最新北师大版高二数学选修21空间向量试卷及答案
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(包含答案解析)(3)
一、选择题1.如图,已知正方体1111ABCD A BC D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .132.已知向量(2,0,2)a =-,则下列向量中与a 成45的夹角的是( ) A .(0,0,2) B .(2,0,0) C .()0,2,2 D .()2,2,0- 3.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( ) A .26 B .36 C .56 D .13 4.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .15.已知在平行六面体1111ABCD A BC D -中,过顶点A 的三条棱所在直线两两夹角均为60︒,且三条棱长均为1,则此平行六面体的对角线1AC 的长为( )A 3B .2C 5D 66.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC 的中点,则异面直线MB 与1AA 所成角的余弦值为( )A .13B .223C .324D .127.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12 B .22 C .13 D .16 8.已知正方体1111ABCD A BC D -,M 为11A B 的中点,则异面直线A M 与1BC 所成角的余弦值为( )A .105B .1010C .32D .629.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .16010.如图所示,平行六面体1111ABCD A BC D -中,以顶点A 为端点的三条棱长都为1,且两两夹角为60︒.求1BD 与AC 夹角的余弦值是( )A 3B 6C .217D 21 11.如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,若对角线1AC 的长是棱长的m 倍,则m 等于( )A .2B .3C .1D .212.在平面直角坐标系中,()2,3A -、()32B -,,沿x 轴将坐标平面折成60︒的二面角,则AB 的长为( )A .2B .211C .32D .42二、填空题13.如图,已知正三棱柱111ABC A B C -中,12AB AA ==,,M N 分别为1,CC BC 的中点,点P 在直线11A B 上且满足111().A P AB R λλ=∈若平面PMN 与平面ABC 所成的二面角的平面角的大小为45,则实数λ的值为______.14.设(3,3,1),(1,0,5),(0,1,0)A B C ,则AB 中点M 到C 的距离CM = _______.15.已知空间直角坐标系中点()123p ,,,()321Q ,,,则||PQ =__________. 16.如图,已知正方体1111ABCD A BC D -中,M 为棱11D C 的中点,则直线BM 和平面11AC B 所成角的正弦为_____________________.17.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为 .18.在直三棱柱111ABC A B C -中,若1BAC 90,ABAC AA ,则异面直线1BA 与1AC 所成的角等于_________ 19.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______. 20.正三棱锥底面边长为1,侧面与底面所成二面角为45°,则它的全面积为________三、解答题21.如图,在四棱锥P ABCD -中,AB //CD ,223AB DC ==,AC BD F ⋂=,且PAD △与ABD △均为正三角形,AE 为PAD △的中线,点G 在线段AE ,且2AG GE =.(1)求证:GF //平面PDC ;(2)若平面PAD ⊥平面ABCD ,求平面PAD 与平面GBC 所成锐二面角的余弦值.22.如图,平行四边形ABCD 中,26AD AB ==,,E F 分别为,AD BC 的中点.以EF 为折痕把四边形EFCD 折起,使点C 到达点M 的位置,点D 到达点N 的位置,且NF NA =.(1)求证:平面AFN ⊥平面NEB ;(2)若23BE =,求点F 到平面BEM 的距离.23.如图,已知ABCD 为正方形,GD ⊥平面ABCD ,//AD EG 且2AD EG =,//GD CF 且2GD FC =,2DA DG ==.(1)求平面BEF 与平面CDGF 所成二面角的余弦值;(2)设M 为FG 的中点,N 为正方形ABCD 内一点(包含边界),当//MN 平面BEF 时,求线段MN 的最小值.24.如图,四棱锥S ABCD -中,底面ABCD 是梯形,//AB CD ,90ADC ∠=︒,3AD =,22SD CD AB ===,点E ,F 分别是BC ,SD 的中点.(1)求证://EF 平面SAB ;(2)若SB SC =,2EF =,求二面角B SC D --的余弦值.25.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 是等腰梯形//,2,4,,AB DC BC CD AD AB M N ====分别是,AB AD 的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C PN D --的大小为60°,求四棱锥P ABCD -的体积.26.如图:三棱锥A BCD -中,AB ⊥平面BCD ,且222AD AB CD ===,2BC =;BM AC ⊥,BN AD ⊥,垂足分别为M ,N .(1)求证:AMN 为直角三角形;(2)求直线BC 与平面BMN 所成角的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围.【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离.设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤∵点P 到平面11CDD C 距离等于线段PF 的长∴PN PF =由两点间距离公式可得()()2212x x z =-+-()2212x z -=-,则210x -≥解不等式可得12x ≥综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等)故选:D【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题.2.B解析:B【分析】根据空间向量数量积的坐标公式,即可得到答案【详解】根据夹角余弦值cos a ba b θ⋅=对于A 若()b 0,0,2,=则-222==-222a b a b ⋅⨯,而2cos 452︒=,故不符合条件 对于B 若()b 20,0,=,则222==222a ba b ⋅⨯,而2cos 452︒=,故符合条件 对于C 若()b 0,22,=,则-21==-cos 45222a b a b ⋅≠︒⨯,故不符合条件 对于D 若()b 2-20=,,则21==cos 45222a b a b ⋅≠︒⨯,故不符合条件 故选B【点睛】 本题考查了向量的数量积,运用公式代入进行求解,较为简单3.A解析:A【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系, 利用空间向量求异面直线AE 与CD 1所成角的余弦值为26. 【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0), ()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE DC >26922=⋅. ∴异面直线AE 与CD 1所成角的余弦值为26. 故选A .【点睛】 本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.4.A解析:A【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值.【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()0,2,PB a b =--=PBC 的面积为(122BC PB ⨯⨯==126105a ==时,面积取得最小值为=,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.5.D解析:D【分析】由()2211+BC CC ,AC AB =+根据已知条件能求出结果 【详解】∵()2211+BC CC AC AB =+ =222111222AB BC CC AB BC AB CC BC CC +++⋅+⋅+⋅=1+1+1+2×1×1×cos60°+2×1×1×co s60°+2×1×1×cos60°=6.∴AC =故选D .【点睛】这个题目考查了向量的点积运算和模长的求法;对于向量的题目一般是以小题的形式出现,常见的解题思路为:向量基底化,用已知长度和夹角的向量表示要求的向量,或者建系实现向量坐标化,或者应用数形结合.6.B解析:B【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,求得11,1,22MB ⎛⎫=--- ⎪⎝⎭,()10,? 02AA =,,利用空间向量夹角余弦公式能求出异面直线MB 与1AA 所成角的余弦值.【详解】在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC , ∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 设11111222AA A B B C ===, 则11,1,22M ⎛⎫ ⎪⎝⎭,(0,00B ,),(1,00A ,),1(1,02A ,), 11,1,22MB ⎛⎫=--- ⎪⎝⎭,1(0,02AA ,)=, 设异面直线MB 与1AA 所成角为θ,则11cos 18MB AA MB AA θ⋅===⋅ ∴异面直线MB 与1AA 所成角的余弦值为3,故选B . 【点睛】本题主要考查异面直线所成角的余弦值的求法,是基础题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.7.C解析:C【分析】 根据题意,以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,平面外一点到平面的距离可以用平面上任意一点与该点的连线在平面法向量上的投影表示,而法向量垂直于平面上所有向量,由AC ,1AD 即可求得平面1ACD 的法向量n ,而1D E 在n 上的投影即为点E 到面1ACD 的距离,即可求得结果【详解】以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,如图所示:则()1101A ,,,()1001D ,,,()100A ,,,()020C ,, E 为AB 的中点,则()110E ,, ()1111D E ∴=-,,,()120AC =-,,,()1101AD =-,,设平面1ACD 的法向量为()n a b c =,,,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即200a b a c -+=⎧⎨-+=⎩ 可得2a ba c =⎧⎨=⎩可取()212n =,, ∴点E 到面1ACD 的距离为1212133D E n d n⋅+-=== 故选C 【点睛】本题是一道关于点到平面距离的题目,解题的关键是掌握求点到面距离的方法,建立空间直角坐标系,结合法向量求出结果,属于中档题。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(答案解析)(3)
一、选择题1.已知直三棱柱111ABC A B C -中,190,1,2ABC AB BC CC ︒∠====,则异面直线1AB 与1BC 所成角的余弦值为( ) A .35B .35C .45D .45-2.定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件: (1)a a b ⊥⨯,b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);(2)a b ⨯的模sin ,a b a b a b ⨯=⋅(,a b 表示向量a 、b 的夹角); 如图,在正方体1111ABCD A BC D -,有以下四个结论:①1AB AC ⨯与1BD 方向相反; ②AB AC BC AB ⨯=⨯;③6BC AC ⨯与正方体表面积的数值相等; ④()1AB AB CB ⨯⋅与正方体体积的数值相等. 这四个结论中,正确的结论有( )个 A .4B .3C .2D .13.如图为一正方体的平面展开图,在这个正方体中,有以下结论:①AN GC ⊥,②CF 与EN 所成的角为60︒,③BD //MN ,④二面角E BC N --的大小为45︒,其中正确的个数是( )A .1B .2C .3D .44.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .()0,63D .()63,+∞5.如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,E 是棱AB 的中点,F 是侧面AA 1D 1D 内一点,若EF ∥平面BB 1D 1D ,则EF 长度的范围为()A .[2,3]B .[2,5]C .[2,6]D .[2,7]6.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( ) A .26B .36C .56D .137.已知A,B,C 三点不共线,对于平面ABC 外的任一点O,下列条件中能确定点M 与点A,B,C 一定共面的是( ) A .OM OA OB OC =++ B .2OM OA OB OC =-- C .1123OM OA OB OC =++ D .111236OM OA OB OC =++ 8.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+C .111222OA OB OC +- D .211322OA OB OC -- 9.正方体1111ABCD A BC D -中,点E ,F 分别是棱,CD BC 上的动点,且2BF CE =,当三棱锥1C C EF -的体积取得最大值时,记二面角1111,,C EF C C EF A A EF A ------的平面角分别为,,αβγ,则( )A .αβγ>>B .αγβ>>C .βαγ>>D .βγα>>10.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( ) A .2B .3C .5D .611.如图所示,五面体ABCDE 中,正ABC ∆的边长为1,AE ⊥平面,ABC CD AE ∥,且12CD AE =.设CE 与平面ABE 所成的角为,(0)AE k k α=>,若ππ[,]64α∈,则当k 取最大值时,平面BDE 与平面ABC 所成角的正切值为( )A .22B .1C 2D 312.已知a =(λ+1,0,6),b =(2λ+1,2μ﹣1,2).若//a b ,则λ与μ的值分别为( ) A .﹣5,﹣2B .1152--,C .5,2D .2152-,二、填空题13.如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BC 11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所成角的余弦值为10,则线段BD 的长为_______.14.在空间四边形ABCD 中,连接AC 、BD ,若BCD 是正三角形,且E 为其中心,则1322AB BC DE AD +--的化简结果为________. 15.若非零向量,αβ满足αβαβ+=-,则α与β所成角的大小为___. 16.在平面直角坐标系中,点(1,0,2)A 到点(3,4,0)B -之间的距离为__________.17.已知空间直角坐标系中点()123p ,,,()321Q ,,,则||PQ =__________. 18.已知向量,,a b c 是空间的一个单位正交基底,向量,,a b a b c +-是空间的另一个基底.若向量m 在基底,,a b c 下的坐标为()1,2,3,则m 在基底,,a b a b c +-下的坐标为 _________19.正方体1111ABCD A BC D -的棱长为1,若动点P 在线段1BD 上运动, 则·DC AP 的取值范围 是 .20.已知平面α的一个法向量为()2,1,3n =--,()3,2,1M -,()4,4,1N ,其中M α∈,N α∉,则点N 到平面α的距离为__________.三、解答题21.如图1,在矩形ABCD 中,22,BC AB E ==是AD 中点,将CDE △沿直线CE 翻折到CPE △的位置,使得3PB =,如图2.(1)求证:面PCE ⊥面ABCE ;(2)求PC 与面ABP 所成角的正弦值.22.如图四棱锥S ABCD -,ABCD 是平行四边形,2AD BD ==,AD BD ⊥,SAD 为等边三角形,且平面SAD ⊥平面ABCD ,E 是AB 边的中点,F 是侧棱SC 上的一点.(1)是否存在这样的点F ,使得//EF 平面SAD ?若存在,请求出SFSC的值,若不存在,请说明理由;(2)在(1)的条件下,求异面直线AD 与EF 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)若//PB 平面AEC ,请确定点E 的位置,并说明理由.(2)设2AB AP ==,3AD =,若13PE PD =,求二面角P AC E --的正弦值.24.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,E 为PD 中点.(1)求证:BD ⊥平面PAC ; (2)求二面角P AC E --的余弦值;25.如图,在三棱柱111ABC A B C -中,侧面11ABB A 和11BCC B 都是正方形,平面11ABB A ⊥平面11BCC B ,,D E 分别为1BB ,AC 的中点.(1)求证://BE 平面1ACD . (2)求直线1B E 与平面1ACD 所成角的正弦值. 26.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1AB 与1BC 所成角的余弦值. 【详解】解:以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 则11(1,0,0),(0,0,2),(0,0,0),(0,1,2)A B B C ,11(1,0,2),(0,1,2)AB BC =-=,设异面直线1AB 与1BC 所成角为θ, 则1111||44cos 5||||55AB BC AB BC θ⋅===⋅⋅.∴异面直线1AB 与1BC 所成角的余弦值为45.故选:C.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.2.D解析:D 【分析】根据外积的定义逐项判断即可得到结果. 【详解】对于①,根据向量外积的第一个性质可知1AB AC ⨯与1BD 方向相同,故①错误; 对于②,根据向量外积的第一个性质可知AB AC ⨯与BC AB ⨯方向相反,不会相等,故②错误;对于③,根据向量外积的第二个性质可知sin4ABCDBC AC BC AC Sπ⨯=⋅⋅=,则6BC AC ⨯与正方体表面积的数值相等,故③正确;对于④,1AB AB ⨯与CB 的方向相反,则()10AB AB CB ⨯⋅<,故④错误. 故选:D. 【点睛】本题考查正方体的性质和信息迁移,解题的关键在于依据新概念的性质进行推理论证,属难题.3.C解析:C 【分析】根据题意画出正方体直观图,建立空间直角坐标系,计算0AN GC ⋅=,由此判断①正确.根据线线角的知识,判断②正确.根据线线的位置关系,判断③错误.根据二面角的知识,判断④正确. 【详解】画出正方体的直观图,如下图所示,设正方体边长为2,以,,DA DC DG 分别为,,x y z 轴建立空间直角坐标系.则()()()()2,0,0,0,2,2,0,0,2,0,2,0A N G C ,所以()()2,2,20,2,20AN GC ⋅=-⋅-=,所以AN GC ⊥,故①正确.由于//EN AC ,所以CF 与EN 所成的角为FCA ∠,而在FAC ∆中,AF FC CA ==,也即FAC ∆是等边三角形,故60FCA ∠=,所以②正确.由于//EN AC ,而AC 与BD 相交,故,BD MN 不平行,③错误.由于,EB BC FB BC ⊥⊥,所以EBF ∠即是二面角E BC N --的平面角.EBF ∆是等腰直角三角形,所以45EBF ∠=,故④正确. 综上所述,正确的命题个数为3个. 故选:C.【点睛】本小题主要考查空间线线、面面的位置关系有关命题的真假性判断,属于中档题.4.C解析:C 【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】 如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO .OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AOOB ∴==.在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C.【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题.5.C解析:C 【分析】过F 作1//FG DD ,交AD 于点G ,交11A D 于H ,根据线面垂直关系和勾股定理可知222EF AE AF =+;由,//EF FG 平面11BDD B 可证得面面平行关系,利用面面平行性质可证得G 为AD 中点,从而得到AF 最小值为,F G 重合,最大值为,F H 重合,计算可得结果. 【详解】过F 作1//FG DD ,交AD 于点G ,交11A D 于H ,则FG ⊥底面ABCD2222222221EF EG FG AE AG FG AE AF AF ∴=+=++=+=+ //EF 平面11BDD B ,//FG 平面11BDD B ,EF FG F ⋂=∴平面//EFG 平面11BDD B ,又GE 平面EFG //GE ∴平面11BDD B又平面ABCD平面11BDD B BD =,GE平面ABCD //GE BD ∴E 为AB 中点 G ∴为AD 中点,则H 为11A D 中点即F 在线段GH 上min 1AF AG ∴==,max 145AF AH =+=min 112EF ∴+=max 156EF +则线段EF 长度的取值范围为:2,6本题正确选项:C 【点睛】本题考查立体几何中线段长度取值范围的求解,关键是能够确定动点的具体位置,从而找到临界状态;本题涉及到立体几何中线面平行的性质、面面平行的判定与性质等定理的应用.解析:A 【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系, 利用空间向量求异面直线AE 与CD 1所成角的余弦值为26. 【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0),()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE DC >26922=⋅. ∴异面直线AE 与CD 1所成角的余弦值为26. 故选A . 【点睛】本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.7.D解析:D 【分析】根据点M 与点,,A B C 共面,可得1x y z ++=,验证选项,即可得到答案. 【详解】设OM xOA yOB zOC =++,若点M 与点,,A B C 共面,,则1x y z ++=,只有选项D 满足,.故选D. 【点睛】本题主要考查了向量的共面定理的应用,其中熟记点M 与点,,A B C 共面时,且OM xOA yOB zOC =++,则1x y z ++=是解答的关键,着重考查了分析问题和解答问题的能力.解析:D 【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O 出发的三个向量表示的,所以将待求向量用从O 出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果. 详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.9.A解析:A 【分析】设正方体的棱长为2,CE a =,则22CF a =-,列出三棱锥1C C EF -的体积关系式,可知当12a =时,1C C EF V -取得最大值,以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用法向量求出,,αβγ的余弦值,根据余弦值的大小关系可得结果. 【详解】以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系:设正方体的棱长为2,CE a =,则22CF a =-,由0222a <-≤,得01a ≤<,11C C EF C CEF V V --=113CEF CC S =⨯⨯△211211(22)2()32324a a a ⎡⎤=⨯-⨯=--+⎢⎥⎣⎦,所以当12a =时,1C C EF V -取得最大值16. 此时,3(2,0,0),(020),(00)2A C E ,,,,,(1,2,0)F ,11(2,0,2),(0,2,2)A C ,1(1,,0)2EF =,1(1,0,2)C F =-,1(1,2,2)A F =--, 设平面1C EF 的法向量为111(,,)m x y z =,平面1A EF 的法向量为222(,,)n x y z =,则100m EF m C F ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x y x z ⎧+=⎪⎨⎪-=⎩,取11x =,则1112,2y z =-=,所以1(1,2,)2m =-, 100n EF n A F ⎧⋅=⎪⎨⋅=⎪⎩,即22222102220x y x y z ⎧+=⎪⎨⎪-+-=⎩,取21x =则2252,2y z =-=-,所以5(1,2,)2n =--,取平面CEF 和平面AEF 的法向量为1(0,0,2)AA =, 由图可知,,,αβγ均为锐角,则cos α=11||||||m AA m AA⋅==, ||cos ||||m n m n β⋅==5|14|+-21=, 11||cos =||||n AA n AAγ⋅==, 所以cos cos cos αβγ<<,根据余弦函数在(0,)2π内单调递减,可得αβγ>>.故选:A 【点睛】本题考查了三棱锥的体积公式,考查了二面角的向量求法,考查了运算求解能力,属于中档题.10.A解析:A 【解析】解:由题意可知:()1,1,b a t t t -=----,则:(b a t -=--= ,即b a - 本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.11.C解析:C 【详解】分析:建立空间直角坐标系,利用直线CE 与平面ABE 所成的角,求解k 的最大值,进而求解平面BDE 和平面ABC 的一个法向量,利用向量所成的角,求解二面角的余弦值,进而求得正切值,得到结果.详解:如图所示,建立如图所示的空间直角坐标系O xyz - ,则31(0,1,0),(0,0,),(0,1,),(,0)222k A D E k B , 取AB 的中点M ,则33(,0)4M ,则平面ABE 的一个法向量为33(,0)4CM =,由题意23sin 21CE CM CE CMkα⋅==⋅+又由ππ[,]64α∈,所以2132sin 221kα≤=≤+,解得222k ≤≤,所以k 2 当2k =BDE 的法向量为(,,)n x y z =,则20312022n DE y z n BE x y z ⎧⋅==⎪⎪⎨⎪⋅=++=⎪⎩, 取(3,12)n =--,由平面ABC 的法向量为(0,0,1)m =, 设平面BDE 和平面ABC 所成的角为θ,则3cos 3n m n m θ⋅==⋅,所以sin θ=tan θ= C.点睛:本题考查了空间向量在立体几何中的应用,解答的关键在于建立适当的空间直角坐标系,求解直线的方向向量和平面的法向量,利用向量的夹角公式求解,试题有一定的难度,属于中档试题,着重考查了学生的推理与运算能力,以及转化的思想方法的应用.12. D解析:D 【分析】利用共线向量的性质直接求解. 【详解】(1a λ=+,0,6),(21b λ=+,21μ-,2),//a b ,∴6(21)2(1)λλ+=+,且021μ=-,解得25λ=-,12μ=. λ∴与μ的值分别为21,52-.故选:D . 【点睛】本题主要考查了空间中共线向量的性质等基础知识,考查运算求解能力,是基础题.二、填空题13.【分析】以E 为原点EAEC 为xy 轴建立空间直角坐标系设用空间向量法求得t 进一步求得BD 【详解】以E 为原点EAEC 为xy 轴建立空间直角坐标系如下图解得t=1所以填【点睛】利用空间向量求解空间角与距离的解析: 【分析】以E 为原点,EA,EC 为x,y 轴建立空间直角坐标系,设(0,,2)(11)D t t -≤≤,用空间向量法求得t ,进一步求得BD. 【详解】以E 为原点,EA,EC 为x,y 轴建立空间直角坐标系,如下图.1(0,0,0),,2),(0,1,0),(0,,2)(11)2E F B D t t --≤≤ 31(,,2),(0,1,2)22EF BD t ==+(1)4cos 5t EF BD EF BD θ++⋅===解得t=1,所以22BD =,填22.【点睛】利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.14.【分析】由题意结合重心的性质和平面向量的三角形法则整理计算即可求得最终结果【详解】如图取BC 的中点F 连结DF 则∴【点睛】本题主要考查空间向量的运算法则及其应用意在考查学生的转化能力和计算求解能力 解析:0【分析】由题意结合重心的性质和平面向量的三角形法则整理计算即可求得最终结果. 【详解】如图,取BC 的中点F ,连结DF ,则23DF DE =, ∴1322AB BC DE AD +--AB BF DF DA =+-+AF FD DA =++0=.【点睛】本题主要考查空间向量的运算法则及其应用,意在考查学生的转化能力和计算求解能力.15.90°【分析】对该方程两边分别平方即可得到即可【详解】则∴α与β所成角的大小为90°故答案为90°【点睛】本题考查了向量模去绝对值问题可以通过对向量模平方去掉绝对值即可解析:90°【分析】对该方程两边分别平方,即可得到0αβ⋅=,即可. 【详解】αβαβ+=-222222ααββααββ∴+⋅+=-⋅+则0αβ⋅=∴α与β所成角的大小为90° 故答案为90° 【点睛】本题考查了向量模去绝对值问题,可以通过对向量模平方,去掉绝对值,即可.16.【解析】故的距离为故答案为 解析:26【解析】222(13)(04)(20)26AB =-+++-=,故AB 的距离为26,故答案为26.17.【解析】18.【解析】由题意可知:即在基底下的坐标为解析:31,,322⎛⎫- ⎪⎝⎭【解析】由题意可知:()()3123322m a b c a b a b c =++=+--+ , 即m 在基底,,a b a b c +-下的坐标为31,,322⎛⎫-⎪⎝⎭. 19.【详解】试题分析:以所在的直线为轴以所在的直线为轴以所在的直线为轴建立空间直角坐标系则∴∵点在线段上运动∴且∴∴故答案为考点:空间向量数量积的运算 解析:[]0,1【详解】 试题分析:以所在的直线为轴,以所在的直线为轴,以所在的直线为轴,建立空间直角坐标系.则、、、、.∴、.∵点在线段上运动,∴,且.∴AP AB BP DC BP =+=+(),1,λλλ=--,∴,故答案为[]0,1.考点:空间向量数量积的运算.20.【分析】根据点面距离公式再由向量的坐标运算得到结果即可【详解】平面的法向量为故所求距离故答案为【点睛】这个题目考查了点面距离的求法方法一可以同这个题目一样建系解决;方法二可以通过等体积法得到点面距离 14【分析】根据点面距离公式,再由向量的坐标运算得到结果即可. 【详解】()1,2,2MN =,平面α的法向量为()2,1,3n =--,故所求距离·21414MN n d n===. 14. 【点睛】这个题目考查了点面距离的求法,方法一可以同这个题目一样建系解决;方法二可以通过等体积法得到点面距离;方法三,如果题中条件有面面垂直的条件,可由点做面的垂线,垂足落在交线上.三、解答题21.(1)证明见解析;(2)22211. 【分析】(1)连结BE ,可得BE EC ⊥,结合两图,可得BE EC ⊥,BE PE ⊥,又EC PE E ⋂=,根据线面垂直的判定定理证得BE ⊥面PEC ,再利用面面垂直的判定定理证得结果;(2)以点A 为原点,分别以,AB AE 直线为x 轴,y 轴,以经过点A 且垂直于平面ABCE 的直线为z 轴建立直角坐标系,利用直线的方向向量与平面的法向量所成角的余弦值的绝对值得到结果. 【详解】(1)证明:连结BE ,由图1可得BE EC ⊥ 在图2中2,1,3,BE PE PB BE PE ===∴⊥又EC PE E BE ⋂=∴⊥面PECBE ∴⊂面ABCE ∴面PCE ⊥面ABCE(2)以点A 为原点,分别以,AB AE 直线为x 轴,y 轴,以经过点A 且垂直于平面ABCE 的直线为z 轴建立直角坐标系.由题意可知,()()()131,0,0,1,2,0,0,1,0,,,222B C E P ⎛ ⎝⎭()132,,,1,0,0222AP AB ⎛⎫== ⎪ ⎪⎝⎭设面ABP 的法向量为(),,n x y z =则0,0n AP n AB ⎧⋅=⎨⋅=⎩令y 得3,z =-所以()0,2,3n =- 11,,22PC ⎛= ⎝⎭222sin cos ,11PC n PC n PC nθ⋅∴===⨯ 所以直线PC 与面ABP 所成角的正弦值为11. 【点睛】方法点睛:该题考查的是有关立体几何的问题,解题方法如下:(1)结合平面几何的知识得到线线垂直,利用线面垂直的判定定理证得线面垂直; (2)建立适当的坐标系,求得平面的法向量和直线的方向向量,求得其所成角的余弦值,进而得到线面角的正弦值. 22.(1)存在,且12SF SC =;(2)1. 【分析】(1)设点F 为SC 的中点,取SD 的中点G ,连接AG 、FG ,证明出四边形AEFG 为平行四边形,可得出//EF AG ,可证明出//EF 平面SAD ,可得出结论,进而可求得SF SC的值;(2)证明出BD ⊥平面SAD ,以点D 为坐标原点,DA 、DB 所在直线分别为x 、y 轴建立空间直角坐标系,可知DB 为异面直线AD 与EF 的公垂线的一个方向向量,进而可得出异面直线AD 与EF 的距离为DE DB DB⋅,即可得解.【详解】 (1)存在,且12SF SC =,理由如下: 设点F 为SC 的中点,取SD 的中点G ,连接AG 、FG , 四边形ABCD 为平行四边形,则//AB CD 且AB CD =,F 、G 分别为SC 、SD 的中点,则//FG CD 且12FG CD =, E 为AB 的中点,所以,//AE FG 且AE FG =,所以,四边形AEFG 为平行四边形,//EF AG ∴,EF ⊄平面SAD ,AG ⊂平面SAD ,//EF ∴平面SAD ,此时,12SF SC =; (2)平面SAD ⊥平面ABCD ,平面SAD ⋂平面ABCD AD =,BD AD ⊥,BD ⊂平面ABCD ,BD ∴⊥平面SAD ,以点D 为坐标原点,DA 、DB 所在直线分别为x 、y 轴建立如下图所示的空间直角坐标系,则()2,0,0A 、()0,2,0B 、()0,0,0D 、()1,1,0E ,()1,1,0=DE ,()0,2,0DB =,BD ⊥平面SAD ,AG ⊂平面SAD ,BD AG ∴⊥,//EF AG ,BD EF ∴⊥,BD AD ⊥,所以DB 为异面直线AD 与EF 的公垂线的一个方向向量,因此,异面直线AD 与EF 的距离为212DE DB DB⋅==. 【点睛】方法点睛:求异面直线AB 、CD 的距离,可先求出异面直线AB 、CD 的公垂线的一个方向向量,则异面直线AB 、CD 的距离为AC n d n⋅=.23.(1)点E 是PD 的中点,详见解析;(2)36161. 【分析】(1)点E 是PD 的中点,连接BD 交AC 与点O ,连接OE ,由中位线定理得到//OE PB ,再利用线面平行的判定定理证明.(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,分别求得平面PAC 的一个法向量()111,,m x y z =,平面ACE 的一个法向量()222,,n x y z =,设二面角P AC E --为θ,由cos m n m nθ⋅=⋅求解.【详解】(1)点E 是PD 的中点,如图所示:连接BD 交AC 与点O ,连接OE , 所以//OE PB ,又PB ⊄平面AEC ,OE ⊂平面AEC , 所以//PB 平面AEC .(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,则()()()()40,0,2,0,0,0,2,3,0,0,3,0,0,1,3P A C D E ⎛⎫ ⎪⎝⎭,所以()()42,3,0,0,0,2,0,1,3AC AP AE ⎛⎫=== ⎪⎝⎭,设平面PAC 的一个法向量为()111,,m x y z =,则00m AC m AP ⎧⋅=⎨⋅=⎩,即 11123020x y z +=⎧⎨=⎩,令 1113,2,0x y z ==-=,则()3,2,0m =- 设平面ACE 的一个法向量为()222,,n x y z =,则00n AC n AE ⎧⋅=⎨⋅=⎩,即 2221230403x y y z +=⎧⎪⎨+=⎪⎩, 令 22233,2,2x y z ==-=,则33,2,2n ⎛⎫=- ⎪⎝⎭,设二面角P AC E --为θ, 所以213cos 61m n m nθ⋅==⋅,所以 22213361sin 1cos 161θθ⎛⎫=-- ⎪ ⎪⎝⎭. 【点睛】方法点睛:1、利用向量求异面直线所成的角的方法:设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅.2、利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.3、利用向量求面面角的方法:就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.24.(1)证明见解析;(2)63. 【分析】(1)本题首先可根据PA ⊥平面ABCD 得出PA BD ⊥,然后根据底面ABCD 为正方形得出AC BD ⊥,最后根据线面垂直的判定即可得出结果;(2)本题首先可建立空间直角坐标系,然后求出平面EAC 的法向量n 以及平面PAC 的法向量BD ,最后通过cos ,n BD n BD n BD⋅=⋅即可得出结果.【详解】(1)因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥, 因为底面ABCD 为正方形,所以AC BD ⊥, 因为=APAC A ,所以BD ⊥平面PAC .(2)如图,以A 为原点,分别以AB 、AD 、AP 为x 、y 、z 轴建立空间直角坐标系,则(0,0,0)A 、(2,0,0)B 、(2,2,0)C 、(0,2,0)D 、(0,0,2)P , 则(2,2,0)BD =-,(2,2,0)AC =,因为E 为PD 中点,所以(0,1,1)E ,(0,1,1)AE =, 设平面EAC 的法向量为(,,)n x y z =,则00AC n AE n ⎧⋅=⎨⋅=⎩,即2200x y y z +=⎧⎨+=⎩,令1y =,则(1,1,1)n =--,因为BD ⊥平面PAC ,所以BD 为平面PAC 的法向量,则cos ,3n BD n BD n BD⋅===⋅⋅ 故结合图像易知,二面角P AC E -- 【点睛】关键点点睛:本题考查线面垂直的判定以及二面角的余弦值的求法,若平面外一条直线与平面内两条相交直线都垂直,则线面垂直,可通过建立空间直角坐标系的方式求二面角,考查数形结合思想,是中档题. 25.(1)证明见解析;(2)23. 【分析】(1)取1AC 中点F ,证明四边形EFDB 为平行四边形,证出//BE DF ,即可证明//BE 平面1ACD ;(2)根据题意建立空间直角坐标系,写出点的坐标,求解平面1ACD 的 法向量,利用数量积的计算公式即可求出直线1B E 与平面1ACD 所成角的正弦值. 【详解】(1)证明:取1AC 中点F ,连接DF ,EF , ∵,E F 分别为1,AC AC 的中点,∴1//EF AA ,且112EF AA =,又四边形11ABB A 是正方形,∴11//BB AA 且11BB AA =, 即1//EF BB 且112EF BB =,又∵D 为1BB 中点,∴//EF BD 且EF BD =,所以四边形EFDB 为平行四边形,所以//BE DF ,又BE ⊄平面1ACD ,DF ⊂平面1ACD , 所以//BE 平面1ACD . (2)由题意,1,,BA BC BB 两两垂直,所以以B 为原点建立如图所示的空间直角坐标系,设12BA BC BB ===,则11(0,2,0),(1,0,1),(2,0,0),(0,1,0),(0,2,2)B E C D A . ,11(1,2,1),(2,1,0),(2,2,2)B E CD AC =-=-=-,设平面 1ACD 的法向量为(),,m x y z =,则100AC m CD m ⎧⋅=⎨⋅=⎩,即 222020x y z x y -++=⎧⎨-+=⎩,得()1,2,1m =-设直线1B E 与平面1ACD 所成角为θ, 1111412sin cos ,366B E m B E mB E mθ, 所以直线1B E 与平面1ACD 所成角的正弦值为23.【点睛】方法点睛:本题考查的是空间向量与立体几何的问题,(1)关于线面平行的证明,一般利用线面平行的判定定理证明,需要证明平行线,一般是找中位线或者平行四边形证明;(2)关于线面角的求解,一般利用空间向量的方法,需要求解平面的法向量,再代入数量积求解公式计算. 26.(13102)23. 【分析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系.(1)写出1A B 、1C D 的坐标,计算出11cos ,A B C D <>的值,即可得出异面直线1A B 与1C D 所成角的余弦值;(2)计算出1ADC 的一个法向量的坐标,可知平面1ABA 的一个法向量为()0,1,0n =,利用空间向量法可求得平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 【详解】在直三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且AB AC ⊥,以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系. 如下图所示:则由题意知()0,0,0A 、()2,0,0B 、()0,2,0C 、()10,0,4A 、()12,0,4B、()10,2,4C 、()1,1,0D .(1)()12,0,4A B =-,()11,1,4C D =--,111111310cos ,2532A B C D A B C D A B C D⋅<>===⨯⋅ 所以,异面直线1A B 与1C D 310 (2)易知平面1ABA 的一个法向量为()0,1,0n =,设平面1ADC 的法向量为(),,m x y z =,()1,1,0AD =,()10,2,4AC =,由100m AD m AC ⎧⋅=⎪⎨⋅=⎪⎩,可得0240x y y z +=⎧⎨+=⎩,令2y =-,则2x =,1z =, 所以,平面1ADC 的一个法向量为()2,2,1m =-,22cos ,33m n m n m n⋅-<>===-⋅, 因此,平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值为23. 【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(含答案解析)
一、选择题1.已知向量(2,0,2)a =-,则下列向量中与a 成45的夹角的是( ) A .(0,0,2)B .(2,0,0)C .()0,2,2D .()2,2,0-2.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( ) A .26B .36C .56D .133.如图,点P 在正方体1111ABCD A BC D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变; 1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB 平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个4.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .15.已知直三棱柱111ABC A B C -中,底面边长和侧棱长都相等,则异面直线1AB 与1BC 所成的角的余弦值为( )A .12B .18C .14D .346.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A .2B .1C .2D .37.已知A,B,C 三点不共线,对于平面ABC 外的任一点O,下列条件中能确定点M 与点A,B,C 一定共面的是( )A .OM OA OB OC =++ B .2OM OA OB OC =-- C .1123OM OA OB OC =++ D .111236OM OA OB OC =++ 8.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 9.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,2,22,2AB AD PA ===,则异面直线BC 与AE 所成的角的大小为( )A .π6B .π4C .π3D .π210.三棱柱111ABC A B C -中,侧面11BB C C 是边长为2的菱形, 1160,CBB BC ︒∠=交1BC 于点,O AO ⊥侧面11BB C C ,且 1AB C 为等腰直角三角形.若建立如图所示的空间直角坐标系Oxyz ,则点1A 的坐标为( )A .(1,3,2)-B .(3,1,1)-C .(1,2,3)-D .(2,1,3)-11.如图所示,平行六面体1111ABCD A BC D -中,以顶点A 为端点的三条棱长都为1,且两两夹角为60︒.求1BD 与AC 夹角的余弦值是( )A .33B .66C .217D 21 12.如图,在正方体1111ABCD A BC D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C二、填空题13.若△ABC 的三个顶点坐标分别为A(0,0,2),B 31-,,222⎛⎫ ⎪ ⎪⎝⎭,C(-1,0,2),则角A 的大小为_____.14.如图,在三棱锥P ABC -,ABC ∆为等边三角形,PAC ∆为等腰直角三角形,4PA PC ==,平面PAC⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为__________.15.已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______. 16.在正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,M 为棱11A B (含端点)上的任一点,则直线ME 与平面1D EF 所成角的正弦值的最小值为_________. 17.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.18.在棱长为2的正方体△ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1、CD 的中点,则点B 到截面AMC 1N 的距离为_____.19.在正方体ABCD -A 1B 1C 1D 1中,下列给出四个命题: (1)四边形ABC 1D 1的面积为1AB BC (2)11AD A B 与的夹角为60°;(3)22111111111111()3();(4)()0AA A D A B A B AC A B A D ++=⋅-=; 则正确命题的序号是______.(填出所有正确命题的序号)20.在平行六面体ABCD A B C D '-''' 中,4AB = ,3AD = ,5A A '= ,90BAD ∠=︒ ,60A AB A AD ''∠=∠=︒ ,则AC '= __________.三、解答题21.在①()()DE CF DE CF +⊥-,②17||2DE =,③0cos ,1EF DB <<这三个条件中任选一个,补充在下面的横线中,并完成问题.问题:如图,在正方体1111ABCD A BC D -中,以D 为坐标原点,建立空间直角坐标系D xyz -.已知点1D 的坐标为()0,0,2,E 为棱11D C 上的动点,F 为棱11B C 上的动点,___________,试问是否存在点E ,F 满足1EF AC ⊥?若存在,求AE BF ⋅的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.22.如图四棱锥S ABCD -,ABCD 是平行四边形,2AD BD ==,AD BD ⊥,SAD 为等边三角形,且平面SAD ⊥平面ABCD ,E 是AB 边的中点,F 是侧棱SC 上的一点.(1)是否存在这样的点F ,使得//EF 平面SAD ?若存在,请求出SFSC的值,若不存在,请说明理由;(2)在(1)的条件下,求异面直线AD 与EF 的距离.23.如图,在三梭柱111ABC A B C -中,侧面11AA B B ,11AACC 均为菱形,12AA =,1160ABB ACC ∠=∠=︒,D 为AB 的中点.(Ⅰ)求证:1//AC 平面1CDB ;(Ⅱ)若60BAC ∠=︒,求直线1AC 与平面11BB C C 所成角的正弦值.24.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.25.如图,在四面体ABCD 中,AB AC ⊥,AD ⊥平面ABC ,点M 为棱AB 的中点,2AB AC ==,3AD =.(Ⅰ)求直线BC 与MD 所成角的余弦值; (Ⅱ)求平面ABD 和平面BDC 的夹角的余弦值.26.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据空间向量数量积的坐标公式,即可得到答案 【详解】根据夹角余弦值cos a b a b θ⋅=对于A 若()b 0,0,2,=则-222=22a b a b ⋅⨯2cos 45︒=,故不符合条件对于B 若()b 20,0,=,则222==222a b a b⋅⨯2cos 45︒=,故符合条件 对于C 若(b 0,22,=,则-21==-cos 45222a b a b ⋅≠︒⨯,故不符合条件 对于D 若()b 2-2=,,则21==cos 45222a b a b⋅≠︒⨯,故不符合条件 故选B 【点睛】本题考查了向量的数量积,运用公式代入进行求解,较为简单2.A解析:A 【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系, 利用空间向量求异面直线AE 与CD 1所成角的余弦值为26. 【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0),()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE DC >26922=⋅. ∴异面直线AE 与CD 1所成角的余弦值为26. 故选A . 【点睛】本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.3.C解析:C 【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C , 故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确;对于②,连接1A B ,11AC ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BAC 面1ACD ,从而由线面平行的定义可得,故②正确;对于③,由于DC ⊥平面11BCBC ,所以1DC BC ⊥, 若1DPBC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.A解析:A 【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值. 【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()()220,2,2PB a b a b =--=-+PBC 的面积为()2221251282BC PB a b a a ⨯⨯=-+=-+126105a ==时,面积取得最小值为26625512855⎛⎫⨯-⨯+= ⎪⎝⎭,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.5.C解析:C 【分析】建立空间坐标系,分别求得直线的方向向量,进而得到线线角. 【详解】立空间坐标系如图,设边长为2,得到A (2,0,0),1B (132), B (1,3,0),1C (0,0,2) 向量()()111,3,2,-1,3,2AB BC =-=- 设异面直线夹角为θ,则1111cos =||||AB BC AB BC θ⋅=⋅14故答案为C 【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.6.A解析:A 【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果. 【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=,11AC AB BC CC ∴=++,()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=,∴线段1AC 的长为12AC = A.【点睛】本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.7.D解析:D 【分析】根据点M 与点,,A B C 共面,可得1x y z ++=,验证选项,即可得到答案. 【详解】设OM xOA yOB zOC =++,若点M 与点,,A B C 共面,,则1x y z ++=,只有选项D 满足,.故选D. 【点睛】本题主要考查了向量的共面定理的应用,其中熟记点M 与点,,A B C 共面时,且OM xOA yOB zOC =++,则1x y z ++=是解答的关键,着重考查了分析问题和解答问题的能力.8.D解析:D 【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O 出发的三个向量表示的,所以将待求向量用从O 出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果. 详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.9.B解析:B 【解析】分析:以A 点为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,求得(0,22,0),(1,2,1)BC AE ==,利用向量的夹角公式,即可求解.详解:以A 点为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则(2,0,0),(2,22,0),(0,0,2),(0,0,0),(1,2,1)B C P A E , 则(0,22,0),(1,2,1)BC AE ==, 设异面直线BC 和AE 所成的角为θ, 则42cos ,2224BC AE BC AE BC AE⋅===⋅⋅, 所以异面直线BC 和AE 所成的角为4π,故选B.点睛:本题考查了异面直线所成的角的求解,其中把异面直线所成的角转化为向量所成的角,利用向量的夹角公式求解是解答的关键,对于对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解直线的方向向量和平面的法向量,利用向量的夹角公式求解.10.B解析:B 【分析】作1A D ⊥平面11BB C C 于点 D ,连接1B D ,1,C D OD ,则点1A 与点 D 的横纵坐标相同,点1A 竖坐标的值为1A D 的长度,由1//AA 平面 11BBC C ,得到A 和1A 到平面11BB C C 的距离相等.由 1//AD AO ,则1A 竖坐标的值为AO 的长度,由111//,OC C D OC C D OB ==,得到 11DB OC 为平行四边形,然后由1AB C 为等腰直角三角形面11BB C C 是边长为2的菱形, 160CBB ︒∠=求得坐标即可. 【详解】 如图所示,作1A D ⊥平面11BB C C 于点 D ,连接1B D ,1,C D OD , 则点1A 与点D 的横纵坐标相同,点1A 竖坐标的值为1A D 的长度, 因为111//,AA CC CC ⊂平面 111,BB C C AA ⊄平面11BB C C , 所以1//AA 平面11BB C C ,所以A 和1A 到平面11BB C C 的距离相等. 而1A D ⊥平面11,BB C C AO ⊥平面 11BB C C , 所以1A D AO =,1//A D AO , 所以1AODA 为平行四边形, 所以11//,AA OD AA OD =, 所以11//,OD CC OD CC =, 所以1OCC D 为平行四边形. 所以111//,OC C D OC C D OB ==, 所以11DB OC 为平行四边形, 所以111,,B D OC C D OB ==.而在边长为2的菱形11CC B B 中,160CBB ︒∠=, 所以113,1OC BO OC OB ===. 所以点D 的坐标为(3,1,0)-, 而1AB C 为等腰直角三角形, 所以11OA OC OB ===, 故点1A 的坐标为(3,1,1)-. 故选:B . 【点睛】本题主要考查直线,平面间的平行关系以及平面几何图形的应用,还考查了逻辑推理的能力,属于中档题.11.B解析:B【分析】以1,,AB AD AA 为空间向量的基底,表示出1BD 和AC ,由空间向量的数量积求出向量的夹角的余弦值即得. 【详解】由题意11111cos 602AB AD AB AA AD AA ⋅=⋅=⋅=⨯⨯︒=. 以1,,AB AD AA 为空间向量的基底,AC AB AD =+,111BD AD AB AD AA AB =-=+-,221111()()AC BD AB AD AD AA AB AB AD AB AA AB AD AD AA AB AD ⋅=+⋅+-=⋅+⋅-++⋅-⋅1=,222()23AC AB AD AB AB AD AD =+=+⋅+=222211111()2222BD AD AA AB AD AA AB AD AA AD AB AA AB=+-=+++⋅-⋅-⋅=,∴111cos ,3AC BD AC BD AC BD ⋅<>===⋅.∴1BD 与AC故选:B . 【点睛】本题考查用空间向量法求异面直线所成的角,解题时选取空间基底,把其他向量用基底表示,然后由数量积的定义求得向量的夹角,即得异面直线所成的角.12.B解析:B 【分析】将问题转化为动点P 到直线MN 的距离最小时,确定点P 的位置,建立空间直角坐标系,取MN 的中点Q ,通过坐标运算可知PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,再由空间两点间的距离公式求出||PQ 后,利用二次函数配方可解决问题. 【详解】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-, 设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为2221||(1)(10)(0)2PM z z z =--+--+-25334z z =-+2221||(11)(10)()2PN z z z =--+--+-25334z z =-+所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离, 由空间两点间的距离公式可得22231||(1)(10)()44PQ z z z =--+--+-29338z z =-+2133()28z =-+所以当12c =时,||PQ 取得最小值64P 为线段1CA 的中点, 由于2||MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点. 故选:B 【点睛】本题考查了空间向量的坐标运算,考查了空间两点间的距离公式,考查了数形结合法,考查了二次函数求最值,属于基础题.二、填空题13.【分析】先写出的坐标再由向量的夹角公式求得角A 【详解】=(-100)则cosA=又因为故角A 的大小为30°填【点睛】求平面向量夹角公式:若则解析:30【分析】先写出,AB AC 的坐标,再由向量的夹角公式求得角A. 【详解】31AB -,,0,AC 22⎛⎫= ⎪ ⎪⎝⎭=(-1,0,0).则cosA=3AB?AC 211|AB|?|AC|==⨯,又因为,[0,]AB AC π∈,故角A 的大小为30°.填30.【点睛】求平面向量夹角公式:cos ,,,[0,]a b a b a b a bπ⋅=∈⋅,若111222(,,),(,,)a x y z b x y z ==,则121212222222cos ,,,[0,]x x y y z z a b a b x y z x y zπ++=∈++⋅++.14.【分析】建立如图所示的空间直角坐标系结合为等腰直角三角形求得向量的坐标利用向量的夹角公式即可求解【详解】取得中点连接因为所以因为平面平面平面平面所以平面又因为所以于是以为坐标原点建立如图所示的空间直解析:4【分析】建立如图所示的空间直角坐标系O xyz -,结合PAC ∆为等腰直角三角形,求得向量,AC PD 的坐标,利用向量的夹角公式,即可求解.【详解】取AC 得中点O ,连接OP ,OB ,因为PA PC =,所以AC OP ⊥. 因为平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC =.所以OP ⊥平面ABC ,又因为AB BC =,所以AC OB ⊥,于是以O 为坐标原点, 建立如图所示的空间直角坐标系O xyz -,结合PAC ∆为等腰直角三角形,4PA PC ==,ABC ∆为等边三角形,则()A ,()C -,(P ,)D,所以()AC =-,(2,PD =-,所以8cos ,424AC PD AC PD AC PD⋅-〈〉==⨯ 24=-,故异面直线AC 与PD 所成角的余弦值为24.【点睛】本题主要考查了利用空间向量求解异面直线所成的角,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解是解答此类问题的关键,着重考查了推理与运算能力.15.【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B 则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题 解析:()1,4,1--【分析】根据空间直角坐标系中点坐标公式求结果. 【详解】 设B (),,x y z ,则1230,1,2222x y z+++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--. 【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题.16.【分析】建立直角坐标系设正方体边长为2求出平面的法向量为直线与平面所成角为因为所以当时取到最小值代入即可【详解】解:如图建立直角坐标系设正方体边长为2则002设平面的法向量为由得令故0由设直线与平面解析:25【分析】建立直角坐标系,设正方体边长为2,求出平面DEF 的法向量为m ,直线ME 与平面1D EF 所成角为α,2sin cos ,15m EM a α==+⋅,因为[0a ∈,2],所以当2a =时,取到最小值,代入即可.【详解】解:如图,建立直角坐标系,设正方体边长为2,AM a =, 则(2E ,0,1),(2M ,a ,2),(0D ,0,2),(2F ,2,1), 设平面DEF 的法向量为(m x =,y ,)z ,1(0,2,0),(2,0,1)EF ED ==-,由0m EF ⋅=,10m D E ⋅=,得020y x z =⎧⎨-+=⎩,令2z =,1x =,故(1m =,0,2),由(0,,1)EM a =,设直线ME 与平面1D EF 所成角为α, 22sin cos ,15m EM a α==+⋅,因为[0a ∈,2],所以当2a =时,sin α的最小值为22555=⋅, 故答案为:25.【点睛】考查立体几何中的最值问题,本题利用向量法求线面所成的角,基础题.17.2【解析】因为向量所以则解之得应填答案解析:2 【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。
