中考数学函数类应用题目综合测试卷

合集下载

2024年中考数学真题分类汇编(全国通用)(第一期)专题15 二次函数的实际应用(21题)(原卷版)

2024年中考数学真题分类汇编(全国通用)(第一期)专题15 二次函数的实际应用(21题)(原卷版)

专题15二次函数的实际应用(21题)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ;②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是()A .0B .1C .2D .32.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是()A .B .C .D .3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,23cm EF =,60E ∠=︒,现将菱形EFGH 以1cm /s的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是()A .B .C .D .二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是2cm .三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.9.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背背景◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.景1◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA ,从点O 处抛出一个小球,落到点33,2A ⎛⎫ ⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx =-+的一部分.(1)求抛物线的解析式;(2)求抛物线最高点的坐标;(3)斜坡上点B 处有一棵树,点B 是OA 的三等分点,小球恰好越过树的顶端C ,求这棵树的高度.21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠== .(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).。

专题四 二次函数综合题(含答案)2025年中考数学一轮题型专练(陕西)

专题四 二次函数综合题(含答案)2025年中考数学一轮题型专练(陕西)

专题四 二次函数综合题题型1 二次函数的实际应用二次函数的实际应用问题,在陕西中考2022,2023,2024年连续三年进行考查,其考查本质为二次函数表达式的应用,其主要为顶点式的考查,在表达式的基础上进行实践应用的考查,知x求y或知y求x,利用二次函数性质求最值,感受数学在实际问题中的应用.类型1 抛物线运动轨迹问题(2024·西安市莲湖区模拟)如图,在一场校园羽毛球比赛中,小华在点P选择吊球进行击球,当羽毛球飞行的水平距离是1 m时,达到最大高度3.2 m,建立如图所示的平面直角坐标系.羽毛球在空中的运行轨迹可以近似地看成抛物线的一部分,队友小乐则在点P选择扣球进行击球,羽毛球的飞行高度y1(单位:m)与水平距离x(单位:m)近似地满足一次函数关系y1=-0.4x+2.8.(1)根据如图所示的平面直角坐标系,求吊球时羽毛球满足的二次函数表达式.(2)在(1)的条件下,已知球网AB与y轴的水平距离OA=3 m,CA=2 m,且点A,C都在x轴上,实践发现击球和吊球这两种方式都能使羽毛球过网.要使球的落地点到点C的距离更近,请通过计算判断应该选择哪种击球方式?解题指南 (1)抓住最大高度这一特征,设出顶点式:y=a(x-h)2+k,然后将点P的坐标代入即可.(2)分别令一次函数与二次函数的y为0,对比两种方式在x轴的交点的横坐标到点C的横坐标的距离大小即可.类型2 以建筑为背景的“过桥”问题(2024·西工大模拟)陕北窑洞,具有十分浓厚的民俗风情和乡土气息.如图,某窑洞口的下部近似为矩形OABC,上部近似为一条抛物线.已知OA=3 m,AB=2 m,m.窑洞的最高点M(抛物线的顶点)离地面OA的距离为258(1)建立如图所示的平面直角坐标系,求抛物线的表达式.(2)若在窑洞口的上部要安装一个正方形窗户DEFG,使得点D,E在矩形OABC的边BC上,点F,G在抛物线上,那么这个正方形窗户DEFG的边长为多少米?解题指南 (1)借助点M为顶点,设出顶点式,然后将点B坐标代入顶点式即可.(2)设出小正方形DEFG的边长,然后用所设边长表示出点G的横坐标、纵坐标,最后代入(1)中抛物线的表达式解方程即可.(2024·西安新城区模拟)某地想将新建公园的正门设计为一个抛物线型拱门,设计部门给出了如下方案:将拱门图形放入平面直角坐标系中,如图,抛物线型拱门的跨度ON=24 m,拱高PE=8 m.其中,点N在x轴上,PE⊥ON,OE=EN.(1)求该抛物线的函数表达式.(2)现要在拱门中设置矩形框架,其周长越小越好(框架粗细忽略不计).设计部门给出了两个设计方案:方案一:矩形框架ABCD的周长记为C1,点A、D在抛物线上,边BC在ON上,其中AB=6 m.方案二:矩形框架A'B'C'D'的周长记为C2,点A',D'在抛物线上,边B'C'在ON上,其中A'B'=4 m.求这两个方案中,矩形框架的周长C1,C2,并比较C1,C2的大小.类型3 以“悬挂线”为背景解决高度问题如图,在一个斜坡上架设两个塔柱AB,CD(可看作两条竖直的线段),塔柱间挂起的电缆线下垂可以近似地看成抛物线的形状.两根塔柱的高度满足AB=CD=27 m,塔柱AB与CD之间的水平距离为60 m,且两个塔柱底端点D与点B的高度差为12 m.以点A为坐标原点,1 m为单位长度构建平面直角坐标系. (1)求点B,C,D的坐标.x2一样,且电(2)经过测量,AC段所挂电缆线对应的抛物线的形状与抛物线y=1100缆线距离斜坡面竖直高度至少为15.5 m时,才符合设计安全要求.请结合所学知识判断上述电缆线的架设是否符合安全要求?并说明理由.(2024·陕师大附中模拟)在元旦来临之际,学校安排各班在教室进行联欢.八(2)班同学准备装点一下教室.他们在屋顶对角A,B两点之间拉了一根彩带,彩带自然下垂后呈抛物线形状.若以两面墙交线AO为y轴,以点A正下方的墙角点O为原点建立平面直角坐标系,此时彩带呈现出的抛物线表达式为y=ax2-0.6x+3.5.已知屋顶对角线AB长12 m.(1)a= ,该抛物线的顶点坐标为.(2)小军想从屋顶正中心C(C为AB的中点)系一根绳子CD.将正下方彩带最低点向上提起,这样两侧的彩带就形成了两个对称的新抛物线形状(如图所示).要使两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m.求这根绳子的下端D到地面的距离.题型2 图形面积探究类型1 面积、线段最值探究二次函数中面积问题,基本上都可以转化为线段相关问题,线段的三种表示方式:①水平型,②垂直型,③斜型.以边为分类标准,可采取不同方法进行面积的求解,现对不同类型线段的表示作以说明.(1)线段AB∥y轴时,点A,B横坐标相等,则AB=|y1-y2|=|y2-y1|=y1-y2.(2)线段BC∥x轴时,点B,C纵坐标相等,则BC=|x2-x1|=|x1-x2|=x2-x1.(3)线段AC与x轴,y轴不平行时,在Rt△ABC中,AC=AB2+BC2=(x1-x2)2+(y1-y2)2.第一步,过动点向x轴作垂线,与定边产生交点第二步,设动点坐标,表示交点坐标第三步,表示纵向线段长度|y上-y下|第四步,利用水平宽铅垂高表示三角形面积:S=12(y 上-y 下)(x 右-x 左)【原创好题】“水平宽”与“铅垂高”的运用:已知△ABC 的三个顶点坐标分别为A(x A ,y A ),B(x B ,y B ),C(x C ,y C ),用含有A,B,C 坐标的方式表示出△ABC 的面积.解题指南 (1)在平面直角坐标系中作△ABC,要求点A,B 在点C 的左、右两侧,经过点C 作x 轴的垂线交AB 于点D,则△ABC 被分成两部分,即S △ABC =S △ACD +S △BCD .(2)过点A 作△ADC 的高h 1,过点B 作△DBC 的高h 2,所以△ACD 与△BCD 的面积表示为S △ADC =12CD·h 1,S △BCD =12CD·h 2.(3)所以S △ABC =S △ADC +S △BCD =12CD·h 1+12CD·h 2=12CD·(h 1+h 2).(4)其中h 1与h 2的和可以看作点A 与点B 的水平间的距离,因此称之为“水平宽”,h 1+h 2=|x B -x A |,CD 是点C 与点D 的竖直间的距离,称之为“铅垂高”,即CD=|y D -y C |,故S △ABC =S △ACD +S △BCD =12|y D -y C |·|x B -x A |.1.如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A,B 两点,抛物线y=-x 2+bx+c 过A,B 两点,D 为线段AB 上一动点,过点D 作CD ⊥x 轴于点C,交抛物线于点E.(1)求抛物线的表达式.(2)求△ABE 面积的最大值.2.如图,抛物线y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标.(2)若P为线段BC上的一点(不与点B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N.当线段PM的长度最大时,求点M的坐标.类型2 面积关系探究(2018.T24)x2+bx与x轴交于O,A 【改编】在平面直角坐标系xOy中,已知抛物线y=-43两点,B(1,4)在抛物线上.若P是抛物线上一点,且在直线AB的上方,且满足△OAB 的面积是△PAB面积的2倍,求点P的坐标.解题指南 (1)第一步,将点B的坐标代入抛物线的表达式,求出b的值,根据A,B两点的坐标,求出直线AB的表达式;(2)第二步,借助三角形的面积公式,求出△OAB的面积,根据△OAB与△PAB的面积关系求出△PAB的面积;(3)第三步,设点P的坐标为t,-43t2+163t,过点P作x轴的垂线,与AB交于点N,并结合直线AB的表达式,表示出点N的坐标;(4)第四步,借助“水平宽,铅垂高”,求出PN的长度,用含有t的式子表示出PN的长度,构造方程求解即可.1.如图,抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为x+3交于C,D两点,连接BD,AD.(3,0),抛物线与直线y=-32(1)求m的值.(2)求A,D两点的坐标.(3)若抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.2.如图,在平面直角坐标系中,点A(0,-1),抛物线y=-x2+bx+c经过点B(4,5)和C(5,0).(1)求抛物线的表达式.(2)连接AB,BC,求∠ABC的正切值.(3)在抛物线的对称轴上,是否存在点D,使得S△ABD=S△ABC?若存在,直接写出点D 的坐标;若不存在,请说明理由.3.已知抛物线y=-x2+bx+c过点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式.(2)P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P 的坐标.(3)在(2)的条件下,是否存在M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.解题指南 (1)由交点式可直接得出抛物线的解析式.(2)设P(1,m),根据列出方程,进而求得点P的坐标.(3)作PQ∥BC交y轴于点Q,作MN∥BC交y轴于点N,先求出PQ的解析式,进而求得MN的解析式,进一步求得结果. 借助“同底等高”找等面积的方法在平面直角坐标系中有△ABC,分别在BC所在直线的两侧找出一点P和Q,使得S△PBC=S△QBC=S△ABC.操作方式:(1)根据要求可知△PBC和△QBC均与△ABC具有共同的底边BC,要使它们的面积相等,只需要它们的高相等即可,因此可以设△PBC与△QBC的高均为h;(2)确定高以后,过点A作BC的平行线,则在所作平行线上存在一点P满足S△PBC=S△ABC;(3)如图,将BC所在直线向下平移AO'个单位长度,过A'作BC的平行线,则该直线上存在一点Q满足S△QBC=S△ABC;(4)运用“同底等高”法时,务必考虑不同位置的情况;(5)进行面积计算时,可以直接利用三角形面积公式求解.题型3 特殊三角形问题探究类型1 等腰三角形问题探究等腰三角形存在问题,可以分为两个方向来解决,几何法和代数法,其中几何法的优势在于比较直观地得到结果,对几何图形要求较高;代数法以解析几何为背景可更快地找到等量关系,方法较为单一,等腰三角形问题做完之后一定要验证是否出现三点共线的情况.方法一 几何法(1)两圆一线找出点;(2)利用勾股、相似、三角函数等求线段长,由线段长求得点坐标方法二 代数法(1)表示出三个点坐标A,B,C;(2)由点坐标表示出三条线段AB,AC,BC;(3)分类讨论①AB=AC;②AB=BC;③AC=BC;(4)列出方程求解(2024·铁一中模拟)如图,在平面直角坐标系中,抛物线L的顶点E的坐标为(-2,8),且过点B(0,6),与x轴交于M,N两点.(1)求该抛物线L的表达式.(2)设抛物线L关于y轴对称后的抛物线为L',其顶点记为点D,连接MD,在抛物线L'对称轴上是否存在点Q,使得以点M,D,Q为顶点的三角形为等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(2024·西咸新区模拟)如图,抛物线L:y=ax2+bx-3(a、b为常数,且a≠0)与x轴交于点A(-1,0),B(3,0),与y轴交于点C.将抛物线L向右平移1个单位长度得到抛物线L'.(1)求抛物线L的函数表达式.(2)连接AC,探究抛物线L'的对称轴直线l上是否存在点P,使得以点A,C,P为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.类型2 直角三角形问题探究直角三角形存在问题,菱形中对角线垂直,矩形中的内角为直角,有下列两个方向可以帮助解决问题,不同的方法适用不同方向的题目,注意区分其方法.一、勾股定理若AC2+BC2=AB2,则△ABC为直角三角形二、构造“K”字型相似过直角顶点作坐标轴的平行线,过其他两点向平行线作垂直,出现“一线三等角”模型,利用“一线三等角”的相似模型,构建方程解决问题已知抛物线L:y=ax2-2ax-8a(a≠0)与x轴交于点A,点B,且点A在点B的左侧,与y轴交于点C.(1)求出点A与点B的坐标.(2)当△ABC是以AB为斜边的直角三角形时,求抛物线L的表达式.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c(a≠0)交x轴于点A(-5,0),B(-1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,E为抛物线C2上一点,若△DOE是以DO为直角边的直角三角形,求点E的坐标. 直角三角形中的找点方法和计算方法找点方法:示例:如图,在平面内有A,B两点,试着找出一点C,使得A,B,C三点构成的三角形为直角三角形.分两种情况讨论:当AB为直角边时,{过点A作AB的垂线l1,过点B作AB的垂线l2;当AB为斜边时,以AB为直径作圆.如图,在直线l1,l2上的点C满足△ABC为直角三角形,但要注意一点:点C不与A,B两点重合.我们将这种找点C的方法称为“两线一圆”.计算方法:(1)利用勾股定理构造方程求解;(2)以“K”字型搭建相似三角形,列比例式构造方程求解.类型3 等腰直角三角形问题探究等腰直角三角形相关问题,以等腰直角三角形和正方形问题,主要解题方法相对统一,注意如何构图能直观得到“K”字全等是解决问题的关键之处.(1)过直角顶点作坐标轴平行线,构造“K”字全等(2)方法一:设某小边长度.方法二:设点坐标,表示直角三角形中的直角边(3)利用某纵向或横向线段构建等式(x+1)(x-5)与x轴交于A,B两点,与y轴交于点C.如果P是如图,抛物线y=-25抛物线上一点,M是该抛物线对称轴上的点,当△OMP是以OM为斜边的等腰直角三角形时,求点P的坐标.解题指南 第一步,过直角顶点作平行y轴的垂线,分别过另两个顶点作垂直,构造“K”字全等;第二步,利用坐标分别表示两直角三角形的直角边;第三步,利用某边相等构造方程.(2024·高新一中模拟)如图,在平面直角坐标系中,抛物线L:y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,3).(1)求出抛物线L的表达式和顶点的坐标.(2)P是抛物线L的对称轴右侧图象上的一点,过点P作x的垂线交x轴于点Q,作抛物线L关于直线PQ对称抛物线L',则C关于直线PQ的对称点为C',若△PCC'为等腰直角三角形,求出抛物线L'的表达式.题型4 三角形关系问题类型1 与相似三角形结合问题三角形的关系问题是陕西考试中非常常见的一个类型,中考中多次连续出现,相似问题的处理方法也相对较为固定,以固定三角形为参照,找到定角,以边为分类标准,进行分类讨论.主要有两个方法.方法一:利用一角相等,邻边成比例证明相似方法二:两组角相等的三角形相似分析目标三角形:第一类:找一角相等,用邻边成比例.第二类:找一角相等(多为90°问题),找另一角相等.方法总结:(1)分动、定三角形;(2)找等角;(3)表示边或者找另一角相等.(2024·曲江一中模拟)如图,抛物线y=ax 2+bx 经过坐标原点O 与点A(3,0),正比例函数y=kx 与抛物线交于点B 72,74.(1)求该抛物线的函数表达式.(2)P 是第四象限抛物线上的一个动点,过点P 作PM ⊥x 轴于点N,交OB 于点M,是否存在点P,使得△OMN 与以点N,A,P 为顶点的三角形相似?若存在,请求出点P 的坐标;若不存在,请说明理由.(2024·陕师大附中模拟)已知抛物线L 1:y=x 2+bx+c 与x 轴交于点A,B(点A 在点B 的左侧),与y 轴交于点C(0,-3),对称轴为直线x=1.(1)求此二次函数表达式和点A,B 的坐标.(2)P 为第四象限内抛物线L 1上一动点,将抛物线L 1平移得到抛物线L 2,抛物线L 2的顶点为点P,抛物线L 2与y 轴交于点E,过点P 作y 轴的垂线交y 轴于点D.是否存在点P,使以点P,D,E 为顶点的三角形与△AOC 相似?如果存在,请写出平移过程,并说明理由.类型2 与全等三角形结合问题1.全等为特殊的相似,相似比为1,方法与相似一致.2.注意相等角的邻边分类情况.【改编】如图,抛物线y=-23x 2+103x+4的图象与x 轴交于A,B 两点,与y 轴的正半轴交于点C,过点C 的直线y=-43x+4与x 轴交于点D.若M 是抛物线上位于第一象限的一动点,过点M 作ME ⊥CD 于点E,MF ∥x 轴交直线CD 于点F,当△MEF ≌△COD 时,求出点M 的坐标.解题指南 当△MEF ≌△COD 时,(1)找准对应角、边.结合关系式可知,∠MEF=∠COD,∠MFE=∠CDO,MF=CD.(2)根据直线CD 的表达式求出线段CD 的长度.由点M 在抛物线上,可以设点M的坐标为m,-23m 2+103m+4,再由MF ∥x 轴,得点F 的纵坐标.根据全等三角形的对应边相等可以得出点F 的横坐标为m-5.(3)由点F 在直线CD 上,将点F 的坐标代入直线CD 的表达式中,求出m 的值.已知经过原点O 的抛物线y=-x 2+4x 与x 轴的另一个交点为A.(1)求点A 的坐标及抛物线的对称轴.(2)B 是OA 的中点,N 是y 轴正半轴上一点,在第一象限内的抛物线上是否存在点M,使得△OMN 与△OBM 全等,且点B 与点N 为对应点?若存在,请求出点M 的坐标;若不存在,请说明理由. 与全等三角形结合问题的求解步骤(1)全等三角形的问题与相似三角形的问题步骤类似,均是先列出三角形的对应关系式,再根据关系式找出对应边相等;(2)借助对应边相等,将边与边的长度关系用点的坐标进行表示,然后运用“两点间距离公式”构造方程求解.题型5 特殊四边形问题探究类型1 平行四边形问题探究平行四边形问题,一般分为三定一动,两定两动问题,选取固定的两个点为分类标准,①以某边为边时;②以某边为对角线时.第一步,寻找分类标准;第二步,平移点,找关系(注意:从A到B和从B到A);第三步,代入关系求值(2024·西工大附中模拟)如图,抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,3),B(-3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的表达式.(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N.使点M,N,C,E是平行四边形的四个顶点?若存在,求出点M的坐标;若不存在,请说明理由.【改编】已知点A(-1,0)在抛物线L:y=x2-x-2上,抛物线L'与抛物线L关于原点对称,点A的对应点为点A',是否在抛物线L上存在一点P,在抛物线L'上存在一点Q,使得以AA'为边,且以A,A',P,Q为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. 平行四边形中坐标的计算如图1,在平行四边形ABDC 中,关于坐标的计算——平移法则:x B -x A =x D -x C ,y B -y A =y D -y C ,x A -x C =x B -x D ,y A -y C =y B -y D .如图2,在平行四边形ADBC 中,关于坐标的计算——中点坐标公式:x M =x A +x B 2=x C +x D 2,y M =y A +y B 2=y C +y D 2.类型2 菱形问题探究菱形存在问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线垂直或邻边相等即可得菱形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A +x C 2=x B +x D 2;y A +y C 2=y B +y D 2.(3)对角线垂直:可参照直角存在问题.邻边相等:可参照等腰存在问题.(4)平移型:先平行四边形,再菱形.翻折型:先等腰,再菱形.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为等腰存在问题,可以利用等腰存在问题策略解决问题如图,抛物线y=x 2+bx+c 与x 轴交于A,B 两点,与y 轴交于点C,OA=2,OC=6,连接AC 和BC.(1)求抛物线的函数表达式.(2)若M是y轴上的动点,在坐标平面内是否存在点N,使以A,C,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.类型3 矩形问题探究矩形存在性问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线相等或一内角为90°即可得到矩形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)方向一 对角线相等:(x A-x C)2+(y A-y C)2=(x B-x D)2+(y B-y D)2.方向二 有一角为90°.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为直角存在问题,可以利用直角存在问题策略解决问题已知抛物线L:y=ax2+bx(a≠0)经过点B(6,0),C(3,9).(1)求抛物线L的表达式.(2)若抛物线L'与抛物线L关于x轴对称,P,Q(点P,Q不与点O,B重合)分别是抛物线L,L'上的动点,连接PO,PB,QO,QB,问四边形OPBQ能否为矩形?若能,求出满足条件的点P和点Q的坐标;若不能,请说明理由.已知抛物线L:y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求A,B,C三点的坐标.(2)抛物线L平移后得到抛物线L',点A,C在抛物线L'上的对应点分别为点A',C',若以A,C,A',C'为顶点的四边形是面积为20的矩形,求平移后的抛物线L'的表达式.类型4 正方形问题探究(在菱形的基础上增加对角线相等)(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)平行四边形题基础上加等腰直角三角形问题.,正方形ABCD的边AB 如图,一条抛物线y=ax2+bx(a≠0)的顶点坐标为2,83落在x轴的正半轴上,点C,D在这条抛物线上.(1)求这条抛物线的表达式.(2)求正方形ABCD的边长.解题指南 (1)已知顶点,可直接设抛物线的顶点式:y=a(x-h)2+k,将点的坐标代入计算即可.(2)①在正方形中,四条边均相等;②设出正方形的边长,并根据所设边长表示出正方形ABCD的顶点坐标;③注意观察正方形ABCD的顶点C,D在抛物线上;④代入相应点的坐标求出所设的边长即可.x2+bx+c的图象L经过原点,且与x轴的另一个交点为(8,0).已知二次函数y=-13(1)求该二次函数的表达式.(2)作x轴的平行线,交L于A,B两点(点A在点B的左侧),过A,B两点分别作x 轴的垂线,垂足分别为D,C.当以A,B,C,D为顶点的四边形是正方形时,求点A的坐标. 借助抛物线判定正方形的思路步骤1.明确在抛物线上的正方形的两个顶点;2.借助抛物线表达式y=ax2+bx+c(a≠0),设出其中一个顶点坐标为(x,ax2+bx+c),然后利用抛物线对称轴表示出另一个顶点坐标;3.根据正方形四条边相等构造一元二次方程求解即可.题型6 角度问题探究角相关问题是二次函数中相对较为综合性的问题,在近几年中考中也常出现在各个省市的中考题中,问题最终都会落到以下问题上来.等角问题,可直接用等角的性质来处理问题.解决策略:(1)寻找相似,出现等角;(2)利用三角函数找等角;(3)利用轴对称来找等角.【改编】在平面直角坐标系xOy中,已知抛物线y=-x2+4x-3与x轴分别交于A,B两点,且点A在点B的左侧.在抛物线上是否存在一点D,使得∠DOA=45°?若存在,求出点D的坐标;若不存在,请说明理由.解题指南 以平面直角坐标系为背景来探究角度问题,常用的思路为借助三角函数构造方程求解.本题具体步骤如下:第一步,根据∠DOA=45°,联想tan∠DOA=1;第二步,根据点D在抛物线上,可以过点D作x轴的垂线,记垂足为H,在△DOH中,tan∠DOH=DH OH;第三步,由点D在抛物线上,设点D的坐标为(t,-t2+4t-3);第四步,根据DH=|y D|=|-t2+4t-3|,OH=|t|,构造方程求解即可.已知抛物线L:y=-23x2+bx+c,与y轴的交点为C(0,2),与x轴的交点分别为A(3,0),B(点A在点B右侧).(1)求抛物线的表达式.(2)将抛物线沿x轴向左平移m(m>0)个单位长度,所得的抛物线与x轴的左交点为M,与y轴的交点为N,若∠NMO=∠CAO,求m的值.参考答案题型1 二次函数的实际应用类型1 抛物线运动轨迹问题例1 解析:(1)在y 1=-0.4x+2.8中,令x=0,则y 1=2.8,∴P (0,2.8).根据题意,二次函数图象的顶点坐标为(1,3.2).设二次函数的表达式为y=a (x-1)2+3.2,把P (0,2.8)代入y=a (x-1)2+3.2,得a+3.2=2.8,解得a=-0.4,∴吊球时羽毛球满足的二次函数表达式y=-0.4(x-1)2+3.2.(2)吊球时,令y=0,则-0.4(x-1)2+3.2=0,解得x 1=1+22,x 2=1-22(舍去),扣球时,令y=0,则-0.4x+2.8=0,解得x=7.∵OA=3 m,CA=2 m,∴OC=OA+AC=5.∵7-5=2,|22+1-5|=4-22<2,∴选择吊球时,球的落地点到点C 的距离更近.类型2 以建筑为背景的“过桥”问题例2 解析:(1)由题意得点M ,B 的坐标分别为32,258,(3,2).设抛物线的表达式为y=a x-322+258,将点B 的坐标代入上式得2=a 3-322+258,解得a=-12,∴抛物线的表达式为y=-12x-322+258.(2)设正方形的边长为2m.把点G 32-m ,2+2m 代入抛物线表达式,得2+2m=-1232-m-322+258,解得m=12(负值已舍去),∴正方形窗户DEFG 的边长为1 m .变式设问 解析:(1)由题意得抛物线的顶点坐标为(12,8),N (24,0).设y=a (x-12)2+8,把N (24,0)代入表达式中,得a=-118,∴该抛物线的函数表达式为y=-118(x-12)2+8.(2)方案一:令y=6,即6=-118(x-12)2+8.解得x 1=6,x 2=18,∴BC=AD=12.又∵AB=CD=6,∴矩形ABCD 的周长C 1=2×12+2×6=36(m).方案二:令y=4,即4=-118(x-12)2+8,解得x 1=12-62,x 2=12+62,∴B'C'=A'D'=12+62-(12-62)=122.又∵A'B'=C'D'=4,∴矩形A'B'C'D'的周长C 2=2×122+2×4=(242+8)m .∵C 1=36=28+8=4×7+8,C 2=242+8=4×62+8,∴36<242+8,即C 1<C 2.类型3 以“悬挂线”为背景解决高度问题例3 解析:(1)如图,过点C 作CE ⊥y 轴,垂足为E ,过点D 作DF ⊥y 轴,垂足为F.记CD 与x 轴相交于点G.根据题意,得点B 的坐标是(0,-27).∵FB=12,则GD=OF=OB-FB=27-12=15,OG=FD=EC=60,CG=CD-GD=27-15=12,∴点C 的坐标是(60,12),点D 的坐标是(60,-15).(2)符合安全要求.理由:设AC 段所挂电缆线对应的抛物线的函数表达式为y=1100x 2+bx ,将点C (60,12)代入表达式中,得12=1100×602+60b ,解得b=-25,∴y=1100x 2-25x.由点B (0,-27),D (60,-15)可知直线BD 的表达式为y=15x-27.记M 为抛物线上一点,过点M 作x 轴的垂线与BD 交于点N.设点M m ,1100m 2-25m ,则点N m ,15m-27,故MN=1100m 2-25m-15m-27=1100(m-30)2+18≥18>15.5,∴电缆线距离斜坡面竖直高度的最小值为18 m,高于安全需要的距离15.5 m,故符合安全要求.变式设问 解析:(1)0.05;(6,1.7).提示:由题意得抛物线的对称轴为直线x=6,则A (0,3.5),B (12,3.5),∴144a-7.2+3.5=3.5,解得a=0.05,∴抛物线的表达式为y=0.05x 2-0.6x+3.5.当x=6时,y=0.05x 2-0.6x+3.5=1.7,即该抛物线的顶点坐标为(6,1.7),(2)∵两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m,∴左边新抛物线的顶点坐标为(3.5,2).设左边新抛物线的表达式为y=a'(x-3.5)2+2,将点A 的坐标代入上式得3.5=a'(0-3.5)2+2,解得a'=649,∴左侧抛物线的表达式为y=649(x-3.5)2+2.当x=6时,y=649(6-3.5)2+2=27198,∴这根绳子的下端D 到地面的距高为27198m .题型2 图形面积探究类型1 面积、线段最值探究例1 解析:如图,过点C 作垂直于x 轴的直线,与AB 交于点D ,分别过点A ,B 作CD 的垂线段h 1,h 2,即S △ABC =S △ACD +S △BCD .∵S △ADC =12CD ·h 1,S △BCD =12CD ·h 2,∴S △ABC =S △ACD +S △BCD =12CD ·(h 1+h 2).又∵CD=|y D -y C |,h 1+h 2=|x B -x A |,∴S △ABC =S △ACD +S △BCD =12(y D -y C)(x B -x A ).变式设问 1.解析:(1)在一次函数y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A (-4,0),B (0,4).∵点A (-4,0),B (0,4)在抛物线y=-x 2+bx+c 上,∴{-16-4b +c =0,c =4,解得{b =-3,c =4,∴抛物线的表达式为y=-x 2-3x+4.(2)设点C 的坐标为(m ,0)(-4≤m ≤0),则点E 的坐标为(m ,-m 2-3m+4),点D 的坐标为(m ,m+4),。

