所成的角为∠ADB 1.由DA →=(0,-a,0),DB 1→=(a ,-a ,a ),∴cos 〈DA →,DB 1→〉=DA →·DB 1→|DA →||DB 1→|=33,又直线与平面所成角的范围是⎣⎡⎦⎤0,π2, (3)由已知得ED →=⎝⎛⎭⎫-a ,a 2,0, EB 1→=⎝⎛⎭⎫0,-a 2,a ,平面ABCD 的一个法向量为m =AA 1→=(0,0,a ).设平面B 1EDF的一个法向量为n =(1,y ,z ),由⎩⎪⎨⎪⎧n ·ED →=0,n ·EB 1→=0,得⎩⎪⎨⎪⎧y =2,z =1,∴n =(1,2,1),∴cos 〈n ,m 〉=m ·n |m ||n |=66,∴平面B 1EDF与平面ABCD 所成锐二面角的余弦值为66. B 级 应试能力达标4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC=6k (k >0).(1)求证:CD ⊥平面ADD 1A 1; (2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE .∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形,∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD .又BE ∥AD ,∴CD ⊥AD . ∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为坐标原点,DA ―→,DC ―→,DD 1―→的方向分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),∴AC ―→=(-4k,6k,0),AB 1―→=(0,3k,1),AA 1―→=(0,0,1).设平面AB 1C 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AC ―→·n =0,AB 1―→·n =0,即⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,可得平面AB 1C 的一个法向量为n =(3,2,-6k ).设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1―→,n 〉|=|AA 1―→·n ||AA 1―→|·|n |=|-6k |36k 2+13=67,解得k =1.故k 的值为1. 5.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面P AC ;(2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.解:(1)证明:∵P A ⊥底面ABCD ,BC ⊂平面ABCD ,∴P A ⊥BC ,∵∠ACB =90°,∴BC ⊥AC ,又P A ∩AC =A , ∴BC ⊥平面P AC .(2)设AP =h ,取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB .又P A ⊥底面ABCD ,∴P A ⊥AE ,P A ⊥AB ,故建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,h ),C ⎝⎛⎭⎫32,12,0,D ⎝⎛⎭⎫32,-12,0,B (0,2,0),PC ―→=⎝⎛⎭⎫32,12,-h ,DC ―→=(0,1,0),设平面PDC 的法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·PC ―→=0,n 1·DC ―→=0,即⎩⎪⎨⎪⎧32x 1+12y 1-hz 1=0,y 1=0,取x 1=h ,∴n 1=⎝⎛⎭⎫h ,0,32.由(1)知平面P AC 的一个法向量为BC ―→=⎝⎛⎭⎫32,-32,0,∴|cos 〈n 1,BC ―→〉|=32h h 2+34×3=55,解得h =3, 同理可求得平面PBC 的一个法向量n 2=(3,3,2),所以,点A 到平面PBC 的距离为 d =|AP ―→·n 2||n 2|=234=32.。

高中数学立体几何线面角公式

高中数学立体几何线面角公式

高中数学立体几何线面角公式
一、高中立体几何线面角的概念
在高中立体几何中,线面角是指一条直线与一个平面所成的最小角。

这个概念帮助我们更好地理解空间中线与面的关系,以及如何计算它们之间的角度。

二、线面角公式及其推导
1.线面角公式
线面角公式如下:
α= β + γ
其中,α表示线面角,β 表示直线与平面内的直线所成的角度,γ 表示平面内的直线与平面所成的角度。

2.推导
根据空间几何中的知识,我们知道:
β+ γ = 180°
因此,
α= 180° - γ
这样,我们就得到了线面角的计算公式。

三、线面角公式的应用
线面角公式在解决立体几何问题时非常有用,例如:
1.判断直线与平面是否垂直:若线面角为90°,则直线与平面垂直。

2.计算线面角的大小:根据线面角公式,求得线面角α的值。

3.求解空间几何中的角度和:利用线面角公式,可以计算出空间中多个角度之和。

四、总结与练习
线面角公式是高中立体几何中的重要知识点,理解和掌握这个公式,能够帮助我们更好地解决实际问题。

通过下面的练习,巩固所学知识:
1.已知直线l与平面α所成角为30°,直线l与平面β所成角为45°,求直线l与平面α、β的夹角。

2.一平面与直线l垂直,直线l与另一平面β成60°,求平面α与β之间的夹角。

高中立体几何线线角线面角表面积基础题

高中立体几何线线角线面角表面积基础题

C 1B 1A 1ABC D例1:如图,在正方体ABCD -A 1B 1C 1D 1中,AA 1=a ,E ,F 分别是BC ,DC 的中点. 求异面直线AD 1与EF 所成角的大小.例2:例3:如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,AD CD ⊥,DB 平分ADC ∠,E 为的PC 中点,1,22AD CD DB ===(1)证明://PA 平面BDE(2)证明:AC ⊥平面PBD(3)求直线BC 与平面PBD 所成角的正切值例4:如图3,在正三棱柱中,AB =4, ,点D 是BC 的中点,点E 在AC 上,且DE E.(Ⅰ)证明:平面平面; (Ⅱ)求直线AD 和平面所成角的正弦值。

例5:111ABC A B C -17AA =⊥1A 1A DE ⊥11ACC A 1A DE A 1C 1B 1 D 1DCB A EFABCD图2B ACD 图1 练习:1.如图(1),ABC ∆是等腰直角三角形,4AC BC ==,E 、F 分别为AC 、AB 的中点,将AEF ∆沿EF 折起, 使A '在平面BCEF 上的射影O 恰为EC 的中点,得到图(2). (1)求证:EF A C '⊥; (2)求四棱锥的表面积.3.如图,在底 面是菱形的四棱锥S —ABCD 中,SA=AB=2,2 2.SB SD == (1)证明:BD ⊥平面SAC ;(2)问:侧棱SD 上是否存在点E ,使得SB//平面ACE ?请证明你的结论; (3)若0120BAD ∠=,求几何体A —SBD 的表面积。

4. 如图,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,4,2AB AD CD ===.将ADE ∆沿AC 折起,使平面ADE ⊥平面ABC ,得到几何体D ABC -,如图2所示.(Ⅰ) 求证:BC ⊥平面ACD ; (Ⅱ) 求几何体D ABC -的表面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档