北师大版高二数学选修2-1空间向量试卷及答案
AA 1 DCB B 1C 1 图高二数学(选修2-1)空间向量试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°2.如图,ABCD—A 1B1C1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030B .21C .1530D .10154.正四棱锥S ABCD -的高2SO =,底边长AB =,则异面直线BD 和SC 之间的距离( )A .515 B .55 C .552 D .1055.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42 B .a 82 C .a 423 D .a 226.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离( )A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( )A .621 B .338 C60210 D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形,90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面AB D 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值( )A .32B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是C B 延长线上一点,且BC BD =,则二面角B AD B --1的大小( )A .3π B .6π C .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E ,F 分别为棱AB ,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积V ( )A .66B .3316 C .316D .1611.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线; ②,,,O A B C 为空间四点,且向量OC OB OA ,,不构成空间的一个基底,则点,,,O A B C一定共面;③已知向量,,是空间的一个基底,则向量,,-+也是空间的一个基底。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(有答案解析)(1)
一、选择题1.如图,在三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,1AB AC AA ==,M ,N 是线段1BB ,1CC 上的点,平面AMN 与平面ABC 所成(锐)二面角为6π,当1B M 最小时,AMB ∠=( )A .512π B .3π C .4π D .6π 2.已知向量(2,0,2)a =-,则下列向量中与a 成45的夹角的是( ) A .(0,0,2)B .(2,0,0)C .()0,2,2D .()2,2,0-3.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( ) A .26B .36C .56D .134.在边长为2的菱形ABCD 中,23BD =,将菱形ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( ) A .43π B .πC .23π D .2π 5.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6π B .4π C .3π D .2π6.如图,棱长为2的正方体1111ABCD A B C D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A .255B .55C .45D .17.如图,已知正三棱柱111ABC A B C -的棱长均为2,则异面直线1A B 与1B C 所成角的余弦值是( )A .32B .12C .14D .08.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A 3B 2C .1D 32-9.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130B .140C .150D .16010.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A 7 B 7 C 7 D 711.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定12.如图,四棱锥P ABCD -的底面是边长为2的正方形, Q 为BC 的中点,PQ ⊥面ABCD ,且2PQ =,动点N 在以D 为球心半径为1的球面上运动,点M 在面 ABCD内运动,且PM 5=,则MN 长度的最小值为( )A .352-B .23-C .25-+D .332-二、填空题13.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若DG EF ⊥,则线段DF 长度的取值范围为______.14.若非零向量,αβ满足αβαβ+=-,则α与β所成角的大小为___.15.设P ,A ,B ,C 是球O 表面上的四个点,PA ,PB ,PC 两两垂直,且1PA PB PC ===,则球O 的表面积为____________.16.已知三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥面ABC ,AB ⊥AC ,且AA 1=AB=AC ,则异面直线AB 1与BC 1所成角为_____.17.已知平面α的一个法向量()2,2,1n =--,点()1,3,0A --在平面α内,则点()2,1,4P -到平面α的距离为_________.18.把地球看作是半径为R 的球,A 点位于北纬30°,东经20°,B 点位于北纬30°,东经80°,求A B 、两点间的球面距离______________.19.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______.20.正三棱锥底面边长为1,侧面与底面所成二面角为45°,则它的全面积为________三、解答题21.已知在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD △是正三角形,CD ⊥平面PAD ,,,,E F G O 分别是,,,PC BC PD AD 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求平面EFG 与平面ABCD 所成锐二面角的大小. 22.如图,在四棱锥P ABCD -中,6π∠=CAD ,且321,2AD CD PA ABC ===,和PBC 均是等边三角形,O 为BC 的中点.(I )求证:PO ⊥平面ABCD ; (Ⅱ)求CB 与平面PBD 所成角的正弦值.23.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,4PD =,底面ABCD 是边长为2的正方形,E ,F 分别为PB ,PC 的中点.(1)求证:平面ADE ⊥平面PCD ;(2)求直线BF 与平面ADE 所成角的正弦值.24.如图,在四棱锥P ABCD -中,90BAD ∠=,//AD BC , PA AD ⊥,PA AB ⊥,122PA AB BC AD ====.(Ⅰ)求证://BC 平面PAD ;(Ⅱ)求平面PAB 与平面PCD 所成锐二面角的余弦值.25.如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,4AB =,11112A B A C ==,11AB BC ⊥.(1)求1AA 的长;(2)求二面角11B AC C --的正弦值.26.如图,在四棱锥P ABCD -中,60APB BPD APD ∠=∠=∠=︒,4PB PD BC CD ====,6AP =.(Ⅰ)证明:AP BD ⊥;(Ⅱ)求PC 与平面PAD 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出AMB ∠的大小. 【详解】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系, 设1=1AB AC AA ==,设CN b =,BM a =,则(1N ,0,)b ,(0M ,1,)a ,(0A ,0,0),(0B ,1,0), (0AM =,1,)a ,(1AN =,0,)b ,设平面AMN 的法向量(n x =,y ,)z ,·0·0AM n y az AN n x bz ⎧=+=⎨=+=⎩,取1z =,得(n b =-,a -,1), 平面ABC 的法向量(0m =,0,1), 平面AMN 与平面ABC 所成(锐)二面角为6π, 22||cos6||||1m n m n a b π∴==++,解得22331a b +=,∴当|1|B M 最小时,0b =,33BM a ==,1tan 333AB AMB BM ∴∠===, 3AMB π∴∠=.故选B .【点睛】本题考查角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.2.B解析:B 【分析】根据空间向量数量积的坐标公式,即可得到答案 【详解】根据夹角余弦值cos a b a b θ⋅=对于A 若()b 0,0,2,=则-222=222a b a b ⋅⨯,而2cos 45︒=,故不符合条件 对于B 若()b 20,0,=,则222==222a b a b⋅⨯,而2cos 452︒=,故符合条件对于C 若()b 0,22,=,则-21==-cos 45222a b a b ⋅≠︒⨯,故不符合条件 对于D 若()b 2-20=,,则21==cos 45222a b a b⋅≠︒⨯,故不符合条件 故选B 【点睛】本题考查了向量的数量积,运用公式代入进行求解,较为简单3.A解析:A 【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系, 利用空间向量求异面直线AE 与CD 1所成角的余弦值为26. 【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0),()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE D C >26922=⋅ ∴异面直线AE 与CD 12. 故选A . 【点睛】本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.4.C解析:C 【分析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥AC ,BN ⊥AC ,可得出二面角B ﹣AC﹣D 的平面角为∠BND ,再利用余弦定理求出BD ,可知三棱锥B ﹣ACD 为正四面体,可得出内切球的半径R ,再利用球体的表面积公式可得出答案. 【详解】 如下图所示,易知△ABC 和△ACD 都是等边三角形,取AC 的中点N ,则DN ⊥AC ,BN ⊥AC . 所以,∠BND 是二面角B ﹣AC ﹣D 的平面角,过点B 作BO ⊥DN 交DN 于点O ,可得BO ⊥平面ACD .因为在△BDN 中,3BN DN ==,所以,BD 2=BN 2+DN 2﹣2BN •DN •cos ∠BND 1332343=+-⨯⨯=, 则BD =2.故三棱锥A ﹣BCD 为正四面体,则其内切球半径为正四面体高的14,又正四面体的高为棱6,故662R ==因此,三棱锥A ﹣BCD 的内切球的表面积为226244(3R πππ=⨯=. 故选C . 【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.5.D解析:D 【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可. 【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -, 设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M , 据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π. 本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.6.A解析:A 【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值. 【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()()220,2,2PB a b a b =--=-+PBC 的面积为()2221251282BC PB a b a a ⨯⨯=-+=-+126105a ==时,面积取得最小值为266255128555⎛⎫⨯-⨯+=⎪⎝⎭,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.7.C解析:C【分析】建立空间直角坐标系,结合空间向量的结论求解异面直线所成角的余弦值即可.【详解】以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则:()10,1,2A -,()3,0,0B ,()13,0,2B ,()0,1,0C ,向量()13,1,2A B =-,()13,1,2B C =--, 11cos ,A B B C <>1111A B B C A B B C ⋅=⨯22222=⨯14=. 本题选择C 选项.【点睛】本题主要考查异面直线所成的角的求解,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D【分析】由DB ED FE BF =++,利用数量积运算性质展开即可得到答案【详解】BD ED FE BF =++, 2222222111BD BF FE ED BF FE FE ED BF ED ∴=+++++=++-故3BD =-故选D【点睛】本题是要求空间两点之间的距离,运用空间向量将其表示,然后计算得到结果,较为基础. 9.D解析:D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC ,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.10.C解析:C【分析】建立空间直角坐标系,写出点的坐标,设出动点的坐标,利用向量的坐标公式求出向量坐标,利用向量垂直的充要条件列出方程求出动点P的轨迹方程,得到P的轨迹是底面圆的弦,利用勾股定理求出弦长.【详解】建立空间直角坐标系.设A(0,﹣1,0),B(0,1,0),S(0,0,3),M(0,0,32),P(x,y,0).于是有AM=(0,1,32),MP=(x,y,32-).由于AM⊥MP,所以(0,1,32)•(x,y,32-)=0,即y34=,此为P点形成的轨迹方程,其在底面圆盘内的长度为22371()42-=.故选C.【点睛】本题考查通过建立坐标系,将求轨迹问题转化为求轨迹方程、考查向量的数量积公式、向量垂直的充要条件、圆的弦长的求法.属中档题11.A解析:A【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果.【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q ,设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--,设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ ⋅2|4401(1)1y =++⨯+-+ 2223y y =-+22232y y y =-+23221y y =-+211223()33y =-+ 223≤3=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减,所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°.故选:A【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.12.C解析:C【分析】若要使MN 最短,点N 必须落在平面ABCD 内,且一定在DN 的连线上,此时应满足,,,D N M Q 四点共线,通过几何关系即可求解【详解】如图,当点N 落在平面ABCD 内,且,,,D N M Q 四点共线时,MN 距离应该最小,由PM 5=1MQ =,即点M 在以Q 为圆心,半径为1的圆上,由几何关系求得5DQ =1DN MQ ==,故552NM DN MQ =-=故答案选:C【点睛】本题考查由几何体上的动点问题求解两动点间距离的最小值,属于中档题二、填空题13.【分析】建立空间直角坐标系设出的坐标求出向量利用求得关系式写出的表达式然后利用二次函数求最值即可【详解】由题意建立如图所示的空间直角坐标系则由于则所以所以所以当时线段长度的最小值是当时线段长度的最大 解析:5,1)5【分析】建立空间直角坐标系,设出F 、D 的坐标,求出向量DG ,EF ,利用GD EF ⊥求得关系式,写出DF 的表达式,然后利用二次函数求最值即可.【详解】由题意,建立如图所示的空间直角坐标系,则(0,0,0)A ,1(0,1,)2E ,1(,0,1)2G ,(,0,0)F x ,(0,,0)D y ,由于GD EF ⊥,则0GD EF ⋅=,所以210x y +-=,所以(,,0)(21,)DF x y y y =-=-+-, 所以22222215415550DF x y y y y ⎛⎫=+=-+=-+ ⎪⎝⎭+, 当25y =时,线段DF 长度的最小值是15, 当0y =时,线段DF 长度的最大值是1, 而不包括端点,故0y =不能取;故答案为:5[,1)5.【点睛】本题主要考查了点、线、面间的距离计算、棱柱的结构特征、空间直角坐标系等基础知识,着重考查了空间想象能力,以及运算求解能力,属于基础题.14.90°【分析】对该方程两边分别平方即可得到即可【详解】则∴α与β所成角的大小为90°故答案为90°【点睛】本题考查了向量模去绝对值问题可以通过对向量模平方去掉绝对值即可解析:90°【分析】对该方程两边分别平方,即可得到0αβ⋅=,即可.【详解】αβαβ+=-222222ααββααββ∴+⋅+=-⋅+则0αβ⋅=∴α与β所成角的大小为90°故答案为90°【点睛】本题考查了向量模去绝对值问题,可以通过对向量模平方,去掉绝对值,即可. 15.【分析】利用条件两两垂直且把三棱锥扩展为正方体球的直径即是正方体的体对角线长由球的表面积公式求解【详解】先把三棱锥扩展为正方体则正方体的体对角线的长为所以球的半径为所以球的表面积为【点睛】本题主要考 解析:3π【分析】利用条件PA ,PB ,PC 两两垂直,且1PA PB PC ===把三棱锥P ABC -扩展为正方体,球的直径即是正方体的体对角线长,由球的表面积公式求解.【详解】先把三棱锥P ABC -,所以球的半径为2,所以球的表面积为24π3π⨯=⎝⎭.【点睛】 本题主要考查了球的体积公式:343V r π=球(其中r 为球的半径)及长方体的体对角线长公式:l =,,a b c 分别是长方体的长、宽、高).16.【解析】连结A1B ∵AA1⊥面ABC 平面A1B1C1∥面ABC ∴AA1⊥平面A1B1C1∵A1C1⊂平面A1B1C1∴AA1⊥A1C1∵△ABC 与△A1B1C1是全等三角形AB ⊥AC ∴A1B1⊥A1 解析:2π 【解析】连结A 1B ,∵AA 1⊥面ABC ,平面A 1B 1C 1∥面ABC ,∴AA 1⊥平面A 1B 1C 1,∵A 1C 1⊂平面A 1B 1C 1,∴AA 1⊥A 1C 1,∵△ABC 与△A 1B 1C 1是全等三角形,AB ⊥AC ,∴A 1B 1⊥A 1C 1,∵A 1B 1∩AA 1=A 1,∴A 1C 1⊥平面AA 1B 1B ,又∵AB 1⊂平面AA 1B 1B ,∴A 1C 1⊥AB 1,∵矩形AA 1B 1B 中,AA 1=AB ,∴四边形AA 1B 1B 为正方形,可得A 1B ⊥AB 1,∵A 1B∩A 1C 1=A 1,∴AB 1⊥平面A 1BC 1,结合BC 1⊂平面A 1BC 1,可得AB 1⊥BC 1,即异面直线AB 1与BC 1所成角为2π. 故答案为2π.17.【分析】由题意算出根据向量是平面的一个法向量算出向量在上的投影的绝对值即可得到到的距离【详解】解:根据题意可得又平面的一个法向量点A 在内到的距离等于向量在上的投影的绝对值即故答案为:【点睛】本题给出解析:23 【分析】由题意算出()1,4,4AP =-,根据向量()2,2,1n =--是平面α的一个法向量,算出向量AP 在n 上的投影的绝对值,即可得到P 到α的距离.【详解】解:根据题意,可得()()1,3,0,1,4,2A P ---, ()1,4,4AP =-,又平面α的一个法向量()2,2,1n =--,点A 在α内, ()2,1,4P ∴-到α的距离等于向量AP 在n 上的投影的绝对值,()()1242412P n A -⨯-+⨯-∴⨯=-=+ 即()()22223221AP nd n===-+-+ 故答案为:23 【点睛】本题给出平面的法向量和平面上的一点,求平面外一点到平面的距离;着重考查了向量的数量积公式和点到平面的距离计算等知识,属于中档题.18.【分析】设球心为北纬纬线圈所在圆的圆心为半径为且是等边三角形即中由余弦定理得的值利用弧长公式求得两点间的球面距离【详解】设球心为北纬纬线圈所在圆的圆心为半径为则根据点位于北纬30°东经20°点位于北 解析:5arccos 8R 【分析】 设球心为O ,北纬30纬线圈所在圆的圆心为1O ,半径为r ,32r R =,且ABC 是等边三角形,即32AB R =,AOB 中,由余弦定理得AOB ∠的值,利用弧长公式求得,A B 两点间的球面距离.【详解】设球心为O ,北纬30纬线圈所在圆的圆心为1O ,半径为r ,130OAO ∠=, 则3cos302r R R ==, 根据A 点位于北纬30°,东经20°,B 点位于北纬30°,东经80°,可得160AO B ∠=, 1AO B ∴是等边三角形,即32AB r R ==, ABC 中,由余弦定理可得2222232cos 4AB R R R R AOB ==+-⋅∠,求得5cos 8AOB ∠= ,5arccos 8AOB ∴∠=, ,A B ∴两点间的球面距离5arccos 8AB R AOB R =⋅∠=⋅.故答案为:5arccos8R ⋅ 【点睛】 本题主要考查球面距离的求法,利用余弦定理解三角形,意在考查数形结合分析问题和解决问题的能力,属于中档题型.19.26【分析】推导出=从而=()2=由此能出CD 【详解】∵平面α⊥平面β且α∩β=l 在l 上有两点AB 线段AC ⊂α线段BD ⊂βAC ⊥lBD ⊥lAB=6BD=24AC=8∴=∴=()2==64+36+57解析:26【分析】推导出CD =CA AB BD ++,从而2CD =(CA AB BD ++)2=222CA AB BD ++,由此能出CD .【详解】∵平面α⊥平面β,且α∩β=l ,在l 上有两点A ,B ,线段AC ⊂α,线段BD ⊂β,AC ⊥l ,BD ⊥l ,AB=6,BD=24,AC=8,∴CD =CA AB BD ++,∴2CD =(CA AB BD ++)2=222CA AB BD ++=64+36+576=676,∴CD=26.故答案为26.【点睛】本题考查两点间距离的求法,考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.20.【解析】分析:设正三棱锥P-ABC 的侧棱长为2aPO 为三棱锥的高做PD 垂直于AB 连OD 则PD 为侧面的高OD 为底面的高的三分之一在三角形POD 中构造勾股定理列出方程得到斜高即可详解:设正三棱锥P-AB 解析:364. 【解析】 分析:设正三棱锥P-ABC 的侧棱长为2a,PO 为三棱锥的高,做PD 垂直于AB ,连OD ,则PD 为侧面的高,OD 为底面的高的三分之一,在三角形POD 中构造勾股定理,列出方程,得到斜高即可.详解:设正三棱锥P-ABC 的侧棱长为2a,PO 为三棱锥的高,做PD 垂直于AB ,连OD ,则PD 为侧面的高,OD 为底面的高的三分之一,在三角形POD 中6OD ==⇒=故全面积为:1111122⨯⨯⨯⨯. 点睛:这个题目考查了正三棱锥的表面积的求法,其中涉及到体高,斜高和底面的高的三分之一构成的常见的模型;正三棱锥还有一特殊性即对棱垂直,这一性质在处理相关小题时经常用到.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)3π. 【分析】(Ⅰ)通过证明PO AD ⊥和PO CD ⊥,结合线面垂直的判定定理证明出PO ⊥平面ABCD ;(Ⅱ)先求解出平面EFG 和平面ABCD 的法向量,然后求解出法向量夹角的余弦值,由此确定出锐二面角的余弦值,从而锐二面角的大小可求.【详解】(Ⅰ)因为PAD △是正三角形,O 是AD 的中点,所以PO AD ⊥,又因为CD ⊥平面PAD ,PO ⊂平面PAD ,所以PO CD ⊥,AD CD D =,,AD CD ⊂平面ABCD ,所以PO ⊥面ABCD ;(Ⅱ)如图,以O 点为原点分别以,,OA OG OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,4,0),(0,0,O A B C D G P --,(1,(E F --,(0,2,0),(1,2,EF EG =-=,设平面EFG 的法向量为(,,),m x y z =因为00m EF m EG ⎧⋅=⎨⋅=⎩,所以2020y x y -=⎧⎪⎨+-=⎪⎩, 令1z =,则(3,0,1)m =,又平面ABCD 的法向量(0,0,1)n =,设平面EFG 与平面ABCD 所成锐二面角为θ ,所以||11cos 2||||311m n m n θ⋅===+⋅. 所以平面EFG 与平面ABCD 所成锐二面角为3π.【点睛】思路点睛:向量方法求解二面角的余弦值的步骤:(1)建立合适空间直角坐标系,写出二面角对应的两个半平面中相应点的坐标;(2)设出法向量,根据法向量垂直于平面中任意方向向量,求解出半平面的一个法向量;(注:若半平面为坐标平面,直接取法向量亦可)(3)计算(2)中两个法向量夹角的余弦值,结合立体图形中二面角的实际情况,判断二面角是钝角还是锐角,从而得到二面角的余弦值.22.(Ⅰ)证明见解析;(Ⅱ39. 【分析】(Ⅰ)根据题中的边长以及垂直关系,可求出,OA OP ,利用勾股定理判断OP OA ⊥,再根据等边三角形三线重合,判断OP BC ⊥,即可证明PO ⊥平面ABCD ;(Ⅱ)根据垂直关系,以O 为坐标原点,建立空间直角坐标系,利用向量的坐标公式求CB 与平面PBD 所成角的正弦值.【详解】(Ⅰ)证明:在ACD △中,由已知得3AC =,ABC PBC 3O 为BC 的中点,OA BC OP BC ∴⊥⊥,且32OA OP ==. 在PAO 中,已知322PA =, 则有222,PO OA PA OP OA +=∴⊥.又,OA BC O OA ⋂=⊂平面,ABCD BC ⊂平面,ABCD OP ∴⊥平面ABCD .(Ⅱ)以O 为坐标原点,,,OA OC OP 分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系,则3330,0,,0,,2P B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3D ⎛⎫ ⎪ ⎪⎝⎭. (0,3,0)(1,3,0)BC BD ∴==,,3333)2BP ⎛⎫== ⎪ ⎪⎝⎭. 设平面PBD 的法向量为(,,)n x y z =,则00n BP n BD ⎧⋅=⎨⋅=⎩即3030x y z ⎧=⎪⎨=⎪⎩,令1z =.则3,3y x ==. ∴平面PBD 的一个法向量为(3,3,1)n =-, 39sin |cos ,|13BC n θ∴=<>=.39sin 13θ∴=. 【点睛】 方法点睛:1.利用面面垂直的性质定理,得到线面垂直,进而确定线面角中的垂足,明确斜线在平面内的射影,即可确定线面角;2.在构成线面角的直角三角形中,可利用等体积法解垂线段的长度h ,而不必画出线面角,利用sin h θ= /斜线段长,进行求角;3.建立空间直角坐标系,利用向量法求解,设a 是直线l 的方向向量,n 是平面的法向量,利用公式sin cos ,a n θ=<>求解.23.(1)证明见解析;(2)4515. 【分析】(1)先证明AD ⊥平面PCD ,通过已知可得PD AD ⊥、AD CD ⊥,即可; (2)建立空间直角坐标系,找出各点坐标,设出法向量求解即可.(1)因为PD ⊥平面ABCD ,所以PD AD ⊥.因为底面ABCD 是正方形,所以AD CD ⊥.因为PD CD D ⋂=,所以AD ⊥平面PCD .又因为AD ⊂平面ADE ,所以平面ADE ⊥平面PCD .(2)因为PD ⊥底面ABCD ,所以PD AD ⊥,PD CD ⊥.因为底面ABCD 是正方形,所以AD CD ⊥.如图建立空间直角坐标系D xyz -.因为4PD =,底面ABCD 为边长为2的正方形,所以()0,0,4P ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,0D ,()1,1,2E ,()0,1,2F .则()2,0,0DA =,()1,1,2DE =,()2,1,2BF =--.设平面ADE 的法向量(),,m x y z =,由00m DA m DE ⎧⋅=⎨⋅=⎩,可得2020x x y z =⎧⎨++=⎩. 令1z =-,则0x =,2y =.所以()0,2,1m =-.设直线BF 与平面ADE 所成角为θ,则,45sin cos ,1595BF mBF m BF m θ====⨯. 所以直线BF 与平面ADE 45. 【点睛】本题考查了面面垂直的判定,核心是要求面面垂直,先考虑线面垂直;同时也考查了线面角的计算方法,核心是要求正弦值,先求余弦值.24.(Ⅰ)证明见解析;(Ⅱ)66.(Ⅰ)解法1.利用线面平行的判定定理证明; 解法2.以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,利用空间向量证明直线BC 与平面PAD 的法向量垂直,从而证明结论.(Ⅱ)建立空间直角坐标系后,后利用空间向量的坐标运算求得两平面的法向量的坐标,进而计算.【详解】(Ⅰ)证明:解法1. 因为//BC ADBC ⊄平面PADAD ⊂平面PAD所以//BC 平面PAD解法2.因为PA AD ⊥,PA AB ⊥,AD AB ⊥,所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C , 平面PAD 的法向量为(1,0,0)t , (0,2,0)BC = ,因为 0120000t BC ⋅=⨯+⨯+⨯= ,BC ⊄平面PAD ,所以//BC 平面PAD ;(Ⅱ)解:因为PA AD ⊥,PA AB ⊥AD AB ⊥,所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C所以平面PAB 的法向量为(0,1,0)n = ,设平面PCD 的法向量为(,,)m x y z =(2,2,2)PC =-,(0,4,2)PD =- ,所以2220042020x y z x y m PC m PC y z z y m PD m PD ⎧⎧+-==⎧⎧⊥⋅=⇒⇒⇒⎨⎨⎨⎨-==⊥⋅=⎩⎩⎩⎩ , 令1(1,1,2)y m ==得 ,1cos ,1n mn m n m ⋅<>===⨯ 设平面PAB 与平面PCD 所成角为θθ,为锐角, 所以cos 6θ=. 【点睛】 本题考查利用空间向量证明线面垂直和求二面角问题,关键是平面的法向量的求解和夹角余弦值的计算,注意所求为两平面所成的锐二面角的余弦值,因此对两平面的法向量所成角的余弦值与两平面所成锐角的余弦值要注意区分与联系.25.(1)2. 【分析】(1)连接1A B ,先证得11A C ⊥平面11ABB A ,得111AC AB ⊥,然后由已知得1AB ⊥平面11A BC ,1A B ⊂平面11A BC ,∴11AB A B ⊥,在直角梯形11AA B B 中,可求得1AA ; (2)以A 为原点,AB ,AC ,1AA 方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -,然后求得二面角11B AC C --的两个面的的法向量,由法向量的余弦值得二面角的正弦值.【详解】解:(1)如图,连接1A B .1AA ⊥平面111A B C ,11A B ⊂平面111A B C ,则111AC A A ⊥,又1111AC A B ⊥,1111AA A B A =,∴11A C ⊥平面11ABB A ,而1AB ⊂平面11ABB A , 故111AC AB ⊥.又11AB BC ⊥,1111A C BC C ,可得1AB ⊥平面11A BC ,1A B ⊂平面11A BC ,∴11AB A B ⊥,故1111111112tan tan 4AA A BA A AB A BA A AB AA AA ∠=∠⇒∠=∠⇒=⇒=(2)如图,以A 为原点,AB ,AC ,1AA 方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -,则(12,0,22B ,(10,2,22C ()4,0,0AB =为平面1AC C 的一个法向量.设(),,n x y z =为平面11B AC 的一个法向量, 则112220002220x z n AB n AC y z ⎧⎧+=⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 取1z =,得()2,2,1n =--, 则4210cos ,545n AB 〈〉==- ∴15sin ,5n AB 〈〉=. 15. 【点睛】 方法点睛:本题考查线面垂直的判定,考查空间向量法求二面角.求二面角的常用方法是空间向量法,即建立空间直角坐标系,求出二面角两个面的法向量,由法向量的夹角与二面角相等或互补求解.26.(Ⅰ)证明见解析;(Ⅱ)226+ 【分析】(Ⅰ)由线面垂直证得线线垂直;(Ⅱ)根据条件证得ED ,EA ,EP 两两垂直,以此建立空间直角坐标系,利用向量法求线面角的正弦值.【详解】解:(Ⅰ)因为60APB APD ∠∠==︒,PD PB =,所以APB APD △≌△,所以AD AB =.取BD 的中点E ,连接AE ,PE ,所以AE BD ⊥,PE BD ⊥,又AE PE E ⋂=,所以BD ⊥平面PAE .又AP ⊂平面PAE ,所以AP BD ⊥.(Ⅱ)在APB △中,根据余弦定理得2222cos6028AB AP PB AP PB =+-⋅⋅⋅︒=, 所以27AB =,又因为2BE =,所以26AE =,23PE =,所以222AP AE PE =+,即AE PE ⊥.又因为PE DB ⊥,AE DB E ⋂=,AE ,DB ⊂平面ABCD ,所以PE ⊥平面ABCD .如图,以E 为原点,分别以ED ,EA ,EP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系E xyz -,则()0,26,0A ,()2,0,0D ,(0,0,23P ,()0,23,0C -, ()2,26,0AD =-,(2,0,23DP =-,(0,23,23PC =--. 设平面PAD 的法向量为(),,n x y z =,则0,0,n AD n DP ⎧⋅=⎨⋅=⎩即20,20,x x ⎧-=⎪⎨-+=⎪⎩令1y =,则x =z =,所以(6,1,n =. 设PC 与平面PAD 所成角为θ,2sin cos ,PC n θ=== 所以PC 与平面PAD 所成角的正弦值为26+. 【点睛】 利用向量求直线与平面所成的角有两个思路:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角). (2)通过平面的法向量来求.若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则2πθβ=-或2πθβ=-,故有sin cos l nl n θβ⋅==⋅.。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(含答案解析)(2)
一、选择题1.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( ) A .313B .95C .18D .212.若直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,则1l 与2l 的位置关系是( ) A .12l l ⊥B .12l l C .1l 、2l 相交不垂直 D .不能确定3.已知空间三点坐标分别为A (4,1,3),B(2,3,1),C (3,7,-5),又点P (x,-1,3) 在平面ABC 内,则x 的值 ( ) A .-4B .1C .10D .114.已知长方体1111ABCD A BC D -的底面AC 为正方形,1AA a =,AB b =,且a b >,侧棱1CC 上一点E 满足13CC CE =,设异面直线1A B 与1AD ,1A B 与11D B ,AE 与11D B 的所成角分别为α,β,γ,则 A .αβγ<<B .γβα<<C .βαγ<<D .αγβ<<5.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .16.已知在平行六面体1111ABCD A BC D -中,过顶点A 的三条棱所在直线两两夹角均为60︒,且三条棱长均为1,则此平行六面体的对角线1AC 的长为( )A 3B .2C 5D 67.已知A,B,C 三点不共线,对于平面ABC 外的任一点O,下列条件中能确定点M 与点A,B,C一定共面的是( ) A .OM OA OB OC =++ B .2OM OA OB OC =-- C .1123OM OA OB OC =++ D .111236OM OA OB OC =++ 8.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22C .13D .169.已知正方体1111ABCD A BC D -的棱长为1,E 为1BB 的中点,则点C 到平面11A D E 的距离为 A .55B .52C .53D .3510.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35C .45+D .422+11.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅. 其中正确的命题有( ) A .0个B .1个C .2个D .3个12.如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,若对角线1AC 的长是棱长的m 倍,则m 等于( )A .2B .3C .1D .2二、填空题13.已知正方体1111ABCD A BC D -的棱长为4,点,M N 分别是棱11,BC C D 的中点,点P 在平面1111D C B A 内,点Q 在线段1A N 上,若25PM =,则PQ 的最小值为______.14.若非零向量,αβ满足αβαβ+=-,则α与β所成角的大小为___.15.已知四棱锥P ABCD -的底面ABCD 是边长为2的正方形,5PA PD ==,平面ABCD ⊥平面PAD ,M 是PC 的中点,O 是AD 的中点,则直线BM 与平面PCO 所成角的正弦值是__________.16.已知平面向量()21,3m =+a 与()2,m =b 是共线向量且0⋅<a b ,则=b __. 17.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.18.已知点()121A --,,,()222B ,,,点P 在Z 轴上,且点P 到,A B 的距离相等,则点P 的坐标为___________.19.在直三棱柱111A B C ABC -中,底面ABC 为直角三角形,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的最小值为 .20.在z 轴上与点(4,1,7)A -和点(3,5,2)B -等距离的点C 的坐标为__________.三、解答题21.已知在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD △是正三角形,CD ⊥平面PAD ,,,,E F G O 分别是,,,PC BC PD AD 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求平面EFG 与平面ABCD 所成锐二面角的大小.22.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,E 为PD 中点.(1)求证:BD ⊥平面PAC ; (2)求二面角P AC E --的余弦值;23.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,//AD BC ,AD AB ⊥,4AB AS ==,3AD =,6BC =,E 为SB 的中点.(1)求证://AE 平面SCD . (2)求二面角B AE C --的余弦值.24.如图,四棱锥S ABCD -中,底面ABCD 是梯形,//AB CD ,90ADC ∠=︒,3AD =,22SD CD AB ===,点E ,F 分别是BC ,SD 的中点.(1)求证://EF 平面SAB ;(2)若SB SC =,2EF =,求二面角B SC D --的余弦值.25.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AB BC CA AA ===,D 为AB 的中点.(1)求证:1//BC 平面1DAC ;(2)求平面1DAC 与平面11AAC C 所成的锐二面角....的余弦值. 26.已知三棱锥,A BCD ABD -和BCD △是边长为2的等边三角形,平面ABD ⊥平面BCD(1)求证:AC BD ⊥;(2)设G 为BD 中点,H 为ACD △内的动点(含边界),且//GH 平面ABC ,求直线GH 与平面ACD 所成角的正弦值的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可. 【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩.故(6,0,6)E -,(6,6,6)F -,则222(12)6(12)18EF =++=.故选:C 【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.2.A解析:A 【分析】求出直线1l 、2l 的方向向量数量积为0,由此得到1l 与2l 的位置关系. 【详解】由题意,直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,2640a b ⋅=-+-=,∴1l 与2l 的位置关系是12l l ⊥.故选A . 【点睛】本题主要考查了两直线的位置关系的判断,考查直线与直线垂直的性质等基础知识,着重考查运算求解能力,属于基础题.3.D解析:D 【分析】利用平面向量的共面定理即可求出答案 【详解】(),1,3P x -点在平面ABC 内,λμ∴存在实数使得等式AP AB AC λμ=+成立()()()4,2,02,2,21,6,8x λμ∴--=--+--42226028x λμλμλμ-=--⎧⎪∴-=+⎨⎪=--⎩,消去λμ,解得11x = 故选D 【点睛】本题主要考查了空间向量的坐标运算,共面向量定理的应用,熟练掌握平面向量的共面定理是解决本题的关键,属于基础题。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测(含答案解析)