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(55题)一 、单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-32.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( )A .2-B .1-C .0D .25.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22cax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .48.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x为自变量)与x 轴有交点,则线段AB 长为( ) A .10B .12C .13D .159.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( ) A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)12.(2023·四川南充·统考中考真题)抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m 若21m -≤≤,则实数k 的取值范围是( ) A .2114k -≤≤ B .k ≤214-或1k ≥ C .5k -≤≤98D .5k ≤-或k ≥9813.(2023·安徽·统考中考真题)已知反比例函数()0ky k x=≠在第一象限内的图象与一次函数y x b =-+的图象如图所示,则函数21y x bx k =-+-的图象可能为( )A .B .C .D .14.(2023·四川广安·统考中考真题)如图所示 二次函数2(y ax bx c a b c =++、、为常数 0)a ≠的图象与x 轴交于点()()3,0,1,0A B -.有下列结论:①0abc > ①若点()12,y -和()20.5,y -均在抛物线上,则12y y < ①50a b c -+= ①40a c +>.其中正确的有( )A .1个B .2个C .3个D .4个15.(2023·四川遂宁·统考中考真题)抛物线()20y ax bx c a =++≠的图象如图所示 对称轴为直线2x =-.下列说法:①0abc < ①30c a -> ①()242a ab at at b -+≥(t 为全体实数) ①若图象上存在点()11,A x y 和点()22,B x y 当123m x x m <<<+时 满足12y y =,则m 的取值范围为52m -<<-.其中正确的个数有( )A .1个B .2个C .3个D .4个16.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0 对称轴为直线=1x - 下列四个结论:①<0abc ①420a b c -+< ①30a c += ①当31x -<<时20ax bx c ++< 其中正确结论的个数为( )A .1个B .2个C .3个D .4个17.(2023·浙江宁波·统考中考真题)已知二次函数2(31)3(0)y ax a x a =-++≠ 下列说法正确的是( ) A .点(1,2)在该函数的图象上 B .当1a =且13x -≤≤时 08y ≤≤ C .该函数的图象与x 轴一定有交点D .当0a >时 该函数图象的对称轴一定在直线32x =的左侧 18.(2023·新疆·统考中考真题)如图,在平面直角坐标系中 直线1y mx n =+与抛物线223y ax bx =+-相交于点A B .结合图象 判断下列结论:①当23x -<<时 12y y > ①3x =是方程230ax bx +-=的一个解①若()11,t - ()24,t 是抛物线上的两点,则12t t < ①对于抛物线 223y ax bx =+- 当23x -<<时 2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个19.(2023·山东东营·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点A B 与y 轴交于点C 对称轴为直线=1x - 若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c -+>C .2x =是关于x 的一元二次方程()200ax bx c a ++=≠的一个根D .点()11,x y ()22,x y 在抛物线上 当121x x >>-时120y y <<20.(2023·四川乐山·统考中考真题)如图,抛物线2y ax bx c =++经过点(1,0)(,0)A B m -、 且12m << 有下列结论:①0b < ①0a b +> ①0a c <<- ①若点1225,,,33C y D y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭在抛物线上,则12y y >.其中 正确的结论有( )A .4个B .3个C .2个D .1个21.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足(),2k k 我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数 1t ≠-)总有两个不同的倍值点,则s 的取值范围是( ) A .1s <- B .0s < C .01s << D .10s -<<22.(2023·山东烟台·统考中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫- ⎪⎝⎭与x 轴的一个交点位于0合和1之间,则以下结论:①0abc > ①20b c +> ①若图象经过点()()123,,3,y y -,则12y y > ①若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A .1B .2C .3D .423.(2023·湖南·统考中考真题)已知0m n >> 若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( ) A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<24.(2023·湖北随州·统考中考真题)如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),对称轴为直线2x =.则下列结论正确的有( ) ①0abc < ①0a b c -+>①方程20cx bx a ++=的两个根为1211,26x x ==-①抛物线上有两点()11,P x y 和()22,Q x y 若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个25.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则( ) A .当2k =时 函数y 的最小值为a - B .当2k =时 函数y 的最小值为2a - C .当4k =时 函数y 的最小值为a - D .当4k =时 函数y 的最小值为2a -26.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数 )0a ≠上的点 现有以下四个结论:①该抛物线的对称轴是直线2x =- ①点()0,3在抛物线上 ①若122x x >>-,则12y y > ①若12y y =,则122x x +=-其中 正确结论的个数为( )A .1个B .2个C .3个D .4个27.(2023·山东聊城·统考中考真题)已知二次函数()20y ax bx c a =++≠的部分图象如图所示 图象经过点()0,2 其对称轴为直线=1x -.下列结论:①30a c +> ①若点()14,y - ()23,y 均在二次函数图象上,则12y y > ①关于x 的一元二次方程21ax bx c ++=-有两个相等的实数根 ①满足22ax bx c ++>的x 的取值范围为20x -<<.其中正确结论的个数为( ).A .1个B .2个C .3个D .4个28.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点” 如:(1,3),(2,6),(0,0)A B C --等都是三倍点” 在31x -<<的范围内 若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是( ) A .114c -≤< B .43c -≤<-C .154c -<<D .45c -≤<29.(2023·广东·统考中考真题)如图,抛物线2y ax c =+经过正方形OABC 的三个顶点A B C 点B 在y 轴上,则ac 的值为( )A .1-B .2-C .3-D .4-30.(2023·湖北·统考中考真题)拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论: ①0abc < ①240b ac -> ①320b c += ①若点()()122P m y Q m y -,,,在抛物线上 且12y y <,则1m ≤-.其中正确的结论有( ) A .1个B .2个C .3个D .4个31.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数()20y ax bx c a =++≠图像的一部分与x 轴的一个交点坐标为()3,0 对称轴为直线1x = 结合图像给出下列结论: ①0abc > ①2b a = ①30a c +=①关于x 的一元二次方程220(0)ax bx c k a +++=≠有两个不相等的实数根①若点()1,m y ()22,y m -+均在该二次函数图像上,则12y y =.其中正确结论的个数是( )A .4B .3C .2D .132.(2023·湖北鄂州·统考中考真题)如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x = 且过点()1,0- 顶点在第一象限 其部分图象如图所示 给出以下结论:①0ab < ①420a b c ++> ①30a c +>①若()11,A x y ()22,B x y (其中12x x <)是抛物线上的两点 且122x x +>,则12y y > 其中正确的选项是( )A .①①①B .①①①C .①①①D .①①①33.(2023·山东枣庄·统考中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示 对称轴是直线1x = 下列结论:①0abc < ①方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3 ①若()1230,,,2y y ⎛⎫⎪⎝⎭是抛物线上的两点 那么12y y < ①1120a c +> ①对于任意实数m 都有()m am b a b +≥+ 其中正确结论的个数是( )A .5B .4C .3D .234.(2023·湖北十堰·统考中考真题)已知点()11,A x y 在直线319y x =+上 点()()2233,,,B x y C x y 在抛物线241y x x =+-上 若123y y y ==且123x x x <<,则123x x x ++的取值范围是( )A .123129x x x -<++<-B .12386x x x -<++<-C .12390x x x -<++<D .12361x x x -<++<35.(2023·湖北黄冈·统考中考真题)已知二次函数2(0)y ax bx c a =++<的图象与x 轴的一个交点坐标为(1,0)-对称轴为直线1x = 下列论中:①0a b c -+= ①若点()()()1233,,2,,4,y y y -均在该二次函数图象上,则123y y y << ①若m 为任意实数,则24am bm c a ++≤- ①方程210ax bx c +++=的两实数根为12,x x 且12x x <,则121,3x x <->.正确结论的序号为( )A .①①①B .①①①C .①①①D .①①36.(2023·四川·统考中考真题)已知抛物线2y ax bx c =++(a b c 是常数且a<0)过()1,0-和()0m ,两点 且34m << 下列四个结论:0abc >① 30a c +>② ③若抛物线过点()1,4,则213a -<<- ④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有( )A .1个B .2个C .3个D .4个二 多选题37.(2023·湖南·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()3,0,则下列结论中正确的是( )A .0a >B .0c >C .240b ac -<D .930a b c ++=三 填空题38.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =-++> 若点(,3)P m 在该函数的图象上 且0m ≠,则m 的值为________.39.(2023·山东滨州·统考中考真题)要修一个圆形喷水池 在池中心竖直安装一根水管 水管的顶端安一个喷水头 使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高 高度为3m 水柱落地处离池中心3m 水管长度应为____________.40.(2023·湖南郴州·统考中考真题)抛物线26y x x c =-+与x 轴只有一个交点,则c =________.41.(2023·上海·统考中考真题)一个二次函数2y ax bx c =++的顶点在y 轴正半轴上 且其对称轴左侧的部分是上升的 那么这个二次函数的解析式可以是________.42.(2023·吉林长春·统考中考真题)2023年5月8日 C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场 穿过隆重的“水门礼”(寓意“接风洗尘” 是国际民航中高级别的礼仪).如图① 在一次“水门礼”的预演中 两辆消防车面向飞机喷射水柱 喷射的两条水柱近似看作形状相同的地物线的一部分.如图① 当两辆消防车喷水口A B 的水平距离为80米时 两条水柱在物线的顶点H 处相遇 此时相遇点H 距地面20米 喷水口A B 距地面均为4米.若两辆消防车同时后退10米 两条水柱的形状及喷水口A ' B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面__________米.43.(2023·福建·统考中考真题)已知抛物线22(0)y ax ax b a =-+>经过()()1223,,1,A n y B n y +-两点 若,A B 分别位于抛物线对称轴的两侧 且12y y <,则n 的取值范围是___________.44.(2023·内蒙古赤峰·统考中考真题)如图,抛物线265y x x =-+与x 轴交于点A B 与y 轴交于点C 点()2,D m 在抛物线上 点E 在直线BC 上 若2DEB DCB ∠=∠,则点E 的坐标是____________.45.(2023·湖北武汉·统考中考真题)抛物线2y ax bx c =++(,,a b c 是常数 0c <)经过(1,1),(,0),(,0)m n 三点 且3n ≥.下列四个结论:①0b <①244ac b a -<①当3n =时 若点(2,)t 在该抛物线上,则1t >①若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则103m <≤. 其中正确的是________(填写序号).46.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++经过点()30A -,顶点为()1,M m - 且抛物线与y 轴的交点B 在()02-,和()03-,之间(不含端点),则下列结论:①当31x -≤≤时 0y ≤①当ABM 33 3a = ①当ABM 为直角三角形时 在AOB 内存在唯一点P 使得PA PO PB ++的值最小 最小值的平方为1893+其中正确的结论是___________.(填写所有正确结论的序号)四 解答题47.(2023·浙江宁波·统考中考真题)如图,已知二次函数2y x bx c =++图象经过点(1,2)A -和(0,5)B -.(1)求该二次函数的表达式及图象的顶点坐标.y≤-时请根据图象直接写出x的取值范围.(2)当248.(2023·浙江温州·统考中考真题)一次足球训练中小明从球门正前方8m的A处射门球射向球门的路线呈抛物线.当球飞行的水平距离为6m时球达到最高点此时球离地面3m.已知球门高OB为2.44m 现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析若射门路线的形状最大高度均保持不变,则当时他应该带球向正后方移动多少米射门才能让足球经过点O正上方2.25m处?49.(2023·湖北武汉·统考中考真题)某课外科技活动小组研制了一种航模飞机.通过实验 收集了飞机相对于出发点的飞行水平距离x (单位:m )以 飞行高度y (单位:m )随飞行时间t (单位:s )变化的数据如下表. 飞行时间/s t 0 2 4 6 8 …飞行水平距离/m x 0 10 20 30 40 …飞行高度/m y 0 22 40 54 64 …探究发现:x 与t y 与t 之间的数量关系可以用我们已学过的函数来描述.直接写出x 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围).问题解决:如图,活动小组在水平安全线上A 处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m 求飞机落到安全线时飞行的水平距离(2)在安全线上设置回收区域,125m,5m ==MN AM MN .若飞机落到MN 内(不包括端点,M N ) 求发射平台相对于安全线的高度的变化范围.50.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题 请解答这道题.如图,在平面直角坐标系中 一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出 并运动路线为抛物线21:(3)2C y a x =-+的一部分 淇淇恰在点(0)B c ,处接住 然后跳起将沙包回传 其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标 并求a c 的值(2)若嘉嘉在x 轴上方1m 的高度上 且到点A 水平距离不超过1m 的范围内可以接到沙包 求符合条件的n 的整数值.51.(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者 还喜欢运用数学知识对羽毛球比赛进行技术分析 下面是他对击球线路的分析.如图,在平面直角坐标系中 点A C 在x 轴上 球网AB 与y 轴的水平距离3m OA = 2m CA = 击球点P 在y 轴上.若选择扣球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+ 若选择吊球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现 上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近 请通过计算判断应选择哪种击球方式.52.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中中国队包揽了五个项目的冠军成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图一位运动员从球台边缘正上方以击球高度OA为28.75cm的高度将乒乓球向正前方击打到对面球台乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm)乒乓球运行的水平距离记为x(单位:cm).测得如下数据:(1)在平面直角坐标系xOy中描出表格中各组数值所对应的点(),x y并画出表示乒乓球运行轨迹形状的大致图象(2)①当乒乓球到达最高点时与球台之间的距离是__________cm当乒乓球落在对面球台上时到起始点的水平距离是__________cm①求满足条件的抛物线解析式(3)技术分析:如果只上下调整击球高度OA乒乓球的运行轨迹形状不变那么为了确保乒乓球既能过网又能落在对面球台上需要计算出OA的取值范围以利于有针对性的训练.如图①.乒乓球台长OB为274cm 球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时 击球高度OA 的值(乒乓球大小忽略不计).53.(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲 乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水 此时水面高度为30cm 开始放水后每隔10min 观察一次甲容器中的水面高度 获得的数据如下表: 流水时间t /min 0 10 20 30 40水面高度h /cm (观察值) 30 29 28.1 27 25.8任务1 分别计算表中每隔10min 水面高度观察值的变化量.【建立模型】小组讨论发现:“0=t 30h =”是初始状态下的准确数据 水面高度值的变化不均匀 但可以用一次函数近似地刻画水面高度h 与流水时间t 的关系.任务2 利用0=t 时 30h = 10t =时 29h =这两组数据求水面高度h 与流水时间t 的函数解析式.【反思优化】经检验 发现有两组表中观察值不满足任务2中求出的函数解析式 存在偏差.小组决定优化函数解析式 减少偏差.通过查阅资料后知道:t 为表中数据时 根据解析式求出所对应的函数值 计算这些函数值与对应h 的观察值之差的平方和......记为w w 越小 偏差越小. 任务3 (1)计算任务2得到的函数解析式的w 值.(2)请确定经过()0,30的一次函数解析式 使得w 的值最小.【设计刻度】得到优化的函数解析式后 综合实践小组决定在甲容器外壁设计刻度 通过刻度直接读取时间. 任务4 请你简要写出时间刻度的设计方案.54.(2023·黑龙江·统考中考真题)如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点 交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P 使得12PBC ABC S S = 若存在 请直接写出点P 的坐标若不存在 请说明理由.55.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构 它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架 上面覆上一层或多层保温塑料膜 这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成 其中3m AB = 4m BC = 取BC 中点O 过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E 若以O 点为原点 BC 所在直线为x 轴 OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E 求抛物线的解析式(2)如图,为了保证蔬菜大棚的通风性 该大棚要安装两个正方形孔的排气装置LFGT SMNR 若0.75m FL NR == 求两个正方形装置的间距GM 的长(3)如图,在某一时刻 太阳光线透过A 点恰好照射到C 点 此时大棚截面的阴影为BK 求BK 的长.参考答案一 单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-3 【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数()2323y x =---的对称轴为2x = 顶点坐标为()2,3-①30-<①二次函数图象开口向下 函数有最大值 为=3y -①A B D 选项错误 C 选项正确故选:C.【点睛】本题考查二次函数的图象及性质 熟练掌握二次函数图象和性质是解题的关键.2.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--【答案】A【分析】根据“左加右减 上加下减”的法则进行解答即可.【详解】解:将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线的函数表达式为:2(3)4y x =-+. 故选:A .【点睛】本题考查了二次函数图象的平移 熟知二次函数图象平移的法则是解答此题的关键.3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对【答案】C 【分析】先写出抛物线的对称轴方程 再列不等式 再分a<0 >0a 两种情况讨论即可.【详解】解:①直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴①对称轴为直线>02b x a=-当a<0时,则>0b当>0a 时,则0b <①a b 异号故选:C .【点睛】本题考查的是二次函数的性质 熟练的利用对称轴在y 轴的右侧列不等式是解本题的关键.4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( ) A .2-B .1-C .0D .2【答案】D 【分析】把抛物线221y x x =--化为顶点式 得到对称轴为1x = 当1x =时 函数的最小值为2- 再分别求出0x =和3x =时的函数值 即可得到答案.【详解】解:①()222112y x x x =--=--①对称轴为1x = 当1x =时 函数的最小值为2-当0x =时 2211y x x =--=- 当3x =时 232312y =-⨯-=①当03x ≤≤时 函数的最大值为2故选:D.【点睛】此题考查了二次函数的最值 熟练掌握二次函数的性质是解题的关键.5.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大【答案】C 【分析】待定系数法求得二次函数解析式 进而逐项分析判断即可求解.【详解】解:①二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点①0936a =--①1a =①二次函数解析式为26y x x =+-212524x ⎛⎫=+- ⎪⎝⎭ 对称轴为直线12x =- 顶点坐标为125,24⎛⎫-- ⎪⎝⎭ 故A B 选项不正确 不符合题意①10a => 抛物线开口向上 当1x <-时 y 的值随x 值的增大而减小 故D 选项不正确 不符合题意 当0y =时 260x x +-=即123,2x x =-=①()2,0B①5AB = 故C 选项正确 符合题意故选:C .【点睛】本题考查了二次函数的性质 待定系数法求二次函数解析式 抛物线与坐标轴的交点 熟练掌握二次函数的性质是解题的关键.6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】根据二次函数图象的开口方向 对称轴判断出a b 的正负情况 再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0 由对称轴b x 02a=-> 得0b >. ①一次函数y x b =+的图象经过第一 二 三象限 不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质 解答本题的关键是求出a b 的正负情况 要掌握它们的性质才能灵活解题 此题难度不大.7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22c ax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【分析】根据函数图象可得出a b c 的符号即可判断① 当1x =时 0y <即可判断① 根据对称轴为12b x a=-> 0a >可判断① 21y ax bx c =++ 22c y x c =-+数形结合即可判断①. 【详解】解:①抛物线开口向上 对称轴在y 轴右边 与y 轴交于正半轴①000a b c ><>,,①0abc < 故①正确.①当1x =时 0y <①0a b c ++< 故①错误.①抛物线2y ax bx c =++与x 轴交于两点()()1020x ,,,其中101x << ①2021222b a ++<-< ①3122b a <-< 当322b a -<时 3b a >- 当2x =时 420y a bc =++=122b ac ∴=-- 1232a c a ∴-->- ①20a c ->①()234342220b c a c c a c a c +=--+=-+=--< 故①正确设21y ax bx c =++ 22c y x c =-+ 如图:由图得 12y y <时 02x << 故①正确.综上 正确的有①①① 共3个故选:C .【点睛】本题考查了二次函数的图象及性质 根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.8.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x 为自变量)与x 轴有交点,则线段AB 长为( )A .10B .12C .13D .15【答案】B【分析】根据题意 求得对称轴 进而得出1c b =- 求得抛物线解析式 根据抛物线与x 轴有交点得出240b ac ∆=-≥ 进而得出2b =,则1c = 求得,A B 的横坐标 即可求解. 【详解】解:①抛物线22122y x bx b c =-+-+的对称轴为直线1222b b x b a =-=-=⎛⎫⨯- ⎪⎝⎭①抛物线经过23,()41,),(A b m B b c m -+-两点 ①23412b bc b -++-= 即1c b =- ①22221122222y x bx b c x bx b b =-+-+=-+-+- ①抛物线与x 轴有交点①240b ac ∆=-≥ 即()22142202b b b ⎛⎫-⨯-⨯-+-≥ ⎪⎝⎭即2440b b -+≤ 即()220b -≤①2b = 1211c b =-=-=①23264,418118b b c -=-=-+-=+-=①()()41238412AB b c b =+---=--=故选:B .【点睛】本题考查了二次函数的对称性 与x 轴交点问题 熟练掌握二次函数的性质是解题的关键. 9.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】由抛物线的开口方向 与y 轴交点以及对称轴的位置可判断a b c 的符号 由此可判断①正确 由抛物线的对称轴为1x = 得到12b a-= 即可判断① 可知2x =时和0x =时的y 值相等可判断①正确 由图知1x =时二次函数有最小值 可判断①错误 由抛物线的对称轴为1x =可得2b a =- 因此22y ax ax c =-+ 根据图像可判断①正确.【详解】①①抛物线的开口向上0.a ∴>①抛物线与y 轴交点在y 轴的负半轴上0.c ∴< 由02b a->得 0b < 0abc ∴>故①正确 ①抛物线的对称轴为1x = ∴12b a-= ∴2b a =-∴20a b += 故①正确①由抛物线的对称轴为1x = 可知2x =时和0x =时的y 值相等.由图知0x =时 0y <①2x =时 0y <.即420a b c ++<.故①错误①由图知1x =时二次函数有最小值2a b c am bm c ∴++≤++2a b am bm ∴+≤+(a b m ax b +≤+)故①错误①由抛物线的对称轴为1x =可得12b a-= 2b a ∴=-①22y ax ax c =-+当=1x -时 23y a a c a c =++=+.由图知=1x -时0,y >30.a c ∴+>故①正确.综上所述:正确的是①①① 有3个故选:B .【点睛】本题主要考查了二次函数的图像与系数的关系 二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( )A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a 【答案】D【分析】首先根据题意求出对称轴212a x a -=-= 然后分两种情况:0a >和a<0 分别根据二次函数的性质求解即可.【详解】①二次函数223y ax ax =-+①对称轴212a x a-=-= 当0a >时①当03x <<时对应的函数值y 均为正数①此时抛物线与x 轴没有交点①()22430a a ∆=--⨯<①解得0<<3a当a<0时①当03x <<时对应的函数值y 均为正数①当3x =时 9630y a a =-+≥①解得1a ≥-①10a -≤<①综上所述当03x <<时对应的函数值y 均为正数,则a 的取值范围为10a -≤<或0<<3a .故选:D .【点睛】此题考查了二次函数的图象和性质 解题的关键是分两种情况讨论.11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)【答案】C 【分析】根据开口方向 与y 轴交于负半轴和对称轴为直线1x =可得00a c ><, 20b a =-< 由此即可判断A 根据对称性可得当2x =-时 0y > 当=1x -时 0y = 由此即可判断B C 根据抛物线开口向上 对称轴为直线1x = 可得抛物线的最小值为a c -+ 由此即可判断D .【详解】解:①抛物线开口向上 与y 轴交于负半轴①00a c ><,①抛物线对称轴为直线1x = ①12b a-= ①20b a =-<。