一、选择题1.已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A .85B .97C .12D .230 2.如图,四边形ABCD 和ABEF 都是正方形,G 为CD 的中点,60DAF ∠=,则直线BG 与平面AGE 所成角的余弦值是( )A .25B .105C .155D .2153.在棱长为2的正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且1(02)AG λλ=<<,则点G 到平面1D EF 的距离为( )A .23B .2C .223λD .2554.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A .2B .1C .2D .35.已知正方体1111ABCD A BC D -,M 为11A B 的中点,则异面直线A M 与1BC 所成角的余弦值为( )A .105B .1010C .32D .626.如图是由16个边长为1的菱形构成的图形,菱形中的锐角为,3π=,,a AB b CD =则=a b ⋅A .5-B .1-C .3-D .6-7.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在坐标平面上的正投影图形的面积,则( ) A .123S S S ==B .21=S S 且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠8.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A .76 B .75 C .72 D .749.如图,在棱长为2的正方体1111ABCD A BC D -中,点E F 、分别是棱AB 、BC 的中点,则点1C 到平面1B EF 的距离等于( )A .23B .223C .33D .4310.如图,四棱锥P ABCD -的底面是边长为2的正方形, Q 为BC 的中点,PQ ⊥面ABCD ,且2PQ =,动点N 在以D 为球心半径为1的球面上运动,点M 在面 ABCD内运动,且PM 5=,则MN 长度的最小值为( )A .352-B .23-C .25-+D .332- 11.如图,棱长为1的正方体1111ABCD A BC D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .24C .22D 312.在平面直角坐标系中,()2,3A -、()32B -,,沿x 轴将坐标平面折成60︒的二面角,则AB 的长为( )A 2B .211C .32D .42二、填空题13.在空间四边形ABCD 中,连接AC 、BD ,若BCD 是正三角形,且E 为其中心,则1322AB BC DE AD +--的化简结果为________. 14.已知三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥面ABC ,AB ⊥AC ,且AA 1=AB=AC ,则异面直线AB 1与BC 1所成角为_____.15.已知平面向量()21,3m =+a 与()2,m =b 是共线向量且0⋅<a b ,则=b __. 16.已知四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则顶点D 的坐标为________.17.如图所示,在正四棱柱1111ABCD A BC D -中,12AA =,1AB BC ==,动点P 、Q 分别在线段1C D 、AC 上,则线段PQ 长度的最小值是______.18.如图,空间四边形OABC 中,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,分MN 所成的定比为2,OG xOA yOB zOC =++,则,,x y z 的值分别为_____.19.在空间直角坐标系O xyz -中,点(1,2,3)A -到原点的距离为__________.20.三棱锥V-ABC 的底面ABC 与侧面VAB 都是边长为a 的正三角形,则棱VC 的长度的取值范围是_________.三、解答题21.在①()()DE CF DE CF +⊥-,②17||2DE =,③0cos ,1EF DB <<这三个条件中任选一个,补充在下面的横线中,并完成问题.问题:如图,在正方体1111ABCD A BC D -中,以D 为坐标原点,建立空间直角坐标系D xyz -.已知点1D 的坐标为()0,0,2,E 为棱11D C 上的动点,F 为棱11B C 上的动点,___________,试问是否存在点E ,F 满足1EF AC ⊥?若存在,求AE BF ⋅的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.22.如图.四棱柱ABCD-A 1B 1C 1D 1的底面是直角梯形,BC ∥AD ,AB AD ,AD=2BC=2,四边形ABB 1A 1和ADD 1A 1均为正方形.(1)证明;平面ABB 1A 1平面ABCD ;(2)求二面角B 1 CD-A 的余弦值.23.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,//AD BC ,AD AB ⊥,4AB AS ==,3AD =,6BC =,E 为SB 的中点.(1)求证://AE 平面SCD .(2)求二面角B AE C --的余弦值.24.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=,已知2,6PB PD PA ===,E 为PA 的中点.(1)求证PC BD ⊥;(2)求直线PC 与平面 PBD 所成角的正弦值.(3)求二面角B PC E --的余弦值.25.如图,平面ABCD ⊥平面ABEF ,其中四边形ABCD 为正方形,四边形ABEF 为直角梯形,1//902AB AF BE AF BE BAF ==∠=︒,,,M 为线段CE 上一点,//MF 平面ABCD .(1)确定点M 的位置,并证明你的结论;(2)求直线DF 与平面BFM 所成角的正弦值.26.如图,四棱锥中P ABCD -中,底面ABCD 是直角梯形,//AB CD ,60DAB ∠=︒,2AB AD CD ==,侧面PAD ⊥底面ABCD ,且PAD △为等腰直角三角形,90APD ∠=︒.(Ⅰ)求证:AD PB ⊥;(Ⅱ)求平面PAD 与平面PBC 所成锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】用空间向量基本定理表示出AC ',然后平方后转化为数量积的运算求得.【详解】记a AB =,b AD =,c AA '=,则43cos900a b ⋅=⨯⨯︒=,同理152b c ⋅=,10a c ⋅=,由空间向量加法法则得AC a b c '=++, ∴22222()222AC a b c a b c a b b c a c '=++=+++⋅+⋅+⋅222154352210852=+++⨯+⨯=, ∴85AC '=AC '=.故选:A .【点睛】方法点睛:本题考查求空间线段长,解题方法是空间向量法,即选取基底,用基底表示出向量,然后利用向量模的平方等于向量的平方转化为向量的数量积进行计算.2.C解析:C【分析】 以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴建立空间直角坐标系,设2AB =,利用空间向量法可求得直线BG 与平面AGE 所成角的正弦值,再利用同角三角函数的基本关系可求得结果.【详解】以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴,建立如图所示的空间直角坐标系A xyz -.设2AB =,得()0,0,0A 、()2,1,0G 、()0,2,0B 、(1,3E ,则()2,1,0AG =,(3AE =,()2,1,0BG =-,设平面AGE 的法向量为(),,n x y z =, 则20230n AG x y n AE x y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,则2y =-,3z = 所以,平面AGE 的一个法向量为(1,2,3n =-, 从而10cos ,225n BGn BG n BG ⋅<>===⨯⋅, 故直线BG 与平面AGE 2101515⎛⎫-= ⎪ ⎪⎝⎭. 故选:C.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h lθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.3.D解析:D【分析】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系,利用向量法能求出点G 到平面1D EF 的距离 .【详解】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系, 则()()()()12,,2,0,0,2,2,0,1,2,2,1G D E F λ,()()()12,0,1,0,2,0,0,,1ED EF EG λ=-==,设平面1D EF 的法向量(),,n x y z =,则12020n ED x z n EF y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,2n =,∴点G 到平面1D EF 的距离为 2255EG nd n ⋅===,故选D. 【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 4.A解析:A【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果.【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=, 11AC AB BC CC ∴=++,()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅ 114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=, ∴线段1AC 的长为12AC = A.【点睛】本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =. 5.A解析:A【分析】建立空间直角坐标系,求出向量AM 与1BC 的向量坐标,利用数量积求出异面直线A M 与1B C 所成角的余弦值.【详解】 以D 为坐标原点,建立空间直角坐标系,如图所示:设正方体的棱长为1,则(1,0,0)A ,1(1,0,1)A ,(1,1,0)B ,1(1,1,1)B ,(0,1,0)C ∵M 为11A B 的中点 ∴1(1,,1)2M ∴1(0,,1)2AM =,52AM =;1(1,0,1)B C =--,12B C =. ∴异面直线A M 与1B C 所成角的余弦值为111110cos ,10AM B C AM B C AM B C⋅===⋅ 故选A.【点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角∠AEM (或其补角),是解题的关键.如果异面直线所成的角不容易找,则可以通过建立空间直角坐标系,利用空间向量来求解.6.B解析:B【解析】设菱形中横向单位向量为,m 纵向单位向量为n ,则111,1122m n m n ==⋅=⨯⨯=,2a AB m n ==+,32b CD m n ==-+,()()232a b m n m n ⋅=+-+=223443421m n m n -+-⋅=-+-=-,故选B. 7.D解析:D 【分析】试题分析:结合其空间立体图形易知,112222=⨯⨯=S ,2312222S S ==⨯⨯=,所以23S S =且13S S ≠,故选D .考点:空间直角坐标系及点的坐标的确定,正投影图形的概念,三角形面积公式. 8.C 解析:C【分析】建立空间直角坐标系,写出点的坐标,设出动点的坐标,利用向量的坐标公式求出向量坐标,利用向量垂直的充要条件列出方程求出动点P 的轨迹方程,得到P 的轨迹是底面圆的弦,利用勾股定理求出弦长.【详解】建立空间直角坐标系.设A (0,﹣1,0),B (0,1,0),S (0,03M (0,0,3P (x ,y ,0). 于是有AM =(0,13MP =(x ,y ,3 由于AM ⊥MP ,所以(0,13•(x ,y ,30, 即y 34=,此为P 点形成的轨迹方程,其在底面圆盘内的长度为2371()4-=.故选C .【点睛】本题考查通过建立坐标系,将求轨迹问题转化为求轨迹方程、考查向量的数量积公式、向量垂直的充要条件、圆的弦长的求法.属中档题9.D解析:D【分析】建立空间直角坐标系,找到平面1B EF 的法向量,利用向量法求点到平面的距离求解即可.【详解】以1D 为坐标原点,分别以11D A ,11D C ,1D D 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则1(2,2,0)B ,1(0,2,0)C ,(2,1,2)E ,(1,2,2)F .设平面1B EF 的法向量为(,,)n x y z =,1(0,1,2)B E =-1(1,0,2)B F =-则1100n B E n B F ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x z -+=⎧⎨-+=⎩ 令1z =,得(2,2,1)n =.又11(2,0,0)BC =-,∴点1C 到平面1B EF 的距离1122|||2200|43||221n B C h n ⋅-⨯++===++, 故选:D .【点睛】 本题用向量法求点到平面的距离,我们也可以用等体积法求点到平面的距离,当然也可以找到这个垂线段,然后放在直角三角形中去求.10.C解析:C【分析】若要使MN 最短,点N 必须落在平面ABCD 内,且一定在DN 的连线上,此时应满足,,,D N M Q 四点共线,通过几何关系即可求解【详解】如图,当点N 落在平面ABCD 内,且,,,D N M Q 四点共线时,MN 距离应该最小,由PM 5=1MQ =,即点M 在以Q 为圆心,半径为1的圆上,由几何关系求得5DQ ,1DN MQ ==,故552NM DN MQ -=故答案选:C【点睛】本题考查由几何体上的动点问题求解两动点间距离的最小值,属于中档题11.B解析:B【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA ,利用点到平面距离的向量公式即得解. 【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=-- 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD1A D ∴⊥平面11ABC D故平面11ABC D 的一个法向量为:1(1,0,1)DA = O ∴到平面11ABC D 的距离为: 1111||22||2OD DA d DA ⋅===故选:B【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.12.D解析:D 【分析】作AC x ⊥轴于C ,BD x ⊥轴于D ,则AB AC CD DB =++,两边平方后代入数量积即可求得2||AB ,则AB 的长可求.【详解】如图,()2,3A -,()3,2B -,作AC x ⊥轴于C ,BD x ⊥轴于D ,则()2,0C -,()3,0D ,3AC ∴=,5CD =,2DB =,沿x 轴把坐标平面折成60︒的二面角,CA ∴<,60DB >=︒,且0AC CD CD DB ⋅=⋅=,222||()AB AB AC CD DB ∴==++ 222222AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅19254232322⎛⎫=+++⨯⨯⨯-= ⎪⎝⎭. 42AB ∴=即AB 的长为42故选:D .【点睛】本题主要考查了空间角,向量知识的运用,考查学生的计算能力,属于中档题. 二、填空题13.【分析】由题意结合重心的性质和平面向量的三角形法则整理计算即可求得最终结果【详解】如图取BC 的中点F 连结DF 则∴【点睛】本题主要考查空间向量的运算法则及其应用意在考查学生的转化能力和计算求解能力 解析:0【分析】由题意结合重心的性质和平面向量的三角形法则整理计算即可求得最终结果.【详解】如图,取BC 的中点F ,连结DF ,则23DF DE =, ∴1322AB BC DE AD +--AB BF DF DA =+-+AF FD DA =++0=.【点睛】本题主要考查空间向量的运算法则及其应用,意在考查学生的转化能力和计算求解能力. 14.【解析】连结A1B ∵AA1⊥面ABC 平面A1B1C1∥面ABC ∴AA1⊥平面A1B1C1∵A1C1⊂平面A1B1C1∴AA1⊥A1C1∵△ABC 与△A1B1C1是全等三角形AB ⊥AC ∴A1B1⊥A1 解析:2π 【解析】连结A 1B ,∵AA 1⊥面ABC ,平面A 1B 1C 1∥面ABC ,∴AA 1⊥平面A 1B 1C 1,∵A 1C 1⊂平面A 1B 1C 1,∴AA 1⊥A 1C 1,∵△ABC 与△A 1B 1C 1是全等三角形,AB ⊥AC ,∴A 1B 1⊥A 1C 1,∵A 1B 1∩AA 1=A 1,∴A 1C 1⊥平面AA 1B 1B ,又∵AB 1⊂平面AA 1B 1B ,∴A 1C 1⊥AB 1,∵矩形AA 1B 1B 中,AA 1=AB ,∴四边形AA 1B 1B 为正方形,可得A 1B ⊥AB 1,∵A 1B∩A 1C 1=A 1,∴AB 1⊥平面A 1BC 1,结合BC 1⊂平面A 1BC 1,可得AB 1⊥BC 1,即异面直线AB 1与BC 1所成角为2π. 故答案为2π.15.【解析】∵向量与是共线向量∴∴或∵∴即∴则∴故答案为解析:22【解析】∵向量(21,3)a m =+与(2,)b m =是共线向量∴(21)6m m +=∴32m =或2m =- ∵0a b ⋅<∴(21)230m m +⨯+<,即27m <-∴2m =-,则(2,2)b =-∴22(b =+=故答案为16.【解析】由平行四边形中对角线互相平分的性质知AC 的中点即为BD 的中点AC 的中点设D(xyz)则∴x =5y =13z =-3故D(513-3)解析:(5,13,3)-【解析】由平行四边形中对角线互相平分的性质知,AC 的中点即为BD 的中点,AC 的中点7(,4,1)2O - ,设D (x ,y ,z ), 则7251,4,12222x y z +-++==-= ∴x =5,y =13,z =-3,故D (5,13,-3).17.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法计算出异面直线的公垂线的长度即为所求【详解】由题意可知线段长度的最小值为异面直线的公垂线的长度如下图所示以点为坐标原点所在直线分解析:13【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法计算出异面直线1C D 、AC 的公垂线的长度,即为所求.【详解】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x y y z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-, 可得()2,2,1n =-, 因此,min 23DA n PQ n ⋅==. 故答案为:23. 【点睛】 关键点点睛:解本题的关键在于将PQ 长度的最小值转化为异面直线AC 、1C D 的距离,实际上就是求出两条异面直线的公垂线的长度,利用空间向量法求出两条异面直线间的距离,首先要求出两条异面直线公垂线的一个方向向量的坐标,再利用距离公式求解即可. 18.【解析】∵∴∴故答案为解析:111,,633【解析】∵ O G OM MG =+,12OM OA =,2 ,3MG MN MN ON OM ==-,1 ()2ON OB OC =+,∴111 633OG OA OB OC =++,∴16x =,13y z ==,故答案为111,,63319.【解析】距离【解析】距离d ==20.【解析】分析:设的中点为连接由余弦定理可得利用三角函数的有界性可得结果详解:设的中点为连接则是二面角的平面角可得在三角形中由余弦定理可得即的取值范围是为故答案为点睛:本题主要考查空间两点的距离余弦定解析:)【解析】分析:设AB 的中点为D ,连接,,VD CD VC ,由余弦定理可得22233cos 22VC a a VDC =-∠,利用三角函数的有界性可得结果. 详解:设AB 的中点为D ,连接,,VD CD VC ,则VD VC == VDC ∠是二面角V AB C --的平面角,可得0,1cos 1VDC VDC π<∠<-<∠<,在三角形VDC 中由余弦定理可得,2222cos VC VDC ⎫⎫=+-∠⎪⎪⎪⎪⎝⎭⎝⎭ 2233cos 22a a VDC =-∠22030VC a VC <<⇒<<,即VC 的取值范围是(),为故答案为().点睛:本题主要考查空间两点的距离、余弦定理的应用,意在考查空间想象能力、数形结合思想的应用,属于中档题. 三、解答题21.答案见解析【分析】先利用已知条件写出点坐标,设(0,,2)(02),(,2,2)(02)E a a F b b ≤≤≤≤,进而得到1,,,EF A A F C E B 的坐标,利用空间向量数量积的坐标表示求出1,EF A AE BF C ⋅⋅;若选① :利用空间向量数量积的坐标表示公式、空间向量垂直的性质即可求解;若选② :利用空间向量模的坐标表示公式即可得出结果;若选③ :利用空间向量夹角的性质进行求解即可.【详解】解:由题意,正方体1111ABCD A BC D -棱长为2,则1(2,0,0),(2,2,0),(2,0,2),(0,0,0),(0,2,0)A B A D C ,设(0,,2)(02),(,2,2)(02)E a a F b b ≤≤≤≤,则1(,2,0),(2,2,2),(2,,2),(2,0,2)EF b a A AE a BF b C =-=--=-=-, 所以142(),82EF A a b AE C BF b ⋅=-+⋅=-.选择①:()()DE CF DE CF +⊥-,所以22()()0,DE CF DE CF DE CF +⋅-==,得a b =,若10EF AC ⋅=得42()0a b -+=, 则1a b ==,故存在点(0,1,2),(1,2,2)E F ,满足10EF AC ⋅=,826AE BF b ⋅=-=. 选择②:因为17||2DE =,=, 得12a =, 若10EF AC ⋅=, 即42()0a b -+=,得32b =. 故存在点130,,2,,2,222E F ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭, 满足10EF AC ⋅=,825AE BF b ⋅=-=. 选择③:因为0cos ,1EF DB <〈〉<,所以EF 与DB 不共线,所以2b a ≠-,即2a b +≠,则142()0EF AC a b ⋅=-+≠,故不存在点,E F 满足10EF AC ⋅=. 【点睛】关键点睛:建立空间坐标系,利用空间向量数量积的坐标表示、空间向量垂直的性质、空间向量模的坐标表示公式以及空间向量夹角的性质是解决本题的关键.22.(1)详见解析;(2)66. 【分析】(1)根据四边形ABB 1A 1和ADD 1A 1均为正方形,得到11,AA AB AA AD ⊥⊥,再由线面垂直的判定定理证得1AA ⊥平面ABCD ,然后利用面面垂直的判定定理证明.(2)以A 为原点,以1,,AB AD AA 分别为x ,y ,z 轴,建立空间直角坐标系,求得平面1BCD 的一个法向量为(),,m x y z =,又平面CDA 的一个法向量为()0,0,1n =,然后由cos ,m n m n m n ⋅=⋅求解.【详解】 (1)因为四边形ABB 1A 1和ADD 1A 1均为正方形.所以11,,AA AB AA AD AB AD A ⊥⊥⋂=,所以1AA ⊥平面ABCD ;又因为1AA ⊂平面ABB 1A 1,所以平面ABB 1A 1平面ABCD ;(2)以A 为原点,以1,,AB AD AA 分别为x ,y ,z 轴,建立空间直角坐标系:则()()()()10,0,0,2,1,0,0,2,0,2,0,2A C D B ,所以()()12,1,0,0,1,2CD CB =-=-,设平面1BCD 的一个法向量为(),,m x y z =, 则100m CD m CB ⎧⋅=⎪⎨⋅=⎪⎩,即2020x y y z -+=⎧⎨-+=⎩, 令1,2,1x y z ===,则()1,2,1m =,又平面CDA 的一个法向量为()0,0,1n =,所以16cos ,66m nm n m n ⋅===⋅, 二面角B 1CD-A 的余弦值是66【点睛】 方法点睛:求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.23.(1)证明见解析;(2)2211. 【分析】(1)取SC 的中点F ,连接,DF EF ,证明四边形ADFE 为平行四边形,可得//AE DF ,即可证//AE 平面SCD ;(2)建立如图所示空间直角坐标系,然后写出各点坐标,得平面ABE 的法向量为AD ,计算平面ACE 的法向量m ,利用数量积公式代入计算二面角的余弦值.【详解】(1)证明:取SC 的中点F ,连接,DF EF因为E 、F 为SB 、SC 的中点,所以//EF BC 且132EF BC ==,又因为//AD BC ,3AD =,6BC =,所以//EF AD 且EF AD =,所以四边形ADFE 为平行四边形,所以//AE DF ,又AE ⊄平面SCD ,DF ⊂平面SCD ,所以//AE 平面SCD . (2)因为SA ⊥平面ABCD ,AD AB ⊥,所以建立如图所示空间直角坐标系, 则(0,0,0),(4,0,0),(4,6,0),(0,3,0),(2,0,2)A B C D E ,(2,0,2),(4,0,0),(4,6,0)AE AB AC ===,(0,3,0)AD = 由题意可知AD ⊥平面ABE ,设平面ACE 的法向量(,,)m x y z =所以00AC m AE m ⎧⋅=⎨⋅=⎩,则460220x y x z +=⎧⎨+=⎩,得(3,2,3)m =-- 设二面角B AE C --的平面角为θ, 所以622cos cos ,322AD m θAD m AD m ⋅-====⨯,所以二面角B AE C --的余弦值为2211.【点睛】本题考查了立体几何中的线面平行的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过中位线平行证明线线平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.24.(1)证明见解析(2)22(3)155 【分析】(1)由PB PD =可得出PO BD ⊥,再由菱形性质可得AC BD ⊥,即可证明BD ⊥平面POC ,可得PC BD ⊥;(2)先证明OP ⊥平面ABCD ,可以O 为原点,以OB ,OC ,OP 为坐标轴建立空间直角坐标系,利用向量法求线面角;(3)由(2)利用向量法求二面角的余弦值.【详解】(1)设,AC BD 交点为O ,连接PO ,ABCD 是边长为2的菱形,,AC BD O ∴⊥是,AC BD 的中点,,PD O B BD P P =∴⊥,又PO ⊂平面POC ,AC ⊂平面 POC ,PO AC O =,BD ∴⊥平面POC ,PC ⊂平面POC ,.C BD P ∴⊥(2)60,2,A D B D A A B ︒===∠ABD ∴是等边三角形,又AB PB PD ==PBD ∴是等边三角形, 3P OA O ∴== 222OP PA OA +∴=,OA OP ∴⊥又,OP OB OA OB O ⊥⋂=OP ∴⊥平面ABCD ,以O 为原点,以OB ,OC ,OP 为坐标轴建立空间直角坐标系如图:则(1,0,0),3,0),3)B C P ,(0,3,3PC ∴=-,而3,0)OC →=是平面 PBD 的一个法向量,设直线PC 与平面PBD 所成角为θ, 则||2sin 263|||||PC OC PC OC θ→→→→⋅===⋅ 所以直线PC 与平面PBD 所成角的正弦值为22. (3)由(2)知(3,0)BC →=-,(3,3PC =-设平面BPC 的法向量n (x,y,z)→=, 则.0.0n PC n BC ⎧=⎨=⎩,33030y z x y ⎧-=⎪∴⎨-+=⎪⎩, 令1y =,得3,1x z ==,所以(3,1,1)n →=,又BD ⊥平面EPC , (1,0,0)m ∴=是平面 EPC 的一个法向量,315cos ,||||515m n m n m n ⋅∴〈〉===⋅⋅, ∴二面角B PC E --的余弦值为155. 【点睛】关键点点睛:根据题目所给条件,利用平面几何知识证明OA OP ⊥,再根据OP OB ⊥,证明OP ⊥平面ABCD ,得以O 为原点,以OB ,OC ,OP 为坐标轴建立空间直角坐标系是解题的关键所在.25.(1)点M 在CE 的中点处,证明见解析;(2)32. 【分析】(1)首先观察图形的特征,确定点M 的位置,之后利用线面平行的判定定理证明即可; (2)建立空间直角坐标系,设出边长,写出点的坐标,利用向量法求得线面角的正弦值.【详解】(1)点M 在CE 的中点处,证明如下:取BC 中点P ,连接,BP AP ,根据题意,可知//,PM AF PM AF =,所以四边形AFMP 是平行四边形,所以//AP MF ,又因为FM ⊄平面ABCD ,AP ⊂平面ABCD ,所以//MF 平面ABCD ;(2)设1AF AB AD ===,如图建立空间直角坐标系,则有1(1,0,1),(1,1,0),(0,1,),(0,0,0)2D F M B ,所以(0,1,1)DF =-,1(1,1,0),(0,1,)2BF BM ==,设平面BFM 的法向量为(,,)n x y z =, 则有00n BF n BM ⎧⋅=⎨⋅=⎩,即0102x y y z +=⎧⎪⎨+=⎪⎩,取1y =,则有1,2x z =-=-, 所以平面BFM 的一个法向量为(1,1,2)n =--, 所以03cos ,26DF nDF n DF n ⋅+<>===⋅, 所以直线DF 与平面BFM 3 【点睛】 思路点睛:该题考查的是有关立体几何的问题,解题思路如下:(1)首先根据图形的特征,判断出点的位置,之后利用线面平行的判定定理证明即可; (2)在证明的过程中,注意线在面外和线在面内的条件;(3)建立空间直角坐标系,求得平面的法向量和直线的方向向量;(4)利用向量所成角的余弦值得到线面角的正弦值.26.(Ⅰ)证明见解析;(Ⅱ)3913. 【分析】(Ⅰ)取AD 的中点G ,连结PG 、GB 、BD ,根据PA PD =和ABD △是正三角形,证明AD ⊥平面PGB 即可.(Ⅱ)根据侧面PAD ⊥底面ABCD ,PG AD ⊥,易得直线GA 、GB 、GP 两两互相垂直,以G 为原点,直线GA 、GB 、GP 所在直线为x 轴、y 轴和z 轴建立空间直角坐标系G xyz -,求得平面PBC 的一个法向量()000,,n x y z =,再由平面PAD 的一个法向量1(0,3,0)n GB a ==,设平面PAD 与平面PBC 所成锐二面角为θ,由11cos ||n n n n θ⋅=⋅求解. 【详解】(Ⅰ)如图所示:取AD 的中点G ,连结PG 、GB 、BD .PA PD =,PG AD ∴⊥AB AD =,且60DAB ∠=︒,ABD ∴是正三角形,BG AD ⊥,又PG BG G =,AD ∴⊥平面PGB .AD PB ∴⊥(Ⅱ)∵侧面PAD ⊥底面ABCD ,又PG AD ⊥,PG ∴⊥底面ABCD .PG BG ∴⊥.∴直线GA 、GB 、GP 两两互相垂直,故以G 为原点,直线GA 、GB 、GP 所在直线为x 轴、y 轴和z 轴建立如图所示的空间直角坐标系G xyz -.设PG a =,则可求得(0,0,)P a ,(,0,0)A a ,3,0)B a ,(,0,0)D a -,33,02C a ⎛⎫- ⎪ ⎪⎝⎭. 33,,02BC a ⎛⎫∴=- ⎪ ⎪⎝⎭.(0,3,)PB a a ∴=-. 设()000,,n x y z =是平面PBC 的一个法向量,则0n BC ⋅=且0n PB ⋅=.0000330,230.ax ay az ⎧-=⎪∴⎪-=⎩解得00003,3.x y z y ⎧=⎪⎨⎪=⎩ 取03y =(1,3,3)n =-.又∵平面PAD 的一个法向量13,0)n GB a ==,设平面PAD 与平面PBC 所成锐二面角为θ, 则1139cos ||1393n n n n aθ⋅===⋅++⋅ 所以平面PAD 与平面PBC 39 【点睛】 方法点睛:求二面角最常用的方法:1、几何法:二面角的大小用它的平面角来度量.平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质.向量法:分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.。
最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(含答案解析)(2)
一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( ) A .12 B .13 C .512 D .712 2.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( ) A .()0,6 B .()6,+∞ C .()0,63 D .()63,+∞ 3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,E 是棱AB 的中点,F 是侧面AA 1D 1D 内一点,若EF ∥平面BB 1D 1D ,则EF 长度的范围为()A .[2,3]B .[2,5]C .[2,6]D .[2,7] 4.已知向量(2,0,2)a =-,则下列向量中与a 成45的夹角的是( )A .(0,0,2)B .(2,0,0)C .(2,2D .)2,2,0- 5.如图,点P 在正方体1111ABCD A BC D -的面对角线1BC 上运动,则下列四个结论: ①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ;1DP BC ⊥③;④平面1PDB 平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个6.已知长方体1111ABCD A BC D -的底面AC 为正方形,1AA a =,AB b =,且a b >,侧棱1CC 上一点E 满足13CC CE =,设异面直线1A B 与1AD ,1A B 与11D B ,AE 与11D B 的所成角分别为α,β,γ,则A .αβγ<<B .γβα<<C .βαγ<<D .αγβ<< 7.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A .255B .55C .45D .18.已知直三棱柱111ABC A B C -中,底面边长和侧棱长都相等,则异面直线1AB 与1BC 所成的角的余弦值为( )A .12B .18C .14D .349.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +-D .211322OA OB OC -- 10.如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大 11.已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为平面BCC 1B 1的中心,则直线DE 与平面ACD 1所成角的余弦值为( )A .14B .13C .33D .23312.在平面直角坐标系中,()2,3A -、()32B -,,沿x 轴将坐标平面折成60︒的二面角,则AB 的长为( )A .2B .211C .32D .42二、填空题13.如图,已知正三棱柱111ABC A B C -中,12AB AA ==,,M N 分别为1,CC BC 的中点,点P 在直线11A B 上且满足111().A P AB R λλ=∈若平面PMN 与平面ABC 所成的二面角的平面角的大小为45,则实数λ的值为______.14.已知正方体1111ABCD A BC D -的棱长为4,点,M N 分别是棱11,BC C D 的中点,点P 在平面1111D C B A 内,点Q 在线段1A N 上,若25PM =PQ 的最小值为______. 15.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为________.16.在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.17.已知,若向量互相垂直,则k 的值为____. 18.已知P 是正方体1111ABCD A BC D -的棱11A D 上的动点,设异面直线AB 与CP 所成的角为α,则cos α的最小值为__________.19.在直三棱柱111ABC A B C -中,若1BAC 90,ABAC AA ,则异面直线1BA 与1AC 所成的角等于_________ 20.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:① 直线AC 与直线1C E 是异面直线;②1A E 一定不垂直1AC ;③ 三棱锥1E AAO -的体积为定值; ④1AE EC +的最小值为22 其中正确的序号序号是______.三、解答题21.如图,平面ABCDE ⊥平面CEFG ,四边形CEFG 为正方形,点B 在正方形ACDE 的外部,且5,4AB BC AC ===.(1)证明:AD CF ⊥.(2)求平面BFG 与平面ABCDE 所成锐二面角的余弦值.22.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==,87CF =(1)求直线CE 与平面BDE 所成角的正弦值;(2)求平面BDE 与平面BDF 夹角的余弦值.23.如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,4AB =,11112A B AC ==,11AB BC ⊥.(1)求1AA 的长;(2)求二面角11B AC C --的正弦值.24.如图,在四棱锥P ABCD -中,已知ABCD 是平行四边形,60DAB ∠=,AD AB PB ==,PC PA ⊥,PC PA =.(1)求证:BD ⊥平面PAC ;(2)求二面角A PB C --的余弦值.25.如图:三棱锥A BCD -中,AB ⊥平面BCD ,且222AD AB CD ===,2BC =;BM AC ⊥,BN AD ⊥,垂足分别为M ,N .(1)求证:AMN 为直角三角形;(2)求直线BC 与平面BMN 所成角的大小.26.如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 中点.(1)PB ∥平面AEC ;(2)设PA =1,ABC ∠60︒=,三棱锥E -ACD 3,求二面角D -AE -C 的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据向量共面定理求解.【详解】 由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-, ∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦, ∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩. 故选:B .【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.C解析:C【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO . OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AO OB ∴==. 在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C.【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题. 3.C解析:C【分析】过F 作1//FG DD ,交AD 于点G ,交11A D 于H ,根据线面垂直关系和勾股定理可知222EF AE AF =+;由,//EF FG 平面11BDD B 可证得面面平行关系,利用面面平行性质可证得G 为AD 中点,从而得到AF 最小值为,F G 重合,最大值为,F H 重合,计算可得结果.【详解】过F 作1//FG DD ,交AD 于点G ,交11A D 于H ,则FG ⊥底面ABCD2222222221EF EG FG AE AG FG AE AF AF ∴=+=++=+=+//EF 平面11BDD B ,//FG 平面11BDD B ,EF FG F ⋂=∴平面//EFG 平面11BDD B ,又GE 平面EFG //GE ∴平面11BDD B又平面ABCD 平面11BDD B BD =,GE 平面ABCD //GE BD ∴ E 为AB 中点 G ∴为AD 中点,则H 为11A D 中点即F 在线段GH 上min 1AF AG ∴==,max 145AF AH =+=min 112EF ∴+=max 156EF +则线段EF 长度的取值范围为:2,6本题正确选项:C【点睛】本题考查立体几何中线段长度取值范围的求解,关键是能够确定动点的具体位置,从而找到临界状态;本题涉及到立体几何中线面平行的性质、面面平行的判定与性质等定理的应用.4.B解析:B【分析】根据空间向量数量积的坐标公式,即可得到答案【详解】 根据夹角余弦值cos a b a b θ⋅= 对于A 若()b 0,0,2,=则-222==-222a ba b ⋅⨯2cos 452︒=,故不符合条件对于B 若()b 20,0,=,则222==222a b a b ⋅⨯,而2cos 452︒=,故符合条件 对于C 若()b 0,22,=,则-21==-cos 45222a b a b ⋅≠︒⨯,故不符合条件 对于D 若()b 2-20=,,则21==cos 45222a b a b ⋅≠︒⨯,故不符合条件 故选B【点睛】 本题考查了向量的数量积,运用公式代入进行求解,较为简单 5.C解析:C【分析】利用空间中线线、线面、面面间的位置关系求解.【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C , 故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确;对于②,连接1A B ,11AC ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BAC 面1ACD ,从而由线面平行的定义可得,故②正确;对于③,由于DC ⊥平面11BCBC ,所以1DC BC ⊥, 若1DPBC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.6.A解析:A 【分析】根据题意将异面直线平移到同一平面,再由余弦定理得到结果. 【详解】根据题意将异面直线平移到同一平面中,如上图,显然α,β,(0,]2πγ∈,因为a b >,异面直线1A B 与1AD 的夹角即角1AD C ,根据三角形1AD C 中的余弦定理得到222211cos 21()a b a b aα==>++,故(0,)3πα∈,同理在三角形1A DB 中利用余弦定理得到:2221cos 222()1a a b bβ==<⋅+⋅+,故(,)32ππβ∈, 连接AC ,则AC 垂直于BD ,CE 垂直于BD ,AC 交CE 于C 点,故可得到BD 垂直于面ACE ,进而得到BD 垂直于AE ,而BD 平行于11D B .从而得到2πγ=,故αβγ<<. 故答案为A. 【点睛】这个题目考查了异面直线夹角的求法,一般是将异面直线平移到同一平面中,转化到三角形中进行计算,或者建立坐标系,求解两直线的方向向量,两个方向向量的夹角就是异面直线的夹角或其补角.7.A解析:A 【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值. 【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()()220,2,2PB a b a b =--=-+,三角形PBC 的面积为()2221251282BC PB a b a a ⨯⨯=-+=-+,当126105a ==时,面积取得最小值为266255128555⎛⎫⨯-⨯+= ⎪⎝⎭,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.8.C解析:C 【分析】建立空间坐标系,分别求得直线的方向向量,进而得到线线角. 【详解】立空间坐标系如图,设边长为2,得到A (2,0,0),1B (132), B (1,3,0),1C (0,0,2) 向量()()111,3,2,-1,3,2AB BC =-=- 设异面直线夹角为θ,则1111cos =||||AB BC AB BC θ⋅=⋅14故答案为C 【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.9.D解析:D 【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O 出发的三个向量表示的,所以将待求向量用从O 出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果. 详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.10.D解析:D 【分析】设正三棱柱111ABC A B C -棱长为2,设平面BDE 与底面ABC 所成锐二面角为α,,02AE x x =≤≤,以A 为坐标原点建立空间直角坐标系,确定出,,B D E 点的坐标,求出平面BDE 的法向量m ,底面ABC 的法向量坐标为(0,0,1)n =,将cos α表示为关于x 的函数,通过讨论cos α的增减变化,即可求出结论. 【详解】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA所在的直线分别为,y z 轴建立空间直角坐标系,则,0),(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-, 设平面BDE 的法向量(,,)m s t k =,则m BD m ED⎧⊥⎨⊥⎩,即02(1)0t k t x k ⎧++=⎪⎨+-=⎪⎩,令k =1ts x ==+,所以平面BDE 的一个法向量(1m x =+, 底面ABC 的一个法向量为(0,0,1)n =,cos |cos ,|m n α=<>==当1(0,)2x ∈,cos α随着x 增大而增大,则α随着x 的增大而减小, 当1(,2)2x ∈,cos α随着x 增大而减小,则α随着x 的增大而增大. 故选:D.【点睛】本题考查空间向量法求二面角,应用函数思想讨论二面角的大小,考查直观想象、数学计算能力,素养中档题.11.B解析:B 【分析】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭.易知平面1ACD 的法向量为()1,1,1n =,计算夹角得到答案. 【详解】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭. 根据1,n AC n AD ⊥⊥得到平面1ACD 的法向量为()1,1,1n =,11,1,22DE ⎛⎫= ⎪⎝⎭, 故22cos 3n DE n DEα⋅==⋅,故1sin 3α=, 直线DE 与平面ACD 1所成角θ,满足1cos sin 3θα==. 故选:B .【点睛】本题考查了线面夹角,意在考查学生的空间想象能力和计算能力.12.D解析:D 【分析】作AC x ⊥轴于C ,BD x ⊥轴于D ,则AB AC CD DB =++,两边平方后代入数量积即可求得2||AB ,则AB 的长可求. 【详解】如图,()2,3A -,()3,2B -,作AC x ⊥轴于C ,BD x ⊥轴于D ,则()2,0C -,()3,0D ,3AC ∴=,5CD =,2DB =,沿x 轴把坐标平面折成60︒的二面角,CA ∴<,60DB >=︒,且0AC CD CD DB ⋅=⋅=,222||()AB AB AC CD DB ∴==++222222AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅19254232322⎛⎫=+++⨯⨯⨯-= ⎪⎝⎭.42AB ∴=.即AB 的长为42. 故选:D . 【点睛】本题主要考查了空间角,向量知识的运用,考查学生的计算能力,属于中档题.二、填空题13.【分析】从二面角的大小入手利用空间向量求解【详解】以N 为坐标原点NCNA 所在直线分别为x 轴y 轴建立空间直角坐标系如图则由可得设为平面的一个法向量则即令可得易知平面ABC 的一个法向量为因为平面与平面所 解析:2-【分析】从二面角的大小入手,利用空间向量求解. 【详解】以N 为坐标原点,NC,NA 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图则()()()()()10,0,0,1,0,1,1,0,0,3,0,3,2N M B A A - ,由111A P AB λ=可得()11111133,2NP NA A P NA A B NA AB λλλλ=+=+=+=-, ()1,0,1NM =,设(),,n x y z =为平面PMN 的一个法向量,则00n NM n NP ⎧⋅=⎨⋅=⎩,即)03120x z x y z λλ+=⎧⎪⎨--+=⎪⎩, 令1z =-,可得()()321,,131n λλ⎛⎫+=- ⎪ ⎪-⎝⎭,易知平面ABC 的一个法向量为()0,0,1m =.因为平面PMN 与平面ABC 所成的二面角的平面角的大小为45,所以1cos45n mn m n ⋅︒==,即2n =,所以21211231λλ+⎛⎫++= ⎪-⎝⎭,解得2λ=-. 【点睛】本题主要考查空间向量的应用,利用二面角求解参数.二面角的求解和使用的关键是求解平面的法向量,把二面角转化为向量的夹角问题.14.【分析】取B1C1中点O 则MO ⊥面A1B1C1D1即MO ⊥OP 可得点P 在以O 为圆心2以半径的位于平面A1B1C1D1内的半圆上即O 到A1N 的距离减去半径即为PQ 长度的最小值作OH ⊥A1N 于N 可得OH 解析:6525- 【分析】取B 1C 1中点O ,则MO ⊥面A 1B 1C 1D 1,即MO ⊥OP ,可得点P 在以O 为圆心,2以半径的位于平面A 1B 1C 1D 1内的半圆上.即O 到A 1N 的距离减去半径即为PQ 长度的最小值,作OH ⊥A 1N 于N ,可得OH=655,PQ 长度的最小值为6525-. 【详解】如图,取B 1C 1中点O ,则MO ⊥面A 1B 1C 1D 1,即MO ⊥OP ,∵25PM =OP=2,∴点P 在以O 为圆心,2以半径的位于平面A 1B 1C 1D 1内的半圆上.可得O 到A 1N 的距离减去半径即为PQ 长度的最小值, 作OH ⊥A 1N 于N , △A 1ON 的面积为4×1114242224222-⨯⨯-⨯⨯-⨯⨯=6, ∴1162A N OH ⨯⨯=,可得65,∴PQ 652. 652- 【点睛】本题考查线段长的最小值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.15.【分析】画出题目描述的图形判断直线mn的所成的角通过解三角形即可【详解】如图:α‖平面CB1D1α∩平面ABCD=mα∩平面ABA1B1=n可知:m//CD1m//B1D1因为△CB1D1是正三角形解析:3 2【分析】画出题目描述的图形,判断直线m、n的所成的角,通过解三角形即可.【详解】如图:α‖平面CB1D1, α∩平面ABCD=m, α∩平面ABA1B1=n,可知:m//CD1,m//B1D1,因为△CB1D1是正三角形.所以m、n所成角就是∠CD1B1=60°则m、m所成角的正弦值为:3故选:A【点睛】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力,解决问题的关键是在空间图形中找到异面直线所成的平面角.16.【分析】先找出线面角运用余弦定理进行求解【详解】连接交于点取中点连接则连接为异面直线与所成角在中同理可得异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角考查了空间想象能力运算30【分析】先找出线面角,运用余弦定理进行求解【详解】连接1AB 交1A B 于点D ,取11B C 中点E ,连接DE ,则1DE AC ,连接1A E1A DE ∴∠为异面直线1A B 与1AC 所成角在111RtAC B 中,111AC =,1111122C E C B == 15A E ∴=同理可得16A D =5DE =222165530cos 652A DE +-⎝⎭⎝⎭⎝⎭∠==⨯⨯, ∴异面直线1A B 与1AC 30故答案为3010【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.17.【分析】由向量垂直的坐标运算直接计算【详解】由题意∵与互相垂直∴=解得故答案为【点睛】本题考查空间向量垂直的坐标运算解题关键是掌握向量垂直的充要条件即 解析:522-或 【分析】由向量垂直的坐标运算直接计算. 【详解】 由题意2,5,1a b a b ==⋅=-,∵ka b +与2ka b -互相垂直,∴222()(2)2ka b ka b k a ka b b +⋅-=-⋅-=22250k k +-⨯=,解得522k k ==-或, 故答案为522-或. 【点睛】本题考查空间向量垂直的坐标运算,解题关键是掌握向量垂直的充要条件,即0a b a b ⊥⇔⋅=.18.【解析】试题分析:因为//所以即为异面直线与所成的角为因为是正方体所以因为所以所以当时考点:1异面直线所成的角;2线面垂直线线垂直解析:3【解析】试题分析:因为AB //CD ,所以PCD ∠即为异面直线AB 与CP 所成的角为α.因为1111ABCD A BC D -是正方体,所以11CD ADD A ⊥面,因为11DP ADDA ⊂面,所以DC DP ⊥.所以cos CD CP α=,当1CP CA =时,min 1(cos )CD CA α=== 考点:1、异面直线所成的角;2、线面垂直、线线垂直.19.【分析】建立空间直角坐标系分别求得再利用即可得到所求角大小【详解】三棱柱为直三棱柱且以点为坐标原点分别以为轴建立空间直角坐标系设则又异面直线所成的角在异面直线与所成的角等于【点睛】本题考查了异面直线 解析:60【分析】建立空间直角坐标系分别求得1=(0,1,1)BA ,1(1,0,1)AC ,再利用111111,cos BA AC BA AC BA AC 即可得到所求角大小.【详解】三棱柱111ABC A B C -为直三棱柱,且BAC 90︒∠=∴ 以点A 为坐标原点,分别以AC ,AB ,1AA 为,,x y z 轴建立空间直角坐标系设1=1AB AC AA ==,则(0,0,0)A ,(0,1,0)B ,1(0,0,1)A ,1(1,0,1)C1=(0,1,1)BA ,1(1,0,1)AC ∴1111110110111co 2,s 22BA AC BA AC BA AC 又异面直线所成的角在(0,90]∴ 异面直线1BA 与1AC 所成的角等于60︒ .【点睛】本题考查了异面直线所成角的计算,一般建立空间直角坐标系利用向量法来解决问题,属于中档题.20.①③④【分析】由题意画出图形由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心由棱锥底面积与高为定值判断③;设BE =x 列出AE+EC1关于x 的函数式结合其几何意义求出最小值判断④【详解解析:①③④ 【分析】由题意画出图形,由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设BE =x ,列出AE +EC 1关于x 的函数式,结合其几何意义求出最小值判断④. 【详解】 如图,∵直线AC 经过平面BCC 1B 1内的点C ,而直线C 1E 在平面BCC 1B 1内不过C , ∴直线AC 与直线C 1E 是异面直线,故①正确; 当E 与B 重合时,AB 1⊥A 1B ,而C 1B 1⊥A 1B , ∴A 1B ⊥平面AB 1C 1,则A 1E 垂直AC 1,故②错误;由题意知,直三棱柱ABC ﹣A 1B 1C 1的外接球的球心为O 是AC 1 与A 1C 的交点,则△AA 1O 的面积为定值,由BB 1∥平面AA 1C 1C ,∴E 到平面AA 1O 的距离为定值,∴三棱锥E ﹣AA 1O 的体积为定值,故③正确; 设BE =x ,则B 1E =2﹣x ,∴AE +EC 12211(2)x x =++-由其几何意义,即平面内动点(x ,1)与两定点(0,0),(2,0)距离和的最小值知, 其最小值为2④正确.故答案为①③④ 【点睛】本题考查命题的真假判断与应用,考查空间想象能力和思维能力,属于中档题三、解答题21.(1)详见解析;(2【分析】(1)易知GC CE ⊥,再根据平面ABCDE ⊥平面CEFG ,得到GC ⊥平面ABCDE ,进而有GC AD ⊥,再由CE AD ⊥,利用线面垂直的判定定理证明即可.(2)以C 为原点,以CD ,CA ,CG ,分别为x ,y ,z 轴建立空间直角坐标系,求得 平面BFG 的一个法向量(),,n x y z =,再由平面ABCDE 的一个法向量()0,0,1m =, 设平面BFG 与平面ABCDE 所成锐二面角为α,由cos m n m nα⋅=⋅求解.【详解】(1)因为四边形CEFG 为正方形, 所以GC CE ⊥,又因为平面ABCDE ⊥平面CEFG ,且平面ABCDE ⋂平面CEFG CE =, 所以GC ⊥平面ABCDE ,又AD ⊂平面ABCDE , 所以GC AD ⊥,又因为四边形ACDE 是正方形, 所以CE AD ⊥,又CE CG C ⋂=, 所以AD ⊥平面CEFG , 又CF ⊂平面CEFG , 所以AD CF ⊥.(2)以C 为原点,以CD ,CA ,CG ,分别为x ,y ,z 轴建立空间直角坐标系:则(()()0,0,42,4,4,42,1,2,0G F B -, 所以()(4,4,0,1,2,42GF BG ==-, 设平面BFG 的一个法向量为:(),,n x y z =,则00n GF n GF ⎧⋅=⎨⋅=⎩,即4402420x y x y z +=⎧⎪⎨-+=⎪⎩,令1x =,则321,y z =-=,则321,1,n ⎛=- ⎝⎭, 又平面ABCDE 的一个法向量为:()0,0,1m =, 设平面BFG 与平面ABCDE 所成锐二面角为α323738cos 91132m n m nα⋅===⋅++【点睛】方法点睛:1、利用向量求异面直线所成的角的方法:设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅.2、利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.3、利用向量求面面角的方法:就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 22.(1)49;(2)13. 【分析】首先以A 为原点,建立空间直角坐标系,(1)求平面BDE 的法向量m ,利用公式sin cos ,CE m θ=<>求解;(2)求平面BDF 的法向量n ,利用公式cos ,m n <> 求解.【详解】以A 为原点,,,AB AD AE 分别为,,x y z 轴的正方向,建立空间直角坐标系,()1,0,0B ,()0,1,0D ,()0,0,2E ,()1,2,0C ,81,2,7F ⎛⎫ ⎪⎝⎭(1)设平面BDE 法向量(),,m x y z =,()1,1,0BD =-,()1,0,2BE =-,则20x y x z -+=⎧⎨-+=⎩, 令1z =,则2,2x y ==,∴()2,2,1m =,()1,2,2CE =--,2424sin cos ,339CE m θ--+=<>==⨯(2)设平面BDF 法向量(),,n x y z =,()1,1,0BD =-,80,2,7BF ⎛⎫= ⎪⎝⎭,则82070y z x y ⎧+=⎪⎨⎪-+=⎩, 令4x =,则4,7y z ==-∴()4,4,7n =-,8871cos cos ,393m n θ+-=<>==⋅, 因为平面BDE 与平面BDF 夹角是锐二面角,所以二面角的余弦值是13.【点睛】关键点点睛:本题是比较典型的向量坐标法解决空间角,关键是计算准确, 23.(1)22;(2)155. 【分析】(1)连接1A B ,先证得11AC ⊥平面11ABB A ,得111AC AB ⊥,然后由已知得1AB ⊥平面11A BC ,1A B ⊂平面11A BC ,∴11AB A B ⊥,在直角梯形11AA B B 中,可求得1AA ;(2)以A 为原点,AB ,AC ,1AA 方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -,然后求得二面角11B AC C --的两个面的的法向量,由法向量的余弦值得二面角的正弦值. 【详解】解:(1)如图,连接1A B .1AA ⊥平面111A B C ,11A B ⊂平面111A B C ,则111AC A A ⊥,又1111AC A B ⊥,1111AA A B A =,∴11AC ⊥平面11ABB A ,而1AB ⊂平面11ABB A , 故111AC AB ⊥. 又11AB BC ⊥,1111AC BC C ,可得1AB ⊥平面11A BC ,1A B ⊂平面11A BC ,∴11AB A B ⊥, 故1111111112tan tan 224AA A BA A AB A BA A AB AA AA ∠=∠⇒∠=∠⇒=⇒=(2)如图,以A 为原点,AB ,AC ,1AA 方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -,则(12,0,2B ,()10,2,22C()4,0,0AB =为平面1AC C 的一个法向量.设(),,n x y z =为平面11B AC 的一个法向量,则11200020x n AB n AC y ⎧⎧+=⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩,取1z =,得()2,n =-,则cos ,n AB 〈〉== ∴15sin ,5n AB 〈〉=. 故所求二面角的正弦值为5. 【点睛】方法点睛:本题考查线面垂直的判定,考查空间向量法求二面角.求二面角的常用方法是空间向量法,即建立空间直角坐标系,求出二面角两个面的法向量,由法向量的夹角与二面角相等或互补求解. 24.(1)证明见解析;(2)35. 【分析】(1)首先证出AC BD ⊥,再证出BD OP ⊥,利用线面垂直的判定定理即可证明. (2)以O 为坐标原点,以,,OA OB OP 为,,x y z 轴,建立空间直角坐标系,求出平面PAB 的一个法向量,以及平面PBC 的一个法向量,根据1212123cos 5n n n n n n ⋅==⋅,即可求解. 【详解】(1)证明:设2AD AB PB ===,ACBD O =,连接OP ,则∵AB AD=,且60DAB ∠=,∴四边形ABCD 为菱形, ∴AC BD ⊥,且AC =2BD =,1BO =, 又∵PC PA ⊥,PC PA =,∴PCA 是等腰Rt ,∴PO AC ⊥,PCPA =,PO =,在POB 中,PO =,2PB =,1BO =,有222PB PO BO =+, ∴PO BO ⊥,即BD OP ⊥,又ACOP O =,∴BD⊥平面PAC ;(2)以O 为坐标原点,建立空间直角坐标系,如图:则(000)O ,,,0)A ,,(010)B ,,,(0)C ,,(00P ,则(33)AP =-,,,(310)AB =-,,,(03)BP =-,,,(310)BC =--,,, 设平面PAB 的法向量为1111()n x y z =,,,则1111113300030x z n AP n AB x y ⎧⎧-+=⋅=⎪⎪⇒⎨⎨⋅=⎪-+=⎪⎩⎩,令11x =,则13y 11z =,则1(131)n =,,, 设平面PBC 的法向量为2222()n x y z =,,,则222222300030y z n BP n BC x y ⎧⎧-+=⋅=⎪⎪⇒⎨⎨⋅=⎪--=⎪⎩⎩,令21x =-,则23y =、21z =,则2(31)n =-,,,∴1212123cos 5n n n n n n ⋅==⋅,, 设二面角A PB C --的平面角为θ,经观察θ为钝角,则123cos |cos |5n n θ=-<>=-,. 【点睛】 思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内; (2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错. (3)利用数量积验证垂直或求平面的法向量. (4)利用法向量求距离、线面角或二面角. 25.(1)证明见解析;(2)4π. 【分析】(1)先证明CD ⊥平面ABC ,可得CD BM ⊥,则可得BM ⊥平面ACD ,即可得出BM AD ⊥,进而AD ⊥平面BMN ,即得出AD MN ⊥可说明;(2)以B 点为原点,过B 做CD 的平行线,如图建立空间直角坐标系,利用向量法可求出. 【详解】 解:(1)AB ⊥平面BCD ,CD ⊂平面BCD ,AB CD ∴⊥,1,2AB AD ==,3BD ∴=,2,1BC CD ==,∴222BC CD BD +=,BC CD ∴⊥,AB BC B ⋂=,CD 平面ABC ,BM ⊂平面ABC ,CD BM ∴⊥,BM AC ⊥,AC CD C =,BM ∴⊥平面ACD ,AD ⊂平面ACD ,BM AD ∴⊥,BN AD ⊥,BN BM B ⋂=,AD ∴⊥平面BMN ,MN ⊂平面BMN ,AD MN ∴⊥,∴AMN 为直角三角形;(2)以B 点为原点,过B 做CD 的平行线,如图建立空间直角坐标系,则()0,0,0B ,()0,0,1A ,()2,0C ,()2,0D -,()2,0BC =,()2,1AD =--.由(1)得AD ⊥平面BMN ,∴AD 为平面BMN 的法向量, ∴2sin cos ,2AD BC AD BC AD BCθ⋅===⋅ ∴直线BC 与平面BMN 所成角大小为4π. 【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 26.(1)证明见解析;(2)14. 【分析】(1 )连接BD 交AC 于点O ,连接OE ,根据中位线定理可得//PB OE ,由线面平行的判定定理即可证明//PB 平面AEC ;(2)设菱形ABCD 的边长为a ,根据23243P ABCD P ACD E ACD V V V ---===可得2a =,以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴,建立空间直角坐标系,分别求出平面CAE 与平面DAE 的一个法向量,根据空间向量夹角余弦公式,可得结果. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 为BD 中点,E 为PD 的中点,所以//PB OE ,OE ⊂平面,ACE PB ⊄平面ACE ,所以//PB 平面AEC ;(2)设菱形ABCD 的边长为a ,23243P ABCD P ACD E ACD V V V ---===, 1233113132P ABCD ABCD V S PA a a -⨯⨯⨯=⋅==,则2a =. 取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴,建立如图所示坐标系.()0,2,0D ,()0,0,0A ,10,1,2⎛⎫ ⎪⎝⎭E ,()3,1,0C 10,1,2AE ⎛⎫= ⎪⎝⎭,()3,1,0AC =, 设平面ACE 的法向量为1(,,)n x y z =,由11,n AE n AC ⊥⊥, 得10230y z x y ⎧+=⎪⎪+=⎩,令3y =1,23x z =-=-(11,3,23n =∴--,平面ADE 的一个法向量为()21,0,0n = 1212121cos<,>41312n n n n n n ⋅===++⋅, 即二面角D AE C --的余弦值为14. 【点睛】方法点睛:二面角的求法方法一:(几何法)找→作(定义法、三垂线法、垂面法)→证(定义)→指→求(解三角形)方法二:(向量法)首先求出两个平面的法向量,m n ;再代入公式cos m nm n α⋅=±(其中,m n 分别是两个平面的法向量,α是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“ ”号)。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(包含答案解析)(4)
一、选择题1.如图,在三棱锥A BCD -中,平面ABC ⊥平面BCD ,BAC 与BCD △均为直角三角形,且90BAC BCD ∠=∠=︒,AB AC =,112CD BC ==,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得异面直线PQ 与AD 成30的角,则线段PA 长的取值范围是( )A .2⎛ ⎝⎦B .6⎛ ⎝⎦C .(0,1]D .(2 2.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC 的值为( )A .0B .22C .12-D .123.正方体ABCD —A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与CN 所成角的大小为A .0°B .45°C .60 °D .90°4.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等;②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形;④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为( )A .①③B .②④C .①②④D .①②③ 5.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12 B .22 C .13 D .16 6.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD >D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD7.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A .76 B .75 C .72 D .748.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA =,E O 分别是线段1,C C BC 的中点,1113A F A A =,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>> 9.如图,在边长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A .45B .2C .22D .310.以下命题 ①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅.其中正确的命题有( )A .0个B .1个C .2个D .3个11.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A .53B .23C .56D .5212.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.如图,正方体1111ABCD A BC D -中,E 为线段1BB 的中点,则AE 与1CD 所成角的余弦值为____.14.在空间四边形ABCD 中,连接AC 、BD ,若BCD 是正三角形,且E 为其中心,则1322AB BC DE AD +--的化简结果为________. 15.如图,在三棱锥P ABC -,ABC ∆为等边三角形,PAC ∆为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为__________.16.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,,,M E F 分别为,,PQ AB BC 的中点,则直线ME 与平面ABCD 所成角的正切值为________;异面直线EM 与AF 所成角的余弦值是________.17.直线1:(3)30l a x y ++-=与直线2:5(3)40l x a y +-+=,若的方向向量是的法向量,则实数_____.18.在z 轴上与点(4,1,7)A -和点(3,5,2)B -等距离的点C 的坐标为__________. 19.已知平行六面体中,则____. 20.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________. 三、解答题21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 是一个菱形,3ABC π∠=,2AB =,23PA =.(1)若Q 是线段PC 上的任意一点,证明:平面PAC ⊥平面QBD ;(2)求直线DB 与平面PBC 所成角θ的正弦值.22.如图,在三棱锥A BCD -中,O 、E 、F 分别为AB 、AC 、AD 的中点,DO ⊥平面ABC ,1DO =,AC BC ⊥,2AC BC =(1)求证:平面//OEF 平面BCD ;(2)求平面OEF 与平面OCD 所成锐二面角的余弦值.23.在四棱台1111ABCD A BC D -中,底面ABCD 是边长为2的菱形,1111AAA B ==,120BAD ∠=︒,1AA ⊥平面ABCD .(1)E 是棱AD 的中点,求证:1//B E 平面11CDD C ;(2)试问棱AD 上是否存在点M ,使得二面角111M A B D --的余弦值是57?若存在,求点M 的位置;若不存在,请说明理由.24.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,//BC AD ,AB BC ⊥,2PA =,1AB =,22AD BC ==,M 是PD 的中点.(1)求证://CM 平面PAB ;(2)求二面角M AC D --的余弦值.25.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,4PD =,底面ABCD 是边长为2的正方形,E ,F 分别为PB ,PC 的中点.(1)求证:平面ADE ⊥平面PCD ;(2)求直线BF 与平面ADE 所成角的正弦值.26.如图,已知正方体1111ABCD A BC D -的棱长为2,M 为1AA 的中点.(1)求证:1//A B 平面1MCD; (2)求平面1MCD 与平面11C CD 夹角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出PA 长的取值范围.【详解】如图,以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,则()()()()0,0,0,0,1,1,0,2,0,1,0,0C A B D ,设(),0,0Q q ()01q ≤≤,设()0,,AP AB λλλ==-()01λ<≤,则()(,0,0)(0,1,1)(0,,)(,1,1)PQ CQ CA AP q q λλλλ=-+=---=---, (1,1,1)AD =--,异面直线PQ 与AD 成30的角,22||3cos30||||223PQ AD PQ AD q λ⋅∴===⋅++⋅, 22182516q q λ∴+=-+,201,516[0,11]q q q ≤≤∴-+∈,即22182018211λλ⎧+≥⎨+≤⎩,解得2222λ-≤≤, 201,0λλ<≤∴<≤, 可得2||||22(0,1]PA AP λλ===∈.故选:C.【点睛】利用向量求解空间角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.A解析:A【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解.【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅ cos cos 33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=.故选A .【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.D解析:D【分析】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系,利用向量1(1,0,2)B M =--,(2,0,1)CN =-的数量积为0,即可求解.【详解】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系如图所示, 设正方体1111ABCD A BC D -的棱长为2,由图可知(1,0,0)M ,1(2,0,2)B ,(2,2,0)C ,(0,2,1)N ,所以1(1,0,2)B M =--,(2,0,1)CN =-所以1cos ,0B M CN 〈〉=所以异面直线B M '与CN 所成的角为90︒.故本题正确答案为D .【点睛】本题主要考查了异面直线所成角,属于基础题.4.D解析:D【解析】【分析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④.【详解】 如图,在正方体ABCD ﹣A 1B 1C 1D 1中,A 1H ⊥平面AB 1D 1,垂足为H ,连接A 1C ,可得A 1C ⊥AB 1,A 1C ⊥AD 1,即有A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,直线A 1H 与该正方体各棱所成角相等,均为2①正确;直线A 1H 与该正方体各面所成角相等,均为arctan 22,故②正确; 过直线A 1H 的平面截该正方体所得截面为A 1ACC 1为平行四边形,故③正确;垂直于直线A 1H 的平面与平面AB 1D 1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D .【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.5.C解析:C【分析】根据题意,以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,平面外一点到平面的距离可以用平面上任意一点与该点的连线在平面法向量上的投影表示,而法向量垂直于平面上所有向量,由AC ,1AD 即可求得平面1ACD 的法向量n ,而1D E 在n 上的投影即为点E 到面1ACD 的距离,即可求得结果【详解】以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,如图所示:则()1101A ,,,()1001D ,,,()100A ,,,()020C ,, E 为AB 的中点,则()110E ,, ()1111D E ∴=-,,,()120AC =-,,,()1101AD =-,,设平面1ACD 的法向量为()n a b c =,,,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即200a b a c -+=⎧⎨-+=⎩ 可得2a b a c=⎧⎨=⎩ 可取()212n =,, ∴点E 到面1ACD 的距离为1212133D E n d n ⋅+-=== 故选C【点睛】 本题是一道关于点到平面距离的题目,解题的关键是掌握求点到面距离的方法,建立空间直角坐标系,结合法向量求出结果,属于中档题。
北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(有答案解析)
一、选择题1.长方体1111ABCD A BC D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1AC 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形2.长方体12341234A A A A B B B B -的底面为边长为1的正方形,高为2,则集合12{|i j x x A B A B =⋅,{1,2,3,4},{1,2,3,4}}i j ∈∈中元素的个数为( )A .1B .2C .3D .43.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC的值为( ) A .0B .22C .12-D .124.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6π B .4π C .3π D .2π 5.已知正四棱柱1111ABCD A BC D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .33C .23D .136.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A .2B .2C .2±D .2±7.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45°B .135°C .45°或135°D .90°8.已知正方体1111ABCD A BC D -的棱长为1,E 为1BB 的中点,则点C 到平面11A D E 的距离为 A .55B .52C .53D .359.在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A .3λB .22C .23λ D .5510.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定11.已知A 、B 、C 是不共线的三点,O 是平面ABC 外一点,则在下列条件中,能得到点M 与A 、B 、C 一定共面的条件是( ) A .111222OM OA OB OC =++ B .OM OA OB OC =++C .1133OM OA OB OC =-+ D .2OM OA OB OC =--12.如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,若对角线1AC 的长是棱长的m 倍,则m 等于( )A .2B .3C .1D .2二、填空题13.如图,正方体1111ABCD A BC D -中,E 为线段1BB 的中点,则AE 与1CD 所成角的余弦值为____.14.空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是__________.15.已知四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则顶点D 的坐标为________.16.在四面体ABCD 中,△ABD 和△BCD 均为等边三角形,AB =2,6AC =,则二面角B ﹣AD ﹣C 的余弦值为_____. 17.已知平行六面体中,则____.18.如图,已知平面α⊥平面β,A ,B 是平面α与平面β的交线上的两个定点,DA β⊂,CB β⊂,且DA AB ⊥,CB AB ⊥,4=AD ,8BC =,6AB =,在平面α内有一个动点P ,使得APD BPC ∠=∠,则PAB △的面积的最大值是______.19.正四棱柱1111ABCD A BC D -的底面边长为2,若1AC 与底面ABCD 所成角为60°,则11AC 和底面ABCD 的距离是________20.如图,在四面体D ABC -中,5AD BD AC BC ====,6AB DC ==.若M 为线段AB 上的动点(不包含端点),则二面角D MC B --的余弦值取值范围是__________.三、解答题21.如图1,正方形ABCE ,2AB =,延长CE 到达D ,使DE CE =,M ,N 两点分别是线段,AD BE 上的动点,且AM BN =.将三角形ADE 沿AE 折起,使点D 到达1D 的位置(如图2),且1D E EC ⊥.(Ⅰ)证明://MN 平面1DCE ; (Ⅱ)在线段1AD 上确定点M 的位置,使平面MBE 与平面ABE 所成角(锐角)的余弦值为33. 22.如图,Rt ABC △中,90ABC ∠=︒,2BA BC ==,分别过A ,C 作平面ABC 的垂线1A A 和1C C ,12AA =,1CC h =,连结1AC 和1AC 交于点P .(Ⅰ)设点M 为BC 中点,若2h =,求证:直线PM 与平面1A AB 平行;(Ⅱ)设O 为AC 中点,二面角11A AC B --等于45°,求直线OP 与平面1A BP 所成角的大小.23.如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中60BAD ∠=︒,22AB AD ==,45BAE GAD ∠=∠=︒.(Ⅰ)求证:平面ADG ⊥平面BDG ; (Ⅱ)求直线BG 与平面AGFE 所成角的正弦值.24.在四棱台1111ABCD A BC D -中,底面ABCD 是边长为2的菱形,1111AAA B ==,120BAD ∠=︒,1AA ⊥平面ABCD .(1)E 是棱AD 的中点,求证:1//B E 平面11CDD C ;(2)试问棱AD 上是否存在点M ,使得二面角111M A B D --的余弦值是5719?若存在,求点M 的位置;若不存在,请说明理由.25.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)若//PB 平面AEC ,请确定点E 的位置,并说明理由.(2)设2AB AP ==,3AD =,若13PE PD =,求二面角P AC E --的正弦值.26.如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 中点.(1)PB ∥平面AEC ;(2)设PA =1,ABC ∠60︒=,三棱锥E -ACD ,求二面角D -AE -C 的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】以D 为坐标原点建立如图所示的空间直角坐标系,先利用向量找出截面与11A D 、AD 和AB 的交点,再过Q 作//QF MN 交11B C 于F ,过F 作//EF QM ,交1BB 于E ,即可判断截面形状. 【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-,()12520500Q A C PQ x ∴⋅=---=,解得18Q x =,即()18,0,10Q ,设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5N y =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--, 则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1AC 垂直的长方体截面为五边形QMNEF . 故选:B.【点睛】本题考查截面的形状的判断,解题的关键是先利用向量找出截面与11A D 、AD 和AB 的交点,即可利用平面的性质找出其它点的位置.2.C解析:C 【分析】建立空间直角坐标系,结合向量的数量积的定义,进行计算,即可求解. 【详解】由题意,因为正方体12341234A A A A B B B B -的底面为班车为1的正方形,高为2, 建立如图所示的空间直角坐标系,则12341234(1,1,0),(0,1,0),(0,0,0),(1,0,0),(1,1,2),(0,1,2),(0,0,2),(1,0,2)A A A A B B B B , 则12(1,0,2)A B =-, 与11(0,0,2)A B =相等的向量为223344A B A B A B ==,此时1211224A B A B ⋅=⨯=, 与14(0,1,2)A B =-相等的向量为23A B ,此时1214224A B A B ⋅=⨯=, 与41(0,1,2)A B =相等的向量为32A B ,此时1241224A B A B ⋅=⨯=, 与21(1,0,2)A B =相等的向量为34A B ,此时1221143A B A B ⋅=-+=, 与12(1,0,2)A B =-相等的向量为43A B ,此时1212145A B A B ⋅=+=, 体对角线向量为13(1,1,2)A B =--,此时1213145A B A B ⋅=+=, 24(1,1,2)A B =-,此时1224143A B A B ⋅=-+=,31(1,1,2)A B =,此时1231143A B A B ⋅=-+=, 42(1,1,2)A B =-,此时1242145A B A B ⋅=+=,综上集合11{|,{1,2,3,4},{1,2,3,4}}{3,4,5}i j x x A B A B i j =⋅∈∈=,集合中元素的个数为3个.故选:C .【点睛】本题主要考查了集合的元素的计算,以及向量的数量积的运算,其中解答中建立恰当的空间直角坐标系,熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.A解析:A 【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解. 【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅coscos33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=. 故选A . 【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.D解析:D 【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可. 【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -, 设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M , 据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π.本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A 【详解】试题分析:设1AB =112,5BD BC DC ∴===, 1BDC ∆面积为3211C BDC C BCD V V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴==考点:线面角6.C解析:C 【解析】分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a b a b a b⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得31cos ,23a b⨯===+, 化简得22z =,解得z = C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.7.C解析:C 【分析】先求出两个向量的夹角为,=45︒<>m n ,再转化为二面角的大小. 【详解】1cos ,1⋅<>===⨯⋅m n m n m n,即,=45︒<>m n , 所以两平面所成二面角为45°或180°-45°=135°. 答案:C 【点睛】本题考查了空间向量的夹角和二面角的求法,考查了计算能力和逻辑推理能力,属于基础题目.8.A解析:A 【解析】分析:建立空间直角坐标系,结合题意得到点的坐标,然后利用空间向量求解点面距离即可.详解:如图所示,建立空间直角坐标系,则()10,0,1A ()10,1,1D,11,0,2E ⎛⎫ ⎪⎝⎭, 据此可得:()110,1,0A D =,111,0,2A E ⎛⎫=-⎪⎝⎭, 设平面11A D E 的法向量为()111,,m x y z =,则:1110102y x z =⎧⎪⎨-=⎪⎩, 据此可得平面11A D E 的一个法向量为()1,0,2m =,而()1,1,0C ,据此有:()11,1,1AC =-,则点C 到平面11A D E 的距离为11555AC m m⋅==. 本题选择A 选项.点睛:本题主要考查空间向量的应用,点面距离的求解等知识,意在考查学生的转化能力和计算求解能力.9.D解析:D 【分析】由几何体为正方体,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,求出平面D 1EF 的法向量n ,结合向量的点到平面距离公式求得点M 到平面D 1EF 的距离,结合N 为EM 中点即可求解 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1),设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d =||225||5EM n n ⋅==,N 为EM 中点,所以N 到该5故选:D .【点睛】本题考查利用向量法求解点到平面距离,建系法与数形结合是解题关键,属于中档题10.A解析:A 【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果. 【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q , 设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--, 设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ⋅=====≤=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减, 所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°. 故选:A 【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.11.C解析:C 【分析】由共面向量定理可得:若定点M 与点A 、B 、C 一定共面,则存在实数x ,y ,使得AM xAB yAC =+,即(1)OM x y OA xOB yOC =--++,判断标准是验证OA ,OB ,OC 三个向量的系数和是否为1,若为1则说明四点M ,A ,B ,C 一定共面,由此规则即可找出正确的条件. 【详解】由题意,,A B C 三点不共线,点O 是平面ABC 外一点,对于A 由于向量的系数和是32,不是1,故此条件不能保证点M 在面ABC 上; 对于B ,等号右边三个向量的系数和为3,不满足四点共面的条件,故不能得到点M 与,,A B C 一定共面对于C ,等号右边三个向量的系数和为1,满足四点共面的条件,故能得到点M 与,,A B C 一定共面对于D ,等号右边三个向量的系数和为0,不满足四点共面的条件,故不能得到点M 与,,A B C 一定共面综上知,能得到点M 与,,A B C 一定共面的一个条件为C . 故选:C . 【点睛】本题考查平面向量的基本定理,利用向量判断四点共面的条件,解题的关键是熟练记忆四点共面的条件,利用它对四个条件进行判断得出正确答案,本题考查向量的基本概念,要熟练记忆.12.A解析:A 【分析】由题意画出结晶体的图形,利用向量加法的三角形法则求解晶体的对角线的长. 【详解】设AB a =,AD b =,1AA c =,棱长为t ,则两两夹角为60︒, 11AC AB AD A A a b c=++=+-, 22222222122232AC a b c a b c a b a c c b t t t ∴=+-=+++⋅-⋅-⋅=-=, 12AC t ∴=. 2m ∴=故选:A . 【点睛】本题考查了棱柱的结构特征,考查了向量加法三角形法则,解答的关键是掌握22||a a =,是基础题.二、填空题13.;【解析】【分析】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系利用向量法能求出AE 与CD1所成角的余弦值【详解】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系设正方体A10 【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出AE 与CD 1所成角的余弦值.【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为2,则A (2,0,0),E (2,2,1),C (0,2,0),D 1(0,0,2),AE =(0,2,1),1CD =(0,﹣2,2),设AE 与CD 1所成角为θ, 则cosθ112101055AE CD AE CD ⋅===⋅⋅, ∴AE 与CD 1所成角的余弦值为1010. 故答案为1010.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.【解析】如图所示设∴∴∴周长又∵∴周长的范围为故答案为: 解析:(8,10)【解析】 如图所示, 设DH GHk DA AC==, ∴1AH EHk DA BD==-, ∴5GH k =,4(1)EH k =-, ∴周长82k =+. 又∵01k <<, ∴周长的范围为(8,10). 故答案为:(8,10).15.【解析】由平行四边形中对角线互相平分的性质知AC 的中点即为BD 的中点AC 的中点设D(xyz)则∴x =5y =13z =-3故D(513-3)解析:(5,13,3)- 【解析】由平行四边形中对角线互相平分的性质知,AC 的中点即为BD 的中点,AC 的中点7(,4,1)2O - ,设D (x ,y ,z ), 则7251,4,12222x y z +-++==-= ∴x =5,y =13,z =-3,故D (5,13,-3).16.【分析】如图所示建立空间直角坐标系平面的法向量平面的法向量利用夹角公式计算得到答案【详解】设中点为则故故两两垂直如图所示建立空间直角坐标系平面的法向量设平面的法向量为则解得:则法向量夹角故二面角B ﹣【分析】如图所示建立空间直角坐标系,平面ABD 的法向量()11,0,0n =,平面ACD的法向量()21,n =,利用夹角公式计算得到答案.【详解】设BD 中点为O,则AO CO ==AC =,故AO CO ⊥,故,,OA OC OD 两两垂直,如图所示建立空间直角坐标系.平面ABD 的法向量()11,0,0n =,设平面ACD 的法向量为()2,,n x y z =,()(),,0,1,0A CD ,则220,0n CD n AD ⋅=⋅=,解得:()21,n =,则法向量夹角1212cos 5n n n n θ⋅===⋅. 故二面角B ﹣AD ﹣C .【点睛】本题考查了二面角,意在考查学生的空间想象能力和计算能力.17.【解析】试题分析:因为在平行六面体中所以则考点:本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构造向量将空间两点之间的距离转化为向量模的运算是解答本题的关键解析:【解析】试题分析:因为在平行六面体中,,所以,则.考点:本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.18.12【解析】解析:12【解析】314219.【解析】分析:确定A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高即可求得结论详解:∵正四棱柱ABCD﹣A1B1C1D1∴平面ABCD∥平面A1B1C1D1∵A1C1⊂平面A1B解析:26. 【解析】分析:确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高,即可求得结论. 详解:∵正四棱柱ABCD ﹣A 1B 1C 1D 1, ∴平面ABCD ∥平面A 1B 1C 1D 1, ∵A 1C 1⊂平面A 1B 1C 1D 1, ∴A 1C 1∥平面ABCD∴A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高∵正四棱柱ABCD ﹣A 1B 1C 1D 1的底面边长为2,AC 1与底面ABCD 成60°角, ∴A 1A=22tan60°=26 故答案为26.点睛:本题考查线面距离,确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高是解题的关键.如果直线和已知的平面是平行的,可以将直线和平面的距离,转化为直线上一点到平面的距离.20.【详解】以AB 的中点为原点建立如图所示的空间直角坐标系则平面的一个法向量为设平面的一个法向量为则则令所以平面的一个法向量为所以因为所以所以所以即二面角的余弦值的取值范围是点睛:本题主要考查了空间几何 解析:99(,)1616-【详解】以AB 的中点为原点,建立如图所示的空间直角坐标系,则163(0,,(0,4,0),(,0,0)(33)22D C M a a --<<,平面MBC 的一个法向量为1(0,0,1)n =, 设平面DMC 的一个法向量为2(,,)n x y z =,则963(0,,),(,4,0)22DC MC a =-=-,则22963002040n DC y z n MC ax y ⎧⎧⋅=-=⎪⎪⇒⎨⎨⋅=⎪⎩⎪-+=⎩,令4639,,63z x y a ===,所以平面DMC 的一个法向量为2463(,63,9)n a=, 所以122299cos ,166316636381144n n a a ==⨯⨯+++, 因为33a -<<,所以29<a ,所以2166316631441442569a ⨯⨯+>+=, 所以129cos ,16n n <,即二面角的余弦值的取值范围是99(,)1616-.点睛:本题主要考查了空间几何体的结构特征和二面角的计算问题,空间向量是解决空间几何问题的锐利武器,利用空间向量求解空间角的关键在于“四破”:第一、破“建系关”,构建恰当的空间直角坐标系;第二、破“求坐标关”,准确求解相关点的坐标;第三、破“求法向量关”,求出平面的法向量;第四、破“应用公式关”.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)M 是1AD 中点. 【分析】(Ⅰ)分别以1,,EA EC ED 为,,x y z 轴建立空间直角坐标系,写出各点坐标,并由122AD BE ==,AM BN =,可设1AM AD λ=,BN BE λ=,得出,M N 坐标,求出平面1D EC 的一个法向量n ,计算MN n ⋅后可证结论;(Ⅱ)在(Ⅰ)基础上,求出平面MBE 和平面ABE 的法向量,由法向量夹角的余弦值的3求得λ,得点M 位置. 【详解】(Ⅰ)由题意1,AE D E AE CE ⊥⊥,又1D E EC ⊥, 分别以1,,EA EC ED 为,,x y z 轴建立空间直角坐标系,则1(2,0,0),(2,2,0),(0,2,0),(0,0,2)A B C D ,设(,,)M x y z ,设1AM AD λ=,01)λ≤≤,而122AD BE ==AM BN =,则BN BE λ=,由1AM AD λ=得(2,,)(2,0,2)x y z λ-=-,22,0,2x y z λλ=-+==,即(22,0,2)M λλ-+,同理得(22,22,0)N λλ-+-+,所以(0,22,2)MN λλ=-+-,易知平面1D EC 的一个法向量是(1,0,0)n =,因为0MN n ⋅=,所以MN n ⊥,而MN ⊄平面1D EC ,所以//MN 平面1D EC ; (Ⅱ)由(Ⅰ)知(22,0,2)EM λλ=-+,(2,2,0)EB =, 设平面MBE 的一个法向量是(,,)m x y z =,由00m EB m EM ⎧⋅=⎨⋅=⎩得220(22)20x y x z λλ+=⎧⎨-++=⎩,取1x =,则1y =-,2212z λλλλ--==, 所以1(1,1,)m λλ-=-,又平面ABE 的一个法向量是(0,0,1)p =,则211cos ,12m p m p m pλλλ-⋅<>==-⎛⎫+ ⎪⎝⎭,由题意2113312λλλ-=-⎛⎫+ ⎪⎝⎭,解得12λ=. 所以M 是1AD 中点时,平面MBE 与平面ABE 所成角(锐角)的余弦值为33.【点睛】方法点睛:本题考查用空间向量法证明线面平行,求二面角.求二面角的方法: (1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补). 22.(Ⅰ)证明见解析;(Ⅱ)60︒. 【分析】(Ⅰ)根据线面平行的判断定理可证明//PM 面1A AB .(Ⅱ)建立如图所示的空间直角坐标系,求出平面11AAC 的法向量和平面11AC B 的法向量后利用已知二面角可得2h 的值,再求出OP 和平面1A BP 的法向量后可得线面角的正弦值,从而可求角的大小. 【详解】解:(Ⅰ)若2h =,因为1A A ⊥平面ABC ,1C C ⊥平面ABC ,故11//A A C C , 因为112AA CC ==,故P 为1AC 的中点,由中位线知:1//PM A B ,而PM ⊄面1A AB ,1A B ⊂面1AAB , //PM ∴面1A AB(Ⅱ)以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 与平面ABC 垂直的直线为z 轴建立空间直角坐标系,则)B,()10,2A,()12C h,()C ,()1BA =-,()12BC h =-.设平面11AC A 的法向量为1n ,易得()11,0,0n =, 设平面11AC B 的法向量为()2,,n x y z =,由12120,0,BA n BC n ⎧⋅=⎪⎨⋅=⎪⎩得220,0,z h z -=-=取1z =,得2n ⎫=⎪⎭,12122cos 4516n n n n ⋅∴︒===21h =. 12A PPC ∴=,122210,3333OP OA OC ⎛⎫⎛⎫∴=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭. 设平面1A PB 的法向量,即平面1A BC 的法向量为()3111,,n x y z =,又()BC =-.由13130,0,BA n BC n ⎧⋅=⎪⎨⋅=⎪⎩得1111120,0,z +-==取11x =得(3n =. 设直线OP 与平面1A BP 所成的角为α,02πα<<.则33sin 2OP n OP n α⋅===,则60α=︒.所以直线OP 与平面1A BP 所成的角为60︒.【点睛】方法点睛:.线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.23.(Ⅰ)证明见解析;(Ⅱ)217【分析】(Ⅰ)证明:AD DB ⊥,GD DB ⊥,即可证明BD ⊥平面ADG ,从而得到平面ADG ⊥平面BDG ;(Ⅱ)建立空间直角坐标系,利用向量方法求直线GB 与平面AEFG 所成角的正弦值. 【详解】(Ⅰ)证明:在BAD 中,22AB AD ==,60BAD ∠=︒.由余弦定理2222cos60BD AD AB AB AD =+-︒,3BD , 222AB AD DB =+,AD DB ∴⊥,在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD ,GD DB ∴⊥, 又ADGD D =,,AD DG ⊂平面ADGBD ∴⊥平面ADG .又因为BD ⊂平面BDG , 所以平面ADG ⊥平面BDG ;(Ⅱ)解:如图以D 为原点建立空间直角坐标系D xyz -,45BAE GAD ∠=∠=︒,22AB AD ==,(1A ∴,0,0),(0,3,0)B ,(0,3,2)E ,(0G ,0,1),(1,3,2)AE =-,(1,0,1)AG =-,(0,3,1)GB =-,设平面AEFG 的法向量(,,)n x y z =,·320·0n AE x y z n AG x z ⎧=-++=⎪⎨=-+=⎪⎩令1x =,得33y -=,1z =, ∴3(1,,1)3n =-,设直线GB 和平面AEFG 的夹角为θ,∴21sin |cos ,|||7||||GB n GB n GB n θ=<>==, 所以直线GB 与平面AEFG 所成角的正弦值为217.【点睛】本题考查了立体几何中的面面垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.24.(1)证明见解析;(2)存在,M 为AD 边上靠近A 的四等分点. 【分析】(1)先证11//B E C D ,再根据线面平行判定定理即可证明命题;(2)取BC 中点G ,根据AG ,AD ,1AA 两两互相垂直建立坐标系,设点(0,,0)M t 分别求得平面11MA B 和平面111A B D 的法向量,再由二面角公式解得t 值,从而确定M 的位置. 【详解】(1)证明:连1DC ,由1B C //AD ,得11B C E //D =,故四边形11B EDC 为平行四边形.11//B E C D =,1C D ⊂平面11CDD C ,1B E ⊂/平面11CDD C , 所以1//B E 平面11CDD C ,(2)假设M 点存在,取BC 中点G ,因为底面ABCD 是菱形,120BAD ∠=︒,所以AG BC ⊥,AG AD ⊥,又1AA ⊥面ABCD ,所以AG ,AD ,1AA 两两互相垂直.以A 为坐标原点,AG ,AD ,1AA 为正方向建立空间直角坐标系A xyz -.由2AB =,得3AG =(0,,0)M t ,其中[0,2]t ∈.1(0,0,1)A ,131,12B ⎫-⎪⎪⎝⎭,()10,,1A M t =-,1131,022A B ⎛⎫=- ⎪ ⎪⎝⎭.设()1,,n x y z =为平面11MA B 的一个法向量,则1111100n A B n MA ⎧⋅=⎪⎨⋅=⎪⎩,即3102y ty z ⎧-=⎪⎪-=⎩可取()11,3,3t n =. 易知平面111A B D 一个法向量为()20,0,1n = 由1221212357cos ,133n n n n n n t t ⋅===++‖12t =, 故M 为AD 边上靠近A 的四等分点. 【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值. 25.(1)点E 是PD 的中点,详见解析;(2)36161. 【分析】(1)点E 是PD 的中点,连接BD 交AC 与点O ,连接OE ,由中位线定理得到//OE PB ,再利用线面平行的判定定理证明.(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,分别求得平面PAC 的一个法向量()111,,m x y z =,平面ACE 的一个法向量()222,,n x y z =,设二面角P AC E --为θ,由cos m n m nθ⋅=⋅求解.【详解】(1)点E 是PD 的中点,如图所示:连接BD 交AC 与点O ,连接OE , 所以//OE PB ,又PB ⊄平面AEC ,OE ⊂平面AEC , 所以//PB 平面AEC .(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,则()()()()40,0,2,0,0,0,2,3,0,0,3,0,0,1,3P A C D E ⎛⎫ ⎪⎝⎭,所以()()42,3,0,0,0,2,0,1,3AC AP AE ⎛⎫=== ⎪⎝⎭,设平面PAC 的一个法向量为()111,,m x y z =,则00m AC m AP ⎧⋅=⎨⋅=⎩,即 11123020x y z +=⎧⎨=⎩,令 1113,2,0x y z ==-=,则()3,2,0m =- 设平面ACE 的一个法向量为()222,,n x y z =,则00n AC n AE ⎧⋅=⎨⋅=⎩,即 2221230403x y y z +=⎧⎪⎨+=⎪⎩, 令 22233,2,2x y z ==-=,则33,2,2n ⎛⎫=- ⎪⎝⎭,设二面角P AC E --为θ, 所以213cos 61m n m nθ⋅==⋅,所以 22213361sin 1cos 161θθ⎛⎫=-- ⎪ ⎪⎝⎭. 【点睛】方法点睛:1、利用向量求异面直线所成的角的方法:设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅.2、利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.3、利用向量求面面角的方法:就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.26.(1)证明见解析;(2)14. 【分析】(1 )连接BD 交AC 于点O ,连接OE ,根据中位线定理可得//PB OE ,由线面平行的判定定理即可证明//PB 平面AEC ;(2)设菱形ABCD 的边长为a ,根据23243P ABCD P ACD E ACD V V V ---===可得2a =,以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴,建立空间直角坐标系,分别求出平面CAE 与平面DAE 的一个法向量,根据空间向量夹角余弦公式,可得结果. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 为BD 中点,E 为PD 的中点,所以//PB OE ,OE ⊂平面,ACE PB ⊄平面ACE ,所以//PB 平面AEC ;(2)设菱形ABCD 的边长为a ,23243P ABCD P ACD E ACD V V V ---===, 1233113132P ABCD ABCD V S PA a a -⨯⨯⨯=⋅==,则2a =. 取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴, 以AP 方向为z 轴,建立如图所示坐标系.()0,2,0D ,()0,0,0A ,10,1,2⎛⎫ ⎪⎝⎭E ,()3,1,0C10,1,2AE ⎛⎫= ⎪⎝⎭,()3,1,0AC =,设平面ACE 的法向量为1(,,)n x y z =, 由11,n AE n AC ⊥⊥,得10230y z x y ⎧+=⎪⎪+=⎩,令3y =1,23x z =-=- (11,3,23n =∴--,平面ADE 的一个法向量为()21,0,0n =1212121cos<,>41312n n n n n n ⋅===++⋅,即二面角D AE C --的余弦值为14. 【点睛】方法点睛:二面角的求法方法一:(几何法)找→作(定义法、三垂线法、垂面法)→证(定义)→指→求(解三角形)方法二:(向量法)首先求出两个平面的法向量,m n;再代入公式cosm nm nα⋅=±(其中,m n分别是两个平面的法向量,α是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“±”号)。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(包含答案解析)(4)