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c经过点(1,0)和点(0,−3),且对称轴在y轴的左侧,有下列结论:①a>0;②a+b=3;③抛物线经过点(−1,0);④关于x的一元二次方程ax2+bx+c=−1有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.32.若关于x的一元二次方程(x−2)(x−3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>−14;③二次函数y=(x−x1)(x−x2)+m的图象与x轴的交点坐标分别为(2,0)和(3,0).其中正确的个数有()A.0B.1C.2D.33.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0 (t为实数)在1<x<3的范围内有解,则t的取值范围是()A.-5<t≤4B.3<t≤4C.-5<t<3D.t>-54.如图,抛物线y=−x2+mx的对称轴为直线x=2,若关于x的一元二次方程−x2+mx−t=0(t为实数)在1≤x≤3的范围内有解,则t的取值错误的是()A.t=2.5B.t=3C.t=3.5D.t=45.若关于的方程x2+px+q=0没有实数根,则函数y=x2−px+q的图象的顶点一定在()A.x轴的上方B.x轴下方C.x轴上D.y轴上6.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…0√54…y…0.37﹣10.37…A.0或4B.√5或4﹣√5C.1或5D.无实根7.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=−m有实数根,则m的最大()A.3B.−3C.−6D.98.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的两根,则实数x1,x2,a,b的大小关系是()A.a<x1<x2<b B.x1<a<x2<b C.x1<a<b<x2D.x1<x2<a<b9.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,下确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧10.已知b>0,二次函数y=ax2+bx+a2−1的图象为下列之一,则a的值为()A.1B.-1C.−1−√52D.−1+√5211.已知函数y=ax2+bx+c,当y>0时,−12<x<13.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.二次函数y=ax2+bx+c的部分图象如图所示,对称轴方程为x=−1,图象与x轴相交于点(1,0),则方程cx2+bx+a=0的根为()A.x1=1,x2=−3B.x1=−1C.x1=1,x2=−13D.x1=−1二、填空题(共6题;共6分)13.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=−1,与x轴的一个交点为(1 , 0),与y轴的交点为(0 , 3),则方程ax2+bx+c=0(a≠0)的解为.14.如图抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②a﹣b+c<0;③b+2a=0;④当y<0时,x的取值范围是﹣1<x<3;⑤当x<0时,y随x增大而增大;⑥方程ax2+bx+c=2有两个不等的实数根,其中结论正确的结论的序号是.15.二次函数y=x2+bx的对称轴为x=1,若关于x的一元二次方程x2+bx−c=0(c为实数),在﹣1≤x≤4范围内有解,则c的取值范围为.16.已知二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根之和是.17.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则方程ax2=bx+c的解是.三、综合题(共6题;共70分)19.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(2)若每天盈利达1200元,那么每件衬衫应降价多少元?20.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.已知:二次函数y=ax2+bx+ 12(a>0,b<0)的图象与x轴只有一个公共点A.(1)当a=12时,求点A的坐标;(2)求A点的坐标(只含b的代数式来表示);(3)过点A的直线y=x+k与二次函数的图象相交于另一点B,当b≥﹣1时,求点B的横坐标m 的取值范围.22.已知抛物线y=x2-(m+1)x+m(1)求证:抛物线与x轴一定有交点;(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1﹤0﹤x2,且1OA−1OB=−34,求m的值. 23.十一黄金周期间,某商场销售一种成本为每件60元的服装,规定销售期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=-x+120(1)销售单价定为多少元时,该商场获得的利润恰为500元?(2)设该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?24.如图,抛物线y=ax2+bx−4a(a≠0)经过A(−1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=−14与抛物线分别交于点D,E,求线段DE的长.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】B11.【答案】A12.【答案】C13.【答案】x1=114.【答案】①③⑤⑥15.【答案】−1≤c≤816.【答案】217.【答案】a<518.【答案】x1=−219.【答案】(1)解:设每件降低x元,获得的总利润为y元则y=(40﹣x)(20+2x)=﹣2x2+60x+800(2)解:∵当y=1200元时,即﹣2x2+60x+800=1200∴x1=10,x2=20∵需尽快减少库存∴每件应降低20元时,商场每天盈利1200元。