一、选择题1.在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 为正方形,2AB =,E 为PB 的中点,若3cos ,3DP AE =,则PD =( )A .1B .32C .3D .22.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( ) A .12 B .13 C .512 D .712 3.若{},,a b c 是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .,2,3a b cB .,,a b b c c a +++C .,,a b c b c c +++D .2,23,39a b b c a c ++- 4.在棱长为2的正方体1111ABCD A BC D -中,,EF 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且1(02)AG λλ=<<,则点G 到平面1D EF 的距离为( )A .23B 2C 22λD 25 5.如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是( )A .30B .45C .60D .906.侧棱长都都相等的四棱锥P ABCD -中,下列结论正确的有( )个①P ABCD -为正四棱锥;②各侧棱与底面所成角都相等;③各侧面与底面夹角都相等;④四边形ABCD 可能为直角梯形( )A .1B .2C .3D .47.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( )A .2B .3C .5D .68.在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A .3λB .22C .23λD .559.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定10.如图,在边长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A .455B .2C .22D .311.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅.其中正确的命题有( )A .0个B .1个C .2个D .3个12.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为________.14.在正方体1111ABCD A B C D -中,M 、N 分别是11A B 、11A C 的中点,则异面直线BM 与AN 所成角的余弦值为______.15.已知平面α的一个法向量()2,2,1n =--,点()1,3,0A --在平面α内,则点()2,1,4P -到平面α的距离为_________.16.把地球看作是半径为R 的球,A 点位于北纬30°,东经20°,B 点位于北纬30°,东经80°,求A B 、两点间的球面距离______________.17.在正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,M 为棱11A B (含端点)上的任一点,则直线ME 与平面1D EF 所成角的正弦值的最小值为_________. 18.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为 .19.已知平面α的一个法向量为()2,1,3n =--,()3,2,1M -,()4,4,1N ,其中M α∈,N α∉,则点N 到平面α的距离为__________.20.正四棱柱1111ABCD A BC D -中,12AA AB =,则1AD 与平面11BB D 所成角的正弦值为__________.三、解答题21.如图,在底面是直角梯形的四棱锥S ABCD -中,90ABC -︒,SA ⊥平面ABCD ,22SA AB BC AD ====,E 是SC 的中点.(1)证明://DE 平面SAB ;(2)求直线CD 与平面BED 所成角的正弦值.22.在四棱台1111ABCD A BC D -中,底面ABCD 是边长为2的菱形,1111AAA B ==,120BAD ∠=︒,1AA ⊥平面ABCD .(1)E 是棱AD 的中点,求证:1//B E 平面11CDD C ;(2)试问棱AD 上是否存在点M ,使得二面角111M A B D --的余弦值是5719?若存在,求点M 的位置;若不存在,请说明理由.23.如图所示,在七面体ABCDEFG 中,底面ABCD 是边长为2的菱形,且60BAD ∠=︒,////BE CF DG ,BE ⊥底面ABCD ,2BE CF DG ===.(1)求证://AG 平面BCFE ;(2)在线段BC 上是否存在点M ,使得平面AGE 与平面MGE 所成锐二面角的余弦值为2114,若存在求出线段BM 的长;若不存在说明理由﹒ 24.如图,在三棱锥P ABE -中,AB AE ⊥,PA ⊥平面ABE ,D 是AE 的中点,C 是线段BE 上的一点,且5AC =,122AB AP AE ===.(1)求证://CD 平面PAB ;(2)求直线PE 与平面PCD 所成角的正弦.25.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 26.如图所示,在多面体ABCDE 中,//DE AB ,AC BC ⊥,平面DAC ⊥平面,ABC 24BC AC ==,2AB DE =,DA DC =,点F 为BC 的中点.(1)证明:EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60︒,求平面DCE 与平面ADC 所成的锐二面角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由已知以D 为原点建立空间直角坐标系,设(0,0,)P a ,求得,DP AE 的坐标,由数量积公式可得答案.【详解】由已知DP DA DC 、、两两垂直,所以以D 为原点,建立如图所示的坐标系, 设(0)PD a a =>,则(0,0,)P a ,(2,0,0)A ,连接BD 取中点F ,连接EF ,所以//EF PD ,EF ⊥平面ABCD , 所以(1,1,)2a E ,所以(0,0,)DP a =,(1,1,)2a AE =-, 由3cos ,3DP AE =,得2232cos ,3114a DP AE DP AE DP AE a a ⋅===⋅⋅++, 解得2a =.故选:D.【点睛】 本题考查了空间向量的数量积公式的应用,关键点是建立空间直角坐标系,由数量积公式求得a ,考查了学生的空间想象力.2.B解析:B 【分析】 根据向量共面定理求解.【详解】由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-, ∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦,∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩. 故选:B .【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.3.D解析:D【分析】根据空间向量的共面定理,一组不共面的向量构成空间的一个基底,对选项中的向量进行判断即可.【详解】对于:,2,3,:,,,:,,A a b c B a b b c c a C a b c b c c ++++++,每组都是不共面的向量,能构成空间的一个基底,对于D :2,23,3-9a b b c a c ++满足:()()3-932-23a c a b b c ⎡⎤=++⎣⎦,是共面向量,不能构成空间的一个基底, 故选D【点睛】本题主要考查了向量的相关知识,考查了空间向量共面的判断与应用问题,熟练掌握向量基底的定义以及判断条件是解题的关键,属于基础题. 4.D解析:D【分析】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系,利用向量法能求出点G 到平面1D EF 的距离 .【详解】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系,则()()()()12,,2,0,0,2,2,0,1,2,2,1G D E F λ,()()()12,0,1,0,2,0,0,,1ED EF EG λ=-==,设平面1D EF 的法向量(),,n x y z =,则12020n ED x z n EF y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,2n =, ∴点G 到平面1D EF 的距离为25EG nd n ⋅===,故选D. 【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.5.D解析:D【分析】可以建立空间直角坐标系,求出向量1A M与DN 的夹角进而求出异面直线1A M 与DN 所成角.【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设正方体1111ABCD A BC D -中棱长为2,则1(2,A 0,2),(0,M 1,0),(0,D 0,0),(0,N 2,1),1(2,AM =-1,2)-,(0,DN =2,1), 设异面直线1A M 与DN 所成角为θ, 则11cos 0A M DNA M DN θ⋅==⋅,90θ∴=.∴异面直线1A M 与DN 所成角的大小为90.故选D .【点睛】本题考查异面直线所成角的求法,考查正方体的结构特征,异面直线所成角等基础知识,是基础题.6.A解析:A【解析】分析:紧扣正四棱锥的概念,即可判定命题的真假.详解:由题意,当四棱锥P ABCD -的底面ABCD 为一个矩形时,设AC BD O ⋂=且PO ⊥底面ABCD ,此时可得PA PB PC PD ===,而四棱锥此时不是正四棱锥,所以①不正确的,同时各个侧面与底面所成的角也不相等,所以③不正确的;因为四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,而直角梯形ABCD 没有外接圆,所以底面不可能是直角梯形,所以④不正确;设四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,所以各条测量与底面ABCD 的正弦值都相等,所以②正确的, 综上,故选A.点睛:本题主要考查了正四棱锥的概念,我们把底面是正方形,且顶点在底面上的射影是底面正方形的中心的四棱锥,叫做正四棱锥,其中紧扣正棱锥的概念是解答的关键. 7.A解析:A【解析】解:由题意可知:()1,1,b a t t t -=---- , 则:()()()222211322b a t t t t -=--+-+-=+ ,即b a - 2本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.8.D解析:D【分析】由几何体为正方体,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,求出平面D 1EF 的法向量n ,结合向量的点到平面距离公式求得点M 到平面D 1EF 的距离,结合N 为EM 中点即可求解【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1),设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d =||225||55EM n n ⋅==,N 为EM 中点,所以N 到该面的距离为55 故选:D .【点睛】本题考查利用向量法求解点到平面距离,建系法与数形结合是解题关键,属于中档题 9.A解析:A【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果.【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q ,设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--,设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ ⋅24401(1)1y =++⨯+-+ 2223y y =-+22232y y y =-+23221y y =-+211223()33y =-+ 223≤3=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减, 所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°.故选:A【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.10.D解析:D【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P x y ,根据110B P D E ⋅=得出x 、y 满足的关系式,并求出y 的取值范围,利用二次函数的基本性质求得1B P 的最大值.【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,2,2B 、()10,0,2D 、()1,2,0E ,设点()(),,002,02P x y x y ≤≤≤≤,()11,2,2D E =-,()12,2,2B P x y =---,11D E B P ⊥,()112224220B P D E x y x y ∴⋅=-+-+=+-=,得22x y =-, 由0202x y ≤≤⎧⎨≤≤⎩,得022202y y ≤-≤⎧⎨≤≤⎩,得01y ≤≤, ()()2221224548B P x y y y ∴=-+-+=-+01y ≤≤,当1y =时,1B P 取得最大值3.故选:D.【点睛】本题考查立体几何中线段长度最值的计算,涉及利用空间向量法处理向量垂直问题,考查计算能力,属于中等题.11.B解析:B【分析】①||||||a b a b -=+共线,反之不成立,即可判断出结论;②利用基底的定义即可判断出真假;③|()||||||||cos ,|a b c a b c a b =<>,即可判断出真假.【详解】①||||||a b a b a -=+⇒,b 共线,反之不成立,||||||a b a b -=+是a ,b 共线的充分不必要条件,因此不正确;②若{a ,b ,}c 是空间的一组基底,假设,,a b b c c a +++共面,则存在唯一一组实数,x y ,使=()()a b x b c y c a ++++成立,即()a b xb x y c ya +=+++,所以1,1,0x y x y ==+=,显然无解,假设不成立,即,,a b b c c a +++不共面,则{a b +,b c +,}c a +是空间的另一组基底,正确;③|()|||||||cos ,a b c a b c a b =<>,而cos ,a b <>不一定等于1,因此不正确.其中正确的命题有一个.故选:B .【点睛】本题考查了向量共线、共面定理、数量积运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.12.B解析:B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值.【详解】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=, 22225||(3)6916BP x z x x ∴=-+=-+ 225488191625255x ⎛⎫=-+ ⎪⎝⎭, ||5tan ||3AB BP θ∴=, tan θ∴的最大值为53. 故选:B .【点睛】本题主要考查的是线面所成角,解题的关键是找到线面所成角的平面角,是中档题.二、填空题13.【分析】画出题目描述的图形判断直线mn 的所成的角通过解三角形即可【详解】如图:α‖平面CB1D1α∩平面ABCD=mα∩平面ABA1B1=n 可知:m//CD1m//B1D1因为△CB1D1是正三角形解析:32【分析】 画出题目描述的图形,判断直线m 、n 的所成的角,通过解三角形即可.【详解】如图:α‖平面CB 1D 1, α∩平面ABCD=m, α∩平面ABA 1B 1=n,可知:m//CD 1,m//B 1D 1,因为△CB 1D 1是正三角形.所以m 、n 所成角就是∠CD 1B 1=60°则m 、m 所成角的正弦值为:3故选:A【点睛】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力,解决问题的关键是在空间图形中找到异面直线所成的平面角.14.【解析】【分析】由题意设正方体的棱长为2建立如图所示空间直角坐标系利用空间向量求解即可得到答案【详解】设正方体的棱长为2建立如图所示空间直角坐标系则0211异面直线BM 与AN 所成角的余弦值为故答案为 解析:3010 【解析】 【分析】 由题意,设正方体的棱长为2,建立如图所示空间直角坐标系,利用空间向量求解,即可得到答案.【详解】设正方体的棱长为2,建立如图所示空间直角坐标系,则A(2,0,0),B(2,2,0),M(2,1,2),N(1,1,2),()BM 0,1,2∴=-,()AN 1,1,2=-,BM AN330cos BM,AN 1056BM AN ⋅∴===⨯⋅. ∴异面直线BM 与AN 所成角的余弦值为3010. 故答案为3010.【点睛】本题主要考查了空间向量在立体几何中的应用,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.15.【分析】由题意算出根据向量是平面的一个法向量算出向量在上的投影的绝对值即可得到到的距离【详解】解:根据题意可得又平面的一个法向量点A 在内到的距离等于向量在上的投影的绝对值即故答案为:【点睛】本题给出解析:23【分析】由题意算出()1,4,4AP =-,根据向量()2,2,1n =--是平面α的一个法向量,算出向量AP 在n 上的投影的绝对值,即可得到P 到α的距离.【详解】解:根据题意,可得()()1,3,0,1,4,2A P ---,()1,4,4AP =-, 又平面α的一个法向量()2,2,1n =--,点A 在α内,()2,1,4P ∴-到α的距离等于向量AP 在n 上的投影的绝对值,()()1242412P n A -⨯-+⨯-∴⨯=-=+ 即(232AP nd n===- 故答案为:23 【点睛】本题给出平面的法向量和平面上的一点,求平面外一点到平面的距离;着重考查了向量的数量积公式和点到平面的距离计算等知识,属于中档题.16.【分析】设球心为北纬纬线圈所在圆的圆心为半径为且是等边三角形即中由余弦定理得的值利用弧长公式求得两点间的球面距离【详解】设球心为北纬纬线圈所在圆的圆心为半径为则根据点位于北纬30°东经20°点位于北解析:5arccos 8R 【分析】设球心为O ,北纬30纬线圈所在圆的圆心为1O ,半径为r ,r =,且ABC 是等边三角形,即AB =,AOB 中,由余弦定理得AOB ∠的值,利用弧长公式求得,A B 两点间的球面距离. 【详解】设球心为O ,北纬30纬线圈所在圆的圆心为1O ,半径为r ,130OAO ∠=, 则3cos302r R ==,根据A 点位于北纬30°,东经20°,B 点位于北纬30°,东经80°,可得160AO B ∠=, 1AO B ∴是等边三角形,即32AB r R ==, ABC 中,由余弦定理可得2222232cos 4AB R R R R AOB ==+-⋅∠,求得5cos 8AOB ∠= ,5arccos 8AOB ∴∠=, ,A B ∴两点间的球面距离5arccos 8AB R AOB R =⋅∠=⋅.故答案为:5arccos8R ⋅ 【点睛】 本题主要考查球面距离的求法,利用余弦定理解三角形,意在考查数形结合分析问题和解决问题的能力,属于中档题型.17.【分析】建立直角坐标系设正方体边长为2求出平面的法向量为直线与平面所成角为因为所以当时取到最小值代入即可【详解】解:如图建立直角坐标系设正方体边长为2则002设平面的法向量为由得令故0由设直线与平面解析:25【分析】建立直角坐标系,设正方体边长为2,求出平面DEF 的法向量为m ,直线ME 与平面1D EF 所成角为α,2sin cos ,15m EM a α==+⋅,因为[0a ∈,2],所以当2a =时,取到最小值,代入即可.【详解】 解:如图,建立直角坐标系,设正方体边长为2,AM a =,则(2E ,0,1),(2M ,a ,2),(0D ,0,2),(2F ,2,1),设平面DEF 的法向量为(m x =,y ,)z ,1(0,2,0),(2,0,1)EF ED ==-,由0m EF ⋅=,10m D E ⋅=,得020y x z =⎧⎨-+=⎩,令2z =,1x =,故(1m =,0,2),由(0,,1)EM a =,设直线ME 与平面1D EF 所成角为α, 22sin cos ,15m EM a α==+⋅, 因为[0a ∈,2],所以当2a =时, sin α的最小值为22555=⋅, 故答案为:25.【点睛】考查立体几何中的最值问题,本题利用向量法求线面所成的角,基础题.18.【详解】以D 为原点DADCDD1所在直线分别为x 轴y 轴z 轴建立空间直角坐标系如图所示则A(100)B(110)D1(001)C1(011)O(1)=(010)=(-101)设平面ABC1D1的法向量解析:【详解】以D 为原点,DA,DC,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系如图所示,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O (12,12,1),=(0,1,0),=(-1,0,1),设平面ABC 1D 1的法向量n =(x,y,z),由1·AB y 0{·AD x z 0n n ===-+=,,得令x =1,得n =(1,0,1). 又=(-12,12-,0), ∴O 到平面ABC 1D 1的距离d=1·n OD n ==.19.【分析】根据点面距离公式再由向量的坐标运算得到结果即可【详解】平面的法向量为故所求距离故答案为【点睛】这个题目考查了点面距离的求法方法一可以同这个题目一样建系解决;方法二可以通过等体积法得到点面距离 解析:147【分析】根据点面距离公式,再由向量的坐标运算得到结果即可. 【详解】 ()1,2,2MN =,平面α的法向量为()2,1,3n =--, 故所求距离·214714MN nd n ===. 故答案为147. 【点睛】 这个题目考查了点面距离的求法,方法一可以同这个题目一样建系解决;方法二可以通过等体积法得到点面距离;方法三,如果题中条件有面面垂直的条件,可由点做面的垂线,垂足落在交线上.20.【解析】分析:建立空间直角坐标系求出平面的法向量利用向量法即可求AD1与面BB1D1D 所成角的正弦值详解:以D 为原点DADCDD1分别为x 轴y 轴z 轴建立如图所示空间直角坐标系D ﹣xyz 设AB=1则D解析:1010【解析】分析:建立空间直角坐标系,求出平面的法向量,利用向量法即可求AD 1与面BB 1D 1D 所成角的正弦值.详解:以D 为原点,DA ,DC ,DD 1分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系D ﹣xyz .设AB=1,则D (0,0,0),A (1,0,0), B (1,1,0),C (0,1,0),D 1(0,0,2), A 1(1,0,2),B 1(1,1,2),C 1(0,1,2).设AD 1与面BB 1D 1D 所成角的大小为θ,1AD =(﹣1,0,2),设平面BB 1D 1D 的法向量为n =(x ,y ,z ),DB =(1,1,0),1DD =(0,0,2), 则x+y=0,z=0.令x=1,则y=﹣1,所以n =(1,﹣1,0), sinθ=|cos <1AD ,n >10, 所以AD 1与平面BB 1D 1D 10. 故答案为1010. 点睛:这个题目考查了空间中的直线和平面的位置关系.求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.三、解答题21.(1)证明见解析;(2230. 【分析】(1)取BS 中点F ,连接AF ,EF ,易得四边形ADEF 为平行四边形,则//DE AF ,再利用线面平行的判定定理证明;(2)以A 为坐标原点,AD 为x 轴,AB 为y 轴,AS 为z 轴建立空间直角坐标系,求得向量CD 的坐标和平面BDE 的一个法向量(),,n x y z =,由sin cos ,||||n CD n CD n CD θ⋅==求解.【详解】 (1)如图所示:取BS 中点,设为F ,连接AF ,EF , 因为2,//BC AD AD BC =, 所以//,AD EF AD EF =, 所以四边形ADEF 为平行四边形, 所以//DE AF ,又DE ⊄平面SAB ,AF ⊂平面SAB , 所以//DE 平面SAB ;(2)以A 为坐标原点,AD 为x 轴,AB 为y 轴,AS 为z 轴建立如图所示的空间直角坐标系,则()0,2,0B ,()2,2,0C ,()1,0,0D ,()1,1,1E , 从而()1,2,0CD =--,()1,2,0BD =-,()0,1,1DE =, 设平面BDE 的一个法向量为(),,n x y z =,则00BD n DE n ⎧⋅=⎨⋅=⎩,即200x y y z -=⎧⎨+=⎩,令1y =,则21x z =⎧⎨=-⎩,所以平面BDE 的一个法向量为(2,1,1)n =-,设直线CD 与平面BED 所成角为θ, 所以22230sin cos ,15||||56n CD n CD n CD θ⋅--====⋅.所以直线CD 与平面BED 所成角的正弦值是23015. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 22.(1)证明见解析;(2)存在,M 为AD 边上靠近A 的四等分点. 【分析】(1)先证11//B E C D ,再根据线面平行判定定理即可证明命题;(2)取BC 中点G ,根据AG ,AD ,1AA 两两互相垂直建立坐标系,设点(0,,0)M t 分别求得平面11MA B 和平面111A B D 的法向量,再由二面角公式解得t 值,从而确定M 的位置. 【详解】(1)证明:连1DC ,由1B C //AD ,得11B C E //D =, 故四边形11B EDC 为平行四边形.11//B E C D =,1C D ⊂平面11CDD C ,1B E ⊂/平面11CDD C , 所以1//B E 平面11CDD C ,(2)假设M 点存在,取BC 中点G ,因为底面ABCD 是菱形,120BAD ∠=︒,所以AG BC ⊥,AG AD ⊥,又1AA ⊥面ABCD ,所以AG ,AD ,1AA 两两互相垂直.以A 为坐标原点,AG ,AD ,1AA 为正方向建立空间直角坐标系A xyz -.由2AB =,得3AG =(0,,0)M t ,其中[0,2]t ∈.1(0,0,1)A,11,12B ⎫-⎪⎪⎝⎭,()10,,1A M t =-,1131,022A B ⎛⎫=- ⎪ ⎪⎝⎭.设()1,,n x y z =为平面11MA B 的一个法向量,则1111100n A B nMA ⎧⋅=⎪⎨⋅=⎪⎩,即102y ty z-=⎪-=⎩可取()11,3,n =. 易知平面111A B D 一个法向量为()20,0,1n =由121212cos ,1n n n n n n ⋅===+‖12t =, 故M 为AD 边上靠近A 的四等分点. 【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值. 23.(1)证明见解析;(2)存在,43BM =. 【分析】(1)根据//DG CF 和ABCD 是菱形得到//AD BC ,利用面面平行的判定定理证明. (2)取BC 中点为H ,则DA ,DH ,DG 三线两两垂直,以D 为坐标原点,以DA ,DH ,DG 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,假设存在M 满足条件,设(01)BM BC λλ=≤≤,分别求得平面AGE 的一个法向量()1111,,x n y z =和平面MGE 的一个法向量()2222,,n x y z =,利用12121221cos 14n n n n n n ⋅⋅==求解. 【详解】(1)∵//DG CF ,CF ⊂面BCFE 且DG ⊄面BCFE ∴//DG 面BCFE又∵//AD BC ,BC ⊂面BCFE 且AD ⊄面BCFE ∴//AD 面BCFE∵AD ⊂面ADG ,DG ⊂面ADG ,且AD DG D =∴面//ADG 面BCFE∵AG ⊂面ADG , ∴//AG 面BCFE .(2)取BC 中点为H ,则DA ,DH ,DG 三线两两垂直以D 为坐标原点,以DA ,DH ,DG 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D xyz -,假设存在M 满足条件,则(01)BM BC λλ=≤≤,由题得:()2,0,0A ,()3,0B ,()3,0C -,()3,2E ,()0,0,2G , ∵BM BC λ=,∴点M 坐标为:()123,0λ-,∴(2,0,2)AG =-,()3,2AE =-,()21,3,2MG λ=--,()2,0,2ME λ=, 设平面AGE 的一个法向量为:()1111,,x n y z =, 平面MGE 的一个法向量为:()2222,,n x y z =,则1111111220320n AG x z n AE x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩,令13x 11y =-,13z , ∴1(3,13)n =-,同理可得231,n λ⎛⎫=- ⎪ ⎪⎝⎭,由题意得:1212212433213cos 14473n n n n n n λλ-⋅⋅===⋅+,解得:23λ=或269λ=(舍), ∴43BM =. 【点睛】方法点睛:证明两个平面平行的方法有:(1)用定义,此类题目常用反证法来完成证明;(2)用判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)根据“垂直于同一条直线的两个平面平行”这一性质进行证明;(4)借助“传递性”来完成:两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化. 24.(1)证明见解析;(2)1010. 【分析】(1)利用直角三角形求出BE ,由12AC BE =可知C 是BE 的中点,由中位线求出CDAB ,即可求证结论;(2)建立空间直角坐标系,利用向量法求线面角的正弦. 【详解】 (1)因为122AE =,所以4AE =,又2AB =,AB AE ⊥, 所以22222425BE AB AE =+=+=,又因为152AC BE ==, 所以AC 是Rt ABE △的斜边BE 上的中线, 所以C 是BE 的中点,又因为D 是AE 的中点 所以CD 是ABE △的中位线,所以//CD AB , 又因为CD ⊄平面PAB ,AB 平面PAB ,所以//CD 平面PAB .(2)据题设知,AB ,AE ,AP 两两互相垂直,以A 为原点,AB ,AE ,AP 分别为x ,y ,z 轴建立如图所示的空间直角坐标系,因为122AB AP AE ===,且C ,D 分别是BE ,AE 的中点, 所以4AE =,2AD =,所以()040E ,,,()120C ,,,()002P ,,,()020D ,,, 所以()042PE =-,,,()122PC =-,,,()100CD =-,,, 设平面PCD 的一个法向量为()n x y z →=''',,,则0n CD n PC ⎧⋅=⎪⎨⋅=⎪⎩,即0220x x y z ''''-=⎧⎨+-=⎩,所以0x z y =⎧⎨='''⎩,令1y '=,则()011n →=,,, 设直线PE 与平面PCD 所成角的大小为θ,则10sin 10PE nPE nθ→→⋅==⋅ 故直线PE 与平面PCD 所成角的正弦值为1010. 【点睛】方法点睛:向量法求线面角的方法就是求出平面的法向量,然后通过斜线向量与平面的法向量的夹角的余弦的绝对值得到线面角的正弦大小,属于中档题. 25.(1)31010;(2)23. 【分析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系. (1)写出1A B 、1C D 的坐标,计算出11cos ,A B C D <>的值,即可得出异面直线1A B 与1C D 所成角的余弦值;(2)计算出1ADC 的一个法向量的坐标,可知平面1ABA 的一个法向量为()0,1,0n =,利用空间向量法可求得平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 【详解】在直三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且AB AC ⊥,以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系. 如下图所示:则由题意知()0,0,0A 、()2,0,0B 、()0,2,0C 、()10,0,4A 、()12,0,4B、()10,2,4C 、()1,1,0D .(1)()12,0,4A B =-,()11,1,4C D =--,111111cos ,2A BC D A B C D A B C D⋅<>===⋅ 所以,异面直线1A B 与1C D (2)易知平面1ABA 的一个法向量为()0,1,0n =,设平面1ADC 的法向量为(),,m x y z =,()1,1,0AD =,()10,2,4AC =,由100m AD m AC ⎧⋅=⎪⎨⋅=⎪⎩,可得0240x y y z +=⎧⎨+=⎩,令2y =-,则2x =,1z =, 所以,平面1ADC 的一个法向量为()2,2,1m =-,22cos ,33m n m n m n⋅-<>===-⋅, 因此,平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值为23. 【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果. 26.(1)证明见解析;(2. 【分析】(1)取AC 的中点O ,连接DO ,OF ,由题中条件,推导出DO ⊥平面ABC ,//EF DO ,由此能证明EF ⊥平面ABC ;(2)以O 为原点,OA 为x 轴,过点O 与CB 平行的直线为y 轴,OD 为z 轴,建立空间直角坐标系,利用向量法能求出平面DCE 与平面ADC 所成的角(锐角)的余弦值,即可得出正弦值. 【详解】(1)证明:取AC 的中点O ,连接DO ,OF ,∵在DAC △中,DA DC =,∴DO AC ⊥,∴由平面DAC ⊥平面ABC ,且交线为AC ,得DO ⊥平面ABC , ∵O ,F 分别为AC ,BC 的中点,∴//OF AB ,且2AB OF =, 又//DE AB ,2AB DE =,所以OF DE =, ∴四边形DEFO 为平行四边形,∴//EF DO , ∴EF ⊥平面ABC ;(2)∵DO ⊥平面ABC ,AC BC ⊥,平面DAC ⊥平面ABC , 所以BC ⊥平面ADC ;∴以O 为原点,OA 为x 轴,过点O 与CB 平行的直线为y 轴,OD 为z 轴,建立如图所示的空间直角坐标系,因为24BC AC ==,2AB DE =,DA DC =,点F 为BC 的中点, 则()1,0,0A ,()1,0,0C -,()1,4,0B -,∵EF ⊥平面ABC ,∴直线BE 与平面ABC 所成角为60EBF ∠=︒, ∴tan6023DO EF BF ==︒=,∴(0,0,23D ,(1,2,23E -, 取平面ADC 的一个法向量()0,1,0m =, 设平面DCE 的一个法向量(),,n x y z =, 因为(1,0,23CD =,(0,2,23CE =,则020n CD x n CE y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1z =,得()23,n =-, ∴(()234n =-+-+=,1m =,3m n ⋅=-∴3cos ,14m n m n m n⋅-<>===⨯⋅ 即因此平面DCE 与平面ADC 所成的锐二面角为θ,则3cos cos ,4m n θ==,所以sin 4θ== ∴平面DCE 与平面ADC 【点睛】 方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可.。
最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(包含答案解析)
一、选择题1.已知向量(2,0,2)a =-,则下列向量中与a 成45的夹角的是( ) A .(0,0,2)B .(2,0,0)C .()0,2,2D .()2,2,0-2.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A .2B .1C .2D .33.如图,在长方形ABCD 中,3AB =,1BC =,点E 为线段DC 上一动点,现将ADE ∆沿AE 折起,使点D 在面ABC 内的射影K 在直线AE 上,当点E 从D 运动到C ,则点K 所形成轨迹的长度为( )A .32B .233C .3πD .2π 4.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A 3B 2C .1D 32-5.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22 C .13D .166.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 7.四棱锥P ABCD -中,(2,1,3),(2,1,0),(3,1,4)AB AD AP =-=-=-,则这个四棱锥的高为( )A .55B .15 C .25D .2558.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35+C .45+D .422+9.在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A .3λB .22C .23λ D .5510.如图,在棱长为2的正方体1111ABCD A BC D -中,点E F 、分别是棱AB 、BC 的中点,则点1C 到平面1B EF 的距离等于( )A .23B 22C 23D .4311.已知平行六面体1111ABCD A BC D -中,11114AE AC =,若1BE xAB yAD zAA =++,则x 的值为( )A .14B .34-C .1D .1212.已知A 、B 、C 是不共线的三点,O 是平面ABC 外一点,则在下列条件中,能得到点M 与A 、B 、C 一定共面的条件是( ) A .111222OM OA OB OC =++ B .OM OA OB OC =++ C .1133OM OA OB OC =-+ D .2OM OA OB OC =--二、填空题13.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H.且D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.14.若非零向量,αβ满足αβαβ+=-,则α与β所成角的大小为___. 15.在平面直角坐标系中,点(1,0,2)A 到点(3,4,0)B -之间的距离为__________. 16.如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点,E F ,且 22EF =,现有如下四个结论: ①AC BE ⊥;②//EF 平面ABCD ;③三棱锥A BEF -的体积为定值; ④异面直线,AE BF 所成的角为定值. 其中正确结论的序号是______.17.在棱长为1的正方体1111ABCD A BC D -中,E 为1AB 的中点,在面ABCD 中取一点F ,使1EF FC +最小,则最小值为__________.18.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.19.如图,已知平面α⊥平面β,A ,B 是平面α与平面β的交线上的两个定点,DA β⊂,CB β⊂,且DA AB ⊥,CB AB ⊥,4=AD ,8BC =,6AB =,在平面α内有一个动点P ,使得APD BPC ∠=∠,则PAB △的面积的最大值是______.20.已知60︒ 的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知1AB = ,2AC = ,3BD = ,则线段CD 的长为__________.三、解答题21.如图,在多面体ABCDEF 中,等腰梯形ABCD 所在平面垂直于正方形CDEF 所在平面,1,2DA AB BC CD ====.(Ⅰ)求证:AC ⊥平面ADE ;(Ⅱ)求BF 与平面ADE 所成角的正弦值.22.如图,多面体PABCDE 的底面ABCD 是菱形,PA ⊥底面ABCD ,//PA DE ,且2PA AD DE ==.(1)证明:平面PAC ⊥平面PCE ;(2)若直线PC 与平面ABCD 所成的角为45︒,求二面角P CE D --的余弦值. 23.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)若//PB 平面AEC ,请确定点E 的位置,并说明理由.(2)设2AB AP ==,3AD =,若13PE PD =,求二面角P AC E --的正弦值.24.如图,已知四棱锥P ABCD -的底面是菱形,对角线AC ,BD 交于点O ,4OA =,3OB =,4OP =,OP ⊥底面ABCD ,设点M 是PC 的中点.(1)直线PB 与平面BDM 所成角的正弦值.(2)点A 到平面BDM 的距离.25.如图,三棱台111ABC A B C -中,,30AB BC ACB ︒⊥∠=,侧面11ACC A 为等腰梯形,11112224AC AA AC C C ====,13A B =.(1)求证:1AC A B ⊥.(2)求直线1BC 与平面11ACC A所成角的正弦值. 26.如图,在ABC 中,90B ∠=︒,2AB =,1BC =,D ,E 两点分别是边AB ,AC 的中点,现将ABC 沿DE 折成直面角A DE B --.(1)求证:平面ADC ⊥平面ABE ; (2)求直线AD 与平面ABE 所成角的正切值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据空间向量数量积的坐标公式,即可得到答案 【详解】根据夹角余弦值cos a b a b θ⋅=对于A 若()b 0,0,2,=则-222==-222a b a b⋅⨯2cos 452︒=,故不符合条件对于B 若()b 20,0,=,则22==222a b a b⋅⨯cos 452︒=,故符合条件对于C 若(b 0,2,=,则-21==-cos 45222a b a b ⋅≠︒⨯,故不符合条件 对于D 若()b 2-=,则21==cos 45222a b a b⋅≠︒⨯,故不符合条件 故选B 【点睛】本题考查了向量的数量积,运用公式代入进行求解,较为简单2.A解析:A 【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果. 【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=,11AC AB BC CC ∴=++, ()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=,∴线段1AC 的长为12AC = A.【点睛】本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.3.C解析:C 【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是12, 如图当E 与C 重合时,4=12,取O 为AD′的中点,得到△OAK 是正三角形.故∠K0A=3π,∴∠K0D'=23π, 其所对的弧长为1223π⨯=3π, 故选:C 【点睛】本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点K 的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变,属于中档题目.4.D解析:D 【分析】由DB ED FE BF =++,利用数量积运算性质展开即可得到答案 【详解】BD ED FE BF =++,22222221112BD BF FE ED BF FE FE ED BF ED ∴=+++++=++故32BD =-【点睛】本题是要求空间两点之间的距离,运用空间向量将其表示,然后计算得到结果,较为基础.5.C解析:C 【分析】根据题意,以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,平面外一点到平面的距离可以用平面上任意一点与该点的连线在平面法向量上的投影表示,而法向量垂直于平面上所有向量,由AC ,1AD 即可求得平面1ACD 的法向量n ,而1D E 在n 上的投影即为点E 到面1ACD 的距离,即可求得结果【详解】以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,如图所示:则()1101A ,,,()1001D ,,,()100A ,,,()020C ,, E 为AB 的中点,则()110E ,, ()1111D E ∴=-,,,()120AC =-,,,()1101AD =-,,设平面1ACD 的法向量为()n a b c =,,,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即200a b a c -+=⎧⎨-+=⎩ 可得2a ba c =⎧⎨=⎩可取()212n =,, ∴点E 到面1ACD 的距离为1212133D E n d n⋅+-=== 故选C本题是一道关于点到平面距离的题目,解题的关键是掌握求点到面距离的方法,建立空间直角坐标系,结合法向量求出结果,属于中档题。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(有答案解析)(3)
一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( )A .12B .13C .512D .7122.定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件: (1)a a b ⊥⨯,b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);(2)a b ⨯的模sin ,a b a b a b ⨯=⋅(,a b 表示向量a 、b 的夹角); 如图,在正方体1111ABCD A BC D -,有以下四个结论:①1AB AC ⨯与1BD 方向相反; ②AB AC BC AB ⨯=⨯;③6BC AC ⨯与正方体表面积的数值相等; ④()1AB AB CB ⨯⋅与正方体体积的数值相等. 这四个结论中,正确的结论有( )个 A .4B .3C .2D .13.如图,在几何体111ABC A B C -中,ABC ∆为正三角形,111////AA BB CC ,1AA ⊥平面ABC ,若E 是棱11B C 的中点,且1112AB AA CC BB ===,则异面直线1A E 与1AC 所成角的余弦值为( )A .1313B .21313C .2613D .226134.在边长为2的菱形ABCD 中,23BD =,将菱形ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( ) A .43π B .πC .23π D .2π 5.已知长方体1111ABCD A BC D -的底面AC 为正方形,1AA a =,AB b =,且a b >,侧棱1CC 上一点E 满足13CC CE =,设异面直线1A B 与1AD ,1A B 与11D B ,AE 与11D B 的所成角分别为α,β,γ,则 A .αβγ<<B .γβα<<C .βαγ<<D .αγβ<<6.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A 2B .1C .2D 37.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A 2B .2C .2±D .2±8.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( ) A 2B 3C 5D 69.记动点P 是棱长为1的正方体1111-ABCD A BC D 的对角线1BD 上一点,记11D PD Bλ=.当APC ∠为钝角时,则λ的取值范围为( ) A .(0,1)B .1(,1)3C .1(0,)3D .(1,3)10.如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大11.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A .53B .23C .56D .5212.已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为平面BCC 1B 1的中心,则直线DE 与平面ACD 1所成角的余弦值为( ) A .14B .13C .33D .233二、填空题13.在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.14.在正方体1111ABCD A B C D -中,M 、N 分别是11A B 、11A C 的中点,则异面直线BM 与AN 所成角的余弦值为______.15.正四棱锥S ABCD -的八条棱长都相等,SB 的中点是E ,则异面直线AE ,SD 所成角的余弦为__________.16.在正方体1111ABCD A BC D -中,M 为棱11A B 的中点,则异面直线AM 与1BC 所成的角的大小为________(结果用反三角函数值表示).17.已知向量,,a b c 是空间的一个单位正交基底,向量,,a b a b c +-是空间的另一个基底.若向量m 在基底,,a b c 下的坐标为()1,2,3,则m 在基底,,a b a b c +-下的坐标为 _________18.已知平行六面体中,则____.19.在棱长为2的正方体△ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1、CD 的中点,则点B 到截面AMC 1N 的距离为_____.20.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______.三、解答题21.如图,在棱长为2的正方体1111ABCD A BC D -中,E 、F 、M 、N 分别是棱AB 、AD 、11A B 、11A D 的中点,点P 、Q 分别在棱1DD 、1BB 上移动,且()02DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.22.如图,四棱锥P ABCD -的底面为直角梯形,且AB AD ⊥,BC //AD ,BC AB =112AD ==,10PA PD ==,平面PAD ⊥平面ABCD ,点M 为棱PD 上动点.(1)当M 为PD 的中点时,平面PAB ⋂平面PCD =l ,求证:l //平面ACM ; (2)是否存在点M 使二面角M AC D --的余弦值为2211,若存在,请确定M 的位置;若不存在,请说明理由.23.如图,在四棱锥E ABCD -中,平面ADE ⊥平面ABCD O M ,,分别为线段AD DE ,的中点.四边形BCDO 是边长为1的正方形,,AE DE AE DE =⊥.(Ⅰ)求证://CM 平面ABE ;(Ⅱ)求直线DE 与平面ABE 所成角的正弦值;(Ⅲ)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.24.将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE =.(1)求直线DE 与直线AC 所成的角; (2)求二面角B ED C --的余弦值.25.已知三棱锥,A BCD ABD -和BCD △是边长为2的等边三角形,平面ABD ⊥平面BCD(1)求证:AC BD ⊥;(2)设G 为BD 中点,H 为ACD △内的动点(含边界),且//GH 平面ABC ,求直线GH 与平面ACD 所成角的正弦值的取值范围.26.如图,四棱锥中P ABCD -中,底面ABCD 是直角梯形,//AB CD ,60DAB ∠=︒,2AB AD CD ==,侧面PAD ⊥底面ABCD ,且PAD △为等腰直角三角形,90APD ∠=︒.(Ⅰ)求证:AD PB ⊥;(Ⅱ)求平面PAD 与平面PBC 所成锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据向量共面定理求解. 【详解】由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-,∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦,∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩.故选:B . 【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=. 2.D解析:D 【分析】根据外积的定义逐项判断即可得到结果. 【详解】对于①,根据向量外积的第一个性质可知1AB AC ⨯与1BD 方向相同,故①错误; 对于②,根据向量外积的第一个性质可知AB AC ⨯与BC AB ⨯方向相反,不会相等,故②错误;对于③,根据向量外积的第二个性质可知sin4ABCDBC AC BC AC Sπ⨯=⋅⋅=,则6BC AC ⨯与正方体表面积的数值相等,故③正确;对于④,1AB AB ⨯与CB 的方向相反,则()10AB AB CB ⨯⋅<,故④错误. 故选:D. 【点睛】本题考查正方体的性质和信息迁移,解题的关键在于依据新概念的性质进行推理论证,属难题.3.C解析:C 【解析】 【分析】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与AC 1所成角的余弦值 【详解】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴, CB 为y 轴,CC 1为z 轴,建立空间直角坐标系, 设AB =AA 1=CC 1=2BB 1=2,则A 1(3,1,2),A (310,,),C 1(0,0,2),B 1(0,2,1),E (0,1,32), 1A E =(3-,0,12-),1AC =(3-,﹣1,2),设异面直线A 1E 与AC 1所成角为θ,则cosθ1111226131384A E AC A E AC ⋅===⋅⋅. ∴异面直线A 1E 与AC 1所成角的余弦值为2613. 故选C .【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.4.C解析:C 【分析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥AC ,BN ⊥AC ,可得出二面角B ﹣AC﹣D 的平面角为∠BND ,再利用余弦定理求出BD ,可知三棱锥B ﹣ACD 为正四面体,可得出内切球的半径R ,再利用球体的表面积公式可得出答案. 【详解】 如下图所示,易知△ABC 和△ACD 都是等边三角形,取AC 的中点N ,则DN ⊥AC ,BN ⊥AC . 所以,∠BND 是二面角B ﹣AC ﹣D 的平面角,过点B 作BO ⊥DN 交DN 于点O ,可得BO ⊥平面ACD .因为在△BDN 中,3BN DN ==,所以,BD 2=BN 2+DN 2﹣2BN •DN •cos ∠BND 1332343=+-⨯⨯=, 则BD =2.故三棱锥A ﹣BCD 为正四面体,则其内切球半径为正四面体高的14,又正四面体的高为棱6,故662R ==因此,三棱锥A ﹣BCD 的内切球的表面积为226244(3R πππ=⨯=. 故选C . 【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.5.A解析:A 【分析】根据题意将异面直线平移到同一平面,再由余弦定理得到结果. 【详解】根据题意将异面直线平移到同一平面中,如上图,显然α,β,(0,]2πγ∈,因为a b >,异面直线1A B 与1AD 的夹角即角1AD C ,根据三角形1AD C 中的余弦定理得到222211cos 21()a b a b aα==>++,故(0,)3πα∈,同理在三角形1A DB 中利用余弦定理得到:2221cos 222()1a a b bβ==<⋅+⋅+,故(,)32ππβ∈, 连接AC ,则AC 垂直于BD ,CE 垂直于BD ,AC 交CE 于C 点,故可得到BD 垂直于面ACE ,进而得到BD 垂直于AE ,而BD 平行于11D B .从而得到2πγ=,故αβγ<<. 故答案为A. 【点睛】这个题目考查了异面直线夹角的求法,一般是将异面直线平移到同一平面中,转化到三角形中进行计算,或者建立坐标系,求解两直线的方向向量,两个方向向量的夹角就是异面直线的夹角或其补角.6.A解析:A 【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果. 【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=,11AC AB BC CC ∴=++, ()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=,∴线段1AC 的长为12AC = A.【点睛】本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.7.C解析:C 【解析】分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a b a b a b⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得31cos ,23a b ⨯===+,化简得22z =,解得z = C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.8.A解析:A 【解析】解:由题意可知:()1,1,b a t t t -=---- ,则:(b a t -=--= ,即b a - 本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.9.B解析:B 【分析】建立空间直角坐标系,利用∠APC 不是平角,可得∠APC 为钝角等价于cos ∠APC <0,即 ,从而可求λ的取值范围.【详解】由题设,建立如图所示的空间直角坐标系D-xyz ,则有A (1,0,0),B (1,1,0),C (0,1,0),1D (0,0,1) ∴ =(1,1,-1),∴ =(λ,λ,-λ),∴=+=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1) =+ =(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)显然∠APC 不是平角,所以∠APC 为钝角等价于cos ∠APC <0 ∴ 0PA PC ⋅<∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得 <λ<1 因此,λ的取值范围是( ,1),故选B.点评:本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.10.D解析:D 【分析】设正三棱柱111ABC A B C -棱长为2,设平面BDE 与底面ABC 所成锐二面角为α,,02AE x x =≤≤,以A 为坐标原点建立空间直角坐标系,确定出,,B D E 点的坐标,求出平面BDE 的法向量m ,底面ABC 的法向量坐标为(0,0,1)n =,将cos α表示为关于x 的函数,通过讨论cos α的增减变化,即可求出结论. 【详解】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则(3,1,0),(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BDm ED ⎧⊥⎨⊥⎩,即302(1)0s t k t x k ⎧-++=⎪⎨+-=⎪⎩,令23k =,则33,1t x s x =-=+,所以平面BDE 的一个法向量(1,33,23)m x x =+-, 底面ABC 的一个法向量为(0,0,1)n =,222233cos |cos ,|115(1)3(1)12()24m n x x x α=<>==++-+-+当1(0,)2x ∈,cos α随着x 增大而增大,则α随着x 的增大而减小, 当1(,2)2x ∈,cos α随着x 增大而减小,则α随着x 的增大而增大. 故选:D.【点睛】本题考查空间向量法求二面角,应用函数思想讨论二面角的大小,考查直观想象、数学计算能力,素养中档题.11.A解析:A 【分析】先建立空间坐标系,设出(),0,M m m ,()0,22,N n n -+,转化条件得1m n +=,利用函数即可得解. 【详解】如图建系,由题意可设(),0,M m m ,()0,22,N n n -+,∴(),22,MN m n n m =---,又 ()10,0,1AA =,()1,2,0AC =-,∴平面11AAC C 的法向量()2,1,0n =,又 //MN 面11AACC ,∴=0MN n ⋅即1m n +=,∴()()2222222941MN m n n m m m =+-+-=-+,∴MN 最小值为故选:A. 【点睛】本题考查了空间向量的应用,考查了转化化归和函数思想,属于中档题.12.B解析:B 【分析】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭.易知平面1ACD 的法向量为()1,1,1n =,计算夹角得到答案. 【详解】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭. 根据1,n AC n AD ⊥⊥得到平面1ACD 的法向量为()1,1,1n =,11,1,22DE ⎛⎫= ⎪⎝⎭, 故22cos 3n DE n DEα⋅==⋅,故1sin 3α=, 直线DE 与平面ACD 1所成角θ,满足1cos sin 3θα==. 故选:B .【点睛】本题考查了线面夹角,意在考查学生的空间想象能力和计算能力.二、填空题13.【分析】先找出线面角运用余弦定理进行求解【详解】连接交于点取中点连接则连接为异面直线与所成角在中同理可得异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角考查了空间想象能力运算 解析:3010【分析】先找出线面角,运用余弦定理进行求解 【详解】连接1AB 交1A B 于点D ,取11B C 中点E ,连接DE ,则1DE AC ,连接1A E1A DE ∴∠为异面直线1A B 与1AC 所成角在111RtAC B 中,111AC =,1111122C E C B == 15A E ∴=同理可得1A D =DE =2221cos A DE +-∠==, ∴异面直线1A B 与1AC所成角的余弦值是10【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.14.【解析】【分析】由题意设正方体的棱长为2建立如图所示空间直角坐标系利用空间向量求解即可得到答案【详解】设正方体的棱长为2建立如图所示空间直角坐标系则0211异面直线BM 与AN 所成角的余弦值为故答案为【解析】 【分析】由题意,设正方体的棱长为2,建立如图所示空间直角坐标系,利用空间向量求解,即可得到答案. 【详解】设正方体的棱长为2,建立如图所示空间直角坐标系, 则A(2,0,0),B(2,2,0),M(2,1,2),N(1,1,2),()BM 0,1,2∴=-,()AN 1,1,2=-,BM AN cos BM,AN 5BM AN⋅∴===⋅∴异面直线BM 与AN【点睛】本题主要考查了空间向量在立体几何中的应用,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.15.【解析】以正方形的中心为原点平行于的直线为轴平行于的直线为轴为轴建立如图所示空间直角坐标系设四棱锥棱长为则所以∴故异面直线所成角的余弦值为解析:33【解析】以正方形ABCD 的中心O 为原点,平行于AB 的直线为x 轴,平行于AD 的直线为y 轴,SO 为z 轴建立如图所示空间直角坐标系O xyz -,设四棱锥S ABCD -棱长为2,则(1,1,0)A --,(1,1,0)B -,2)S ,(1,1,0)D -,112,22E ⎛- ⎝⎭, 所以312,22AE ⎛= ⎝⎭,(1,1,2)SD =--,∴311322cos ,3911112442AE SD -+-==-++⋅++故异面直线AE ,SD 所成角的余弦值为33. 16.【分析】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系利用向量法能求出异面直线AM 与B1C 所成的角【详解】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系设正方体ABCD ﹣ 解析:10arccos5【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AM 与B 1C 所成的角. 