中考数学:函数的图象与实际应用综合问题真题+模拟(原卷版北京专用)

中考数学:函数的图象与实际应用综合问题真题+模拟(原卷版北京专用)

中考数学函数的图象与实际应用综合问题【方法归纳】利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典例剖析】【例1】(2022·北京·中考真题)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x−ℎ)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x−ℎ)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=−0.04(x−9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1______d2(填“>”“=”或“<”).【真题再现】1.(2015·北京·中考真题)有这样一个问题:探究函数y=12x2+1x的图象与性质.小东根据学习函数的经验,对函数y=12x2+1x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=12x2+1x的自变量x的取值范围是____;(2)下表是y与x的几组对应值.求m的值:(3)如下图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象:(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,32),结合函数的图象,写出该函数的其它性质(一条即可):_________.2.(2016·北京·中考真题)已知y是x的函数,自变量x的取值范围是x >0,下表是y与x的几组对应值.小腾根据学习一次函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:__________________.3.(2017·北京·中考真题)如图,P是弧AB所对弦AB上一动点,过点P作PM⊥AB交AB于点M,连接MB,过点P作PN⊥MB于点N.已知AB =6cm,设A 、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为____________cm.⌢与弦AB所围成的图形的内部的一定点,P是弦AB上4.(2018·北京·中考真题)如图,Q是AB⌢于点C,连接AC.已知AB=6cm,设A,P两点间的距离为x cm,一动点,连接PQ并延长交ABP,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为____cm.【模拟精练】一、解答题1.(2022·北京朝阳·二模)某公园在垂直于湖面的立柱上安装了一个多孔喷头,从喷头每个孔喷出的水柱形状都相同,可以看作是抛物线的一部分,当喷头向四周同时喷水时,形成一个环状喷泉,安装后,通过测量其中一条水柱,获得如下数据,在距立柱水平距离为d米的地点,水柱距离湖面的高度为h米,请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出这条水柱最高点距离湖面的高度;(3)求所画图象对应的函数表达式;(4)从安全的角度考虑,需要在这个喷泉外围设立一圈正方形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,请通过计算说明公园至少需要准备多少米的护栏(不考虑接头等其他因素).2.(2022·北京四中模拟预测)跳台滑雪是冬季奥运会的比赛项目.如图,运动员通过助滑道后在点A处腾空,在空中沿抛物线飞行,直至落在着陆坡BC上的点P处.腾空点A到地面OB的距离OA为70 m,坡高OC为60 m,着陆坡BC的坡度(即tan α)为3:4,以O 为原点,OB所在直线为x轴,OA所在直线为y轴,建立如图所示的平面直角坐标系.已知这段抛物线经过点(4,75),(8,78).(1)求这段抛物线表示的二次函数表达式;(2)在空中飞行过程中,求运动员到坡面BC竖直方向上的最大距离;(3)落点P与坡顶C之间的距离为m.3.(2022·北京北京·二模)某公园内人工喷泉有一个竖直的喷水枪,喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:小景根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小景的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并画出该函数的图象;(2)水流的最高点距喷水枪的水平距离为________m;(3)结合函数图象,解决问题:公园准备在距喷水枪水平距离为3.5m处加装一个石柱,使该喷水枪喷出的水流刚好落在石柱顶端,则石柱的高度约为_____m.4.(2022·北京市广渠门中学模拟预测)某景观公园计划在圆形水池内修建一个小型喷泉,水柱从池中心且垂直于水面的水枪喷出,水柱喷出后落于水面的形状是抛物线.现测量出如下数据,在距水枪水平距离为d米的地点,水柱距离水面的高度为h米.请解决以下问题:(1)请结合表中所给数据,直接写出水柱最高点距离水面的高度为______米.(2)在网格中建立适当的平面直角坐标系,描出表中已知各对对应值为坐标的点,并用平滑的曲线画出该函数的图象.(3)求表格中m的值.(4)以节水为原则,为体现公园喷泉景观的美观性,在不改变水柱形状的基础上,修建工人打算将水枪的高度上升0.4米.若圆形喷水池的半径为3米,提升水枪高度后水柱是否会喷到水池外面?请说明理由.(其中√10≈3.2)5.(2022·北京·二模)某社区文化广场修建了一个人工喷泉,人工喷泉有一个竖直的喷水枪AB,喷水口为A,喷水口A距地面2m,喷出水流的轨迹是抛物线.水流最高点P到喷水枪AB所在直线的距离为1m,水流落地点C距离喷水枪底部B的距离为3m.请解决以下问题:(1)如图,以B为原点,BC所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系,则点A的坐标是______,点C的坐标是______,水流轨迹抛物线的对称轴是______.(2)求出水柱最高点P到地面的距离.(3)在线段BC上到喷水枪AB所在直线的距离为2m处放置一物体,为避免物体被水流淋到,物体的高度应小于多少米?请说明理由.6.(2022·北京门头沟·二模)如图,杂技团进行杂技表演,演员要从跷跷板右端A处弹跳后恰好落在人梯的顶端B处,其身体(看成一点)的路径是一条抛物线.现测量出如下的数据,设演员身体距起跳点A水平距离为d米时,距地面的高度为h米.请你解决以下问题:(1)在下边网格中建立适当平面直角坐标系,根据已知数据描点,并用平滑曲线连接;(2)结合表中所给的数据或所画的图象,直接写出演员身体距离地面的最大高度;(3)求起跳点A距离地面的高度;(4)在一次表演中,已知人梯到起跳点A的水平距离是3米,人梯的高度是3.40米.问此次表演是否成功?如果成功,说明理由;如果不成功,说明应怎样调节人梯到起跳点A的水平距离才能成功?7.(2022·北京顺义·二模)如图是某抛物线形拱桥的截面图.某数学小组对这座拱桥很感兴趣,他们利用测量工具测出水面AB的宽为8米.设AB上的点E到点A的距离AE=x米,点E到拱桥顶面的垂直距离EF=y米.通过取点、测量,数学小组的同学得到了x与y的几组值,如下表:(1)拱桥顶面离水面AB的最大高度为______米;(2)请你帮助该数学小组建立平面直角坐标系,描出上表中各对对应值为坐标的点,并用平滑的曲线连接;(3)测量后的某一天,由于降雨原因,水面比测量时上升1米.现有一游船(截面为矩形)宽度为4米,船顶到水面的高度为2米.要求游船从拱桥下面通过时,船顶到拱桥顶面的距离应大于0.5米.结合所画图象,请判断该游船是否能安全通过:______(填写“能”或“不能”).8.(2022·北京市十一学校模拟预测)某运动馆使用发球机进行辅助训练,假设发球机每次发球的运动路线是抛物线,且形状固定不变的,在球运行时,球与发球机的水平距离为x(米),与地面的高度为y(米),经多次测试后,得到如下数据:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)球经发球机发出后,最高点离地面________米,并求出y与x的函数解析式;(3)当球拍触球时,球离地面的高度为5米.4①求此时发球机与球的水平距离;米,为确保球拍在原高度还能接到球,球拍的接球位置应前进多②现将发球机向下平移了1516少米?9.(2022·北京昌平·二模)如图,在一次学校组织的社会实践活动中,小龙看到农田上安装了很多灌溉喷枪,喷枪喷出的水流轨迹是抛物线,他发现这种喷枪射程是可调节的,且喷射的水流越高射程越远,于是他从该农田的技术部门得到了这种喷枪的一个数据表,水流的最高点与喷枪的水平距离记为x,水流的最高点到地面的距离记为y.y与x的几组对应值如下表:(1)该喷枪的出水口到地面的距离为________m;(2)在平面直角坐标系xOy中,描出表中各组数值所对应的点,并画出y与x的函数图像;(3)结合(2)中的图像,估算当水流的最高点与喷枪的水平距离为8m时,水流的最高点到地面的距离为________m(精确到1m).根据估算结果,计算此时水流的射程约为________m(精确到1m)10.(2022·北京海淀·二模)由于惯性的作用,行驶中的汽车在刹车后还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”.某公司设计了一款新型汽车,现在对它的刹车性能(车速不超过150 km/h)进行测试,测得数据如下表:(1)以车速v为横坐标,刹车距离s为纵坐标,在坐标系中描出表中各组数值所对应的点,并用平滑曲线连接这些点;(2)由图表中的信息可知:①该型汽车车速越大,刹车距离越(填“大”或“小”);②若该型汽车某次测试的刹车距离为40 m,估计该车的速度约为km/h;(3)若该路段实际行车的最高限速为120 km/h,要求该型汽车的安全车距要大于最高限速时刹车距离的3倍,则安全车距应超过m.11.(2022·北京东城·一模)某公园内人工湖上有一座拱桥(横截面如图所示),跨度AB为4米.在距点A水平距离为d米的地点,拱桥距离水面的高度为h米.小红根据学习函数的经验,对d和h之间的关系进行了探究.下面是小红的探究过程,请补充完整:(1)经过测量,得出了d和h的几组对应值,如下表.在d和h这两个变量中,________是自变量,________是这个变量的函数;(2)在下面的平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合表格数据和函数图象,解决问题:①桥墩露出水面的高度AE为_______米;②公园欲开设游船项目,现有长为3.5米,宽为1.5米,露出水面高度为2米的游船.为安全起见,公园要在水面上的C,D两处设置警戒线,并且CE=DF,要求游船能从C,D两点之间安全通过,则C处距桥墩的距离CE至少为_______米.(精确到0.1米)12.(2022·北京市十一学校二模)如图,排球运动场的场地长18m,球网高度2.24m,球网在场地中央,距离球场左、右边界均为9m.一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.在球运行时,将球与场地左边界的水平距离记为x(米),与地面的高度记为y(米),经多次测试后,得到如下数据:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)击球点的高度为______米,排球飞行过程中可达到的最大高度为______米;(3)求出y与x的函数解析式;(4)判断排球能否过球网,并说明理由.13.(2022·北京大兴·一模)某景观公园内人工湖里有一组喷泉,水柱从垂直于湖面的喷水枪喷出,水柱落于湖面的路径形状是一条曲线.现有一个垂直于湖面的喷水枪,在距喷水枪水平距离为x米处,水柱距离湖面高度为y米.经测量得到如下数据:请解决以下问题:(1)如下图,在平面直角坐标系xOy描出了上表中y与x各对对应值为坐标的点.请根据描出的点,画出这条曲线;(2)结合所画曲线回答:①水柱的最高点距离湖面约______米;②水柱在湖面上的落点距喷水枪的水平距离约为______米;(3)若一条游船宽3米,顶棚到湖面的高度2米,为了保证游客有良好的观光体验,游船需从喷泉水柱下通过,如果不计其他因素,根据图象判断______(填“能”或“不能”)避免游船被喷泉喷到.14.(2022·北京丰台·一模)某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,水柱从喷水头喷出到落于湖面的路径形状可以看作是抛物线的一部分.若记水柱上某一位置与水管的水平距离为d米,与湖面的垂直高度为h米.下面的表中记录了d与h的五组数据:根据上述信息,解决以下问题:(1)在下面网格(图1)中建立适当的平面直角坐标系,并根据表中所给数据画出表示h与d 函数关系的图象;(2)若水柱最高点距离湖面的高度为m米,则m=;(3)能从水柱下方通过.如图2所示,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米.已知游船顶棚宽度为3米,顶棚到湖面的高度为2米,那么公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到多少米才能符合要求?请通过计算说明理由(结果保留一位小数).15.(2022·北京一七一中一模)某运动馆使用发球机进行辅助训练,假设发球机每次发球的运动路线是抛物线,且形状固定不变的,在球运行时,球与发球机的水平距离为x(米),与地面的高度为y(米),经多次测试后,得到如下数据:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)球经发球机发出后,最高点离地面__________米,并求出y与x的函数解析式;(3)当球拍触球时,球离地面的高度为5米.8①求此时发球机与球的水平距离;米,为确保球拍在原高度还能接到球,球拍的接球位置应后退多②现将发球机向上平移了58少米?16.(2022·北京市燕山教研中心一模)某景观公园内人工湖里有一组小型喷泉,水柱从垂直于湖面的水枪喷出,水柱落于湖面的路径形状是抛物线.现测量出如下数据,在湖面上距水枪水平距离为d米的位置,水柱距离湖面高度为h米.请解决以下问题:(1)以水枪与湖面交点为原点,原点与水柱落地处所在直线为x轴,水枪所在直线为y轴,在下边网格中建立平面直角坐标系,根据已知数据描点,并用平滑的曲线连接.(2)请结合表中所给数据或所画图象,写出水柱最高点的坐标.(3)湖面上距水枪水平距离为3.5米时,水柱距离湖面的高度m=____________米.(4)现公园想通过喷泉设立新的游玩项目,准备通过调节水枪高度,使得公园湖中的游船能从喷泉下方通过.游船左右两边缘最宽处有一个长方体形状的遮阳棚,若游船宽(指船的最大宽度)为2米,从水面到棚顶的高度为2.1米,要求是游船从喷泉水柱中间通过时,为避免游船被喷泉淋到,顶棚到水柱的垂直距离均不小于0.5米.请问公园该如何调节水枪高度以符合要求?请通过计算说明理由.17.(2022·北京·东直门中学模拟预测)某景观公园内人工湖里有一组喷泉,水柱从垂直于湖面的水枪喷出,水柱落于湖面的路径形状是抛物线.现测量出如下数据,在距水枪水平距离为d米的地点,水柱距离湖面高度为h米.请解决以下问题:(1)在下边网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)请结合表中所给数据或所画图象,估出喷泉的落水点距水枪的水平距离约为米(精确到0.1);(3)公园增设了新的游玩项目,购置了宽度4米,顶棚到水面高度为4.2米的平顶游船,游船从喷泉正下方通过,别有一番趣味,请通过计算说明游船是否有被喷泉淋到的危险.18.(2022·北京门头沟·一模)某景观公园内人工湖里有一组喷泉,水柱从垂直于湖面的水枪喷出,水柱落于湖面的路径形状是一条抛物线.现测量出如下数据,在距水枪水平距离为d米的地点,水柱距离湖面高度为ℎ米.(1)在下边网格中建立适当平面直角坐标系,根据已知数据描点,并用平滑曲线连接.(2)结合表中所给数据或所画的图象,直接写出水柱最高点距离湖面的高度;(3)求水柱在湖面上的落点距水枪的水平距离是多少?(4)现公园想通过喷泉设立一个新的游玩项目.准备通过调节水枪高度使得公园的平顶游船能从喷泉最高点的正下方通过(两次水柱喷出水嘴的初速度相同),如果游船宽度为3米,顶棚到水面的高度为2米,为了避免游船被淋到,顶棚到水柱的垂直距离不小于0.8米.问应如何调节水枪的高度才能符合要求?请通过计算说明理由.19.(2022·北京房山·一模)如图,一个单向隧道的断面,隧道顶是一条抛物线的一部分,经测量,隧道顶的跨度为4米,最高处到地面的距离为4米,两侧墙高均为3米,距左侧墙壁1米和3米时,隧道高度均为3.75米.设距左侧墙壁水平距离为x米的地点,隧道高度为y米.请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据题中数据描点,并用平滑的曲线连接;(2)请结合所画图象,写出抛物线的对称轴;(3)今有宽为2.4米的卡车在隧道中间行驶,如果卡车载物后的高度为3.2米,要求卡车从隧道中间通过时,为保证安全,要求卡车载物后最高点到隧道顶面对应的点的距离均不小于0.6米,结合所画图象,试判断该卡车能否通过隧道.20.(2022·北京通州·一模)如图1是某条公路的一个单向隧道的横断面.经测量,两侧墙AD和与路面AB垂直,隧道内侧宽AB=4米.为了确保隧道的安全通行,工程人员在路面AB上取点E,测量点E到墙面AD的距离和到隧道顶面的距离EF.设AE=x米,EF=y米.通过取点、测量,工程人员得到了x与y的几组值,如下表:(1)隧道顶面到路面AB的最大高度为______米;(2)请你帮助工程人员建立平面直角坐标系,描出上表中各对对应值为坐标的点,画出可以表示隧道顶面的图象.(3)今有宽为2.4米,高为3米的货车准备在隧道中间通过(如图2).根据隧道通行标准,其车厢最高点到隧道顶面的距离应大于0.5米.结合所画图象,请判断该货车是否安全通过:______(填写“是”或“否”).21.(2022·北京朝阳·一模)某公园在人工湖里建造一道喷泉拱门,工人在垂直于湖面的立柱上安装喷头,从喷头喷出的水柱的形状可以看作是抛物线的一部分.安装后,通过测量获得如下数据,喷头高出湖面3米,在距立柱水平距离为d米的地点,水柱距离湖面高度为h 米.请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出水柱最高点距离湖面的高度;(3)求h关于d的函数表达式;(4)公园希望游船能从喷泉拱门下穿过,已知游船的宽度约为2米,游船的平顶棚到湖面的高度约为1米,从安全的角度考虑,要求游船到立柱的水平距离不小于1米,顶棚到水柱的竖直距离也不小于1米,工人想只通过调整喷头距离湖面的高度(不考虑其他因素)就能满足上述要求,请通过计算说明应如何调整.22.(2022·北京西城·一模)要修建一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,记喷出的水与池中心的水平距离为x m,距地面的高度为y m.测量得到如下数值:小腾根据学习函数的经验,发现y是x的函数,并对y随x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y),并画出函数的图象;(2)结合函数图象,出水口距地面的高度为_______m,水达到最高点时与池中心的水平距离约为_______m(结果保留小数点后两位);(3)为了使水柱落地点与池中心的距离不超过3.2m,如果只调整水管的高度,其他条件不变,结合函数图象,估计出水口至少需要_______(填“升高”或“降低”)_______m(结果保留小数点后两位).23.(2022·北京东城·二模)小强用竹篱笆围一个面积为9平方米的矩形小花园,他考虑至少4需要几米长的竹篱笆(不考虑接缝),根据学习函数的经验,他做了如下的探究,请你完善他的思考过程.(1)建立函数模型:设矩形小花园的一边长为x米,则矩形小花园的另一边长为__________米(用含x的代数式表示);若总篱笆长为y米,请写出总篱笆长y(米)关于边长x(米)的函数关系式__________;(2)列表:根据函数的表达式,得到了x与y的几组对应值,如下表:表中a=________,b=________;(3)描点、画出函数图象:,b)补充完整,并根据描出的如图,在平面直角坐标系xOy中,将表中未描出的点(2,a),(92点画出该函数的图象;。

中考数学函数实际应用综合题(解析版)

中考数学函数实际应用综合题(解析版)

专题03 函数实际应用综合题1.(2019•常德中考)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【解析】(1)设y甲=k1x,根据题意得5k1=100,解得k1=20,∴y甲=20x;设y乙=k2x+100,根据题意得:20k2+100=300,解得k2=10,∴y乙=10x+100.(2)①y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③y甲>y乙,即20x>10x+100,解得x>10,当入园次数大于10次时,选择乙消费卡比较合算.2.(2019•山西中考)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.【解析】(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x.(2)由y1<y2得:30x+200<40x,解得x>20时,当x>20时,选择方式一比方式二省钱.3.(2019•台州中考)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:m )与下行时间x (单位:s )之间具有函数关系3610h x =-+,乙离一楼地面的高度y (单位:m )与下行时间x (单位:s )的函数关系如图2所示. (1)求y 关于x 的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【解析】(1)设y 关于x 的函数解析式是y kx b =+,6153b k b =⎧⎨+=⎩,解得,156k b ⎧=-⎪⎨⎪=⎩, 即y 关于x 的函数解析式是165y x =-+. (2)当0h =时,30610x =-+,得20x ,当0y =时,1065x =-+,得30x =, ∵2030<, ∴甲先到达地面.4.(2019•天门中考)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x 千克,付款金额为y 元.(1)求y 关于x 的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元? 【解析】(1)根据题意,得①当0≤x ≤5时,y =20x ; ②当x >5,y =20×0.8(x -5)+20×5=16x +20. (2)把x =30代入y =16x +20,∴y =16×30+20=500; ∴一次购买玉米种子30千克,需付款500元.5.(2019•天津中考)甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过元50 kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超出50 kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为 kg x (0)x >.(1)根据题意填表:(2)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (3)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为__________kg ;②若小王在同一个批发店一次购买苹果的数量为120 kg ,则他在甲、乙两个批发店中的__________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的__________批发店购买数量多.【解析】(1)当x =30时,1306180y =⨯=,2307210y =⨯=,当x =150时,11506900y =⨯=,2507515050850y =⨯+-=(), 故答案为:180,900,210,850. (2)16y x =(0)x >. 当050x <≤时,27y x =;当50x >时,27505(50)y x =⨯+-,即25100y x =+. (3)①∵0x >∴6x 7x ≠, ∴当21y y =时,即6x =5x +100,∴x =100, 故答案为:100. ②∵x =12050>,∴16120720y =⨯=;25120100=700y =⨯+, ∴乙批发店购买花费少, 故答案为:乙.③∵当x =50时乙批发店的花费是:350360<, ∵一次购买苹果花费了360元,∴x >50, ∴当1360y =时,6x =360,∴x =60, ∴当2360y =时,5x +100=360,∴x =52, ∴甲批发店购买数量多. 故答案为:甲.6.(2019•湖州中考)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B C D --分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当2530x ≤≤时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)【解析】(1)由题意,得:甲步行的速度是24003080÷=(米/分), ∴乙出发时甲离开小区的路程是8010800⨯=(米).(2)设直线OA 的解析式为:(0)y kx k =≠, ∵直线OA 过点()30,2400A , ∴302400k =, 解得80k =,∴直线OA 的解析式为:80y x =, ∴当18x =时,80181440y =⨯=,∴乙骑自行车的速度是()14401810180÷-=(米/分). ∵乙骑自行车的时间为251015-=(分), ∴乙骑自行车的路程为180152700⨯=(米).当25x =时,甲走过的路程是8080252000y x ==⨯=(米),∴乙到达还车点时,甲、乙两人之间的距离是27002000700-=(米). (3)乙步行的速度为:80-5=75(米/分),乙到达学校用的时间为:25+(2700-2400)÷75=29(分), 当25≤x ≤30时s 关于x 的函数的大致图象如图所示.7.2019•河南中考)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩,∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30-z )个,购买奖品的花费为W 元, 由题意可知,z ≥13(30-z ), ∴z ≥152, W =30z +15(30-z )=450+15z , ∵15>0,W 随z 的减小而减小 ∴当z =8时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.8.(2019•宿迁中考)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件.(1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少? 【解析】(1)根据题意得,1502y x =-+. (2)根据题意得,()140(50)22502x x +-+=, 解得:150x =,210x =, ∵每件利润不能超过60元, ∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元. (3)根据题意得,()21140(50)30200022w x x x x =+-+=-++()213024502x =--+, ∵102a =-<, ∴当30x <时,w 随x 的增大而增大,∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元.9.(2019•潍坊中考)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元? (2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计)【解析】(1)由题意,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元, 今年的批发销售总额为()10120%12-=万元, ∴12000010000010001x x -=+, 整理得2191200x x --=,解得24x =或5x =-(不合题意,舍去), 故这种水果今年每千克的平均批发价是24元. (2)设每千克的平均售价为m 元,依题意 由(1)知平均批发价为24元,则有()4124(180300)3mw m -=-⨯+260420066240m m =-+-, 整理得()260357260w m =--+, ∵600a =-<, ∴抛物线开口向下,∴当35m =元时,w 取最大值,即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元.10.(2019•南充中考)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售,笔记本一律按原价销售,学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元? 【解析】(1)设钢笔、笔记本的单价分别为x 、y 元,根据题意可得23384570x y x y +=⎧⎨+=⎩, 解得:106x y =⎧⎨=⎩. 答:钢笔、笔记本的单价分别为10元,6元.(2)设钢笔单价为a 元,购买数量为b 支,支付钢笔和笔记本总金额为W 元, ①当30≤b ≤50时,100.1(30)0.113a b b =--=-+,w =b (-0.1b +13)+6(100-b )20.17600b b =-++20.1(35)722.5b =--+, ∵当30b =时,W =720,当b =50时,W =700, ∴当30≤b ≤50时,700≤W ≤722.5. ②当50<b ≤60时, a =8,86(100)2600W b b b =+-=+,∵700720W <≤,∴当30≤b ≤60时,W 的最小值为700元,∴当一等奖人数为50时花费最少,最少为700元.11.(2019•梧州中考)我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x 元/件(x ≥6,且x 是按0.5元的倍数上涨),当天销售利润为y 元. (1)求y 与x 的函数关系式(不要求写出自变量的取值范围); (2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【解析】(1)由题意,y =(x -5)(100-60.5x -×5)=-10x 2+210x -800,故y与x的函数关系式为:y=-10x2+210x-800.(2)要使当天利润不低于240元,则y≥240,∴y=-10x2+210x-800=-10(x-10.5)2+302.5=240,解得,x1=8,x2=13,∵-10<0,抛物线的开口向下,∴当天销售单价所在的范围为8≤x≤13.(3)∵每件文具利润不超过80%,∴50.8xx-≤,得x≤9,∴文具的销售单价为6≤x≤9,由(1)得y=-10x2+210x-800=-10(x-10.5)2+302.5,∵对称轴为x=10.5,∴6≤x≤9在对称轴的左侧,且y随着x的增大而增大,∴当x=9时,取得最大值,此时y=-10(9-10.5)2+302.5=280,即每件文具售价为9元时,最大利润为280元.12.(2019•云南中考)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【解析】(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0),根据题意得1000620010k bk b=+⎧⎨=+⎩,解得2002200kb=-⎧⎨=⎩,∴y=-200x+1200,当10<x≤12时,y=200,故y 与x 的函数解析式为:y =2002200(610)200(1012)x x x -+≤≤⎧⎨<≤⎩.(2)由已知得:W =(x -6)y , 当6≤x ≤10时,W =(x -6)(-200x +1200)=-200(x -172)2+1250, ∵-200<0,抛物线的开口向下, ∴x =172时,取最大值, ∴W =1250,当10<x ≤12时,W =(x -6)•200=200x -1200, ∵y 随x 的增大而增大,∴x =12时取得最大值,W =200×12-1200=1200, 综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.13.(2019•成都中考)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【解析】(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得,700055000k b k b +=⎧⎨+=⎩,解得5007500kb=-⎧⎨=⎩,∴y与x之间的关系式:y=-500x+7500.(2)设销售收入为w万元,根据题意得,w=yp=(-500x+7500)(12x+12),即w=-250(x-7)2+16000,∴当x=7时,w有最大值为16000,此时y=-500×7+7500=4000(元).答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.14.(2019•武汉中考)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600 注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是__________元/件;当售价是__________元/件时,周销售利润最大,最大利润是__________元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.【解析】(1)①依题意设y=kx+b,则有50100 6080k bk b+=⎧⎨+=⎩,解得2200 kb=-⎧⎨=⎩,所以y关于x的函数解析式为y=-2x+200.②该商品进价是50-1000÷100=40,设每周获得利润w=ax2+bx+c,则有2500501000 3600601600 6400801600a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩,解得22808000 abc=-⎧⎪=⎨⎪=-⎩,∴w=-2x2+280x-8000=-2(x-70)2+1800,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,w=(x-40-m)(-2x+200)=-2x2+(280+2m)x-8000-200m,∵对称轴x=1402m+,∴①当1402m+<65时(舍),②当1402m+≥65时,x=65时,w求最大值1400,解得:m=5.。

2023年中考数学总复习第三章《函数》综合测试卷及答案

2023年中考数学总复习第三章《函数》综合测试卷及答案

2023年中考数学总复习第三章《函数》综合测试卷一、选择题(每小题3分,共48分)1.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)(第1题图)(第7题图)2.函数y=的自变量x的取值范围是()A.x≥2且x≠3B.x≥2C.x≠3D.x>2且x≠33.已知一个正比例函数的图象经过A(-2,m)和B (n,4)两点,则m,n间的关系一定是()A.mn=-8B.mn=8C.m=-2n D.m=-n4.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A.y=10x+30B.y=40xC.y=10+30x D.y=20x5.已知二次函数y=x2-x+m-1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>2 6.在同一直角坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()7.如图,直线y=-x+m与y=nx+4n(n≠0)的交点横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为()A.-1B.-5C.-4D.-38.二次函数y=x2-(12-k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,则k的值应取()A.12B.11C.10D.99.定义一个新的运算:a b=则运算x2的最小值为()A.-3B.-2C.2D.310.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC上的中线BD反向延长线交y轴负半轴于E,双曲线y=(x>0)的图象经过点A,若△BCE的面积为6,则k等于()A.3B.6C.12D.24(第10题图)(第11题图)11.二次函数y=x2-2x-3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,-3)B.顶点坐标是(1,-3)C.函数图象与x轴的交点坐标是(3,0),(-1,0)D.当x<0时,y随x的增大而减小12.如图中的图①、②、③所示,阴影部分面积的大小关系正确的是()A.①>②>③B.③>②>①C.②>③>①D.①=②=③(第12题图)13.已知点A是直线y=2x与双曲线y=(m为常数)一支的交点,过点A作x轴的垂线垂足为B,且OB=2,则m的值为()A.-7B.-8C.8D.714.如图,在平面直角坐标系中,直线y=-x+2与反比例函数y=的图象有唯一公共点,若直线y=-x+b 与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2B.-2<b<2C.b>2或b<-2D.b<-2。