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1棱长为2,则A (2,0,0),M (2,1,2),B 1(2,2,2),C (0,2,0),AM =(0,1,2),1BC =(﹣2,0,2), 设异面直线AM 与B 1C 所成的角为θ, cosθ11410558AM B C AM B C⋅===⨯⋅. ∴θ105arccos=. ∴异面直线AM 与B 1C 所成的角为arccos 105. 故答案为:105arccos.【点睛】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.17.【解析】由题意可知:即在基底下的坐标为解析:31,,322⎛⎫- ⎪⎝⎭【解析】由题意可知:()()3123322m a b c a b a b c =++=+--+ , 即m 在基底,,a b a b c +-下的坐标为31,,322⎛⎫-⎪⎝⎭. 18.【解析】试题分析:因为在平行六面体中所以则考点:本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构造向量将空间两点之间的距离转化为向量模的运算是解答本题的关键 解析:【解析】试题分析:因为在平行六面体中,,所以,则.考点:本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.19.【分析】建立空间直角坐标系利用香炉峰能求出点B 到截面的距离得到答案【详解】如图所示建立空间直角坐标系因为棱长为2的正方体中分别是的中点所以则设平面的法向量为则取得所以点B 到截面的距离为【点睛】本题主 26【分析】建立空间直角坐标系D xyz -,利用香炉峰能求出点B 到截面1AMC N 的距离,得到答案. 【详解】如图所示,建立空间直角坐标系D xyz -,因为棱长为2的正方体1111ABCD A BC D -中,,M N 分别是11,A B CD 的中点, 所以(2,0,0),(2,1,2),(0,1,0),(2,2,0)A M N B , 则(0,1,2),(2,1,0),(0,2,0)AM AN AB ==-=, 设平面AMN 的法向量为(,,)n x y z =,则2020y z x y +=⎧⎨-+=⎩,取1x =,得(1,2,1)n =-,所以点B 到截面1AMC N 的距离为42636AB n d n⋅===.【点睛】本题主要考查了利用空间向量求解点到平面的距离问题,其中解答中建立适当的空间直角坐标系,正确求解平面的法向量,利用向量法准确计算是解答的关键,着重考查了推理与计算能力,属于中档试题.20.26【分析】推导出=从而=()2=由此能出CD 【详解】∵平面α⊥平面β且α∩β=l 在l 上有两点AB 线段AC ⊂α线段BD ⊂βAC ⊥lBD ⊥lAB=6BD=24AC=8∴=∴=()2==64+36+57解析:26 【分析】推导出CD =CA AB BD ++,从而2CD =(CA AB BD ++)2=222CA AB BD ++,由此能出CD . 【详解】∵平面α⊥平面β,且α∩β=l ,在l 上有两点A ,B ,线段AC ⊂α,线段BD ⊂β, AC ⊥l ,BD ⊥l ,AB=6,BD=24,AC=8, ∴CD =CA AB BD ++, ∴2CD =(CA AB BD ++)2 =222CA AB BD ++ =64+36+576 =676, ∴CD=26.故答案为26. 【点睛】本题考查两点间距离的求法,考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.三、解答题21.(1)证明见解析;(2)存在,212λ=±. 【分析】(1)以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,证明出1//BC FP ,利用线面平行的判定定理可证得1//BC 平面EFPQ ; (2)计算出面EFPQ 与面PQMN 的法向量,由已知条件得出这两个平面的法向量垂直,结合02λ<<求出实数λ的值,即可得解. 【详解】(1)证明:以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,2,0B 、()10,2,2C 、()2,1,0E 、()1,0,0F ,当1λ=时,()0,0,1P ,()12,0,2BC =-,()1,0,1FP =-,12BC FP ∴=,1//BC FP ∴, 1BC ⊄平面EFPQ ,FP ⊂平面EFPQ ,因此,1//BC 平面EFPQ ;(2)()2,1,0E 、()1,0,0F 、()0,0,P λ、()1,0,2N 、()2,1,2M ,设平面EFPQ 的一个法向量为()111,,m x y z =,()1,1,0EF =--,()1,0,FP λ=-,由00m EF m FP ⎧⋅=⎨⋅=⎩,可得111100x y x z λ--=⎧⎨-+=⎩,取1x λ=,则1y λ=-,11z =,(),,1m λλ=-,设平面PQMN 的一个法向量为()222,,n x y z =,()1,1,0MN =--,()1,0,2NP λ=--,由00n MN n NP ⎧⋅=⎨⋅=⎩,可得()2222020x y x z λ--=⎧⎨-+-=⎩,取22x λ=-,则22y λ=-,21z =,()2,2,1n λλ∴=--,若存在λ,使得面EFPQ 与面PQMN 所成的二面角为直二面角,则m n ⊥. 且()()2210m n λλλλ⋅=---+=,整理可得22410λλ-+=,02λ<<,解得1λ=±因此,存在1λ=±EFPQ 与面PQMN 所成的二面角为直二面角. 【点睛】方法点睛:立体几何开放性问题求解方法有以下两种:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后再加以证明,得出结论;(2)假设所求的点或线存在,并设定参数表达已知条件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在这样的点或线,否则不存在.22.(1)证明见解析;(2)M 为PD 的靠近点P 三等分点时,二面角M AC D --的. 【分析】(1)延长,AB DC 交于Q ,连接PQ ,PQ 即为直线l ,证明//MC PQ 即可得线面平行; (2)取AD 的中点O ,连接OP ,OC ,分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz .设DM DP λ=,利用空间向量法求二面角的余弦,由已知余弦值可求得λ,即存在. 【详解】(1)延长,AB DC 交于Q ,连接PQ .则易知PQ 为平面PAB 与平面PCD 的交线, 即:PQ 与l 重合.由题意,在ADQ △中://BC AD ,且12BC AD =, 故C 为DQ 的中点.又∵M 为PD 的中点,∴//MC PQ . 又∵MC ⊂平面ACM ,PQ ⊄平面ACM , ∴//PQ 平面ACM ,即//l 平面ACM .(2)取AD 的中点O ,连接OP ,OC ,由题意可得:OP AD ⊥,OC AD ⊥. 又∵平面PAD ⊥平面ABCD ,则OP ⊥平面ABCD ,∴分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz . 则()0,1,0A -,()1,0,0C ,()0,1,0D ,()0,0,3P ,()0,1,3DP =-,()0,2,0AD =,()1,1,0AC =∵M 在棱PD 上,不妨设()()0,1,30,,3DM DP λλλλ==-=-, 其中01λ≤≤.∴AM AD DM =+()()0,2,00,,3λλ=+-()0,2,3λλ=-, 设平面MAC 的一个法向量为(),,m x y z =,则00m AM m AC ⎧⋅=⎨⋅=⎩即()2300y z x y λλ⎧-+=⎨+=⎩,令2z λ=-解得:3y λ=-,3x λ=.即()3,3,2m λλλ=--. 又∵平面ACD 的一个法向量()0,0,1m =. ∴()()()222222cos ,332m n λλλλ-<>==+-+-23λ=. 所以,M 为PD 的靠近点P 三等分点时,二面角M AC D --的余弦值为2211. 【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补). 23.(Ⅰ)证明见解析;(Ⅱ6;(Ⅲ)53.【分析】(Ⅰ)取AE 中点P ,连接BP 、MP ,根据题意可得四边形BCMP 为平行四边形,根据线面平行的判定定理,即可得证;(Ⅱ)连接EO ,根据面面垂直的性质定理,可证得EO OB ⊥, EO OD ⊥,以O 为原点,分别以OB ,OD ,OE 为x ,y ,z 轴正方向建系,分别求得CM ,BD 的坐标,利用夹角公式,即可求得结果;(Ⅲ)设ON OD λ=,则可得N 点坐标,即可求得平面BMN 的法向量n ,同理可求得平面ABE 的法向量m ,根据题意,可得0m n ⋅=,即可求得λ的值,即可得答案. 【详解】解:(Ⅰ)取AE 中点P ,连接MP BP ,,因为M 为线段DE 的中点, 所以1//2MP AD MP AD =,, 因为四边形BCDO 是正方形, O 为线段AD 的中点,所以1//2BC AD BC AD =,,即//BC OD BC OD =,, 所以//BC MP BC MP =,所以四边形BCMP 为平行四边形.所以//MC BP ,又因为MC ⊂/平面ABE ,BP ⊂平面ABE , 所以//CM 平面ABE ;(Ⅱ)因为AE DE O =,为线段AD 的中点,连接EO ,则⊥EO AD , 因为平面ADE ⊥平面ABCD ,平面ADE平面ABCD AD =,EO ⊂平面ADE所以EO ⊥平面ABCD ,又因为OB ⊂平面ABCD ,所以EO OB ⊥, 又因为OB OD ⊥,所以OE OB OD ,,三线两两垂直.以O 为原点,以OB 为x 轴,以OD 为y 轴,以OE 为z 轴建立直角坐标系,如图所示,依题意可知(0,1,0),(1,0,0),(0,0,1),(0,1,0)A B E D -设平面ABE 的一个法向量为(,,)m x y z =,因为(1,1,0),(0,1,1)AB AE ==,因为00AB m AE m ⎧⋅=⎨⋅=⎩,所以0x y y z +=⎧⎨+=⎩,令1z =得11y x =-=,,所以(1,1,1)m =- 因为(0,1,1)DE =-,设DE 与平面ABE 所成角为θ, 则6sin |cos ,|32m DE θ=〈〉==⨯, 所以直线DE 与平面ABE 6; (Ⅲ)设(0,,0)ON OD λλ==,则(0,,0)N λ, 因为11110,,,1,,,(1,,0)2222M MB BN λ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,设平面BMN 的一个法向量为(,,)n x y z =,因为00MB n BN n ⎧⋅=⎨⋅=⎩,所以11022x y z x y λ⎧--=⎪⎨⎪-+=⎩, 令1y =得21x z λλ==-,,所以(,1,21)n λλ=-, 因为平面BMN ⊥平面ABE ,所以0m n ⋅= 故1210λλ-+-=,解得23λ=,即2(0,,0)3N , 故线段25133AN AO ON =+=+=. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 24.(1)2π;(2)12.【分析】由题意可得AB AD ⊥,AE AB ⊥,AE AD ⊥,以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系,分别求出所用点的坐标.(1)分别求出,DE AC 的坐标,由0DE AC =可得直线DE 与直线AC 所成的角; (2)分别求出平面BED 的一个法向量与平面EDC 的一个法向量,由两法向量所成角的余弦值可得二面角B ED C --的余弦值. 【详解】如图,由题意,AB AD ⊥,AE AB ⊥,AE AD ⊥,以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系:则()0,0,0A ,()2,0,0B ,(2C ,()0,2,0D ,(2E , (1)(0,2DE =-,(2AC =,220DE AC ⋅=-+=,∴直线DE 与直线AC 所成的角为π2;(2)设平面BED 的一个法向量为()111,,m x y z =,(2BE =-,(0,2DE =-,由1111220220m BE x z m DE y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取12z (2m =; 设平面EDC 的一个法向量为()222,,n x y z =,(0,2DE =-,()1,1,0EC =,由2222200n DE y n EC x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩,取2z =(1,1,n =-.21cos ,222m n m n m n⋅∴===⨯⋅, ∴二面角B ED C --的余弦值为12. 【点睛】本题考查了立体几何中的异面直线所成的角和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.25.(1)证明见解析;(2)⎣⎦. 【分析】()1证明:取BD 中点G ,连接,AG CG .根据三角形的性质和线面垂直的判定和性质可得证;()2以G 为原点,以GC 所在直线为x 轴,以GD 所在直线为y 轴建立空间直角坐标系. 取AD 中点,E CD 中点F ,连接,,GE GF EF ,则平面//GEF 平面,ABC 所以H 在线段EF 上运动,设1)0(EH EF λλ=≤≤,运用线面角的空间向量求解方法和二次函数的性质可求得范围. 【详解】()1证明:取BD 中点G ,连接,AG CG .ABD 和BCD △是等边三角形,AG BDCG BD AG BD G ⊥⎧⎪∴⊥⇒⎨⎪⋂=⎩BD ⊥面ACG ,AC ⊂面ACG ⇒AC BD ⊥; ()2以G 为原点,以GC 所在直线为x 轴,以GD 所在直线为y 轴建立空间直角坐标系. 取AD 中点,E CD 中点F ,连接,,GE GF EF ,则平面//GEF 平面,ABC 所以H 在线段EF 上运动, 则()(),0,0,00,1,0G B -,)()0,1,,,(00,CD A ,,110,,,02222E F ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设1)0(EH EFλλ=≤≤,31,,2222GH λ⎛⎫=- ⎪ ⎪⎝⎭.设平面ACD 的一个法向量(),,n x y z =,则00n AC n CD ⎧⋅=⎨⋅=⎩,即3303+0x z x y ⎧-=⎪⎨-=⎪⎩,平面的一个法向量()1,3,1n =,设直线GH 与平面ACD 所成角为θ,则231526sin ,55335122GH n GH nθλλ⎡⎤⋅==∈⎢⎥⎣⎦⋅-+.所以直线GH 与平面ACD 所成角的正弦值的范围为1526,55⎡⎤⎢⎥⎣⎦.【点睛】本题考查线面垂直的判定和性质,以及运用向量法求线面角的方法,关键在于得出动点运动的轨迹,运用向量的线性关系,设出动点的坐标,属于中档题. 26.(Ⅰ)证明见解析;(Ⅱ39. 【分析】(Ⅰ)取AD 的中点G ,连结PG 、GB 、BD ,根据PA PD =和ABD △是正三角形,证明AD ⊥平面PGB 即可.(Ⅱ)根据侧面PAD ⊥底面ABCD ,PG AD ⊥,易得直线GA 、GB 、GP 两两互相垂直,以G 为原点,直线GA 、GB 、GP 所在直线为x 轴、y 轴和z 轴建立空间直角坐标系G xyz -,求得平面PBC 的一个法向量()000,,n x y z =,再由平面PAD 的一个法向量13,0)n GB a ==,设平面PAD 与平面PBC 所成锐二面角为θ,由11cos ||n n n n θ⋅=⋅求解.【详解】 (Ⅰ)如图所示:取AD 的中点G ,连结PG 、GB 、BD .PA PD =,PG AD ∴⊥AB AD =,且60DAB ∠=︒,ABD ∴是正三角形,BG AD ⊥, 又PG BG G =,AD ∴⊥平面PGB . AD PB ∴⊥(Ⅱ)∵侧面PAD ⊥底面ABCD , 又PG AD ⊥,PG ∴⊥底面ABCD .PG BG ∴⊥.∴直线GA 、GB 、GP 两两互相垂直,故以G 为原点,直线GA 、GB 、GP 所在直线为x 轴、y 轴和z 轴建立 如图所示的空间直角坐标系G xyz -.设PG a =,则可求得(0,0,)P a ,(,0,0)A a ,3,0)B a ,(,0,0)D a -,33,,022C a a ⎛⎫- ⎪ ⎪⎝⎭.3,,02BC a ⎛⎫∴=- ⎪ ⎪⎝⎭.(0,,)PB a ∴=-. 设()000,,n x y z =是平面PBC 的一个法向量,则0n BC ⋅=且0n PB⋅=.000030,220.ax ay az ⎧--=⎪∴-=解得0000,.x y z ⎧=⎪⎨⎪=⎩ 取0y =(1,3,3)n =-.又∵平面PAD 的一个法向量1,0)n GB ==,设平面PAD 与平面PBC 所成锐二面角为θ,则11cos ||1313n nn n θ⋅===⋅+ 所以平面PAD 与平面PBC 【点睛】 方法点睛:求二面角最常用的方法:1、几何法:二面角的大小用它的平面角来度量.平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质.向量法:分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(答案解析)(1)
一、选择题1.如图,四边形ABCD 和ABEF 都是正方形,G 为CD 的中点,60DAF ∠=,则直线BG 与平面AGE 所成角的余弦值是( )A .25B 10C 15D 212.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( ) A .313B .95C .18D .213.在四棱锥O ﹣ABCD 中,底面ABCD 是平四边形,设OA a =,OB b =,OC c =,则BD 可表示为( )A .a c b +-B .a +2b c -C .c b a +-D .a c +-2b4.若{},,a b c 是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .,2,3a b c B .,,a b b c c a +++ C .,,a b c b c c +++D .2,23,39a b b c a c ++-5.已知长方体1111ABCD A BC D -的底面AC 为正方形,1AA a =,AB b =,且a b >,侧棱1CC 上一点E 满足13CC CE =,设异面直线1A B 与1AD ,1A B 与11D B ,AE 与11D B 的所成角分别为α,β,γ,则 A .αβγ<< B .γβα<<C .βαγ<<D .αγβ<<6.在正方体ABCD --A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( ) A .105- B .105C .155-D .1557.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 8.正方体1111ABCD A BC D -中,点E ,F 分别是棱,CD BC 上的动点,且2BF CE =,当三棱锥1C C EF -的体积取得最大值时,记二面角1111,,C EF C C EF A A EF A ------的平面角分别为,,αβγ,则( )A .αβγ>>B .αγβ>>C .βαγ>>D .βγα>>9.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .810.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定11.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A .53B .23C .56D .5212.在长方体1111ABCD A BC D -中,若13AC =,则111()AB AC AD AC ++⋅=( )A .0B .3C .3D .6二、填空题13.如图,已知正三棱柱111ABC A B C -中,12AB AA ==,,M N 分别为1,CC BC 的中点,点P 在直线11A B 上且满足111().A P A B R λλ=∈若平面PMN 与平面ABC 所成的二面角的平面角的大小为45,则实数λ的值为______.14.如图,在三棱锥P ABC -,ABC ∆为等边三角形,PAC ∆为等腰直角三角形,4PA PC ==,平面PAC⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为__________.15.在空间四边形ABCD 中,E F 、分别是AB CD 、中点,且5,EF =又6,8AD BC ==,则AD 与BC 所成角的大小为____________.16.已知空间向量(1,0,0)a =,13(,,0)22b =,若空间向量c 满足2c a ⋅=,52c b ⋅=,且对任意,x y R ∈,()()00001(,)c xa yb c x a y b x y R -+≥-+=∈,则c =__________. 17.如图,平行六面体ABCD A B C D ''''-中,1,2,AB AD AA BAD BAA ===∠=∠''60DAA =='∠,则AC '的长为__________18.如图,空间四边形OABC 中,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,分MN 所成的定比为2,OG xOA yOB zOC =++,则,,x y z 的值分别为_____.19.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为 .20.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:① 直线AC 与直线1C E 是异面直线;②1A E 一定不垂直1AC ; ③ 三棱锥1E AAO -的体积为定值; ④1AE EC +的最小值为22. 其中正确的序号序号是______.三、解答题21.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)若H 为EF 的中点,证明://GH 平面ABCD ; (2)若14=EH EF ,求直线CH 与平面ACG 所成角的正弦值. 22.如图,多面体PABCDE 的底面ABCD 是菱形,PA ⊥底面ABCD ,//PA DE ,且2PA AD DE ==.(1)证明:平面PAC ⊥平面PCE ;(2)若直线PC 与平面ABCD 所成的角为45︒,求二面角P CE D --的余弦值. 23.已知在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD △是正三角形,CD ⊥平面PAD ,,,,E F G O 分别是,,,PC BC PD AD 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求平面EFG 与平面ABCD 所成锐二面角的大小.24.如图,在四棱锥P ABCD -中,PD ⊥平面//ABCD AB CD AD CD ⊥,,,且22AD CD PD AB ====.(I )求证:AB ⊥平面PAD ; (Ⅱ)求二面角P BC A --的余弦值.25.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.26.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,PA PD ⊥,PA PD =.(1)求证:平面PAB ⊥平面PCD ;(2)若1BC =,2AD CD ==,求二面角A PC B --的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴建立空间直角坐标系,设2AB =,利用空间向量法可求得直线BG 与平面AGE 所成角的正弦值,再利用同角三角函数的基本关系可求得结果.【详解】以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴,建立如图所示的空间直角坐标系A xyz -.设2AB =,得()0,0,0A 、()2,1,0G 、()0,2,0B 、(1,3E , 则()2,1,0AG =,(3AE =,()2,1,0BG =-, 设平面AGE 的法向量为(),,n x y z =,则2020n AG x y n AE x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,则2y =-,z = 所以,平面AGE的一个法向量为(1,n =-,从而cos ,22n BG n BG n BG⋅<>===⋅, 故直线BG 与平面AGE 5=.故选:C. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.C解析:C 【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可. 【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩.故(6,0,6)E -,(6,6,6)F -,则18EF ==.故选:C 【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.3.D解析:D 【分析】作出图形,根据条件得出BD BA BC =+,再得到BA a b =-,BC c b =-,即可求解, 得到答案. 【详解】如图所示,在四棱锥O ABCD -中,底面ABCD 是平行四边形,则BD BA BC =+, 在OAB ∆中,BA OA OB a b =-=-, 在OBC ∆中,BC OC OB c b =-=-, 故选:D.【点睛】本题主要考查了向量的线性运算,以及向量的加法的几何意义,其中解答中熟记向量的运算法则是解答的关键,着重考查了推理与计算能力,属于基础题.4.D解析:D 【分析】根据空间向量的共面定理,一组不共面的向量构成空间的一个基底,对选项中的向量进行判断即可. 【详解】对于:,2,3,:,,,:,,A a b c B a b b c c a C a b c b c c ++++++,每组都是不共面的向量,能构成空间的一个基底,对于D :2,23,3-9a b b c a c ++满足:()()3-932-23a c a b b c ⎡⎤=++⎣⎦,是共面向量,不能构成空间的一个基底,故选D 【点睛】本题主要考查了向量的相关知识,考查了空间向量共面的判断与应用问题,熟练掌握向量基底的定义以及判断条件是解题的关键,属于基础题.5.A解析:A 【分析】根据题意将异面直线平移到同一平面,再由余弦定理得到结果. 【详解】根据题意将异面直线平移到同一平面中,如上图,显然α,β,(0,]2πγ∈,因为a b >,异面直线1A B 与1AD 的夹角即角1AD C ,根据三角形1AD C 中的余弦定理得到222211cos 21()a b a b aα==>++,故(0,)3πα∈,同理在三角形1A DB 中利用余弦定理得到:2221cos 222()1a a b bβ==<⋅+⋅+,故(,)32ππβ∈, 连接AC ,则AC 垂直于BD ,CE 垂直于BD ,AC 交CE 于C 点,故可得到BD 垂直于面ACE ,进而得到BD 垂直于AE ,而BD 平行于11D B .从而得到2πγ=,故αβγ<<. 故答案为A. 【点睛】这个题目考查了异面直线夹角的求法,一般是将异面直线平移到同一平面中,转化到三角形中进行计算,或者建立坐标系,求解两直线的方向向量,两个方向向量的夹角就是异面直线的夹角或其补角.6.B解析:B 【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值. 【详解】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,,∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,,设平面1B BD 的法向量为(),,x n y z =, ∵ n BD ⊥,1 n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则()110n =-,,, ∴10cos ,5n BE n BE n BE⋅==⋅, 设直线BE 与平面1B BD 所成角为θ, 则10sin cos ,5n BE θ==B . 【点睛】本题考查直线与平面所成角的正弦值的求法,解题时要注意向量法的合理运用,准确得到面的法向量是解题的关键,是中档题.7.D解析:D 【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O 出发的三个向量表示的,所以将待求向量用从O 出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果. 详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.8.A解析:A 【分析】设正方体的棱长为2,CE a =,则22CF a =-,列出三棱锥1C C EF -的体积关系式,可知当12a =时,1C C EF V -取得最大值,以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用法向量求出,,αβγ的余弦值,根据余弦值的大小关系可得结果. 【详解】以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系:设正方体的棱长为2,CE a =,则22CF a =-,由0222a <-≤,得01a ≤<,11C C EF C CEF V V --=113CEF CC S =⨯⨯△211211(22)2()32324a a a ⎡⎤=⨯-⨯=--+⎢⎥⎣⎦,所以当12a =时,1C C EF V -取得最大值16. 此时,3(2,0,0),(020),(00)2A C E ,,,,,(1,2,0)F ,11(2,0,2),(0,2,2)A C ,1(1,,0)2EF =,1(1,0,2)C F =-,1(1,2,2)A F =--, 设平面1C EF 的法向量为111(,,)m x y z =,平面1A EF 的法向量为222(,,)n x y z =,则100m EF m C F ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x y x z ⎧+=⎪⎨⎪-=⎩,取11x =,则1112,2y z =-=,所以1(1,2,)2m =-, 100n EF n A F ⎧⋅=⎪⎨⋅=⎪⎩,即22222102220x y x y z ⎧+=⎪⎨⎪-+-=⎩,取21x =则2252,2y z =-=-,所以5(1,2,)2n =--,取平面CEF 和平面AEF 的法向量为1(0,0,2)AA =, 由图可知,,,αβγ均为锐角,则cos α=11||||||m AA m AA⋅==, ||cos ||||m n m n β⋅==5|14|+-21=, 11||cos =||||n AA n AAγ⋅==, 所以cos cos cos αβγ<<,根据余弦函数在(0,)2π内单调递减,可得αβγ>>.故选:A 【点睛】本题考查了三棱锥的体积公式,考查了二面角的向量求法,考查了运算求解能力,属于中档题.9. A解析:A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2i AB A P B B +⋅,最后根据棱长为1以及i AB BP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+,因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A. 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.10.A解析:A 【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果. 【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q , 设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--, 设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ ⋅2212(1)01||4401(1)1y y -⨯+--⨯=++⨯+-+ 2||223y y y =-+221232y y y =-+213221y y =-+2111223()33y =-+ 1223≤32=(当且仅当3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减, 所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°. 故选:A 【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.11.A解析:A 【分析】先建立空间坐标系,设出(),0,M m m ,()0,22,N n n -+,转化条件得1m n +=,利用函数即可得解. 【详解】如图建系,由题意可设(),0,M m m ,()0,22,N n n -+,∴(),22,MN m n n m =---,又 ()10,0,1AA =,()1,2,0AC =-,∴平面11AAC C 的法向量()2,1,0n =,又 //MN 面11AACC ,∴=0MN n ⋅即1m n +=,∴()()2222222941MN m n n m m m =+-+-=-+,∴MN 最小值为53.故选:A. 【点睛】本题考查了空间向量的应用,考查了转化化归和函数思想,属于中档题.12.D解析:D 【分析】建立空间直角坐标系,利用向量的坐标运算即可求解. 【详解】如图建立空间直角坐标系A xyz -,设1,,AB a AD b AA c ===,则111(,0,),(,,0),(0,,),(,,)AB a c AC a b AD b c AC a b c ====. 则111(2,2,2)2AB AC AD a b c AC ++==, 所以21111()2()6AB AC AD AC AC ++⋅==. 故选:D 【点睛】本题主要考查了向量的坐标运算,向量的模的概念,属于容易题.二、填空题13.【分析】从二面角的大小入手利用空间向量求解【详解】以N 为坐标原点NCNA 所在直线分别为x 轴y 轴建立空间直角坐标系如图则由可得设为平面的一个法向量则即令可得易知平面ABC 的一个法向量为因为平面与平面所 解析:2-【分析】从二面角的大小入手,利用空间向量求解. 【详解】以N 为坐标原点,NC,NA 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图则()()()()()10,0,0,1,0,1,1,0,0,3,0,3,2N M B A A - ,由111A P AB λ=可得()11111133,2NP NA A P NA A B NA AB λλλλ=+=+=+=-, ()1,0,1NM =,设(),,n x y z =为平面PMN 的一个法向量,则00n NM n NP ⎧⋅=⎨⋅=⎩,即)03120x z x y z λλ+=⎧⎪⎨--+=⎪⎩, 令1z =-,可得()()321,,131n λλ⎛⎫+=- ⎪ ⎪-⎝⎭,易知平面ABC 的一个法向量为()0,0,1m =. 因为平面PMN 与平面ABC 所成的二面角的平面角的大小为45,所以1cos45n mn m n ⋅︒==,即2n =,所以21211231λλ+⎛⎫++= ⎪-⎝⎭,解得2λ=-. 【点睛】本题主要考查空间向量的应用,利用二面角求解参数.二面角的求解和使用的关键是求解平面的法向量,把二面角转化为向量的夹角问题.14.【分析】建立如图所示的空间直角坐标系结合为等腰直角三角形求得向量的坐标利用向量的夹角公式即可求解【详解】取得中点连接因为所以因为平面平面平面平面所以平面又因为所以于是以为坐标原点建立如图所示的空间直解析:24【分析】建立如图所示的空间直角坐标系O xyz -,结合PAC ∆为等腰直角三角形,求得向量,AC PD 的坐标,利用向量的夹角公式,即可求解.【详解】取AC 得中点O ,连接OP ,OB ,因为PA PC =,所以AC OP ⊥.因为平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC =.所以OP ⊥平面ABC ,又因为AB BC =,所以AC OB ⊥,于是以O 为坐标原点, 建立如图所示的空间直角坐标系O xyz -,结合PAC ∆为等腰直角三角形,4PA PC ==,ABC ∆为等边三角形,则()22,0,0A ,()22,0,0C -,()0,0,22P ,()2,6,0D,所以()42,0,0AC =-,()2,6,22PD =-,所以8cos ,424AC PD AC PD AC PD⋅-〈〉==⨯ 24=-,故异面直线AC 与PD 所成角的余弦值为24.【点睛】本题主要考查了利用空间向量求解异面直线所成的角,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解是解答此类问题的关键,着重考查了推理与运算能力.15.【分析】将平移到一起利用勾股定理求得线线角为【详解】解:取中点连接中分别为的中点且同理可得且与所成的直角或锐角就是异面直线与所成角中得即异面直线与所成角等于故答案为:【点睛】方法点睛:平移法是立体几解析:90【分析】将,AD BC 平移到一起,利用勾股定理求得线线角为90. 【详解】解:取BD 中点G ,连接EG FG 、,ABD 中,,E G 分别为,AB BD 的中点,//EG AD ∴且132EG AD ==, 同理可得//,FG BC 且142FG BC ==, EG ∴与FG 所成的直角或锐角就是异面直线AD 与BC 所成角,EFG △中,3,4,5EG GF EF ===,222EG FG EF ∴+=,得90,EGF ∠=︒即异面直线AD 与BC 所成角等于90, 故答案为:90. 【点睛】方法点睛:平移法是立体几何中求线线角的常用方法之一,平移时通常结合三角形中位线定理把欲求的角平移到一个三角形中,然后再解三角形即可.16.【分析】设空间向量由已知条件可得的值由对任意得:进而得到答案【详解】解:空间向量设空间向量空间向量又由对任意则故故答案为:【点睛】本题考查的知识点是空间向量的数量积运算空间向量的模属于中档题解析:【分析】设空间向量(),,c m n z =,由已知条件可得m 、n 的值,由对任意x ,y R ∈,00|()||()|1c xa yb c x a y b -+-+=得:||1z =,进而得到答案.【详解】 解:空间向量(1,0,0)a =,13(,22b =, 设空间向量(),,c m n z =,2c a ⋅=,52c b ⋅=,2m ∴=,1522m = 2m ∴=,3n =,∴空间向量()2,3,c z =,又由对任意x ,y R ∈,()()001c xa yb c x a y b -+≥-+=, 则||1z =,故(22c =+=故答案为:【点睛】本题考查的知识点是空间向量的数量积运算,空间向量的模,属于中档题.17.【解析】所以 解析:11【解析】22222||222AC AB BC CC AB BC CC AB BC BC CC AB CC =++=+++⋅+⋅'''⋅'+' 222000112211cos60221cos60212cos6011=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=所以11AC ='18.【解析】∵∴∴故答案为解析:111,,633【解析】∵ O G OM MG =+,12OM OA =,2,3MG MN MN ON OM ==-,1 ()2ON OB OC =+,∴111633OG OA OB OC =++,∴16x =,13y z ==,故答案为111,,63319.【详解】以D 为原点DADCDD1所在直线分别为x 轴y 轴z 轴建立空间直角坐标系如图所示则A(100)B(110)D1(001)C1(011)O(1)=(010)=(-101)设平面ABC1D1的法向量 解析:【详解】以D 为原点,DA,DC,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系如图所示,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O (12,12,1), =(0,1,0),=(-1,0,1),设平面ABC 1D 1的法向量n =(x,y,z),由1·AB y 0{·AD x z 0n n ===-+=,,得令x =1,得n =(1,0,1). 又=(-12,12-,0), ∴O 到平面ABC 1D 1的距离d=1·n OD n ==.20.①③④【分析】由题意画出图形由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心由棱锥底面积与高为定值判断③;设BE =x 列出AE+EC1关于x 的函数式结合其几何意义求出最小值判断④【详解 解析:①③④【分析】由题意画出图形,由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设BE =x ,列出AE +EC 1关于x 的函数式,结合其几何意义求出最小值判断④.【详解】如图,∵直线AC 经过平面BCC 1B 1内的点C ,而直线C 1E 在平面BCC 1B 1内不过C ,∴直线AC 与直线C 1E 是异面直线,故①正确;当E 与B 重合时,AB 1⊥A 1B ,而C 1B 1⊥A 1B ,∴A 1B ⊥平面AB 1C 1,则A 1E 垂直AC 1,故②错误;由题意知,直三棱柱ABC ﹣A 1B 1C 1的外接球的球心为O 是AC 1 与A 1C 的交点,则△AA 1O 的面积为定值,由BB 1∥平面AA 1C 1C ,∴E 到平面AA 1O 的距离为定值,∴三棱锥E ﹣AA 1O 的体积为定值,故③正确; 设BE =x ,则B 1E =2﹣x ,∴AE +EC 12211(2)x x =++-由其几何意义,即平面内动点(x ,1)与两定点(0,0),(2,0)距离和的最小值知, 其最小值为2④正确.故答案为①③④【点睛】本题考查命题的真假判断与应用,考查空间想象能力和思维能力,属于中档题三、解答题21.(1)证明见解析;(2)63. 【分析】(1)要证明线面平行,需证明线线平行,取BC 的中点M ,连接HM ,DM ,证明四边形DGHM 是平行四边形,即可证明;(2)以点D 为原点,建立空间直角坐标系,求平面ACG 的法向量,利用线面角的向量公式求解.【详解】(1)证明:取BC 的中点M ,连接HM ,DM .因为该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成, 所以截面AEFG 是平行四边形,则4=-=DG CF EB .因为36==FC EB ,所以1(26)42=⨯+=HM ,且/DG HM , 所以四边形DGHM 是平行四边形,所以//GH DM .因为DM ⊂平面ABCD ,GH ⊄平面ABCD ,所以//GH 平面ABCD .(2)解:如图,以D 为原点,分别以,,DA DC DG 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系D xyz -,则(4,0,0)A ,(0,4,0)C ,(0,0,4)G ,(3,4,3)H ,(4,4,0)=-AC ,(4,0,4)=-AG ,(3,0,3)=CH .设平面ACG 的法向量为(,,)n x y z =, 则440440AC n x y AG n x z ⎧⋅=-+=⎨⋅=-+=⎩ ,令1x =,得()1,1,1n =.因为336cos ,3||||323CH n CH n CH n ⋅+<>==⨯, 所以直线CH 与平面ACG 所成角的正弦值为63.【点睛】思路点睛:本题考查了立体几何中的线面平行的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过严密推理证明线线平行从而得线面平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 22.(1)证明见解析;(2)64-. 【分析】(1)连接BD ,交AC 于点O ,设PC 中点为F ,连接OF ,EF ,则由三角形中位线定理可得//OF PA ,且12OF PA =,再结合已知条件可得四边形OFED 为平行四边形,从而可得//BD EF ,由线面垂直的判定定理可得BD ⊥平面PAC ,进而得EF ⊥平面PAC ,再利用面面垂直的判定定理可证得结论;(2)由直线PC 与平面ABCD 所成的角为45︒,再结合已知可得ABC 为等边三角形,设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点,AM ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -,利用空间向量求解即可【详解】解:(1)证明:连接BD ,交AC 于点O ,设PC 中点为F ,连接OF ,EF因为O ,F 分别为AC ,PC 的中点,所以//OF PA ,且12OF PA =, 因为//DE PA ,且12DE PA =, 所以//OF DE ,且OF DE =,故四边形OFED 为平行四边形,所以//OD EF ,即//BD EF ,因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥.因为ABCD 是菱形,所以BD AC ⊥.因为PA AC A =,所以BD ⊥平面PAC ,因为//BD EF ,所以EF ⊥平面PAC ,因为FE ⊂平面PCE ,所以平面PAC ⊥平面PCE .(2)设2PA AD ==,则1DE =.因为直线PC 与平面ABCD 所成的角为45︒,所以45PCA ︒∠=,所以2AC PA ==,所以AC AB =,故ABC 为等边三角形.设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点,AM ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -(如图所示).则()0,0,2P ,)3,1,0C ,()0,2,1E ,()0,2,0D ,()3,1,2PC =-, ()3,1,1CE =-,()0,0,1DE =,设平面PCE 的法向量为{}111,,x n y z =, 则00n PC n CE ⎧⋅=⎪⎨⋅=⎪⎩,即11111132030x y z x y z ⎧+-=⎪⎨-++=⎪⎩, 令11y =,则1132x z ⎧=⎪⎨=⎪⎩ 所以()3,1,2n =, 该平面CDE 的法向量为()222,,m x y z =,则00m DE m CE ⎧⋅=⎪⎨⋅=⎪⎩,即2222030z x y z =⎧⎪⎨++=⎪⎩, 令21x =,则2230y z ⎧=⎪⎨=⎪⎩,所以()1,3,0m =, 设二面角P CE D --的大小为θ,由于θ为钝角, 所以236cos cos ,4222n mn m n m θ⋅=-=-=-=-⋅⋅, 所以二面角P CE D --的余弦值为64-. 【点睛】关键点点睛:此题考查面面垂直的判定,考查由线面角求二面角,解题的关键是由直线PC 与平面ABCD 所成的角为45︒,结合已知条件得ABC 为等边三角形,然后取BC 的中点M ,连接AM ,从而以A 为原点,AM ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -,利用空间向量求解即可,属于中档题23.(Ⅰ)证明见解析;(Ⅱ)3π. 【分析】(Ⅰ)通过证明PO AD ⊥和PO CD ⊥,结合线面垂直的判定定理证明出PO ⊥平面ABCD ;(Ⅱ)先求解出平面EFG 和平面ABCD 的法向量,然后求解出法向量夹角的余弦值,由此确定出锐二面角的余弦值,从而锐二面角的大小可求.【详解】(Ⅰ)因为PAD △是正三角形,O 是AD 的中点,所以PO AD ⊥,又因为CD ⊥平面PAD ,PO ⊂平面PAD ,所以PO CD ⊥,AD CD D =,,AD CD ⊂平面ABCD ,所以PO ⊥面ABCD ;(Ⅱ)如图,以O 点为原点分别以,,OA OG OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,4,0),(0,0,23)O A B C D G P --, (13),(13)E F --,(0,2,0),(1,2,3)EF EG =-=-,设平面EFG 的法向量为(,,),m x y z =因为00m EF m EG ⎧⋅=⎨⋅=⎩,所以20230y x y z -=⎧⎪⎨+-=⎪⎩, 令1z =,则(3,0,1)m =,又平面ABCD 的法向量(0,0,1)n =,设平面EFG 与平面ABCD 所成锐二面角为θ ,所以||11cos 2||||311m n m n θ⋅===+⋅. 所以平面EFG 与平面ABCD 所成锐二面角为3π.【点睛】思路点睛:向量方法求解二面角的余弦值的步骤:(1)建立合适空间直角坐标系,写出二面角对应的两个半平面中相应点的坐标;(2)设出法向量,根据法向量垂直于平面中任意方向向量,求解出半平面的一个法向量;(注:若半平面为坐标平面,直接取法向量亦可)(3)计算(2)中两个法向量夹角的余弦值,结合立体图形中二面角的实际情况,判断二面角是钝角还是锐角,从而得到二面角的余弦值.24.(I )证明见解析;(Ⅱ)23. 【分析】(I )通过条件证明PD AB ⊥,AD AB ⊥,再根据线面垂直的判定定理证明出AB ⊥平面PAD ;(Ⅱ)以DA DC DP ,,为x y z ,,轴建立空间直角坐标系,根据平面PBC 与平面ABC 法向量夹角的余弦值求解出二面角P BC A --的余弦值.【详解】(Ⅰ)因为PD ⊥平面ABCD AB ⊂,平面ABCD ,所以PD AB ⊥.因为//AB CD AD CD ⊥,,所以AD AB ⊥.因为PD AD D ⋂=,所以AB ⊥平面PAD .(Ⅱ)因为PD ⊥平面ABCD AD CD ⊥,,所以以D 为原点,分别以DA DC DP ,,为x y z ,,轴建立空间直角坐标系D xyz -. 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)D A B C P ,所以(2,1,2),(2,1,0)PB BC =-=-.设平面PBC 的法向量为(,,)n x y z =,因为00n PB n BC ⎧⋅=⎨⋅=⎩,,即22020.x y z x y +-=⎧⎨-+=⎩, 所以2,2.z x y x =⎧⎨=⎩令1x =,于是,,(1)22n =.因为PD ⊥平面ABCD ,所以平面ABC 的法向量为(0,0,1)m =, 所以2cos ,3||||n m n m n m ⋅<>==⋅. 由题知二面角P BC A --为锐角,所以其余弦值是23.【点睛】思路点睛:向量方法求解二面角的余弦值的步骤:(1)建立合适空间直角坐标系,写出二面角对应的两个半平面中相应点的坐标;(2)设出法向量,根据法向量垂直于平面中任意方向向量,求解出半平面的一个法向量;(注:若半平面为坐标平面,直接取法向量亦可)(3)计算(2)中两个法向量夹角的余弦值,结合立体图形中二面角的实际情况,判断二面角是钝角还是锐角,从而得到二面角的余弦值.25.(1)证明见解析;(2)点M 与点F 重合,77. 【分析】 (1)易证明AC ⊥平面BCF ,再根据//EF AC ,证明EF ⊥平面BCF ;(2)设(),0,1M λ,分别求平面MAB 和平面FCB 的法向量,n m ,再利用公式cos ,m n <>求其最小值,确定λ,同时得到此时二面角的余弦值.【详解】(1)证明:设AD =CD =BC =1,∵AB ∥CD ,∠BCD =120°,∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,∴AB 2=AC 2+BC 2,则BC ⊥AC .∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF , ∴AC ⊥平面BCF .∵EF ∥AC ,∴EF ⊥平面BCF .(2)以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ3,则C (0,0,0),A 30,0),B (0,1,0),M (λ,0,1),∴AB =(-31,0),BM =(λ,-1,1).设n =(x ,y ,z )为平面MAB 的法向量,由00n AB n BM ⎧⋅=⎨⋅=⎩ 得300x y x y z λ⎧-+=⎪⎨-+=⎪⎩ 取x =1,则n =(133λ). 易知m =(1,0,0)是平面FCB 的一个法向量,∴()()22cos ,13334n m n m n m λλ⋅<>===++--+ ∵0≤λ3∴当λ=0时,cos ,n m <>取得最小值77, ∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦7.【点睛】关键点点睛:本题第二问的关键是设出(),0,1M λ,并且带参求平面FAB 的法向量,锐二面角最大时,cos ,m n <>最小,并且根据λ⎡∈⎣,求cos ,m n <>最小值.26.(1)证明见解析;(2. 【分析】(1)由面面垂直的性质得CD ⊥平面PAD ,从而得CD PA ⊥,再由PA PD ⊥即可得出PA ⊥平面PCD ,即得证;(2)取AD 中点O ,连接OP ,OB ,以OA ,OB ,OP 为x ,y ,z 轴建立空间直角坐标系,利用向量法可求出.【详解】(1)证明:在四棱锥P ABCD -中,因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =, 又因为CD AD ⊥,CD ⊂平面ABCD ,所以CD ⊥平面PAD .因为PA ⊂平面PAD ,所以CD PA ⊥.因为PA PD ⊥,CDPD D =,CD ,PD ⊂平面PCD , 所以PA ⊥平面PCD .因为PA ⊂平面PAB ,所以平面PAB ⊥平面PCD .(2)解:取AD 中点O ,连接OP ,OB ,因为PA PD =,所以.PO AD ⊥因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =, 因为PO ⊂平面PAD ,所以PO ⊥平面ABCD , 所以PO OA ⊥,PO OB ⊥.因为CD AD ⊥,//BC AD ,2AD BC =,所以//BC OD ,BC OD =所以四边形OBCD 是平行四边形,所以//OB CD ,所以OB AD ⊥.以OA ,OB ,OP 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O xyz -,则()0,0,0O ,()1,0,0A ,()0,2,0B ,()1,2,0C -,()0,0,1P ,所以()2,2,0AC =-,()1,0,1AP =-,()1,0,0BC =-,()0,2,1BP =-设平面PAC 的法向量为(),,n x y z =,则00AC n AP n ⎧⋅=⎨⋅=⎩,即2200x y x z -+=⎧⎨-+=⎩,令1x =,则()1,1,1n =. 设平面BPC 的法向量为(),,m a b c =,则00BC m BP m ⎧⋅=⎨⋅=⎩,即020a b c =⎧⎨-+=⎩,令1b =,则()0,1,2m =. 所以15cos ,5||||m n m n m n ⋅〈〉==⋅. 易判断二面角A PC B --为锐角, 所以二面角A PC B --的余弦值为155. 【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(答案解析)