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用一、单选题1.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(为y =x 2−x +c c 常数)在的图象上存在两个二倍点,则的取值范围是( )−2<x <4c A .B .C .D .−2<c <14−4<c <94−4<c <14−10<c <942.已知直线 过一、二、三象限,则直线 与抛物线 的交点y =kx +2y =kx +2y =x 2−2x +3个数为( ) A .0个B .1个C .2个D .1个或2个3.抛物线 (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =x 2+bx +c ( )有交点,则c 的值不可能是( ) y =2x−11≤x <3A .5B .7C .10D .144.函数y=ax+b 和y=ax 2+bx+c 在同一直角坐标系内的图象大致是( )A .B .C .D .5.已知0<x <1,10<y <20,且y 随x 的增大而增大,则y 与x 的关系式不可以是( )A .y =10x+10B .y =﹣10(x﹣1)2+20C .y =10x 2+10D .y =﹣10x+206.在同一坐标系中,函数y=ax 2与y=ax+a (a <0)的图象的大致位置可能是( )A .B .C .D .7.对于题目“一段抛物线L :y=﹣x (x﹣3)+c (0≤x≤3)与直线l :y=x+2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确8.将二次函数 的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图y =−x 2+2x +3所示.当直线 与新函数的图象恰有3个公共点时,b 的值为( )y =x +bA . 或B . 或 −214−3−134−3C . 或D . 或 214−3134−39.已知抛物线 与直线 相交,若 ,则 的取值范围是( y 1=−2x 2+2y 2=2x +2y 1>y 2x ).A .B .x >−1x <0C .D . 或 −1<x <0x >0x <−110.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y= x 2的切线;14②直线x=﹣2与抛物线y= x 2 相切于点(﹣2,1);14③若直线y=x+b 与抛物线y= x 2相切,则相切于点(2,1);14④若直线y=kx﹣2与抛物线y= x 2相切,则实数k= .142其中正确命题的是( )A .①②④B .①③C .②③D .①③④11.一次函数与二次函数的图象交点( )y =2x +1y =x 2−4x +3A .只有一个B .恰好有两个C .可以有一个,也可以有两个D .无交点12.将抛物线y=x 2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )A .(0,3)或(﹣2,3)B .(﹣3,0)或(1,0)C .(3,3)或(﹣1,3)D .(﹣3,3)或(1,3)二、填空题13.如图,在平面直角坐标系中,抛物线 交y 轴于点A ,直线AB 交x 轴正半轴于y =x 2−2x +2点B ,交抛物线的对称轴于点C ,若 ,则点C 的坐标为  .OB =2OA14.函数 与 的图象如图所示,有以下结论:① ,②y =x 2+bx +c y =x b 2−4c >0 ,③ ,④当 时, .则正确的个数为 b +c +1=03b +c +6=01<x <3x 2+(b−1)x +c <0个.15.已知一次函数y 1=kx+m (k≠0)和二次函数y 2=ax 2+bx+c (a≠0)部分自变量和对应的函数值如表:x…﹣10245…y1…01356…y2…0﹣1059…当y2>y1时,自变量x的取值范围是 .y=ax2+c y=mx+n A(−1,p)B(3,q)16.如图,抛物线与直线交于,两点,则不等式ax2+mx+c<n的解集是 .17.如图,在平面直角坐标系xOy中,直线y1=kx+m(k≠0)的抛物线y2=ax2+bx+c(a≠0)交于点A(0,4),B(3,1),当y1≤y2时,x的取值范围是 .y=ax+b(a<0,b>0)18.如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函y=−kx+k(k>0)数关联的二次函数.如果一次函数的关联二次函数是y=mx2+2mx+c m≠0(),那么这个一次函数的解析式为 .三、综合题19.如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴的正半轴上,点B在第一象限.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA .过点P 作PD ⊥OB 于D 点(1)直接写出BD 的长并求出点C 的坐标(用含t 的代数式表示)(2)在点P 从O 向A 运动的过程中,△PCA 能否成为直角三角形?若能,求t 的值.若不能,请说明理由;(3)点P 从点O 运动到点A 时,点C 运动路线的长是多少?20.如图,函数 的图象与函数 ( )的图象相交于点P (3,k ),Q 两点.y =2x y =ax 2−3a ≠0(1) = , =  ;a k (2)当 在什么范围内取值时, > ;x 2x ax 2−3(3)解关于 的不等式: >1.x |ax 2−3|21.如图,抛物线与 轴交于 , 两点,点 , 分别位于原点的y =3+3x 2+bx +c x A B A B 左、右两侧, ,过点 的直线与 轴正半轴和抛物线的交点分别为 , , BO =3AO =3B y C D .BC =3CD(1)求 , 的值;b c (2)求直线 的函数解析式;BD 22.如图,抛物线y=-x 2+bx+c 的图像过点A(-1,0)、C(0,3),顶点为M 。

中考数学总复习《二次函数与一次函数的综合应用》练习题-附带答案

中考数学总复习《二次函数与一次函数的综合应用》练习题-附带答案

中考数学总复习《二次函数与一次函数的综合应用》练习题-附带答案一、单选题(共12题;共24分)1.已知一次函数y=ax+c 与二次函数y=ax 2+bx+c ,它们在同一坐标系内的大致图象是( )A .B .C .D .2.已知函数y ={(x −1)2−1(x ≤3)(x −5)2−(x >3),则使y=k 成立的x 值恰好有三个,则k 的值为A .0B .1C .2D .33.已知二次函数y =ax 2−4ax −5a +1(a >0)下列结论正确是( )①已知点M(4,y 1),点N(−2,y 2)在二次函数的图象上,则y 1>y 2;②该图象一定过定点(5,1)和(−1,1);③直线y =x −1与抛物线y =ax 2−4ax −5a +1一定存在两个交点;④当−3≤x ≤1时y 的最小值是a ,则a =110; A .①④B .②③C .②④D .①②③④4.如图,二次函数 y =ax 2+bx +c 的最大值为3,一元二次方程 ax 2+bx +c −m =0 有实数根,则 m 的取值范围是( )A .m≥3B .m≥-3C .m≤3D .m≤-35.二次函数y =−(x −b)2+4b +1图象与一次函数y =−x +5(−1≤x ≤5)只有一交点,则b的值为()A.b=0.75B.b=2或b=12或b=0.75 C.2<b≤12D.2<b≤12或b=0.756.在平面直角坐标系中直线y=mx+n与x轴、y轴分别交于A(−10,0)、B(0,5),已知抛物线y=ax2+bx经过点A,且顶点C在直线y=mx+n的上方,则a的取值范围是().A.a<−0.1B.a>−0.1且a≠0C.a<−0.1且a≠0D.a>0.17.函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.8.反比例函数y=k x(k≠0)与二次函数y=2x2+kx-k的图象可能是() A.B.C.D.9.如图,点A是二次函数y=√3x2图象上的一点,且位于第一象限,点B是直线y=−√32x上一点,点B′与点B关于原点对称,连结AB,AB′,若△ABB′为等边三角形,则点A的坐标是()A.( 13,19√3)B.( 23,49√3)C.(1,√3)D.( 43,169√3)10.两位同学在足球场上玩游戏,两人的运动路线如图1所示,其中AC=DB,小王从点A出发沿线段AB运动到点B,小林从点C出发,以相同的速度沿△O逆时针运动一周回到点C,两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C 的距离y与时间x(单位:秒)的对应关系如图2所示,结合图象分析以下结论:①小王的运动路程比小林的长②两人分别在1.09秒和7.49秒的时刻相遇③当小王运动到点D的时候,小林已经过了点D④在4.84秒时两人的距离正好等于△O的半径上述说法正确的个数的是()A.1个B.2个C.3个D.4个11.若y=kx2﹣(2k﹣3)x+k﹣1是y关于x的二次函数,且函数值恒大于0,则k的取值范围是()A.k>0B.k>89C.k>98D.0<k<9812.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+n与C1、C2共有3个不同的交点,则n的取值范围是()A.−2<n<18B.−3<n<−74C.−3<n<−2D.−3<n<−158二、填空题(共6题;共6分)13.如图,抛物线y=ax2+c与直线y=mx+n交于A(−1,p),B(2,q)两点,则不等式ax2+mx+c>n的解集是.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则关于x的方程ax2−bx−c=0的解为.15.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y= 12x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则方程ax2=bx+c的解是.17.如图,在平面直角坐标系中抛物线y= 12x−212x与直线y=12x+32交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时点P的坐标:.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−3,4),B(2,1),则方程ax2=bx+c的解是.三、综合题(共6题;共68分)19.抛物线y=ax2与直线y=2x−3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=−2的两个交点B,C的坐标(点B在点C右侧).=−25x2+bx+c的图象与x轴、y轴分别交于点A(-1,0)20.如图,二次函数y1和点B(0,2),图象的对称轴交x轴于点C,一次函数y2=mx+n的图象经过点B,C,与二次函数图象的另一个交点为点D.(1)求二次函数的解析式y1和一次函数的解析式y2;(2)求点D的坐标;(3)结合图象,请直接写出y1≤y2时x的取值范围:. 21.2020年,新型冠状病毒肆虐,给人们的生活带来许多不便,网络销售成为这个时期最重要的一种销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中2<x≤10).(1)求y与x之间的函数关系式;(2)销售单价x为多少元时每天的销售利润最大?最大利润是多少元?22.已知关于x的二次函数y=x2−2ax+a2+2a.(1)当a=1时求已知二次函数对应的抛物线的顶点和对称轴;(2)当a=2时直线y=2x与该抛物线相交,求抛物线在这条直线上所截线段的长度;(3)若抛物线y=x2−2ax+a2+2a与直线x=4交于点A,求点A到x轴的最小值.23.设a,b是任意两个实数,用min{a,b}表示a,b两数中较小者,例如:min{-1,-1}=-1,min{1,2}=1,min{4,-3}=-3,参照上面的材料,解答下列问题:(1)min{-3,2}=,min{-1,-2}=;(2)若min{3x+1,-x+2}=-x+2,求x的取值范围;(3)求函数y=-x2-2x+4与y=-x-2的图象的交点坐标,函数y=-x2-2x+4的图象如图所示,请你在图中作出直线y=-x-2,并根据图象直接写出min{-x2-2x+4,-x-2}的最大值。

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题一、单选题1.在平面直角坐标系中,已知点M ,N 的坐标分别为,若抛物线(−1,3),(3,3)与线段MN 只有一个公共点,则的取值范围是( )y =x 2−2mx +m 2−m +2m A .或B .或−1⩽m <07−17<m⩽7+17−1⩽m <0m >7−17C .或D .m <07−172<m⩽7+172−1⩽m⩽7+1722.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .3.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以 cm/s 的速度沿AB 方向运2动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC CB 方向运动到点B .设△APQ 的→面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A.B.C.D.4.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数y=的图象与两坐标轴所围成的图形最接近的面积是( )14(x−4)2A.5B.C.4D.17﹣4π2255.已知如图,抛物线y=-x2-2x+3交x轴于A、B两点,顶点为C,CH⊥AB交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ时,此时CP的长为()A.B.C.D.4522521692096.如图,抛物线y=ax2+2ax-3a(a>0)与x轴交于A,B顶点为点D,把抛物线在x轴下方部分关于点B作中心对称,顶点对应D’,点A对应点C,连接DD’,CD’,DC,当△CDD’是直角三角形时,a的值为( )A . ,B . ,C . ,D . , 12321332133312337.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE﹣ED﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是()A .AE=6cmB .sin∠EBC =45C .当0<t≤10时,D .当t=12s 时,△PBQ 是等腰三角形y =25t 28.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . cm 2B . cm 2C . cm 2D . cm 2332392327239.如图, 在平面直角坐标系中放置 , 点 .现将 沿Rt △ABC ,∠ABC =90∘A(3,4)△ABC x 轴的正方向无滑动翻转,依次得到 连续翻转 14 次, 则经过 △A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3… 三顶点的抛物线解析式为( )△A 14B 14C 14A .B .y =−35(x−51)(x−55)y =−512(x−51)(x−55)C .D .y =−35(x−55)(x−60)y =−512(x−55)(x−60)10.用一根长为50 cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为( )A .y =-x 2+50x B .y =x 2-50x C .y =-x 2+25xD .y =-2x 2+2511.如图,点E ,F ,G ,H 分别是正方形ABCD 边AB ,BC ,CD ,DA 上的点,且AE =BF =CG =DH.设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能为( )A .B .C .D .12.已知一个直角三角形的两边长分别为a 和5,第三边长是抛物线y=x²-10x+21与x 轴交点间的距离,则a 的值为( )4141A.3B.C.3或D.不能确定二、填空题ABCD BC=8,AB=6E CD C,D CE13.如图,矩形中,,点为边上一动点(不与重合)、以CEFG CE:CG=3:4BF,ОOE OE为边向外作矩形,且,连接点是线段BF的中点.连接,则的最小值为 .A(3,3)B(0,2)A y=x2+bx−9AB14.如图,已知点,点,点在二次函数的图象上,作射线AB A45°C C,再将射线绕点按逆时针方向旋转,交二次函数图象于点,则点的坐标为 15.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为 .16.在综合实践活动中,同学们借助如图所示的直角墙角(两边足够长),用24m长的篱笆围成一个矩形花园ABCD,则矩形花园ABCD的最大面积为 m2.17.用一段长为的篱笆围成一个一边靠墙的矩形养鸡场,若墙长,则这个养鸡场最大面积24m 10m 为  .m 218.在第一象限内作射线OC ,与x 轴的夹角为60°,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H ,在抛物线y=x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 三、综合题19.如图,为美化校园环境,某校计划在一块长方形空地上修建一个长方形花圃.已知AB=20m ,BC=30m ,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为 米,花圃的面x 积为 ( ).S m 2(1)求 关于 的函数关系式;S x (2)如果通道所占面积是184 ,求出此时通道的宽 的值;m 2x (3)已知某园林公司修建通道每平方米的造价为40元,花圃每平方米的造价是60元,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过花圃宽的 ,则通道宽为13多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?20.如图,在平面直角坐标系xOy 中,点A 是反比例函数y= (x >0,m >1)图象上一点,m 3−m 2x 点A 的横坐标为m ,点B (0,﹣m )是y 轴负半轴上的一点,连接AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使得AD=AC ,过点A 作AE 平行于x 轴,过点D 作y 轴平行线交AE 于点E .(1)当m=3时,求点A 的坐标;(2)DE=  ,设点D 的坐标为(x ,y ),求y 关于x 的函数关系式和自变量的取值范围;(3)连接BD ,过点A 作BD 的平行线,与(2)中的函数图象交于点F ,当m 为何值时,以A 、B 、D 、F 为顶点的四边形是平行四边形?21.如图,矩形ABCD 的四个顶点在正△EFG 的边上,已知正△EFG 的边长为2,记矩形ABCD 的面积为S ,边长AB 为x 。

2023安徽中考数学专题《二次函数综合》原卷

2023安徽中考数学专题《二次函数综合》原卷

度为_____.
9.(2020·安徽)如图,抛物线 = 2 +与直线 = + 交于 A(-1,P),B(3,q)两点,则不等式2
+ + > 的解集是_____.
10.(2022 秋·安徽滁州)已知,在同一坐标系中二次函数 y1=ax2+bx+c 与一次函数 y2=mx+n 的图象如图,
标是3,则以下结论:
① > 0时,直线 = + ( ≠ 0)与抛物线 y ax 2 (a 0) 的函数值都随着的增大而增大;②AB 的长度
可以等于 5;③ △ 有可能成为等边三角形;④当−3 < < 2时,2 + < 时,其中正确的结论是
( )
A.①②
B.①③
(2)当甲种花卉种植面积不少于 30m2,且乙种花卉种植面积不低于甲种花卉种植面积的 3 倍时.
①如何分配甲乙两种花卉的种植面积才能使种植的总费用 w(元)最少?最少是多少元?
②受投入资金的限制,种植总费用不超过 6000 元,请直接写出甲种花卉种植面积 x 的取值范围.
一、单选题
1.(安徽六安)已知抛物线和直线 l 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线 x=﹣1,
热点 05 二次函数综合
安徽中考数学中二次函数部分主要考向分为三类:
一、二次函数的图象与性质;二、二次函数中求动点坐标(与图形面积相关);三、二次函数的实际运
用(近几年主要考察利润相关为题);
需要注意的是综合运用的题型,难度系数较大,考察的内容较多,特别是动点,还是计算利润时由于
数值比较大需细心。
考点一:利用对称轴解决问题
(2)当 c=2b2 时,若在自变量 x 的值满足 b≤x≤b+3 的情况下,与其对应的函数值 y 的最大值为 18,则 b 的

中考数学总复习《二次函数的实际应用》专项测试卷带答案

中考数学总复习《二次函数的实际应用》专项测试卷带答案

中考数学总复习《二次函数的实际应用》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是( )A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点A(3,32的坐标是.3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE=6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是;当2≤t≤3时,w的取值范围是.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B的坐标.(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务三还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.请根据活动过程完成任务一、任务二和任务三.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y随x的增大而增大时,求x的取值范围.Ⅱ.若关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解,求t的取值范围.Ⅲ.若在函数图象上有点P,Q(P与Q不重合).P的横坐标为m,Q的横坐标为-m+1.小明对P,Q之间(含P,Q两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m的变化而变化时,直接写出m的取值范围.参考答案【A层·基础过关】1.(2024·遵义红花岗一模)如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是(D)A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.(2024·青海中考改编)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点A(3,32)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点的坐标是(74,4916).3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE= 6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是46.4m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是0≤w≤5;当2≤t≤3时,w的取值范围是5≤w≤20.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.【解析】设该果商定价x万元时每天的“利润”为w万元w=(x-2)[100+50(5-x)]=-50(x-4.5)2+312.5∵-50<0∴w随x的增大而减小∴当x=4.5时,w有最大值,最大值为312.5万元.答:该果商定价为4.5万元时才能使每天的“利润”或“销售收入”最大,其最大值为312.5万元.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【解析】(1)设每盒猪肉粽的进价为x元,每盒豆沙粽的进价为y元由题意得{x-y=10x+2y=100,解得{x=40 y=30∴每盒猪肉粽的进价为40元,每盒豆沙粽的进价为30元;(2)w=(a-40)[100-2(a-50)]=-2(a-70)2+1 800,∵-2<0,∴当a=70时,w有最大值,最大值为1 800元.∴该商家每天销售猪肉粽获得的最大利润为1 800元.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.【解析】(1)由题意,根据抛物线过原点,设抛物线解析式为y =ax 2+bx 把x =2,y =0.88和x =6,y =2.16代入y =ax 2+bx 得:{4a +2b =0.8836a +6b =2.16解得{a =-0.02b =0.48∴抛物线解析式为y =-0.02x 2+0.48x. (2)由题意,当x =8时,y =-0.02×82+0.48×8=2.56. ∵2.56>2.3∴喷水头喷出的水柱能越过这棵树. (3)∵喷水头喷出的水柱能够越过这棵树 ∴当x =8时,y >2.3 即-0.04×82+8b >2.3 ∴b >243400∵喷水头喷出的水柱不会浇到墙外 ∴当x =18时,y <2.2 即-0.04×182+18b <2.2,∴b <379450抛物线对称轴为x =-b2×(-0.04)=b2×0.04∵喷水头喷出的水柱能够越过这棵树,且不会浇到墙外 ∴对称轴所在直线在围墙与喷水头中点的左侧. ∴b 2×0.04<182=9,∴b <1825.∴243400<b <1825.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值. 【解析】(1)当0≤t ≤10时,设y 2=kt ∵(10,40)在其图像上,∴10k =40,∴k =4 ∴y 2与t 的函数关系式为y 2=4t ; 当10≤t ≤30时,设y 2=mt +n 将(10,40),(30,60)代入得{10m +n =4030m +n =60,解得{m =1n =30∴y 2与t 的函数关系式为y 2=t +30综上所述,y 2与t 的函数关系式为y 2={4t (0≤t ≤10且为整数)t +30(10<t ≤30且为整数);(2)依题意得y =y 1+y 2,当0≤t ≤10时,y =-15t 2+6t +4t =-15t 2+10t =-15(t -25)2+125,∴t =10时,y最大=80;当10<t ≤30时,y =-15t 2+6t +t +30=-15t 2+7t +30=-15(t -352)2+3654∵t 为整数,∴t =17或18时,y 最大=91.2∵91.2>80,∴当t =17或18时,日销售总量y 达到最大,最大值为91.2百件.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B 的坐标. (2)若运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由. 【解析】∵运动员在空中最高处A 点的坐标为(34,916),∴A 点为抛物线的顶点,∴设该抛物线的解析式为y =a (x -34)2+916∵该抛物线经过点(0,0),∴916a =-916∴a =-1∴抛物线的解析式为y =-(x -34)2+916=-x 2+32x. ∵跳水运动员在10米跳台上进行跳水训练 ∴令y =-10,则-x 2+32x =-10∴x =4或x =-52,∴B (4,-10);(2)该运动员此次跳水不会失误,理由:∵运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,点E 的坐标为(-1,-10),∴运动员在空中调整好入水姿势时的点的横坐标为3当x=3时,y=-32+3×32=-92∴运动员距水面高度为10-92=5.5(米)∵5.5>5,∴该运动员此次跳水不会失误.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.三请根据活动过程完成任务一、任务二和任务三.【解析】任务一:∵AB∥x轴,AB=5 cm,点B为水流抛物线的顶点,∴抛物线的对称轴为x=5.∴-b=5.∴b=-10a.2a把点M(15,0)代入抛物线y=ax2+bx+15得:15a+b+1=0把b=-10a代入15a+b+1=0 得:15a-10a+1=0,解得a=-1,∴b=25x2+2x+15.∴水流抛物线的函数表达式为y=-15任务二:圆柱形水杯最左端到点O的距离是15-3=12,当x=12时×122+2×12+15=10.2,∵11>10.2y=-15∴水流不能流到圆柱形水杯内.任务三:2+3√5<OP<8+3√5.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程ax 2+bx +3-t =0(t 为实数),在0<x <4时无解,求t 的取值范围. Ⅲ.若在函数图象上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为-m +1.小明对P ,Q 之间(含P ,Q 两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m 的变化而变化时,直接写出m 的取值范围. 【解析】(1)∵x =-2<0 ∴将x =-2,y =1代入y =kx +3 得-2k +3=1,解得k =1. ∵x =2>0,x =3>0∴将x =2,y =3,x =3,y =6代入 y =ax 2+bx +3得{4a +2b +3=39a +3b +3=6,解得{a =1b =-2. (2)Ⅰ.∵k =1,a =1,b =-2∴一次函数解析式为y =x +3,二次函数解析式为y =x 2-2x +3. 当x >0时,y =x 2-2x +3,对称轴为直线x =1,开口向上 ∴当x ≥1时,y 随x 的增大而增大; 当x ≤0时,y =x +3,k =1>0∴当x ≤0时,y 随x 的增大而增大. 综上,x 的取值范围为x ≤0或x ≥1.Ⅱ.∵ax 2+bx +3-t =0∴ax 2+bx +3=t 在0<x <4时无解∴问题转化为抛物线y =x 2-2x +3与直线y =t 在0<x <4时无交点.∵对于y=x2-2x+3,当x=1时,y=2∴顶点为(1,2),如图:∴当t=2时,抛物线y=x2-2x+3与直线y=t在0<x<4时正好有一个交点;当t<2时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点.当x=4时,y=16-8+3=11∴当t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点∴当t<2或t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点即当t<2或t≥11时,关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解.Ⅲ.∵x P=m,x Q=-m+1∴m+(-m+1)2=1 2∴点P,Q关于直线x=12对称.当x=1时,y最小值=1-2+3=2,当x=0时,y最大值=3.∵图象对应函数的最大值与最小值均不随m的变化而变化,而当x=2时,y=3,当x=-1时,y=2∴①当m>12时,如图:由题意得{-1≤-m+1≤01≤m≤2∴1≤m≤2;时,如图:②当m<12由题意得{-1≤m≤01≤-m+1≤2∴-1≤m≤0.综上,-1≤m≤0或1≤m≤2.。

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。

中考数学专题11方程、不等式和函数的应用综合(原卷板)

中考数学专题11方程、不等式和函数的应用综合(原卷板)

2014年中考数学试题分项版解析汇编(30套30专题)专题11:方程、不等式和函数的应用综合一、选择题目1.(遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是【】二、填空题目三、解答题1.(玉林、防城港)(12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.2.(毕节)(12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.3.(黔东南)(12分)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.4.(遵义)(10分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是▲ km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?5.(河北)(本小题满分13分)某景区的环形路是边长为800米的正方形ABCD,如图,现有1号,2号两游览车分别从出口A和经典C同时出发,1号车顺时针,2号车逆时针沿环形路连续循环行驶,供游客随时乘车(上,下车的时间忽略不计),两车的速度均为200米/分.探究:设行驶时间为t分(1)当0≤t≤s时,分别写出1号车,2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过点C?,并直接写出这一段时间内它与2号车相遇过的次数.发现:如图,游客甲在BC上一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车;比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P(不与D,A重合)时,刚好与2号车相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?6.(河南)(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

中考数学总复习《二次函数与不等式(组)综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数与不等式(组)综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数与不等式(组)综合应用》专项测试卷-附参考答案一、单选题(共12题;共24分)1.二次函数y=x2−2x−3的图象如图所示.当y<0时,则自变量x的取值范围是().A.-1<x<3B.x<-1C.x>3D.x<-1或x>32.如图,是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.−1<x<5B.x>5C.x<−1且x>5D.x<−1或x>53.如图,已知抛物线y=ax2+c与直线y=kx+m交于A(−3,y1),B(1,y2)两点,则关于x的不等式ax2+c≥kx+m的解集是()A.x≤−3或x≥1B.x≤−1或x≥3C.−3≤x≤1D.−1≤x≤34.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论:①abc>0;②4a﹣2b+c<0;③b2>4ac;④ax2+bx+c≥﹣6;⑤若点M(﹣2,m)与点N(﹣5,n)为抛物线上两点,则m>n;⑥关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1.其中正确结论有()A.5B.4C.3D.2 5.已知二次函数y1=ax2+ax−1,y2=x2+bx+1,令ℎ=b−a,()A.若ℎ=1,a<1,则y2>y1B.若ℎ=2,a<12,则y2>y1C.若ℎ=3,a<0,则y2>y1D.若ℎ=4,a<−12,则y2>y16.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,则x的取值范围是()A.x<a B.x>b C.a<x<b D.x<a或x>b7.二次函数y=a x2+bx+c(a≠0)的图象如图所示,当y>0时,则自变量x的取值范是()A.x<-1B.x>3C.x<-1或x>3D.-1<x<38.抛物线y=﹣x2+bx+c的部分图象如图所示,要使y>0,则x的取值范围是()A.﹣4<x<1B.﹣3<x<1C.x<﹣4或x>1D.x<﹣3或x>19.在平面直角坐标系中,二次函数y1=﹣x2+4x 和一次函数y2=2x 的图象如图所示,那么不等式﹣x2+4x>2x 的解集是()A.x<0B.0<x<4C.0<x<2D.2<x<410.如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,则x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,则y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,则y1>y2;②当x<0时,则x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是﹣12或√22.其中正确的个数是()A.1个B.2个C.3个D.4个11.设函数y=3ax2-2bx+c(a,b,c都为正整数且a-b+c=0),若当x=0与x=1时,则都有y>0,则a+b+c的最小值为()A.7B.4C.6D.1012.汽车在刹车后,由于惯性作用还要继续向前滑行一段距离才能停下,我们称这段距离为“刹车距离”,刹车距离往往跟行驶速度有关,在一个限速35km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不妙,同时刹车,最后还是相撞了事发后,交警现场测得甲车的刹车距离略超过12m,乙车的刹车距离略超过10m,又知甲、乙两种车型的刹车距离s(m)与车速x(km/h)的关系大致如下:S甲=1100x2+110,S乙=1200x2+120x.由此可以推测()A.甲车超速B.乙车超速C.两车都超速D.两车都未超速二、填空题(共6题;共6分)13.如图为二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1.若其与x轴一交点为A(3,0)则由图象可知,不等式ax2+bx+c<0的解集是.14.如图是抛物线y=ax 2+bx+c 的一部分,其对称轴为直线x=1,若其与x 轴一交点为B (3,0),则由图象可知,不等式ax 2+bx+c >0的解集是 .15.如图,抛物线y =ax 2+bx 与直线y =kx 相交于O ,A (3,2)两点,则不等式ax 2+bx ﹣kx <0的解集是 .16.如图,抛物线y 1=ax 2(a ≠0)与直线y 2=bx +c(b ≠0)的两个交点坐标分别为A(−2,4),B(1,1),则当y 1<y 2时,则x 的取值范围是 .17.已知二次函数 y =ax 2+bx +c 的图象如图所示,且 OB =OC ,则下列结论:①ac +b +1=0 ;②4ac−b 22a =1 ;③abc <0 ;④a −b +c <0 .其中正确结论的序号是 .(把你认为所有正确的都填上)18.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(−1,0),点B 在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是三、综合题(共6题;共62分)19.关于x的二次函数y1(k为常数)和一次函数y2=x+2。

专题20 应用题综合(函数、不等式、方程)-2019-2021中考真题数学分项汇编(原卷版)

专题20 应用题综合(函数、不等式、方程)-2019-2021中考真题数学分项汇编(原卷版)

专题20 应用题综合(函数、不等式、方程)一.解答题(共45道)1.(2021·浙江台州市·中考真题)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1,R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 ,该读数可以换算为人的质量m,温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=UR;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k,b的值;(2)求R1关于U0的函数解析式;(3)用含U0的代数式表示m;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.2.(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽a>给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的车捐出a元()0汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.3.(2021·吉林长春市·中考真题)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水查流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间,某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:(实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:(探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.(结论应用)应用上述发现的规律估算:(3)供水时间达到12小时时,箭尺的读数为多少厘米?(4)如果本次实验记录的开始时间是上午8:00,那么当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)4.(2021·黑龙江鹤岗市·中考真题)已知A 、B 两地相距240km ,一辆货车从A 地前往B 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B 地前往A 地,到达A 地后(在A 地停留时间不计)立即原路原速返回.如图是两车距B 地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中m 的值是__________;轿车的速度是________km/h ;(2)求货车从A 地前往B 地的过程中,货车距B 地的距离()km y 与行驶时间()h x 之间的函数关系式; (3)直接写出轿车从B 地到A 地行驶过程中,轿车出发多长时间与货车相距12km ?5.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几; (2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入; ②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?6.(2021·河北中考真题)下图是某同学正在设计的一动画示意图,x 轴上依次有A ,O ,N 三个点,且2AO =,在ON 上方有五个台阶15~T T (各拐角均为90︒),每个台阶的高、宽分别是1和1.5,台阶1T 到x 轴距离10OK =.从点A 处向右上方沿抛物线L :2412y x x =-++发出一个带光的点P .(1)求点A 的横坐标,且在图中补画出y 轴,并直接..指出点P 会落在哪个台阶上; (2)当点P 落到台阶上后立即弹起,又形成了另一条与L 形状相同的抛物线C ,且最大高度为11,求C 的解析式,并说明其对称轴是否与台阶5T 有交点;(3)在x 轴上从左到右有两点D ,E ,且1DE =,从点E 向上作EB x ⊥轴,且2BE =.在BDE 沿x 轴左右平移时,必须保证(2)中沿抛物线C 下落的点P 能落在边BD (包括端点)上,则点B 横坐标的最大值比最小值大多少?(注:(2)中不必写x 的取值范围)7.(2021·广西来宾市·中考真题)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.8.(2021·贵州安顺市·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.9.(2021·湖北中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(1)求y 与x 的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元? (3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)10.(2021·辽宁大连市·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?11.(2021·内蒙古鄂尔多斯市·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x (元)和游客居住房间数y (间)符合一次函数关系,如图是y 关于x 的函数图象. (1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?12.(2021·贵州铜仁市·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用1y (万元)与月销售量x (辆)(4x ≥)满足某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y 与x 的关系式1y =________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y =(每辆原售价-1y -进价)x ,请你根据上述条件,求出月销售量()4x x ≥为多少时,销售利润最大?最大利润是多少?13.(2021·湖北鄂州市·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围); (2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)14.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?15.(2021·湖北随州市·中考真题)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?图216.(2021·四川雅安市·中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.17.(2021·浙江衢州市·中考真题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.18.(2021·辽宁中考真题)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?19.(2021·黑龙江绥化市·中考真题)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息,已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行.第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m=_______,n=______;(2)求CD和EF 所在直线的解析式;(3)直接写出t为何值时,两人相距30米.20.(2021·江苏泰州市·中考真题)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).(1)求直线AB的函数关系式;(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=1100y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?21.(2020·辽宁朝阳市·中考真题)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:(1)直接写出y与x的关系式_________________;(2)求公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.22.(2020·内蒙古呼和浩特市·中考真题)已知某厂以t小时/千克的速度匀速生产某种产品(生产条件要求0.11t<≤),且每小时可获得利润56031tt⎛⎫-++⎪⎝⎭元.(1)某人将每小时获得的利润设为y元,发现1t=时,180y=,所以得出结论:每小时获得的利润,最少是180元,他是依据什么得出该结论的,用你所学数学知识帮他进行分析说明;(2)若以生产该产品2小时获得利润1800元的速度进行生产,则1天(按8小时计算)可生产该产品多少千克;(3)要使生产680千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.23.(2020·湖北随州市·中考真题)2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤,且x 为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式; (2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式,并判断第几天的利润最大; (3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款,若罚款金额不低于2000元,则m 的取值范围为______.24.(2020·湖北中考真题)网络销售已经成为一种热门的销售方式为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg ,每日销售量(kg)y 与销售单价x (元/kg )满足关系式:1005000y x =-+.经销售发现,销售单价不低于成本价格且不高于30元/kg .当每日销售量不低于4000kg 时,每千克成本将降低1元设板栗公司销售该板栗的日获利为W (元). (1)请求出日获利W 与销售单价x 之间的函数关系式(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当40000W ≥元时,网络平台将向板栗公可收取a 元/kg(4)a <的相关费用,若此时日获利的最大值为42100元,求a 的值.25.(2020·浙江绍兴市·中考真题)如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在取1.4)26.(2020·浙江嘉兴市·中考真题)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).27.(2020·浙江衢州市·中考真题)2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?28.(2020·浙江中考真题)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:m),如果在离水面竖直距离为h (单校:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.29.(2021·四川南充市·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)30.(2021·浙江温州市·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?31.(2020·黑龙江中考真题)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m ,n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x 千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的利润率不低于20%,求a 的最大值.32.(2020·甘肃天水市·中考真题)天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元. (1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.33.(2020·辽宁鞍山市·中考真题)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经。

二次函数综合应用题(有答案)中考23题必练经典

二次函数综合应用题(有答案)中考23题必练经典

函数综合应用题题目分析及题目对学生的要求1.求解析式:要求学生能够根据题意建立相应坐标系,将实际问题转化成数学问题。

需要注意的是:(1) 不能忘记写自变量的取值范围(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。

2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求学生能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。

最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。

(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。

3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。

推荐思路:画出不等式左右两边的图象,结合函数图象求出x的取值范围。

备选思路一:先将不等号看做等号,求出x的取值,再结合图象考虑将等号还原为不等号后x的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。

这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。

一、求利润的最值(2010·武汉)23. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。

当每个房间每天的房价每增加10元时,就会有一个房间空闲。

宾馆需对游客居住的每个房间每天支出20元的各种费用。

根据规定,每个房间每天的房价不得高于340元。

设每个房间的房价每天增加x 元(x 为10的正整数倍)。

(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。

(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890,当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。

2022中考数学专题练习二次函数的综合应用(解析版)

2022中考数学专题练习二次函数的综合应用(解析版)