一、选择题1.在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 为正方形,2AB =,E 为PB 的中点,若3cos ,3DP AE =,则PD =( )A .1B .32C .3D .22.设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,11D PD Bλ=,当APC ∠为锐角时,λ的取值范围是( )A .10,3⎡⎫⎪⎢⎣⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭3.已知空间三点坐标分别为A (4,1,3),B(2,3,1),C (3,7,-5),又点P (x,-1,3) 在平面ABC 内,则x 的值 ( ) A .-4B .1C .10D .114.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C 的中点,则异面直线MB 与1AA 所成角的余弦值为( ) A .13B .223C .324D .125.在正方体ABCD --A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( )A .105-B .105C .155-D .1556.三棱柱111ABC A B C -中,侧面11BB C C 是边长为2的菱形, 1160,CBB BC ︒∠=交1B C 于点,O AO ⊥侧面11BB C C ,且 1AB C 为等腰直角三角形.若建立如图所示的空间直角坐标系Oxyz ,则点1A 的坐标为( )A .(1,3,2)-B .(3,1,1)-C .(1,2,3)-D .(2,1,3)-7.如图,在棱长为2的正方体1111ABCD A B C D -中,点E F 、分别是棱AB 、BC 的中点,则点1C 到平面1B EF 的距离等于( )A .23B .223C .33D .438.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333C .5510(,,)333D .448(,,)3339.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA ==,E O 分别是线段1,C C BC 的中点,1113A F A A =,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>>10.如图,在边长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A .455B .2C .22D .311.已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为平面BCC 1B 1的中心,则直线DE 与平面ACD 1所成角的余弦值为( ) A .14B .13C 3D 2312.在平面直角坐标系中,()2,3A -、()32B -,,沿x 轴将坐标平面折成60︒的二面角,则AB 的长为( ) A 2B .211C .32D .42二、填空题13.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ; ②AC BD ⊥; ③AC BD =;④异面直线PM 与BD 所成的角为045.14.若平面α的一个法向量为()n 122=,,,A(1,0,2),B(0,-1,4),A ∉α,B ∈α,则点A 到平面α的距离为__________.15.若△ABC 的三个顶点坐标分别为2),B 31,22⎛ ⎝2),则角A 的大小为_____.16.已知向量,,a b c 是空间的一个单位正交基底,向量,,a b a b c +-是空间的另一个基底.若向量m 在基底,,a b c 下的坐标为()1,2,3,则m 在基底,,a b a b c +-下的坐标为 _________17.在直三棱柱111A B C ABC -中,底面ABC 为直角三角形,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的最小值为 .18.已知()()()2,1,2,1,3,3,13,6,a b c λ=-=--=,若向量,,a b c 共面,则λ=_________.19.如图,在四面体D ABC -中,5AD BD AC BC ====,6AB DC ==.若M 为线段AB 上的动点(不包含端点),则二面角D MC B --的余弦值取值范围是__________.20.已知60︒ 的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知1AB = ,2AC = ,3BD = ,则线段CD 的长为__________.三、解答题21.如图,在底面是直角梯形的四棱锥S ABCD -中,90ABC -︒,SA ⊥平面ABCD ,22SA AB BC AD ====,E 是SC 的中点.(1)证明://DE 平面SAB ;(2)求直线CD 与平面BED 所成角的正弦值.22.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 为菱形,60BCD ∠=︒,,PD CD E =为CD 的中点.(1)求证:平面PBE ⊥平面PCD . (2)求二面角B PC D --所成角的余弦值.23.如图菱形ABCD 中,60ABC ∠=︒,AC 与BD 相交于点O ,AE ⊥平面ABCD ,//CF AE ,4AB AE ==.(1)求证:BD ⊥平面ACFE ; (2)当直线FO 与平面BED 所成的角为π4时,求异面直线OF 与BE 所成的角的余弦值大小.24.如图,在四棱锥P ABCD -中,6π∠=CAD ,且321,2AD CD PA ABC ===,和PBC 均是等边三角形,O 为BC 的中点.(I )求证:PO ⊥平面ABCD ; (Ⅱ)求CB 与平面PBD 所成角的正弦值.25.如图,在四棱锥S ABCD -中,侧面SCD 为钝角三角形且垂直于底面ABCD ,底面为直角梯形且90ABC ∠=︒,12AB AD BC ==,CD SD =,点M 是SA 的中点.(1)求证:BD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60︒,求SD 与平面MBD 所成角的正弦值. 26.如图,四边形PABC 中,90,3,4PAC ABC PA AB AC ︒∠=∠====,现把PAC ∆沿AC 折起,使PA 与平面ABC 成60︒角,点P 在平面ABC 上的投影为点O (O 与B 在CA 同侧)(1)证明://OB 平面PAC ;(2)求直线PB 与平面PAC 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由已知以D 为原点建立空间直角坐标系,设(0,0,)P a ,求得,DP AE 的坐标,由数量积公式可得答案. 【详解】由已知DP DA DC 、、两两垂直,所以以D 为原点,建立如图所示的坐标系, 设(0)PD a a =>,则(0,0,)P a ,(2,0,0)A ,连接BD 取中点F ,连接EF ,所以//EF PD ,EF ⊥平面ABCD , 所以(1,1,)2a E ,所以(0,0,)DP a =,(1,1,)2a AE =-,由3cos ,3DP AE =2232cos ,114a DP AE DP AE DP AE a a ⋅===⋅⋅++解得2a =. 故选:D.【点睛】本题考查了空间向量的数量积公式的应用,关键点是建立空间直角坐标系,由数量积公式求得a ,考查了学生的空间想象力.2.A解析:A 【分析】建立空间直角坐标系,APC ∠为锐角等价于cos 0PA PC APC PA PC⋅∠=>,即0PA PC ⋅>,根据向量数量积的坐标运算即可求解. 【详解】如图建立空间直角坐标系:则()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D ,()11,1,1D B =-,()()111,1,1,,D P D B λλλλλ==-=-, ()11,01D A =-,()10,1,1D C =-,所以()()()111,01,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---, 由APC ∠为锐角得cos 0PA PC APC PA PC⋅∠=>,即0PA PC ⋅>,所以()()22110λλλ--+->,即()()1310λλ-->,解得:103λ<<, 当0λ=时,点P 位于点1D 处,此时1APC AD C ∠=∠显然是锐角,符合题意, 所以103λ≤<, 故选:A 【点睛】关键点点睛:本题的关键点是APC ∠为锐角等价于cos 0PA PC APC PA PC⋅∠=>,即0PA PC ⋅>,还需利用11PA D A D P =-,11PC DC D P =-求出PA 、PC 的坐标,根据向量数量积的坐标运算即可求解.3.D解析:D 【分析】利用平面向量的共面定理即可求出答案 【详解】(),1,3P x -点在平面ABC 内,λμ∴存在实数使得等式AP AB AC λμ=+成立()()()4,2,02,2,21,6,8x λμ∴--=--+-- 42226028x λμλμλμ-=--⎧⎪∴-=+⎨⎪=--⎩,消去λμ,解得11x = 故选D 【点睛】本题主要考查了空间向量的坐标运算,共面向量定理的应用,熟练掌握平面向量的共面定理是解决本题的关键,属于基础题。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(有答案解析)
一、选择题1.如图为一正方体的平面展开图,在这个正方体中,有以下结论:①AN GC ⊥,②CF 与EN 所成的角为60︒,③BD //MN ,④二面角E BC N --的大小为45︒,其中正确的个数是( )A .1B .2C .3D .42.已知正四棱柱1111ABCD A BC D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( ) A .23B .33C .23D .133.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A .2B .1C .2D .34.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A 3B 2C .1D 32-5.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22C .13D .166.三棱柱111ABC A B C -中,侧面11BB C C 是边长为2的菱形, 1160,CBB BC ︒∠=交1BC 于点,O AO ⊥侧面11BB C C ,且 1AB C 为等腰直角三角形.若建立如图所示的空间直角坐标系Oxyz ,则点1A 的坐标为( )A .(1,3,2)-B .(3,1,1)-C .(13)-D .(2,13)-7.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333C .5510(,,)333D .448(,,)3338.已知平行六面体1111ABCD A BC D -中,11114A E AC =,若1BE xAB yAD zAA =++,则x 的值为( ) A .14B .34-C .1D .129.如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大10.已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为平面BCC 1B 1的中心,则直线DE 与平面ACD 1所成角的余弦值为( ) A .14B .13C .33D .23311.在长方体1111ABCD A BC D -中,若13AC =,则111()AB AC AD AC ++⋅=( )A .0B .3C .3D .612.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.在长方体1111ABCD A BC D -中,若1AB BC ==,12AA =A 到平面11BD A 的距离为_______ .14.如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BC 11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所成角的余弦值为104,则线段BD 的长为_______.15.已知三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥面ABC ,AB ⊥AC ,且AA 1=AB=AC ,则异面直线AB 1与BC 1所成角为_____.16.如图,在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为________.17.若直线l 的一个方向向量(1,3)d =,则l 与直线10x y -+=的夹角为______. 18.在平行六面体1111ABCD A BC D -中,1160BAA DAA BAD ∠=∠=∠=︒,且所有棱长均为2,则对角线1AC 的长为__________.19.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.20.如图,已知三棱柱111ABC A B C -中,D 是棱1BC 上一点,且12BD DC =设1,,,AB a AC b AA c ===用a ,b ,c 表示向量AD ,则AD =_____________.三、解答题21.在①()()DE CF DE CF +⊥-,②17||2DE =,③0cos ,1EF DB <<这三个条件中任选一个,补充在下面的横线中,并完成问题.问题:如图,在正方体1111ABCD A BC D -中,以D 为坐标原点,建立空间直角坐标系D xyz -.已知点1D 的坐标为()0,0,2,E 为棱11D C 上的动点,F 为棱11B C 上的动点,___________,试问是否存在点E ,F 满足1EF AC ⊥?若存在,求AE BF ⋅的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.22.如图,几何体ABCDEF 中,四边形ABCD 为梯形、ACFE 为矩形,//AB CD ,2AD DC CB AE ====,60ABC ∠=︒,平面ACFE ⊥平面ABCD .(1)证明:BC ⊥平面ACFE ; (2)求二面角B-EF-D 的正弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N 分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.24.已知三棱锥,A BCD ABD -和BCD △是边长为2的等边三角形,平面ABD ⊥平面BCD(1)求证:AC BD ⊥;(2)设G 为BD 中点,H 为ACD △内的动点(含边界),且//GH 平面ABC ,求直线GH 与平面ACD 所成角的正弦值的取值范围.25.如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 中点.(1)PB ∥平面AEC ;(2)设PA =1,ABC ∠60︒=,三棱锥E -ACD 的体积为36,求二面角D -AE -C 的余弦值.26.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PA AB ⊥,4PA AD ==,//BC AD ,AB AD ⊥,2AB BC ==,()01PE PC λλ=≤<.(1)若12λ=,求直线DE 与平面ABE 所成角的正弦值; (2)设二面角B AE C --的大小为θ,若234cos θ=,求λ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意画出正方体直观图,建立空间直角坐标系,计算0AN GC ⋅=,由此判断①正确.根据线线角的知识,判断②正确.根据线线的位置关系,判断③错误.根据二面角的知识,判断④正确. 【详解】画出正方体的直观图,如下图所示,设正方体边长为2,以,,DA DC DG 分别为,,x y z 轴建立空间直角坐标系.则()()()()2,0,0,0,2,2,0,0,2,0,2,0A N G C ,所以()()2,2,20,2,20AN GC ⋅=-⋅-=,所以ANGC ⊥,故①正确.由于//EN AC ,所以CF 与EN 所成的角为FCA ∠,而在FAC ∆中,AF FC CA ==,也即FAC ∆是等边三角形,故60FCA ∠=,所以②正确.由于//EN AC ,而AC 与BD 相交,故,BD MN 不平行,③错误.由于,EB BC FB BC ⊥⊥,所以EBF ∠即是二面角E BC N --的平面角.EBF ∆是等腰直角三角形,所以45EBF ∠=,故④正确. 综上所述,正确的命题个数为3个. 故选:C.【点睛】本小题主要考查空间线线、面面的位置关系有关命题的真假性判断,属于中档题.2.A解析:A 【详解】试题分析:设1AB =112,5BD BC DC ∴===, 1BDC ∆面积为3211C BDC C BCD V V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴==考点:线面角3.A解析:A 【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果. 【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=,11AC AB BC CC ∴=++, ()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=,∴线段1AC 的长为12AC = A.【点睛】本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.4.D解析:D 【分析】由DB ED FE BF =++,利用数量积运算性质展开即可得到答案 【详解】BD ED FE BF =++,2222222111BD BF FE ED BF FE FE ED BF ED ∴=+++++=++故3BD =-故选D 【点睛】本题是要求空间两点之间的距离,运用空间向量将其表示,然后计算得到结果,较为基础.5.C解析:C 【分析】根据题意,以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,平面外一点到平面的距离可以用平面上任意一点与该点的连线在平面法向量上的投影表示,而法向量垂直于平面上所有向量,由AC ,1AD 即可求得平面1ACD 的法向量n ,而1D E 在n 上的投影即为点E 到面1ACD 的距离,即可求得结果【详解】以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,如图所示:则()1101A ,,,()1001D ,,,()100A ,,,()020C ,, E 为AB 的中点,则()110E ,, ()1111D E ∴=-,,,()120AC =-,,,()1101AD =-,,设平面1ACD 的法向量为()n a b c =,,,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即200a b a c -+=⎧⎨-+=⎩ 可得2a b a c =⎧⎨=⎩可取()212n =,, ∴点E 到面1ACD 的距离为1212133D E n d n⋅+-=== 故选C 【点睛】本题是一道关于点到平面距离的题目,解题的关键是掌握求点到面距离的方法,建立空间直角坐标系,结合法向量求出结果,属于中档题。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(包含答案解析)
一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( ) A .12 B .13 C .512D .712 2.已知直三棱柱111ABC A B C -中,190,1,2ABC AB BC CC ︒∠====,则异面直线1AB 与1BC 所成角的余弦值为( )A .35B .35C .45D .45- 3.如图,点P 在正方体1111ABCD A BC D -的面对角线1BC 上运动,则下列四个结论: ①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ;1DP BC ⊥③;④平面1PDB 平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个4.已知在平行六面体1111ABCD A BC D -中,过顶点A 的三条棱所在直线两两夹角均为60︒,且三条棱长均为1,则此平行六面体的对角线1AC 的长为( )A 3B .2C 5D 65.已知直三棱柱111ABC A B C -中,底面边长和侧棱长都相等,则异面直线1AB 与1BC 所成的角的余弦值为( )A .12B .18C .14D .346.在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A .3λB .22C .23λD .557.三棱柱111ABC A B C -中,侧面11BB C C 是边长为2的菱形, 1160,CBB BC ︒∠=交1BC 于点,O AO ⊥侧面11BB C C ,且 1AB C 为等腰直角三角形.若建立如图所示的空间直角坐标系Oxyz ,则点1A 的坐标为( )A .(1,3,2)-B .(3,1,1)-C .(1,2,3)-D .(2,1,3)- 8.如图,在正方体1111ABCD A BC D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C9.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA =,E O 分别是线段1,C C BC 的中点,1113A F A A =,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>> 10.如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大11.如图,棱长为1的正方体1111ABCD A BC D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .24C .22D 312.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A .53B .23C .56D .52二、填空题13.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若DG EF ⊥,则线段DF 长度的取值范围为______.14.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ;②AC BD ⊥;③AC BD =;④异面直线PM 与BD 所成的角为045.15.ABC △中,90C ∠︒=,60A ∠︒=,2AB =,M 为AB 中点,将BMC △沿CM 折叠,当平面BMC ⊥平面AMC 时,A ,B 两点之间的距离为_____.16.空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是__________.17.已知平面α的一个法向量()2,2,1n =--,点()1,3,0A --在平面α内,则点()2,1,4P -到平面α的距离为_________.18.已知αβ⊥,平面α与平面β的法向量分别为m ,n ,且(1,2,5)m =-,(3,6,)n z =-,则z =__________.19.已知向量,,a b c 是空间的一个单位正交基底,向量,,a b a b c +-是空间的另一个基底.若向量m 在基底,,a b c 下的坐标为()1,2,3,则m 在基底,,a b a b c +-下的坐标为 _________20.已知平行六面体中,则____.三、解答题21.如图,平行四边形ABCD 中,26AD AB ==,,E F 分别为,AD BC 的中点.以EF 为折痕把四边形EFCD 折起,使点C 到达点M 的位置,点D 到达点N 的位置,且NF NA =.(1)求证:平面AFN ⊥平面NEB ;(2)若23BE =F 到平面BEM 的距离.22.在直三棱柱111ABC A B C -中,12AC BC CC ===,90ACB ∠=︒,点D 在棱AC 上(不同于点A ,C ),点E 为棱1CC 的中点.(1)求直线1BC 与平面1A BE 所成角的正弦值;(2)若二面角1A BE D --的余弦值为66,求线段CD 的长. 23.如图,在四棱锥P ABCD -中,已知ABCD 是平行四边形,60DAB ∠=,AD AB PB ==,PC PA ⊥,PC PA =.(1)求证:BD ⊥平面PAC ;(2)求二面角A PB C --的余弦值. 24.如图,在底面为平行四边形的四棱锥A BCDE -中,AE AD ⊥,::1:2:2AE EB BC =,AED CDE ∠=∠,AC DC =,点O 为DE 的中点.(1)证明:CO ⊥平面ADE .(2)求平面ABE 与平面AOC 所成锐二面角的余弦值.25.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 是等腰梯形//,2,4,,AB DC BC CD AD AB M N ====分别是,AB AD 的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C PN D --的大小为60°,求四棱锥P ABCD -的体积.26.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,12AA=,CH ⊥平面11AA B B ,且3CH =.(1)求1AC 与平面ABC 所成角的正弦值;(2)在线段11A B 上是否存在一点P ,使得平面PBC ⊥平面ABC ?若存在,求出1B P 的长;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据向量共面定理求解.【详解】 由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-, ∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦, ∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩. 故选:B .【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.C解析:C【解析】【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1AB 与1BC 所成角的余弦值.【详解】解:以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 则11(1,0,0),(0,0,2),(0,0,0),(0,1,2)A B B C ,11(1,0,2),(0,1,2)AB BC =-=,设异面直线1AB 与1BC 所成角为θ, 则1111||4cos 5||||5AB BC AB BC θ⋅===⋅. ∴异面直线1AB 与1BC 所成角的余弦值为45. 故选:C.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.3.C解析:C【分析】利用空间中线线、线面、面面间的位置关系求解.【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC 的体积不变,故①正确;对于②,连接1A B ,11AC ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BAC 面1ACD ,从而由线面平行的定义可得,故②正确;对于③,由于DC ⊥平面11BCBC ,所以1DC BC ⊥,若1DP BC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确.故选C .【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.D解析:D由()2211+BC CC ,AC AB =+根据已知条件能求出结果 【详解】∵()2211+BC CC AC AB =+ =222111222AB BC CC AB BC AB CC BC CC +++⋅+⋅+⋅=1+1+1+2×1×1×cos60°+2×1×1×co s60°+2×1×1×cos60°=6. ∴AC =6.故选D .【点睛】这个题目考查了向量的点积运算和模长的求法;对于向量的题目一般是以小题的形式出现,常见的解题思路为:向量基底化,用已知长度和夹角的向量表示要求的向量,或者建系实现向量坐标化,或者应用数形结合.5.C解析:C【分析】建立空间坐标系,分别求得直线的方向向量,进而得到线线角.【详解】立空间坐标系如图,设边长为2,得到A (2,0,0),1B (132),B (1,3,0),1C (0,0,2)向量()()111,3,2,-1,3,2AB BC =-=-设异面直线夹角为θ,则1111cos =||||AB BC AB BC θ⋅=⋅14故答案为C这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.6.D解析:D【分析】由几何体为正方体,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,求出平面D 1EF 的法向量n ,结合向量的点到平面距离公式求得点M 到平面D 1EF 的距离,结合N 为EM 中点即可求解【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1),设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d =||225||55EM n n ⋅==,N 为EM 中点,所以N 到该面的距离为55 故选:D .【点睛】本题考查利用向量法求解点到平面距离,建系法与数形结合是解题关键,属于中档题 7.B解析:B【分析】作1A D ⊥平面11BB C C 于点 D ,连接1B D ,1,C D OD ,则点1A 与点 D 的横纵坐标相同,点1A 竖坐标的值为1A D 的长度,由1//AA 平面 11BBC C ,得到A 和1A 到平面11BB C C 的距离相等.由 1//A D AO ,则1A 竖坐标的值为AO 的长度,由111//,OC C D OC C D OB ==,得到 11DB OC 为平行四边形,然后由1AB C 为等腰直角三角形面11BB C C 是边长为2的菱形, 160CBB ︒∠=求得坐标即可.【详解】如图所示,作1A D ⊥平面11BB C C 于点 D ,连接1B D ,1,C D OD ,则点1A 与点D 的横纵坐标相同,点1A 竖坐标的值为1A D 的长度,因为111//,AA CC CC ⊂平面 111,BB C C AA ⊄平面11BBC C , 所以1//AA 平面11BB C C ,所以A 和1A 到平面11BBC C 的距离相等. 而1AD ⊥平面11,BB C C AO ⊥平面 11BB C C ,所以1A D AO =,1//A D AO ,所以1AODA 为平行四边形,所以11//,AA OD AA OD =,所以11//,OD CC OD CC =,所以1OCC D 为平行四边形.所以111//,OC C D OC C D OB ==,所以11DB OC 为平行四边形,所以111,,B D OC C D OB ==.而在边长为2的菱形11CC B B 中,160CBB ︒∠=, 所以113,1OC BO OC OB ===.所以点D 的坐标为(3,1,0)-,而1AB C 为等腰直角三角形,所以11OA OC OB ===,故点1A 的坐标为(3,1,1)-.故选:B .【点睛】本题主要考查直线,平面间的平行关系以及平面几何图形的应用,还考查了逻辑推理的能力,属于中档题.8.B解析:B【分析】将问题转化为动点P 到直线MN 的距离最小时,确定点P 的位置,建立空间直角坐标系,取MN 的中点Q ,通过坐标运算可知PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,再由空间两点间的距离公式求出||PQ 后,利用二次函数配方可解决问题.【详解】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q , 1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-, 设(,,)P t t z ,(1,1,)PC t t z =---,由1AC 与PC 共线,可得11111t t z ---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤, 因为2221||(1)(10)(0)2PM z z z =--+--+-25334z z =-+ 2221||(11)(10)()2PN z z z =--+--+-25334z z =-+ 所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离, 由空间两点间的距离公式可得||PQ === 所以当12c =时,||PQ取得最小值4P 为线段1CA 的中点,由于||4MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点. 故选:B【点睛】 本题考查了空间向量的坐标运算,考查了空间两点间的距离公式,考查了数形结合法,考查了二次函数求最值,属于基础题.9.D解析:D【分析】过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.【详解】解:因为1AB AC ==,1BC AA ==222AB AC BC +=,即AB AC ⊥ 过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系,则(1F ,0,1(2O ,12,0),(0E ,0,1(1B ,1,111(,22OB =,11(,22OE =--,11(,22OF =-,1EB =,EF =, 设平面1OB E 的法向量(),,m x y z =,则111·02211·0222m OB x y m OE x y z ⎧=++=⎪⎪⎨⎪=--+=⎪⎩,取1x =,得()1,1,0m →=-,同理可求平面1OB F 的法向量(52,n =-,平面OEF 的法向量2(2p =-,平面1EFB 的法向量2(,2q =-. ∴461cos 61||||m n m n α==434cos 34||||m p m p β==,46cos 46||||m q m q γ==. γαβ∴>>.故选:D .【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.10.D解析:D【分析】设正三棱柱111ABC A B C -棱长为2,设平面BDE 与底面ABC 所成锐二面角为α,,02AE x x =≤≤,以A 为坐标原点建立空间直角坐标系,确定出,,B D E 点的坐标,求出平面BDE 的法向量m ,底面ABC 的法向量坐标为(0,0,1)n =,将cos α表示为关于x 的函数,通过讨论cos α的增减变化,即可求出结论.【详解】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤,设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系, 则(3,1,0),(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BDm ED ⎧⊥⎨⊥⎩,即302(1)0s t k t x k ⎧++=⎪⎨+-=⎪⎩,令23k =33,1t x s x ==+, 所以平面BDE 的一个法向量(133,23)m x x =+,底面ABC 的一个法向量为(0,0,1)n =,222233cos |cos ,|115(1)3(1)12()24m n x x x α=<>==++-+-+ 当1(0,)2x ∈,cos α随着x 增大而增大,则α随着x 的增大而减小,当1(,2)2x ∈,cos α随着x 增大而减小,则α随着x 的增大而增大.故选:D.【点睛】本题考查空间向量法求二面角,应用函数思想讨论二面角的大小,考查直观想象、数学计算能力,素养中档题.11.B解析:B【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA ,利用点到平面距离的向量公式即得解. 【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=-- 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD1A D ∴⊥平面11ABC D故平面11ABC D 的一个法向量为:1(1,0,1)DA = O ∴到平面11ABC D 的距离为: 1111||224||2OD DA d DA ⋅=== 故选:B【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.12.A解析:A【分析】 先建立空间坐标系,设出(),0,M m m ,()0,22,N n n -+,转化条件得1m n +=,利用函数即可得解.【详解】如图建系,由题意可设(),0,M m m ,()0,22,N n n -+,∴(),22,MN m n n m =---,又 ()10,0,1AA =,()1,2,0AC =-, ∴平面11AAC C 的法向量()2,1,0n =, 又 //MN 面11AACC ,∴=0MN n ⋅即1m n +=,∴()()2222222941MN m n n m m m =+-+-=-+,∴MN 最小值为53. 故选:A.【点睛】本题考查了空间向量的应用,考查了转化化归和函数思想,属于中档题. 二、填空题13.【分析】建立空间直角坐标系设出的坐标求出向量利用求得关系式写出的表达式然后利用二次函数求最值即可【详解】由题意建立如图所示的空间直角坐标系则由于则所以所以所以当时线段长度的最小值是当时线段长度的最大 解析:5[,1)5 【分析】 建立空间直角坐标系,设出F 、D 的坐标,求出向量DG ,EF ,利用GD EF ⊥求得关系式,写出DF 的表达式,然后利用二次函数求最值即可.【详解】由题意,建立如图所示的空间直角坐标系,则(0,0,0)A ,1(0,1,)2E ,1(,0,1)2G ,(,0,0)F x ,(0,,0)D y ,由于GD EF ⊥,则0GD EF ⋅=,所以210x y +-=,所以(,,0)(21,)DF x y y y =-=-+-, 所以22222215415550DF x y y y y ⎛⎫=+=-+=-+ ⎪⎝⎭+, 当25y =时,线段DF 长度的最小值是15, 当0y =时,线段DF 长度的最大值是1,而不包括端点,故0y =不能取;故答案为:5[,1)5.【点睛】本题主要考查了点、线、面间的距离计算、棱柱的结构特征、空间直角坐标系等基础知识,着重考查了空间想象能力,以及运算求解能力,属于基础题.14.①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件若不是其所在线段中点时可判断③【详解】因为是正方形所以所以平面又平面平面于所以所解析:①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件,若P Q M N 、、、不是其所在线段中点时可判断③【详解】因为PQMN 是正方形,所以//PQ MN ,所以//PQ 平面ACD ,又平面ACD ⋂平面ABC 于AC ,所以//AC PQ ,所以//AC 截面PQMN ,故①正确;同理可得//BD MQ ,所以AC BD ⊥,即②正确;又//BD MQ ,PMQ 45∠=︒,所以异面直线PM 与BD 所成的角为045,故④正确;根据已知条件,无法确定AC BD 、长度之间的关系,故③错.故答案为①②④【点睛】本题主要考查空间中点线面位置关系,熟记相关知识点即可求出结果,属于常考题型. 15.【解析】【分析】取MC 中点O 连结AOBO 推导出AC =BM =AM =CM =1AO =BO =AO ⊥MCAO ⊥平面BMCAO ⊥BO 由此能求出AB 两点之间的距离【详解】取MC 中点O 连结AOBO ∵△ABC 中∠C =解析:2【解析】【分析】取MC 中点O ,连结AO ,BO ,推导出AC =BM =AM =CM =1,AO BO AO ⊥MC ,AO ⊥平面BMC ,AO ⊥BO ,由此能求出A ,B 两点之间的距离.【详解】取MC 中点O ,连结AO ,BO ,∵△ABC 中,∠C =90°,∠A =60°,AB =2,M 为AB 中点, ∴AC =BM =AM =CM =1, ∴AO 2131()2- BO 22011172cos1201214222BM MO BM OM ⎛⎫+-⨯⨯⨯+-⨯⨯⨯-=⎪⎝⎭ AO ⊥MC ,将△BMC 沿CM 折叠,当平面BMC ⊥平面AMC 时, AO ⊥平面BMC ,∴AO ⊥BO ,∴A ,B 两点之间的距离|AB |22371044BO AO +=+=, 故答案为:102. 【点睛】本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16.【解析】如图所示设∴∴∴周长又∵∴周长的范围为故答案为: 解析:(8,10)【解析】 如图所示, 设DH GHk DA AC==, ∴1AH EHk DA BD==-, ∴5GH k =,4(1)EH k =-, ∴周长82k =+. 又∵01k <<, ∴周长的范围为(8,10).故答案为:(8,10).17.【分析】由题意算出根据向量是平面的一个法向量算出向量在上的投影的绝对值即可得到到的距离【详解】解:根据题意可得又平面的一个法向量点A 在内到的距离等于向量在上的投影的绝对值即故答案为:【点睛】本题给出解析:23【分析】由题意算出()1,4,4AP =-,根据向量()2,2,1n =--是平面α的一个法向量,算出向量AP 在n 上的投影的绝对值,即可得到P 到α的距离. 【详解】解:根据题意,可得()()1,3,0,1,4,2A P ---, ()1,4,4AP =-,又平面α的一个法向量()2,2,1n =--,点A 在α内,()2,1,4P ∴-到α的距离等于向量AP 在n 上的投影的绝对值, ()()1242412P n A -⨯-+⨯-∴⨯=-=+即(232AP n d n ===- 故答案为:23【点睛】本题给出平面的法向量和平面上的一点,求平面外一点到平面的距离;着重考查了向量的数量积公式和点到平面的距离计算等知识,属于中档题.18.3【详解】∵且平面与平面的法向量分别为∴解得:解析:3 【详解】∵αβ⊥,且平面α与平面β的法向量分别为m ,n , ∴(1,2,5)(3,6,)31250m n z z ⋅=-⋅-=--+=, 解得:3z =.19.【解析】由题意可知:即在基底下的坐标为解析:31,,322⎛⎫- ⎪⎝⎭【解析】由题意可知:()()3123322m a b c a b a b c =++=+--+ , 即m 在基底,,a b a b c +-下的坐标为31,,322⎛⎫-⎪⎝⎭. 20.【解析】试题分析:因为在平行六面体中所以则考点:本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构造向量将空间两点之间的距离转化为向量模的运算是解答本题的关键 解析:【解析】试题分析:因为在平行六面体中,,所以,则.考点:本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.三、解答题21.(1)证明见解析;(23 【分析】 (1)记AFBE O =,连接NO ,证明,,AF BE AF NO ⊥⊥即可证明结论;(2)先证明NO ⊥平面ABFE ,再以直线OE 为x 轴,直线OA 为y 轴,直线ON 为z 轴建立空间直角坐标系,求出平面MBE 的法向量()0,1,1n =,再代入点到平面的距离的向量公式计算结果. 【详解】 (1)证明:记AFBE O =,连接NO ,可知四边形ABFE 是菱形,所以AF BE ⊥,且O 为AF ,BE 的中点, 又NF NA =,所以AF NO ⊥, 又因为NOBE O =,NO ,BE ⊂平面NEB ,所以AF ⊥平面NEB ,AF ⊂平面AFN ,∴平面AFN ⊥平面NEB .(2)因为23BE =,所以3EO =,四边形DEBF 是平行四边形,∴23NF DF BE ===, 所以226FO EF EO =-=,所以226NO NF FO =-=,所以2229NO EO NE +==,所以NO BE ⊥, 又由(1)可知:NO AF ⊥,且AF BE O =,AF ,BE ⊂平面ABFE ,所以NO ⊥平面ABFE ,以直线OE 为x 轴,直线OA 为y 轴,直线ON 为z 轴建立空间直角坐标系,则()0,6,0A ,()3,0,0B -,()3,0,0E ,()0,6,0F -,()0,0,6N ,OM ON NM ON AB =+=+()()0,0,63,6,0=+--()3,6,6=-- 所以()3,6,6M --,所以()0,6,6BM =-,()23,0,0BE =,()3,6,0FB =-设(),,n x y z =是平面BEM 的法向量,则0660000230y z x n BM y z n BE x ⎧⎧-+==⎧⋅=⎪⎪⇒⇒⎨⎨⎨=⋅==⎩⎪⎪⎩⎩,取1y =,得()0,1,1n =, 则点F 到平面BEM 的距离632FB n d n⋅===.【点睛】关键点点睛:本题的第一个关键点是垂直关系的证明,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直,第二个关键是点M 的坐标的求解方法. 22.(1)36(2)1 【分析】(1)建立空间直角坐标系,根据线面角公式求解即可; (2)设(,0,0)(02)D <<,根据二面角公式及二面角1A BE D --的余弦值为66解方程即可求解. 【详解】(1)如图建立空间直角坐标系C 一xyz ,则B (0,2,0),C (0,0,2),E (0,0,1 ),A 1(2,0,2).11(0,2,2),(2,0,1),(0,2,1)BC EA EB ∴=-==-.设平面1A BE 的法向量为(,,)n x y z =,则2020x z y z +=⎧⎨-=⎩,令x = 1,则(1,1,2)n =--. 所以1113cos ,.6||||BC n BC n BC n ⋅<>==-所以直线BC 与平面1A BE 3 (2)设(,0,0)(02)D <<,则(,2,0)BD →=-,设平面BED 的法向量为(,,)m x y z →=,则2020x y y z λ-=⎧⎨-=⎩,令y = 1,则2(,1,2)m λ→=.因为二面角1A BE D --所以2|5|||cos ,||||6m n m n m n →→→-⋅<>===⨯, 解得1λ=, 所以1CD = 【点睛】关键点点睛:向量法求二面角的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.23.(1)证明见解析;(2)35. 【分析】(1)首先证出AC BD ⊥,再证出BD OP ⊥,利用线面垂直的判定定理即可证明. (2)以O 为坐标原点,以,,OA OB OP 为,,x y z 轴,建立空间直角坐标系,求出平面PAB 的一个法向量,以及平面PBC 的一个法向量,根据1212123cos 5n n n n n n ⋅==⋅,即可求解. 【详解】(1)证明:设2AD AB PB ===,ACBD O =,连接OP ,则∵AB AD =,且60DAB ∠=,∴四边形ABCD 为菱形, ∴AC BD ⊥,且AC =2BD =,1BO =, 又∵PC PA ⊥,PC PA =,∴PCA 是等腰Rt ,∴PO AC ⊥,PC PA =,PO =,在POB 中,PO =,2PB =,1BO =,有222PB PO BO =+, ∴PO BO ⊥,即BD OP⊥,又ACOP O =,∴BD ⊥平面PAC ;(2)以O 为坐标原点,建立空间直角坐标系,如图:则(000)O ,,,0)A ,,(010)B ,,,(0)C ,,(00P ,则(33)AP =-,,,(310)AB =-,,,(03)BP =-,,,(310)BC =--,,, 设平面PAB 的法向量为1111()n x y z =,,,则1111113300030x z n AP n AB x y ⎧⎧-+=⋅=⎪⎪⇒⎨⎨⋅=⎪-+=⎪⎩⎩,令11x =,则13y 11z =,则1(131)n =,,, 设平面PBC 的法向量为2222()n x y z =,,,则222222300030y z n BP n BC x y ⎧⎧-+=⋅=⎪⎪⇒⎨⎨⋅=⎪--=⎪⎩⎩,令21x =-,则23y =、21z =,则2(31)n =-,,,∴1212123cos 5n n n n n n ⋅==⋅,, 设二面角A PB C --的平面角为θ,经观察θ为钝角,则123cos |cos |5n n θ=-<>=-,. 【点睛】 思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内; (2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错. (3)利用数量积验证垂直或求平面的法向量. (4)利用法向量求距离、线面角或二面角. 24.(1)证明见解析;(25. 【分析】(1)先证明,CO ED ⊥,再证明CO AO ⊥,利用线面垂直的判定定理,即可证明;(2)以O 为原点,OC 为x 轴正半轴建立空间直角坐标系O xyz -,用向量法计算. 【详解】(1)证明:由题意BCDE 为平行四边形,且::1:2:2AE EB BC = 可得四边形BCDE 为菱形,连接CE ,在Rt ADE △中,∵12AE DE =, ∴60AED ∠=︒,则60CDE ∠=︒,所以CDE △为正三角形. 由点O 为DE 的中点,得CO ED ⊥. ∵点O 为DE 的中点,∴12AO ED EO ==, 又AC DC =,∴AC EC =, ∴"AOC △≌EOC △,则CO AO ⊥. ∵AO DE O ⋂=,∴CO ⊥平面ADE .(2)解:如图,不妨设2DE =,以O 为原点,OC 为x 轴正半轴建立空间直角坐标系O xyz -,则()0,1,0D ,()0,1,0E -,)3,0,0C,()3,2,0B-,130,2A ⎛- ⎝⎭. 设平面ABE 的一个法向量为()111,,m x y z =,则1111301302m BE x y m EA y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,不妨令11z =,得()1,m =--.设平面AOC 的一个法向量为()222,,n x y z =,则22230102n OC xn OA y ⎧⋅==⎪⎨⋅=-=⎪⎩, 令2y =()0,3,1n=. ∵03cos ,5m n m nm n⋅-===⨯, ∴平面ABE 与平面AOC 【点睛】立体几何解答题的基本结构:(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算. 25.(1)证明见解析;(2)1. 【分析】(1)连接DM ,证出MN AD ⊥,PD MN ⊥,再利用面面垂直的判定定理即可证明. (2)连接BD ,以点D 为坐标原点,以,,DA DB DP 为,,x y z 轴,建立空间直角坐标系,设(0,0,)(0)P m m >,根据空间向量的数量积求出m ,再根据锥体的体积公式即可求解. 【详解】(1)连接DM ,显然//DC BM 且DC BM =, ∴四边形BCDM 为平行四边形,//DM BC ∴且DM BC =,AMD ∴△是正三角形,MN AD ∴⊥,又PD ⊥平面,ABCD MN ⊂平面,ABCD PD MN ∴⊥,,PD AD D MN ⋂=∴⊥平面PAD ,又MN ⊂平面PMN ,∴平面PMN ⊥平面PAD .(2)连接BD ,易知//,,BD MN BD AD BD PD ∴⊥⊥.建立如图所示的空间直角坐标系,则(0,0,0),(1,0,0),(1D N C -, 设(0,0,)(0)P m m >,(1,0,),(2,3,0)PN m CN ∴=-=-.设平面PNC 的法向量为(,,)a x y z =,00a PN a CN ⎧⋅=∴⎨⋅=⎩,即0,20,x mz x -=⎧⎪⎨=⎪⎩令(3,2z a m m =,而平面PND 的一个法向量为(0,1,0)b =,2221|cos ,|cos602343m a b m m ︒〈〉===++ 解得33m =,所以113(24)31323V =⨯⨯+⨯⨯=.【点睛】 方法点睛:证明面面垂直的常用方法:证明两平面垂直常转化为线面垂直,利用线面垂直的判定定理来证明,也可作出二面角的平面角,证明平面角为直角,利用定义证明. 解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内; (2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错. (3)利用数量积验证垂直或求平面的法向量. (4)利用法向量求距离、线面角或二面角. 26.(1)311055;(2)存在,115B P =. 【分析】(1)以点1B 为坐标在原点建立空间直角坐标系,利用向量法可求得结果;(2)假设存在点P ,设(,0,0)P λ,且[]0,2λ∈,利用平面PBC 的法向量与平面ABC 的法向量垂直列式可解得结果. 【详解】(1)以点1B 为坐标在原点建立空间直角坐标系,如图:则1(0,0,0)B ,1(2,0,0)A ,(2,2,0)A ,(0,2,0)B ,(1,1,3)C , (1)(2,0,0)AB =-,(1,1,3)AC =--, 设平面ABC 的一个法向量(,,)n x y z = 则00n AB n AC ⎧⋅=⎨⋅=⎩,即2030x x y z -=⎧⎨--+=⎩,令1z =得(0,3,1)n =, 设1AC 与平面ABC 所成角为θ,1(1,1,3)AC =-,11sin 11AC nAC n θ⋅∴===+⋅ (2)假设存在点P ,设(,0,0)P λ,且[]0,2λ∈, (,2,0)PB λ∴=-,(1,1,3)BC =-, 设平面PBC 的法向量(,,)m x y z =,则00m PB m BC ⎧⋅=⎨⋅=⎩,即2030x y x y z λ-+=⎧⎨-+=⎩,令1x =得11,,263m λλ⎛⎫=- ⎪⎝⎭, 平面PBC ⊥平面ABC ,m n ∴⊥,即310263m n λλ=⋅=+-,得[]10,25λ=∈, ∴存在这样的点1,0,05P ⎛⎫ ⎪⎝⎭使得平面PBC ⊥平面ABC ,且115B P =. 【点睛】关键点点睛:将平面与平面垂直问题转化为两个平面的法向量垂直求解是本题的解题关键.。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(包含答案解析)(2)