2022中考数学专题练习二次函数的综合应用(解析版)【例题1】二次函数y=a某2+b某+c(≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a (m≠1),其中结论正确的个数是()A.1B.2C.3D.4【分析】由抛物线与某轴有两个交点得到b2﹣4ac>0,可判断①;根据对称轴是某=﹣1,可得某=﹣2、0时,y的值相等,所以4a﹣2b+c>0,可判断③;根据﹣=﹣1,得出b=2a,再根据a+b+c<0,可得b+b+c<0,所以3b+2c<0,可判断②;某=﹣1时该二次函数取得最大值,据此可判断④.【解答】解:∵图象与某轴有两个交点,∴方程a某2+b某+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∴﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当某=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知某=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④错误∴正确的有①②两个,故选B.【例题2】荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.【分析】(1)根据函数图象,利用待定系数法求解可得;(2)设日销售利润为w,分1≤t≤40和41≤t≤80两种情况,根据“总利润=每千克利润某销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时某的值,结合函数图象即可得出答案;(4)依据(2)中相等关系列出函数解析式,确定其对称轴,由1≤t≤40且销售利润随时间t的增大而增大,结合二次函数的性质可得答案.【解答】解:(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤某≤80,t为整数);(2)设日销售利润为w,则w=(p﹣6)y,①当1≤t≤40时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴当t=30时,w最大=2450;②当41≤t≤80时,w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,∴当t=41时,w最大=2301,∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤40时,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,由函数w=﹣(t﹣30)2+2450图象可知,当20≤t≤40时,日销售利润不低于2400元,而当41≤t≤80时,w最大=2301<2400,∴t的取值范围是20≤t≤40,∴共有21天符合条件.(4)设日销售利润为w,根据题意,得:w=(t+16﹣6﹣m)(﹣2t+200)=﹣t2+(30+2m)t+2000﹣200m,其函数图象的对称轴为t=2m+30,∵w随t的增大而增大,且1≤t≤40,∴由二次函数的图象及其性质可知2m+30≥40,解得:m≥5,又m<7,∴5≤m<7.【例题3】如图,已知抛物线y=a某2+2某+c与y轴交于点A(0,6),与某轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?【分析】(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出P、M的坐标,过P作P E⊥某轴于点E,交AB于点F,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出△PAB的面积,利用S四边形PAMB=S△PAB+S△AMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值.【解答】解:6)B0)(1)根据题意,把A(0,,(6,代入抛物线解析式可得∴抛物线的表达式为y=﹣某2+2某+6,∵y=﹣某2+2某+6=﹣(某﹣2)2+8,∴抛物线的顶点坐标为(2,8);(2)如图1,过P作PC⊥y轴于点C,,解得,∵OA=OB=6,∴∠OAB=45°,∴当∠PAB=75°时,∠PAC=60°,∴tan∠PAC=,即=,设AC=m,则PC=∴P(m,m,6+m),m)2+2m+6,解得m=0或m=把P点坐标代入抛物线表达式可得6+m=﹣(﹣,经检验,P(0,6)与点A重合,不合题意,舍去,∴所求的P点坐标为(4﹣,+);(3)当两个支点移动t秒时,则P(t,﹣t2+2t+6),M(0,6﹣t),如图2,作PE⊥某轴于点E,交AB于点F,则EF=EB=6﹣t,∴F(t,6﹣t),∴FP=t2+2t+6﹣(6﹣t)=﹣t2+3t,∵点A到PE的距离竽OE,点B到PE的距离等于BE,∴S△PAB=FPOE+FPBE=FP(OE+BE)=FPOB=某(﹣t2+3t)某6=﹣t2+9t,且S△AMB=AMOB=某t某6=3t,∴S=S四边形PAMB=S△PAB+S△AMB=﹣t2+12t=﹣(t﹣4)2+24,∴当t=4时,S有最大值,最大值为24.【例题4】如图1,抛物线C1:y=某2+a某与C2:y=﹣某2+b某相交于点O、C,C1与C2分别交某轴于点B、A,且B为线段AO的中点.(1)求的值;(2)若OC⊥AC,求△OAC的面积;(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.【分析】(1)由两抛物线解析式可分别用a和b表示出A、B两点的坐标,利用B为OA的中点可得到a和b之间的关系式;(2)由抛物线解析式可先求得C点坐标,过C作CD⊥某轴于点D,可证得△OCD∽△CAD,由相似三角形的性质可得到关于a的方程,可求得OA和CD的长,可求得△OAC的面积;(3)①连接OC与l的交点即为满足条件的点P,可求得OC的解析式,则可求得P点坐标;②设出E点坐标,则可表示出△EOB的面积,过点E作某轴的平行线交直线BC于点N,可先求得BC的解析式,则可表示出EN的长,进一步可表示出△EBC的面积,则可表示出四边形OBCE的面积,利用二次函数的性质可求得其最大值,及E点的坐标.【解答】解:(1)在y=某2+a某中,当y=0时,某2+a某=0,某1=0,某2=﹣a,∴B(﹣a,0),在y=﹣某2+b某中,当y=0时,﹣某2+b某=0,某1=0,某2=b,∴A(0,b),∵B为OA的中点,∴b=﹣2a,∴;(2)联立两抛物线解析式可得,消去y整理可得2某2+3a某=0,解得某1=0,,当时,,∴,,过C作CD⊥某轴于点D,如图1,∴,,∵∠OCA=90°,∴△OCD∽△CAD,∴,∴CD2=ADOD,即,∴a1=0(舍去),(舍去),,∴,,∴;(3)①抛物线:,∴其对称轴:,点A关于l2的对称点为O(0,0),,,则P为直线OC与l2的交点,设OC的解析式为y=k某,∴,得,∴OC的解析式为,当时,,∴,;②设,,,则,而,,,,设直线BC的解析式为y=k某+b,,解得,,由∴直线BC的解析式为,过点E作某轴的平行线交直线BC于点N,如图2,则,即某=,∴EN=,∴∴S四边形OBCE=S△OBE+S△EBC==,∵,∴当时,最大,当时,,∴,,最大.【点评】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、轴对称的性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)中分别表示出A、B的坐标是解题的关键,在(2)中求得C点坐标,利用相似三角形的性质求得a的值是解题的关键,在(3)①中确定出P点的位置是解题的关键,在(3)②中用E点坐标分别表示出△OBE和△EBC的面积是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度较大.巩固练习一、选择题:1.抛物线y=﹣(某+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:y=﹣(某+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.2.已知二次函数y=a某2+b某+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与某轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣上即可得出结论.【解答】解:①∵抛物线开口向上,>0,结论④错误.综∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与某轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.3.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC 上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cmB.18cmC.2cmD.3cm==,【分析】根据已知条件得到CP=6﹣t,得到PQ=于是得到结论.【解答】解:∵AP=CQ=t,∴CP=6﹣t,∴PQ=∵0≤t≤2,∴当t=2时,PQ的值最小,∴线段PQ的最小值是2故选C.==,,4.如图,抛物线y=a某2+b某+c(a≠0)的对称轴为直线某=﹣2,与某轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个B.3个C.2个D.1个【分析】根据抛物线的对称轴可判断①,由抛物线与某轴的交点及抛物线的对称性可判断②,由某=﹣1时y>0可判断③,由某=﹣2时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线某=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线某=﹣∴4a﹣b=0,所以①正确;∵与某轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,某=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当某=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;=﹣2,∵抛物线的开口向下,且对称轴为直线某=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1<y3<y2,故⑤错误;故选:B.0)5.已知抛物线y=a某2+b某+c(a≠0)的对称轴为直线某=2,与某轴的一个交点坐标为(4,,其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当某<2时,y随某增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【分析】①由抛物线的对称轴结合抛物线与某轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=﹣4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当某=5时y>0,即可得出a﹣b+c>0,结论③错误;④将某=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当某<2时,yy随某增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①∵抛物线y=a某2+b某+c(a≠0)的对称轴为直线某=2,与某轴的一个交点坐标为(4,0),∴抛物线与某轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=a某2+b某+c(a≠0)的对称轴为直线某=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当某=﹣1和某=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当某=2时,y=a某2+b某+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当某<2时,yy随某增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选C.二、填空题:6.经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是y=﹣某2+某+3.【分析】根据A与B坐标特点设出抛物线解析式为y=a (某﹣2)(某﹣4),把C坐标代入求出a的值,即可确定出解析式.【解答】解:根据题意设抛物线解析式为y=a(某+2)(某﹣4),把C(0,3)代入得:﹣8a=3,即a=﹣,则抛物线解析式为y=﹣(某+2)(某﹣4)=﹣某2+某+3,故答案为y=﹣某2+某+3.7.飞机着陆后滑行的距离(单位:米)关于滑行的时间t(单位:秒)的函数解析式是=60t﹣t2,则飞机着陆后滑行的最长时间为20秒.【分析】将=60t﹣1.5t2,化为顶点式,即可求得的最大值,从而可以解答本题.【解答】解:解:=60t﹣t2=﹣(t﹣20)2+600,∴当t=20时,取得最大值,此时=600.故答案是:20.8.对于函数y=某n+某m,我们定义y'=n某n﹣1+m某m﹣1(m、n为常数).例如y=某4+某2,则y'=4某3+2某.已知:y=某3+(m﹣1)某2+m2某.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为且.【分析】根据新定义得到y′=某3+(m﹣1)某2+m2=某2﹣2(m﹣1)某+m2,(1)由判别式等于0,解方程即可;(2)根据根与系数的关系列不等式组即可得到结论.【解答】解:根据题意得y′=某2﹣2(m﹣1)某+m2,(1)∵方程某2﹣2(m﹣1)某+m2=0有两个相等实数根,∴△=[﹣2(m﹣1)]2﹣4m2=0,解得:m=,故答案为:;(2)y′=m﹣,即某2+2(m﹣1)某+m2=m﹣,化简得:某2+2(m﹣1)某+m2﹣m+=0,∵方程有两个正数根,<∴>,解得:且.故答案为:且.【点评】本题考查了抛物线与某轴的交点,根的判别式,根与系数的关系,正确的理解题意是解题的关键.9.如图是抛物线y1=a某2+b某+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与某轴的一个交点是B(4,0),直线y2=m某+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程a某2+b某+c=3有两个相等的实数根;③抛物线与某轴的另一个交点是(﹣1,0);④当1<某<4时,有y2>y1;⑤某(a某+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程a某2+b某+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与某轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<某<4时,有y2<y1,故④错误,因为某=1时,y1有最大值,所以a某2+b某+c≤a+b+c,即某(a某+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.10.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=a某2+b某+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣某2+某+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=a某2+b某+24,把C(20,0),B(12,24)代入抛物线,可得,,解得2∴抛物线为y=﹣某+某+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣某2+某+24,解得某1=6+8,某2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题:1.如图,已知抛物线y=﹣某2+b某+c与某轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=a某2+b某+c(a≠0)的顶点坐标为(﹣,)【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c的值,进而可得到抛物线的对称轴方程;(2)令某=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(某,y)(某>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得解得:,,∴抛物线的解析式为y=﹣某2+2某+3;(2)令某=0,则y=3,∴C(0,3),∵y=﹣某2+2某+3=﹣(某﹣1)2+4,∴D(1,4);(3)设P(某,y)(某>0,y>0),S△COE=某1某3=,S△ABP=某4y=2y,∵S△ABP=4S△COE,∴2y=4某,∴y=3,∴﹣某2+2某+3=3,解得:某1=0(不合题意,舍去),某2=2,∴P(2,3).2.如图,直线y=k某+b(k、b为常数)分别与某轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣某2+2某+1与y轴交于点C.(1)求直线y=k某+b的函数解析式;y)(2)若点P(某,是抛物线y=﹣某2+2某+1上的任意一点,设点P到直线AB的距离为d,求d关于某的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣某2+2某+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.【分析】(1)由A、B两点的坐标,利用待定系数法可求得直线解析式;(2)过P作PH⊥AB于点H,过H作HQ⊥某轴,过P作PQ⊥y轴,两垂线交于点Q,则可证明△PHQ∽△BAO,设H(m,m+3),利用相似三角形的性质可得到d与某的函数关系式,再利用二次函数的性质可求得d取得最小值时的P点的坐标;(3)设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,则可知当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,由C点坐标可确定出C′点的坐标,利用(2)中所求函数关系式可求得d的值,即可求得CE+EF的最小值.【解答】解:(1)由题意可得∴直线解析式为y=某+3;(2)如图1,过P作PH⊥AB于点H,过H作HQ⊥某轴,过P作PQ⊥y轴,两垂线交于点Q,,解得,则∠AHQ=∠ABO,且∠AHP=90°,∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°,∴∠PHQ=∠BA O,且∠AOB=∠PQH=90°,∴△PQH∽△BOA,∴==,设H(m,m+3),则PQ=某﹣m,HQ=m+3﹣(﹣某2+2某+1),∵A (﹣4,0),B(0,3),∴OA=4,OB=3,AB=5,且PH=d,∴==,,,整理消去m可得d=某2﹣某+=(某﹣)2+∴d与某的函数关系式为d=(某﹣)2+∵>0,∴当某=时,d有最小值,此时y=﹣()2+2某+1=∴当d取得最小值时P点坐标为(,);,(3)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,∵C(0,1),∴C′(2,1),由(2)可知当某=2时,d=某(2﹣)2+即CE+EF的最小值为.=,3.如图1,抛物线y=a某2+b某+2与某轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的解析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)由条件可求得A、B的坐标,利用待定系数法可求得抛物线解析式;(2)可先求得E点坐标,从而可求得直线OE解析式,可知∠PGH=45°,用m可表示出PG的长,从而可表示出l的长,再利用二次函数的性质可求得其最大值;(3)分AC为边和AC为对角线,当AC为边时,过M作对称轴的垂线,垂足为F,则可证得△MFN≌△AOC,可求得M到对称轴的距离,从而可求得M点的横坐标,可求得M点的坐标;当AC为对角线时,设AC的中点为K,可求得K的横坐标,从而可求得M的横坐标,代入抛物线解析式可求得M点坐标.【解答】解:(1)∵矩形OBDC的边CD=1,∴OB=1,∵AB=4,∴OA=3,∴A(﹣3,0),B(1,0),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣某2﹣某+2;(2)在y=﹣某2﹣某+2中,令y=2可得2=﹣某2﹣某+2,解得某=0或某=﹣2,∴E(﹣2,2),∴直线OE解析式为y=﹣某,由题意可得P(m,﹣m2﹣m+2),∵PG∥y轴,∴G(m,﹣m),∵P 在直线OE的上方,∴PG=﹣m2﹣m+2﹣(﹣m)=﹣m2﹣m+2=﹣(m+)2+∵直线OE解析式为y=﹣某,∴∠PGH=∠COE=45°,∴l=PG=[﹣(m+)2+]=﹣(m+)2+;,,∴当m=﹣时,l有最大值,最大值为(3)①当AC为平行四边形的边时,则有MN∥AC,且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L,则∠ALF=∠ACO=∠FNM,在△MFN和△AOC中∴△MFN≌△AOC(AAS),∴MF=AO=3,∴点M到对称轴的距离为3,又y=﹣某2﹣某+2,∴抛物线对称轴为某=﹣1,设M点坐标为(某,y),则|某+1|=3,解得某=2或某=﹣4,当某=2时,y=﹣,当某=﹣4时,y=)或(﹣4,﹣,);∴M点坐标为(2,﹣②当AC为对角线时,设AC的中点为K,∵A(﹣3,0),C(0,2),∴K(﹣,1),∵点N在对称轴上,∴点N的横坐标为﹣1,设M点横坐标为某,∴某+(﹣1)=2某(﹣)=﹣3,解得某=﹣2,此时y=2,∴M(﹣2,2);综上可知点M的坐标为(2,﹣)或(﹣4,﹣)或(﹣2,2).。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学函数类应用题综合测试卷
一、单选题(共6道,每道15分)
1.为推进节能减排,发展低碳经济,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减
少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).当、时,y与x之间的函数关系式分别是()
A. B.
C. D.
2.为推进节能减排,发展低碳经济,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减
少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).当、时,第一年的年获利w与x函数关系式分别是()(年获利=年销售额-生产成本-节电投资)
A.
B.
C.
D.
3.为推进节能减排,发展低碳经济,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,根据题意列方程得()
A. B.
C. D.
4.在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识.某企业采用技术革新,节能减排.从去年1至6月,该企业二氧化碳排放量(吨)与月份x(1≦x≦6,且x取整数)之间的函数关系如下
表:
去年7至12月,二氧化碳排放量(吨)与月份x(7≦x≦12,且x取整数)的变化情况满足二次函数(a≠0),且去年7月和去年8月该企业的二氧化碳排放量都为56吨.观察题
中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识表达与x之间、与x之间的函数关系式.下列选项中正确的是()
A. B.
C. D.
5.在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识.某企业采用技术革新,节能减排.从去年1至6月,该企业二氧化碳排放量(吨)与月份x(1≦x≦6,且x取整数)之间的函数关系如下表:
去年7至12月,二氧化碳排放量(吨)与月份x(7≦x≦12,且x取整数)的变化情况满足二次
函数(a≠0),且去年7月和去年8月该企业的二氧化碳排放量都为56吨.政府为了鼓励企业节能减排,决定对每月二氧化碳排放量不超过600吨的企业进行奖励.去年1至6月奖励标准如下,以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖
励z(元)与月份x满足函数关系式(1≦x≦6,且x取整数),如该企业去年3月二氧化碳排放量为200吨,那么该企业得到奖励的吨数为(600-200)吨;去年7至12月奖励标准如下:以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖励30元,如该企业去年7月份的二氧化碳排放量为56吨,那么该企业得到奖励的吨数为(600-56)吨.设去年1
至6月中第x月政府奖励该企业的资金为,7至12月中第x月政府奖励该企业的资金为,则与x之间、与x之间的函数关系式为()
A.
B.
C.
D.
6.在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的
共识.某企业采用技术革新,节能减排.从去年1至6月,该企业二氧化碳排放量(吨)与月份x(1≦x≦6,且x取整数)之间的函数关系如下
表:
去年7至12月,二氧化碳排放量(吨)与月份x(7≦x≦12,且x取整数)的变化情况满足二次
函数(a≠0),且去年7月和去年8月该企业的二氧化碳排放量都为56吨.在去年一年中,政府奖励该企业资金最多的是第()月,最多资金为()
A. B.
C.
D.
(本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档