一、选择题1.如图,已知正方体1111ABCD A B C D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .132.在四棱锥O ﹣ABCD 中,底面ABCD 是平四边形,设OA a =,OB b =,OC c =,则BD 可表示为( )A .a c b +-B .a +2b c -C .c b a +-D .a c +-2b 3.定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件: (1)a a b ⊥⨯,b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);(2)a b ⨯的模sin ,a b a b a b ⨯=⋅(,a b 表示向量a 、b 的夹角);如图,在正方体1111ABCD A B C D -,有以下四个结论:①1AB AC ⨯与1BD 方向相反;②AB AC BC AB ⨯=⨯; ③6BC AC ⨯与正方体表面积的数值相等;④()1AB AB CB ⨯⋅与正方体体积的数值相等.这四个结论中,正确的结论有( )个A .4B .3C .2D .1 4.若{},,a b c 是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .,2,3a b cB .,,a b b c c a +++C .,,a b c b c c +++D .2,23,39a b b c a c ++- 5.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( )A .2B .3C .5D .136.如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论: ①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ;1DP BC ⊥③;④平面1PDB 平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个7.已知长方体1111ABCD A B C D -的底面AC 为正方形,1AA a =,AB b =,且a b >,侧棱1CC 上一点E 满足13CC CE =,设异面直线1A B 与1AD ,1A B 与11D B ,AE 与11D B 的所成角分别为α,β,γ,则A .αβγ<<B .γβα<<C .βαγ<<D .αγβ<< 8.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C 的中点,则异面直线MB 与1AA 所成角的余弦值为( )33429.在正方体ABCD --A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( )A .105-B .105C .155-D .15510.如图是由16个边长为1的菱形构成的图形,菱形中的锐角为,3π=,,a AB b CD =则=a b ⋅A .5-B .1-C .3-D .6-11.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35+C .45+D .422+ 12.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )2二、填空题13.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若DG EF ⊥,则线段DF 长度的取值范围为______.14.如图,在三棱锥P ABC -,ABC ∆为等边三角形,PAC ∆为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为__________.15.在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.16.在平面直角坐标系中,点(1,0,2)A 到点(3,4,0)B -之间的距离为__________. 17.如图,空间四边形C OAB 中,a OA =,b OB =,C c O =,点M 在OA 上,且23OM =OA ,点N 为C B 中点,则MN 等于_____.(用向量表示)18.已知(1,1,0)a =,(1,0,2)b =-,若ka b +和3a b -相互垂直,则k =________. 19.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:① 直线AC 与直线1C E 是异面直线;②1A E 一定不垂直1AC ;③ 三棱锥1E AAO -的体积为定值; ④1AE EC +的最小值为22. 其中正确的序号序号是______.20.在平行六面体ABCD A B C D '-''' 中,4AB = ,3AD = ,5A A '= ,90BAD ∠=︒ ,60A AB A AD ''∠=∠=︒ ,则AC '= __________.三、解答题21.如图,Rt ABC △中,90ABC ∠=︒,2BA BC ==,分别过A ,C 作平面ABC 的垂线1A A 和1C C ,12AA =,1CC h =,连结1A C 和1AC 交于点P .(Ⅰ)设点M 为BC 中点,若2h =,求证:直线PM 与平面1A AB 平行;(Ⅱ)设O 为AC 中点,二面角11A AC B --等于45°,求直线OP 与平面1A BP 所成角的大小.22.如图,在四棱锥P ABCD -中,已知底面ABCD 为等腰梯形,//AB CD ,DA AB BC a ===,2CD a =,PD ⊥平面ABCD ,2PD a =.(1)求PC 与DB 所成角的余弦值;(2)设l 是过点P 且与AB 平行的一条直线,点Q 在直线l 上,当PC 与平面BQD 所成角的正弦值最大时,求线段PQ 的长.23.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,112BC AD ==且3CD =,E 为AD 的中点,F 是棱PA 的中点,2PA =,PE ⊥底面ABCD .AD CD ⊥(Ⅰ)证明://BF 平面PCD ;(Ⅱ)求二面角P BD F --的正弦值;(Ⅲ)在线段PC (不含端点)上是否存在一点M ,使得直线BM 和平面BDF 所成角的正弦值为3913?若存在,求出此时PM 的长;若不存在,说明理由. 24.如图,四边形ABCD 与四边形BDEF 均为菱形,60DAB DBF ∠=∠=︒,且FA FC =(1)求证:平面ACF ⊥平面ABCD ;(2)求二面角A FC B --的余弦值.25.如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,四边形ABCD 为平行四边形,2,60AD CD ADC ︒=∠=.(1),M N 分别是1,AC BB 的中点,求证://MN 平面11A B CD(2)若12,(0)CD AA AC λλ==>,二面角1A C D C --5,求三棱锥11C ACD -的体积. 26.如图所示,在直三棱柱111ABC A B C -中,ABC 是边长为6的等边三角形,,DE 分别为1,AA BC 的中点.(1)证明://AE 平面1BDC(2)若123CC =,求DE 与平面11ACC A 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围.【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离.设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤∵点P 到平面11CDD C 距离等于线段PF 的长∴PN PF =由两点间距离公式可得()()2212x x z =-+-,化简得()2212x z -=-,则210x -≥解不等式可得12x ≥综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭ 所以213HP ≥(当时2x = 取等)故选:D【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题.2.D解析:D【分析】作出图形,根据条件得出BD BA BC =+,再得到BA a b =-,BC c b =-,即可求解, 得到答案.【详解】如图所示,在四棱锥O ABCD -中,底面ABCD 是平行四边形,则BD BA BC =+, 在OAB ∆中,BA OA OB a b =-=-,在OBC ∆中,BC OC OB c b =-=-,故选:D.【点睛】本题主要考查了向量的线性运算,以及向量的加法的几何意义,其中解答中熟记向量的运算法则是解答的关键,着重考查了推理与计算能力,属于基础题.3.D解析:D【分析】根据外积的定义逐项判断即可得到结果.【详解】对于①,根据向量外积的第一个性质可知1AB AC ⨯与1BD 方向相同,故①错误;对于②,根据向量外积的第一个性质可知AB AC ⨯与BC AB ⨯方向相反,不会相等,故②错误;对于③,根据向量外积的第二个性质可知sin 4ABCD BC AC BC AC S π⨯=⋅⋅=,则6BC AC ⨯与正方体表面积的数值相等,故③正确;对于④,1AB AB ⨯与CB 的方向相反,则()10AB AB CB ⨯⋅<,故④错误.故选:D.【点睛】本题考查正方体的性质和信息迁移,解题的关键在于依据新概念的性质进行推理论证,属难题. 4.D解析:D【分析】根据空间向量的共面定理,一组不共面的向量构成空间的一个基底,对选项中的向量进行判断即可.【详解】对于:,2,3,:,,,:,,A a b c B a b b c c a C a b c b c c ++++++,每组都是不共面的向量,能构成空间的一个基底,对于D :2,23,3-9a b b c a c ++满足:()()3-932-23a c a b b c ⎡⎤=++⎣⎦,是共面向量,不能构成空间的一个基底, 故选D【点睛】本题主要考查了向量的相关知识,考查了空间向量共面的判断与应用问题,熟练掌握向量基底的定义以及判断条件是解题的关键,属于基础题. 5.A解析:A【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,利用空间向量求异面直线AE 与CD 1所成角的余弦值为6 . 【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0), ()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE D C >=26922=⋅. ∴异面直线AE 与CD 1所成角的余弦值为26. 故选A .【点睛】 本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.6.C解析:C【分析】利用空间中线线、线面、面面间的位置关系求解.【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确;对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确;对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥,若1DP BC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确.故选C .【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.7.A解析:A【分析】根据题意将异面直线平移到同一平面,再由余弦定理得到结果.【详解】根据题意将异面直线平移到同一平面中,如上图,显然α,β,(0,]2πγ∈,因为a b>,异面直线1A B与1AD的夹角即角1AD C,根据三角形1AD C中的余弦定理得到222211cos21()aba baα==>++,故(0,)3πα∈,同理在三角形1A DB中利用余弦定理得到:2221cos222()1aa bbβ==<⋅+⋅+,故(,)32ππβ∈,连接AC,则AC垂直于BD,CE垂直于BD,AC交CE于C点,故可得到BD垂直于面ACE,进而得到BD垂直于AE,而BD平行于11D B.从而得到2πγ=,故αβγ<<.故答案为A.【点睛】这个题目考查了异面直线夹角的求法,一般是将异面直线平移到同一平面中,转化到三角形中进行计算,或者建立坐标系,求解两直线的方向向量,两个方向向量的夹角就是异面直线的夹角或其补角.8.B解析:B【分析】以B为原点,BA为x轴,BC为y轴,1BB为z轴,建立空间直角坐标系,求得11,1,22MB⎛⎫=---⎪⎝⎭,()10,?02AA =,,利用空间向量夹角余弦公式能求出异面直线MB 与1AA所成角的余弦值.【详解】在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C , ∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 设11111222AA A B B C ===, 则11,1,22M ⎛⎫⎪⎝⎭,(0,00B ,),(1,00A ,),1(1,02A ,), 11,1,22MB ⎛⎫=--- ⎪⎝⎭,1(0,02AA ,)=, 设异面直线MB 与1AA 所成角为θ, 则1122cos 1824MB AA MB AA θ⋅===⋅⋅, ∴异面直线MB 与1AA 所成角的余弦值为22,故选B . 【点睛】本题主要考查异面直线所成角的余弦值的求法,是基础题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.9.B解析:B【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【详解】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,,∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,,设平面1B BD 的法向量为(),,x n y z =,∵ n BD ⊥,1n BB ⊥, ∴220 20x y z --=⎧⎨=⎩,令y 1=,则() 110n =-,,, ∴10cos ,5n BE n BE n BE ⋅==⋅, 设直线BE 与平面1B BD 所成角为θ,则10sin cos ,5n BE θ==,故选B . 【点睛】本题考查直线与平面所成角的正弦值的求法,解题时要注意向量法的合理运用,准确得到面的法向量是解题的关键,是中档题. 10.B解析:B【解析】设菱形中横向单位向量为,m 纵向单位向量为n ,则111,1122m n m n ==⋅=⨯⨯=,2a AB m n ==+,32b CD m n ==-+,()()232a b m n m n ⋅=+-+=223443421m n m n -+-⋅=-+-=-,故选B. 11.B解析:B【分析】建立空间直角坐标系,求出点M 的轨迹,然后求出点M 到直线AB 的最远距离【详解】以D 为原点,DA 为x 轴,DC 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系则(2,0,23P ,()0,4,0,C设(),,0M a b ,04,04a b ≤≤≤≤()2,,23MP a b ∴=--,(),4,0MC a b =-- •0MP MC =,22•240MP MC a a b b ∴=-+-+=,整理得()()22125a b -+-= M ∴为底面ABCD 内以()12O ,为圆心,以5r =为半径的圆上的一个动点 则点M 到直线AB 的最远距离为41535-+=+故选B【点睛】本题考查了运动点的轨迹问题,需要建立空间直角坐标系,结合题意先求出运动点的轨迹,然后再求出点到线的距离问题12.D解析:D【分析】由几何体为正方体,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,求出平面D 1EF 的法向量n ,结合向量的点到平面距离公式求得点M 到平面D 1EF 的距离,结合N 为EM 中点即可求解【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1),设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d =||25||55EM n n ⋅==,N 为EM 中点,所以N 到该面的距离为5 故选:D .【点睛】本题考查利用向量法求解点到平面距离,建系法与数形结合是解题关键,属于中档题二、填空题13.【分析】建立空间直角坐标系设出的坐标求出向量利用求得关系式写出的表达式然后利用二次函数求最值即可【详解】由题意建立如图所示的空间直角坐标系则由于则所以所以所以当时线段长度的最小值是当时线段长度的最大 解析:5[,1)5 【分析】 建立空间直角坐标系,设出F 、D 的坐标,求出向量DG ,EF ,利用GD EF ⊥求得关系式,写出DF 的表达式,然后利用二次函数求最值即可.【详解】由题意,建立如图所示的空间直角坐标系,则(0,0,0)A ,1(0,1,)2E ,1(,0,1)2G ,(,0,0)F x ,(0,,0)D y ,由于GD EF ⊥,则0GD EF ⋅=,所以210x y +-=,所以(,,0)(21,)DF x y y y =-=-+-, 所以22222215415550DF x y y y y ⎛⎫=+=-+=-+ ⎪⎝⎭+, 当25y =时,线段DF 长度的最小值是5, 当0y =时,线段DF 长度的最大值是1, 而不包括端点,故0y =不能取;故答案为:5[,1)5.【点睛】本题主要考查了点、线、面间的距离计算、棱柱的结构特征、空间直角坐标系等基础知识,着重考查了空间想象能力,以及运算求解能力,属于基础题.14.【分析】建立如图所示的空间直角坐标系结合为等腰直角三角形求得向量的坐标利用向量的夹角公式即可求解【详解】取得中点连接因为所以因为平面平面平面平面所以平面又因为所以于是以为坐标原点建立如图所示的空间直 解析:2 【分析】 建立如图所示的空间直角坐标系O xyz -,结合PAC ∆为等腰直角三角形,求得向量,AC PD 的坐标,利用向量的夹角公式,即可求解.【详解】取AC 得中点O ,连接OP ,OB ,因为PA PC =,所以AC OP ⊥.因为平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC =.所以OP ⊥平面ABC ,又因为AB BC =,所以AC OB ⊥,于是以O 为坐标原点, 建立如图所示的空间直角坐标系O xyz -,结合PAC ∆为等腰直角三角形,4PA PC ==,ABC ∆为等边三角形,则()22,0,0A ,()22,0,0C -,()0,0,22P ,()2,6,0D , 所以()42,0,0AC =-,()2,6,22PD =-, 所以cos ,424AC PDAC PD AC PD ⋅〈〉==⨯ 2=-, 故异面直线AC 与PD 所成角的余弦值为2.【点睛】本题主要考查了利用空间向量求解异面直线所成的角,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解是解答此类问题的关键,着重考查了推理与运算能力.15.【分析】先找出线面角运用余弦定理进行求解【详解】连接交于点取中点连接则连接为异面直线与所成角在中同理可得异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角考查了空间想象能力运算解析:3010【分析】先找出线面角,运用余弦定理进行求解【详解】连接1AB交1A B于点D,取11B C中点E,连接DE,则1DE AC,连接1A E1A DE∴∠为异面直线1A B 与1AC所成角在111Rt AC B中,111AC=,1111122C E C B==15A E∴=同理可得16A D=5DE=222165530cos652A DE+-⎝⎭⎝⎭⎝⎭∠==⨯⨯,∴异面直线1A B与1AC30故答案为3010【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.16.【解析】故的距离为故答案为解析:6【解析】222(13)(04)(20)26AB=-+++-=,故AB的距离为266. 17.【分析】试题分析:因为空间四边形OABC如图点M在线段OA上且OM=2MAN为BC的中点所以所以考点:向量加减混合运算及其几何意义【详解】解析:211 322a b c -++【分析】试题分析:因为空间四边形OABC如图aOA=,bOB=,C cO=,点M在线段OA上,且OM=2MA,N为BC的中点,所以1122 ON c b=+所以211322 MN ON MO a b c =+=-++考点:向量加减混合运算及其几何意义【详解】18.【解析】试题分析:所以考点:空间向量解析:16 5【解析】试题分析:,所以考点:空间向量19.①③④【分析】由题意画出图形由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心由棱锥底面积与高为定值判断③;设BE=x 列出AE+EC1关于x的函数式结合其几何意义求出最小值判断④【详解解析:①③④【分析】由题意画出图形,由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设BE=x,列出AE+EC1关于x的函数式,结合其几何意义求出最小值判断④.【详解】 如图,∵直线AC 经过平面BCC 1B 1内的点C ,而直线C 1E 在平面BCC 1B 1内不过C , ∴直线AC 与直线C 1E 是异面直线,故①正确; 当E 与B 重合时,AB 1⊥A 1B ,而C 1B 1⊥A 1B , ∴A 1B ⊥平面AB 1C 1,则A 1E 垂直AC 1,故②错误;由题意知,直三棱柱ABC ﹣A 1B 1C 1的外接球的球心为O 是AC 1 与A 1C 的交点,则△AA 1O 的面积为定值,由BB 1∥平面AA 1C 1C ,∴E 到平面AA 1O 的距离为定值,∴三棱锥E ﹣AA 1O 的体积为定值,故③正确; 设BE =x ,则B 1E =2﹣x ,∴AE +EC 12211(2)x x =++-由其几何意义,即平面内动点(x ,1)与两定点(0,0),(2,0)距离和的最小值知, 其最小值为2④正确. 故答案为①③④ 【点睛】本题考查命题的真假判断与应用,考查空间想象能力和思维能力,属于中档题20.【解析】连接因为所以根据即所以则而根据余弦定理得点睛:本题考查了几何体的对角线长的求解以及余弦定理的应用同时考查了空间象限能力计算推理的能力属于中档试题立体几何是高中数学中的重要内容也是高考重点考查 85【解析】连接AC ,因为04,3,90AB AD BAD ==∠=,所以5AC =, 根据cos cos cos A AB A AC CAB ∠=∠⋅∠'',即12cos 22A AC '=∠⋅,所以045A AC ∠=',则0135C CA ∠=', 而5,5AC AA '==,根据余弦定理得85AC '=点睛:本题考查了几何体的对角线长的求解,以及余弦定理的应用,同时考查了空间象限能力,计算推理的能力,属于中档试题,立体几何是高中数学中的重要内容,也是高考重点考查的考点与热点,此类问题的设置一般有线面位置关系的证明与角度距离的计算等两类问题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)60︒. 【分析】(Ⅰ)根据线面平行的判断定理可证明//PM 面1A AB .(Ⅱ)建立如图所示的空间直角坐标系,求出平面11AA C 的法向量和平面11A C B 的法向量后利用已知二面角可得2h 的值,再求出OP 和平面1A BP 的法向量后可得线面角的正弦值,从而可求角的大小. 【详解】解:(Ⅰ)若2h =,因为1A A ⊥平面ABC ,1C C ⊥平面ABC ,故11//A A C C , 因为112AA CC ==,故P 为1A C 的中点,由中位线知:1//PM A B ,而PM ⊄面1A AB ,1A B ⊂面1A AB ,//PM ∴面1A AB(Ⅱ)以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 与平面ABC 垂直的直线为z 轴建立空间直角坐标系, 则()2,0,0B,()10,2,2A -,()122,C h ,()2,0C ,()12,2,2BA =--,()122,2,BC h =-.设平面11A C A 的法向量为1n ,易得()11,0,0n =, 设平面11A C B 的法向量为()2,,n x y z =,由12120,0,BA n BC n ⎧⋅=⎪⎨⋅=⎪⎩得22220,220,x z x h z ⎧-=⎪⎨-=⎪⎩取1z =,得222,,12222n ⎫=⎪⎝⎭, 12221222cos45162n n n n h ⋅∴︒===+,得21h =. 12A PPC ∴=,1222210,,333OP OA OC ⎛⎫⎛⎫∴=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭. 设平面1A PB 的法向量,即平面1A BC 的法向量为()3111,,n x y z =,又()2,2,0BC =-.由13130,0,BA n BC n ⎧⋅=⎪⎨⋅=⎪⎩得111112220,220,x y z x y ⎧+-=⎪⎨-=⎪⎩取11x =得()31,1,2n =. 设直线OP 与平面1A BP 所成的角为α,02πα<<.则3323sin 26OP n OP n α⋅===,则60α=︒.所以直线OP 与平面1A BP 所成的角为60︒.【点睛】方法点睛:.线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算. 22.(162)8a【分析】(1)过A 作AM CD ⊥于M ,再过D 作DN ∥AM ,由于PD ⊥平面ABCD ,所以得,,PD DN DM 两两垂直,所以以D 为坐标原点,建立如图所示的空间直角坐标系,利用空间向量求解;(2)PQ AB =λ,由于PQ 与AB平行,所以3(,,2)(0,,0)22BP a a a λ=--=,然后求出平面BQD 的法向量3(1,)36n =-,设θ为PC 与平面BQD 所成角,则可得2222(2)sin 2(16)λθλ+=+,再换元可求出sin θ的最大值,进而可求得答案【详解】解:(1)过A 作AM CD ⊥于M ,则2aDM =,所以3ADM π∠=, 过D 作DN ∥AM ,因为PD ⊥平面ABCD ,,DN DM 在平面ABCD 内, 所以,PD DN PDDM ⊥⊥,所以以D 为坐标原点,建立如图所示的空间直角坐标系,则3(0,0,2),(0,2,0),(0,0,0),(,,0)22P a C a D B a a , 所以33(0,2,2),(,,0)2PC a a DB a a =-=,2cos ,2PC DBPC DBPC DB ⋅===⋅(2)因为,,0)22aA a ,所以(0,,0)AB a =,设PQ AB =λ, 因为PQ 与AB 平行,所以3(,,2)(0,,0)2BP a a a λ=--=, 33(0,,0),(,,0),(0,2,2)2PQ a DB a a PC a a λ===-, 3(,,2)22BQ BP PQ a a a a λ=+=--, 设平面BQD 的法向量为(,,)n x y z =,则33()2023302n BQ a a y az n DB ax ay λ⎧⋅=-+-+=⎪⎪⎨⎪⋅=+=⎪⎩,令1x =,则33(1,,)36nλ=-,设θ为PC与平面BQD所成角,所以22233233sin cos,1216221312a aPC naλλθλλ--+===⋅+⋅++,所以2222(2)sin2(16)λθλ+=+,令2tλ=+,则22221sin4202(420)2(1)tt tt tθ==-+-+因为22041[,)5t t-∈-+∞,所以2max15sin182(1)5θ==-,此时2220411120()105t t t-=--,当1110t=,即10t=时取得最大值,此时8λ=,所以8PQ AB=,所以8PQ a=【点睛】关键点点睛:此题考查线面角的求法,解题的关键是建立空间直角坐标系,设PQ AB =λ,则有22233233sin cos ,1216221312a a PC n a λλθλλ--+===⋅+⋅++,再利用换元法可求得结果,考查计算能力,属于中档题 23.(Ⅰ)证明见解析;(Ⅱ)46565;(Ⅲ)存在,7PM =. 【分析】(Ⅰ)建立空间直角坐标系,求出平面BCD 的法向量以及直线BF 的方向向量,根据向量数量积为零,即可证明;(Ⅱ)分别求出平面PBD 与平面FBD 的法向量,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系求出其正弦值;(Ⅲ)设PM PC λ=,()0,1λ∈,利用空间向量法表示出直线BM 和平面BDF 所成角的正弦值,即可得到方程,求出λ,即可求出PM 的长; 【详解】解:(Ⅰ)由题意得://BC DE ,=BC DE ,90ADC ∠=︒, 所以四边形BCDE 为矩形, 又PE ⊥面ABCD ,如图建立空间直角坐标系E xyz -,则()0,0,0E ,()1,0,0A ,()3,0B,()1,0,0D -,(3P ,()3,0C -,132F ⎛ ⎝⎭设平面PCD 的法向量为(),,m x y z =,()0,3,0DC =,(3DP =则00DC m DP m ⎧⋅=⎨⋅=⎩,则0x ==⎪⎩,则0y =,不妨设x =1z =, 可得()3,0,1m =-又1,22BF ⎛= ⎝⎭,可得0BF m ⋅=, 又因为直线BF ⊄平面BCD ,所以//BF 平面BCD .(Ⅱ)设平面PBD 的法向量为()1111,,x n y z =,()1,DB =,(0,BP =,则1100DB n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即111100x ⎧+=⎪⎨+=⎪⎩,不妨设x =()13,1,1n =--,设平面BDF 的法向量为()2222,,n xy z =,3,0,22DF ⎛⎫= ⎪ ⎪⎝⎭,则2200DB n DF n ⎧⋅=⎪⎨⋅=⎪⎩,即22220302x x z ⎧+=⎪⎨+=⎪⎩,不妨设2x =,可得()2n =-, 因此有1212127cos ,n n n n n n ⋅==-⋅ (注:结果正负取决于法向量方向) 于是21212465sin ,1cos ,n n n n =-=,所以二面角P BD F--的正弦值为65. (Ⅲ)设((),PM PC λλλ==-=-,()0,1λ∈(),BM BP PM λ=+=-,由(Ⅱ)可知平面BDF 的法向量为()23,1,3n =-,2223cos ,13BM n BM n BM n⋅===⋅,有23410λλ-+=,解得1λ=(舍)或13λ=, 可得1,333PM ⎛=-- ⎝⎭,所以7PM =. 【点睛】本题考查了立体几何中的线面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 24.(1)证明见解析;(2)15. 【分析】(1)AC 与BD 交于点O ,连接FO 、FD ,证明FO AC ⊥,FO BD ⊥,然后得到FO ⊥平面ABCD 即可;(2)以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立空间直角坐标系,然后求出平面BFC 和平面ACF 的法向量,然后可算出答案. 【详解】(1)证明:AC 与BD 交于点O ,连接FO 、FD ,∵FA FC =,O 是AC 中点,且O 是BD 中点,∴FO AC ⊥, ∵四边形BDEF 为菱形,60DBF ∠=︒, ∴FD FB =,∴FO BD ⊥,又AC BD O =,∴FO ⊥平面ABCD ,∵FO ⊂平面ACF ,∴平面ACF ⊥平面ABCD (2)易知OA ,OB ,OF 两两垂直以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立如图所示的空间直角坐标系设2AB =,∵四边形ABCD 为菱形,60DAB ∠=︒ 则2BD =,∴1OB =,3OA OF ==故(0,0,0)O ,(0,1,0)B ,()3,0,0C -,(3F ∴(3,0,3CF =,3,1,0CB,()0,1,0OB =设平面BFC 的一个法向量为(,,)n x y z =则3030n CF x n CB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,得()1,3,1n =-- 显然,()0,1,0OB =为平面ACF 的一个法向量∴15cos ,5OB n OB n OB n⋅<>==-⋅ 由图知,二面角A FC B --的平面角为锐角 ∴二面角A FC B --的余弦值为5【点睛】关键点睛:用向量法求解空间角的问题时,解题的关键是建立适当的空间直角坐标系,准确地写出点的坐标和算出直线的方向向量、平面的法向量. 25.(1)证明见解析;(2)4. 【分析】(1)连接BD ,1B D ,在1BDB △中,利用中位线定理得1//B D MN ,进而利用线面平行判定定理即可证明;(2)建立空间直角坐标系,易知平面1AC D 的一个法向量为113,1,n λ⎛⎫= ⎪⎭,平面1C CD 的一个法向量为()20,1,0n =,利用公式求二面角余弦,可得出1λ=,从而求三棱锥体积. 【详解】解:(1)证明:如图,连接BD ,1B D∵ 四边形ABCD 为平行四边形,且M 为AC 中点, ∴M 为BD 中点,∵ 在1BDB △中, ,M N 分别是1,BD BB 的中点, ∴1//B D MN ,又∵ MN ⊄平面11A B CD ,1B D ⊂平面11A B CD , ∴//MN 平面11A B CD(2)∵2,60AD CD ADC ︒=∠=,2CD =,∴ 在ACD △中,22212cos 164242122AC AD CD AD CD ADC =+-⋅⋅∠=+-⨯⨯⨯=, ∴ 222AC CD AD +=,即AC CD ⊥,∴ 根据题意得1,,CD CA CC 两两垂直, 建立如图所示的空间直角坐标系, 则()()()12,0,0,0,23,0,3D A C λ, 则()()12,23,0,0,23,23AD AC λ→→=-=-,设平面1AC D 的一个法向量为()1111,,n x y z →=,∴ 11100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即11113x y z λ⎧=⎪⎨=⎪⎩,∴ 平面1AC D 的一个法向量为113,1,n λ→⎫=⎪⎭. 易知平面1C CD 的一个法向量为()20,1,0n →=, 设θ为二面角1A C D C --的平面角,则122125cos 31n n n n θλ→→→→-⋅===++⋅. 得1λ=,所以123AA AC ==所以11111123232432C A CD D A CC V V --⎛==⨯⨯⨯= ⎝.【点睛】立体几何是高考必考问题,本题第二问考查二面角有关的问题,建立空间坐标系是解决问题比较简洁的方法,关键点在于找到或证明三条互相垂直的直线,建系时注意尽可能让点的坐标简单,然后这些问题就转化为计算问题,特别注意法向量的求解,然后利用夹角公式,求值或求参数.26.(1)证明见解析;(2310. 【分析】(1)先证明四边形ADFE 为平行四边形,则AE ∥DF ,由此即可得证;(2)以点E 为坐标原点,建立空间直角坐标系,由123CC =,求得平面11ACC A 的法向量以及直线DE 的方向向量,再利用向量公式求解.【详解】证明:取BC 1的中点F ,连接DF ,EF ,∵E 为BC 中点,∴//EF 1CC ,112EF CC =又∵D 为AA 1的中点, //DA 1CC ,112DA CC =, ∴//EF DA ,EF DA =∴四边形ADFE 为平行四边形,∴//AE DF ,∵AE ⊄平面BDC 1,DF ⊂平面BDC 1,∴//AE 平面BDC 1.(2)由(1)及题设可知,BC ,EA ,EF 两两互相垂直,则以点E 为坐标原点,EC ,EA , EF 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由123CC =,则1(3,0,0),(3,0,23),(0,33,0),(3,0,0),(0,33,3)B C A C D -, 所以1(0,0,23),(3,33,0)CC AC ==-,设平面11ACC A 的法向量为(,,)m x y z = 由100m AC m CC ⎧⋅=⎪⎨⋅=⎪⎩,得333030x z ⎧-=⎪⎨=⎪⎩, 令1y =,则(3,1,0)m =, 又(0,33,3),(0,33,3)D ED ∴=, 所以22233cos ,||||(33)(3)(3)33310202310ED m ED m ED m +⋅<>====+⋅, 设DE 与平面11ACC A 所成角为θ,则sin θ=310|cos ,|ED m <>=∴DE 与平面11ACC A 所成角的正弦值为20. 【点睛】方法点睛:证明线面平行的常用方法: (1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内; (2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错.(3)利用数量积验证垂直或求平面的法向量.(4)利用法向量求距离、线面角或二面角.。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(答案解析)
一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( )A .12B .13C .512D .7122.在正四棱锥P ABCD -中,1PA PB PC PD AB =====,点Q ,R 分别在棱AB ,PC 上运动,当||QR 达到最小值时,||||PQ CQ 的值为( ) A .7010B .355 C .3510D .7053.在四棱锥O ﹣ABCD 中,底面ABCD 是平四边形,设OA a =,OB b =,OC c =,则BD 可表示为( )A .a c b +-B .a +2b c -C .c b a +-D .a c +-2b4.已知直三棱柱111ABC A B C -中,190,1,2ABC AB BC CC ︒∠====,则异面直线1AB 与1BC 所成角的余弦值为( ) A .35B .35C .45D .45-5.若{},,a b c 是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .,2,3a b c B .,,a b b c c a +++ C .,,a b c b c c +++D .2,23,39a b b c a c ++-6.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .17.四棱锥P ABCD -中,(2,1,3),(2,1,0),(3,1,4)AB AD AP =-=-=-,则这个四棱锥的高为( )A .55B .15C .25D .2558.如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大9.如图,在边长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A .455B .2C .22D .310.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅. 其中正确的命题有( ) A .0个B .1个C .2个D .3个11.已知a =(λ+1,0,6),b =(2λ+1,2μ﹣1,2).若//a b ,则λ与μ的值分别为( )A .﹣5,﹣2B .1152--,C .5,2D .2152-,12.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A .53B .23C .56D .52二、填空题13.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ; ②AC BD ⊥; ③AC BD =;④异面直线PM 与BD 所成的角为045.14.若非零向量,αβ满足αβαβ+=-,则α与β所成角的大小为___.15.在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.16.在空间直角坐标系中,点()2,1,4-关于x 轴对称的点的坐标是______. 17.若直线l 的一个方向向量(1,3)d =,则l 与直线10x y -+=的夹角为______. 18.已知αβ⊥,平面α与平面β的法向量分别为m ,n ,且(1,2,5)m =-,(3,6,)n z =-,则z =__________.19.已知P 是正方体1111ABCD A BC D -的棱11A D 上的动点,设异面直线AB 与CP 所成的角为α,则cos α的最小值为__________.20.已知棱长为1的正方体1111ABCD A BC D -中,E ,F 分别是11B C 和11C D的中点,点1A 到平面DBEF 的距离为________________. 三、解答题21.如图,在多面体ABCDEF 中,等腰梯形ABCD 所在平面垂直于正方形CDEF 所在平面,1,2DA AB BC CD ====.(Ⅰ)求证:AC ⊥平面ADE ;(Ⅱ)求BF 与平面ADE 所成角的正弦值.22.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,且3AD PD ==,33PC =,平面PCD ⊥平面ABCD ,点E 为线段PC 的中点.(1)求证:DE ⊥面PBC ; (2)若点F 在线段AB 上,且13AF AB =,求二面角C DE F --的平面角的正弦值. 23.如图,在三梭柱111ABC A B C -中,侧面11AA B B ,11AACC 均为菱形,12AA =,1160ABB ACC ∠=∠=︒,D 为AB 的中点.(Ⅰ)求证:1//AC 平面1CDB ;(Ⅱ)若60BAC ∠=︒,求直线1AC 与平面11BB C C 所成角的正弦值. 24.如图,已知正方体1111ABCD A BC D -的棱长为2,M 为1AA 的中点.(1)求证:1//A B 平面1MCD; (2)求平面1MCD 与平面11C CD 夹角的余弦值.25.如图,四边形ABCD 与四边形BDEF 均为菱形,60DAB DBF ∠=∠=︒,且FA FC =(1)求证:平面ACF ⊥平面ABCD ; (2)求二面角A FC B --的余弦值.26.如图所示,在直三棱柱111ABC A B C -中,ABC 是边长为6的等边三角形,,D E 分别为1,AA BC 的中点.(1)证明://AE 平面1BDC(2)若123CC =,求DE 与平面11ACC A 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据向量共面定理求解. 【详解】由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-,∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦,∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩. 故选:B . 【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.A解析:A 【分析】建立空间直角坐标系,利用三点共线的思想,分别求出点R ,Q ,利用两点距离公式求解,后利用导数求最值,进一步求出答案. 【详解】以P 在底面的投影O 为坐标原点,建立如图所示的坐标系,设1(,,0)2Q a ,(,,)R m n q 因为211(0(,0),222P C -,,112(,222PC =-, 又因为R 在PC 上,PR PC λ= 所以2(,m m q =,112(,),22λλ-, 所以R 1122(,),22λλ=-,所以222211122222QR a λλ⎛⎛⎫⎛⎫=--+-+-+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭221324a a λλλ=+-++ 因为[]11,,0,122a λ⎡⎤∈-∈⎢⎥⎣⎦设2213()24f a a a λλλ=+-++,2213()24g a a λλλλ=+-++ 对其求导()2f a a λ'=-,1()22g a λλ'=-+当二个导数同时为0时,取最小值,即20a λ-=,1202a λ-+= 所以11,36a λ==时取最小值, 所以1121,,,1,,02623PQ CQ ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭所以PQ CQ=所以当||QR 达到最小值时,||||PQ CQ 故选:A. 【点睛】空间直角坐标系距离公式的理解:(1)两点间的距离公式其形式与平面向量的长度公式一致,它的几何意义是表示长方体的对角线的长度.(2)两点间的距离公式与坐标原点的选取无关,经过适当转化也可以求异面直线间的距离,点到面以及平面与平面的距离等. 本题主要是R 的坐标利用三点共线的思想去求.3.D解析:D 【分析】作出图形,根据条件得出BD BA BC =+,再得到BA a b =-,BC c b =-,即可求解, 得到答案. 【详解】如图所示,在四棱锥O ABCD -中,底面ABCD 是平行四边形,则BD BA BC =+, 在OAB ∆中,BA OA OB a b =-=-, 在OBC ∆中,BC OC OB c b =-=-,故选:D.【点睛】本题主要考查了向量的线性运算,以及向量的加法的几何意义,其中解答中熟记向量的运算法则是解答的关键,着重考查了推理与计算能力,属于基础题.4.C解析:C 【解析】 【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1AB 与1BC 所成角的余弦值. 【详解】解:以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 则11(1,0,0),(0,0,2),(0,0,0),(0,1,2)A B B C ,11(1,0,2),(0,1,2)AB BC =-=,设异面直线1AB 与1BC 所成角为θ, 则1111||4cos 5||||55AB BC AB BC θ⋅===⋅⋅.∴异面直线1AB 与1BC 所成角的余弦值为45.故选:C.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.5.D解析:D 【分析】根据空间向量的共面定理,一组不共面的向量构成空间的一个基底,对选项中的向量进行判断即可. 【详解】对于:,2,3,:,,,:,,A a b c B a b b c c a C a b c b c c ++++++,每组都是不共面的向量,能构成空间的一个基底,对于D :2,23,3-9a b b c a c ++满足:()()3-932-23a c a b b c ⎡⎤=++⎣⎦,是共面向量,不能构成空间的一个基底,故选D 【点睛】本题主要考查了向量的相关知识,考查了空间向量共面的判断与应用问题,熟练掌握向量基底的定义以及判断条件是解题的关键,属于基础题.6.A解析:A 【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值. 【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()0,2,PB a b =--=PBC 的面积为(122BC PB ⨯⨯==126105a ==时,面积取得最小值为5=,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.7.A解析:A 【分析】求出平面ABCD 的法向量n ,计算法向量n 与AP 的夹角得出AP 与平面ABCD 的夹角,从而可求出P 到平面ABCD 的距离. 【详解】解:设平面ABCD 的法向量为(n x =,y ,)z ,则n AB n AD⎧⊥⎨⊥⎩,∴23020x y z x y -+=⎧⎨-+=⎩,令1x =可得2y =,0z =,即(1n =,2,0), cos ,||||5n AP n AP n AP ∴<>==设AP 与平面ABCD 所成角为α,则sinα=,于是P 到平面ABCD 的距离为||sin AP α=,即四棱锥P ABCD - 故选:A . 【点睛】本题考查了空间向量在立体几何中的应用,属于基础题.8.D解析:D 【分析】设正三棱柱111ABC A B C -棱长为2,设平面BDE 与底面ABC 所成锐二面角为α,,02AE x x =≤≤,以A 为坐标原点建立空间直角坐标系,确定出,,B D E 点的坐标,求出平面BDE 的法向量m ,底面ABC 的法向量坐标为(0,0,1)n =,将cos α表示为关于x 的函数,通过讨论cos α的增减变化,即可求出结论. 【详解】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则(3,1,0),(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BDm ED ⎧⊥⎨⊥⎩,即302(1)0s t k t x k ⎧-++=⎪⎨+-=⎪⎩,令23k =,则33,1t x s x =-=+,所以平面BDE 的一个法向量(1,33,23)m x x =+-, 底面ABC 的一个法向量为(0,0,1)n =,222233cos |cos ,|115(1)3(1)12()24m n x x x α=<>==++-+-+当1(0,)2x ∈,cos α随着x 增大而增大,则α随着x 的增大而减小, 当1(,2)2x ∈,cos α随着x 增大而减小,则α随着x 的增大而增大. 故选:D.【点睛】本题考查空间向量法求二面角,应用函数思想讨论二面角的大小,考查直观想象、数学计算能力,素养中档题.9.D解析:D 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P x y ,根据110B P D E ⋅=得出x 、y 满足的关系式,并求出y 的取值范围,利用二次函数的基本性质求得1B P 的最大值. 【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,2,2B 、()10,0,2D 、()1,2,0E ,设点()(),,002,02P x y x y ≤≤≤≤,()11,2,2D E =-,()12,2,2B P x y =---,11D E B P ⊥,()112224220B P D E x y x y ∴⋅=-+-+=+-=,得22x y =-,由0202x y ≤≤⎧⎨≤≤⎩,得022202y y ≤-≤⎧⎨≤≤⎩,得01y ≤≤,()()2221224548B P x y y y ∴=-+-+=-+01y ≤≤,当1y =时,1B P 取得最大值3.故选:D. 【点睛】本题考查立体几何中线段长度最值的计算,涉及利用空间向量法处理向量垂直问题,考查计算能力,属于中等题.10.B解析:B【分析】①||||||a b a b -=+共线,反之不成立,即可判断出结论; ②利用基底的定义即可判断出真假;③|()||||||||cos ,|a b c a b c a b =<>,即可判断出真假. 【详解】①||||||a b a b a -=+⇒,b 共线,反之不成立,||||||a b a b -=+是a ,b 共线的充分不必要条件,因此不正确;②若{a ,b ,}c 是空间的一组基底,假设,,a b b c c a +++共面, 则存在唯一一组实数,x y ,使=()()a b x b c y c a ++++成立, 即()a b xb x y c ya +=+++, 所以1,1,0x y x y ==+=,显然无解, 假设不成立,即,,a b b c c a +++不共面,则{a b +,b c +,}c a +是空间的另一组基底,正确;③|()|||||||cos ,a b c a b c a b =<>,而cos ,a b <>不一定等于1, 因此不正确.其中正确的命题有一个. 故选:B . 【点睛】本题考查了向量共线、共面定理、数量积运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.11.D解析:D 【分析】利用共线向量的性质直接求解. 【详解】(1a λ=+,0,6),(21b λ=+,21μ-,2),//a b ,∴6(21)2(1)λλ+=+,且021μ=-,解得25λ=-,12μ=. λ∴与μ的值分别为21,52-.故选:D . 【点睛】本题主要考查了空间中共线向量的性质等基础知识,考查运算求解能力,是基础题.12.A解析:A 【分析】先建立空间坐标系,设出(),0,M m m ,()0,22,N n n -+,转化条件得1m n +=,利用函数即可得解. 【详解】如图建系,由题意可设(),0,M m m ,()0,22,N n n -+,∴(),22,MN m n n m =---,又 ()10,0,1AA =,()1,2,0AC =-,∴平面11AAC C 的法向量()2,1,0n =,又 //MN 面11AACC ,∴=0MN n ⋅即1m n +=,∴()()2222222941MN m n n m m m =+-+-=-+, ∴MN 最小值为5故选:A. 【点睛】本题考查了空间向量的应用,考查了转化化归和函数思想,属于中档题.二、填空题13.①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件若不是其所在线段中点时可判断③【详解】因为是正方形所以所以平面又平面平面于所以所解析:①②④ 【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件,若P Q M N 、、、不是其所在线段中点时可判断③ 【详解】因为PQMN 是正方形,所以//PQ MN ,所以//PQ 平面ACD ,又平面ACD ⋂平面ABC 于AC ,所以//AC PQ ,所以//AC 截面PQMN ,故①正确;同理可得//BD MQ ,所以AC BD ⊥,即②正确;又//BD MQ ,PMQ 45∠=︒,所以异面直线PM 与BD 所成的角为045,故④正确;根据已知条件,无法确定AC BD 、长度之间的关系,故③错. 故答案为①②④ 【点睛】本题主要考查空间中点线面位置关系,熟记相关知识点即可求出结果,属于常考题型.14.90°【分析】对该方程两边分别平方即可得到即可【详解】则∴α与β所成角的大小为90°故答案为90°【点睛】本题考查了向量模去绝对值问题可以通过对向量模平方去掉绝对值即可解析:90° 【分析】对该方程两边分别平方,即可得到0αβ⋅=,即可. 【详解】αβαβ+=-222222ααββααββ∴+⋅+=-⋅+则0αβ⋅=∴α与β所成角的大小为90° 故答案为90° 【点睛】本题考查了向量模去绝对值问题,可以通过对向量模平方,去掉绝对值,即可.15.【分析】先找出线面角运用余弦定理进行求解【详解】连接交于点取中点连接则连接为异面直线与所成角在中同理可得异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角考查了空间想象能力运算 解析:3010【分析】先找出线面角,运用余弦定理进行求解 【详解】连接1AB 交1A B 于点D ,取11B C 中点E ,连接DE ,则1DE AC ,连接1A E1A DE ∴∠为异面直线1A B 与1AC 所成角在111RtAC B 中,111AC =,1111122C E C B ==1A E ∴=同理可得1A D =DE =2221cos A DE +-∠==, ∴异面直线1A B 与1AC【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.16.【分析】根据对称关系确定点的坐标【详解】∵在空间直角坐标系中点关于轴对称的点的坐标为∴点关于轴对称的点的坐标为【点睛】本题考查空间直角坐标系点对称关系考查基本分析求解能力属基础题 解析:()2,1,4---【分析】根据对称关系确定点的坐标. 【详解】∵在空间直角坐标系中,点(),,x y z 关于x 轴对称的点的坐标为(),,x y z --, ∴点()2,1,4-关于x 轴对称的点的坐标为()2,1,4---. 【点睛】本题考查空间直角坐标系点对称关系,考查基本分析求解能力,属基础题.17.15°【分析】先求出两条直线的斜率可得两条直线的倾斜角进而得到两条直线的夹角得到答案【详解】由题意直线的一个方向向量可得直线的斜率为所以直线的倾斜角为60°又直线的斜率为1故直线的倾斜角为45°所以解析:15° 【分析】先求出两条直线的斜率,可得两条直线的倾斜角,进而得到两条直线的夹角,得到答案. 【详解】由题意,直线l 的一个方向向量(1,3)d =,可得直线l= 所以直线l 的倾斜角为60°.又直线10x y -+=的斜率为1,故直线10x y -+=的倾斜角为45°, 所以l 与直线10x y -+=的夹角为604515︒-︒=︒. 故答案为15°. 【点睛】本题主要考查了直线的倾斜角和斜率的应用,其中解答中熟练应用直线的倾斜角和斜率的关系,求得两直线的倾斜角是解答的关键,着重考查了推理与运算能力,属于基础题.18.3【详解】∵且平面与平面的法向量分别为∴解得:解析:3 【详解】∵αβ⊥,且平面α与平面β的法向量分别为m ,n , ∴(1,2,5)(3,6,)31250m n z z ⋅=-⋅-=--+=, 解得:3z =.19.【解析】试题分析:因为//所以即为异面直线与所成的角为因为是正方体所以因为所以所以当时考点:1异面直线所成的角;2线面垂直线线垂直【解析】试题分析:因为AB //CD ,所以PCD ∠即为异面直线AB 与CP 所成的角为α.因为1111ABCD A BC D -是正方体,所以11CD ADD A ⊥面,因为11DP ADDA ⊂面,所以DC DP ⊥.所以cos CD CP α=,当1CP CA =时,min1(cos )3CD CA α=== 考点:1、异面直线所成的角;2、线面垂直、线线垂直.20.1【分析】以D 点为原点的方向分别为轴建立空间直角坐标系求出各顶点的坐标进而求出平面的法向量代入向量点到平面的距离公式即可求解【详解】以为坐标原点的方向分别为轴的正方向建立空间直角坐标系则所以设 是平解析:1 【分析】以D 点为原点,1,,DA DC DD 的方向分别为,,x y z 轴建立空间直角坐标系,求出各顶点的坐标,进而求出平面BDEF 的法向量,代入向量点到平面的距离公式,即可求解. 【详解】以D 为坐标原点,DA ,DC ,1DD 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系Dxyz ,则1(1,0,1)A ,(1,1,0)B ,1(0,,1)2F ,所以(1,1,0)DB =,1(0,,1)2DF,1(1,0,1)A D =--, 设 (,,)x y z =m 是平面BDFE 的法向量,则m DB m DF⎧⊥⎨⊥⎩,即0102m DB x y m DF y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 令1y =,可得112x z =-⎧⎪⎨=-⎪⎩,故1(1,1,)2m =--,设点A 在平面BDFE 上的射影为H ,连接1A D,则1A D 是平面BDFE 的斜线段,所以点1A 到平面BEFE 的距离1111A D m d m+⋅===.【点睛】本题主要考查了空间向量在求解距离中的应用,对于利用空间向量求解点到平面的距离的步骤通常为:①求平面的法向量;②求斜线段对应的向量在法向量上的投影的绝对值,即为点到平面的距离.空间中其他距离问题一般都可转化为点到平面的距离求解.着重考查了推理与运算能力,属于基础题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ【分析】(Ⅰ)由面面垂直的性质定理得到DE ⊥平面ABCD ,从而得到DE AC ⊥,再由勾股定理的逆定理证明CA AD ⊥,即可得证;(Ⅱ)建立空间直角坐标系,利用空间向量法求出线面角的正弦值; 【详解】(Ⅰ)因为平面ABCD ⊥平面CDEF ,四边形CDEF 为矩形,所以CD DE ⊥,又平面ABCD 平面CDEF CD =,所以DE ⊥平面ABCD ,因为AC ⊂平面ABCD , 所以DE AC ⊥,在底面ABCD 中,过,A B 作,AN BM DC ⊥,交CD 于,N M ,因为1,2DA ABBC CD ====,所以12DN CM ==,所以AN=,所以AC ==222AD AC CD +=,所以CA AD ⊥,又AD DE D ⋂=,,AD DE ⊂面ADE ,所以AC ⊥面ADE ;(Ⅱ)如图建立空间直角坐标系,则31,,022B ⎛⎫- ⎪ ⎪⎝⎭,()3,0,2F,所以31,,222BF ⎛⎫= ⎪ ⎪⎝⎭由(1)可知AC ⊥面ADE ,则面ADE 的法向量可以为()1,0,0n =,设BF 与平面ADE 所成角为θ,则2223152sin 1031222n BF n BFθ===⋅⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,BF 与平面ADE 所成角的正弦值为1510;【点睛】本题考查了立体几何中的线面垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.22.(1)证明见解析;(2【分析】 (1)由面PCD ⊥面ABCD ,BC CD ⊥可得BC ⊥面PCD ,则BC DE ⊥,又DE PC ⊥,即可证得结论;(2)过D 点作DC 的垂线DZ ,则DZ ⊥面ABCD .以DA 为x 轴,DC 为y 轴,DZ 为z 轴建立空间直角坐标系,分别求得面DCE 的法向量为1n ,面DEF 的法向量为2n ,计算即可得出结果.【详解】证明:(1)∵PD AD DC ==,E 为PC 中点,∴DE PC ⊥.∵面PCD ⊥面ABCD ,面PCD面ABCD CD =,BC CD ⊥, ∴BC ⊥面PCD ,∵DE ⊂面PCD ,∴BC DE ⊥.∵PC BC C ⋂=,∴DE ⊥面PBC .(2)∵面PCD ⊥面ABCD ,面PCD面ABCD CD =,在面PCD 内,过D 点作DC 的垂线DZ ,则DZ ⊥面ABCD .如图,以DA 为x 轴,DC 为y 轴,DZ 为z 轴建立空间直角坐标系,∴()3,1,0F,30,4E ⎛⎝⎭,()0,3,0C ,()0,0,0D ,()0,3,0DC =,30,4DE ⎛= ⎝⎭,()3,1,0DF =. 设面DCE 的法向量为1n ,由面PCD ⊥面ABCD ,可得()11,0,0n =,设面DEF 的法向量为()2,,n x y z =,2200n DE n DF ⎧⋅=⎪⎨⋅=⎪⎩,即30430y z x y ⎧=⎪⎨⎪+=⎩,令1x =,求得(21,n =-, 121cos ,13n n =C DE F --的平面角为θ,∴sin θ=.【点睛】思路点睛:解决线面角、二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内; (2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错.(3)利用数量积验证垂直或求平面的法向量.(4)利用法向量求距离、线面角或二面角.23.(Ⅰ)证明见解析;(Ⅱ)22. 【分析】(Ⅰ)连结1BC ,与1BC 交于点O ,连结OD ,由平几知识可证得1//AC OD ,再由线面平行的判定可得证;(Ⅱ)方法一:由已知可得1AO BC ⊥,1AO B C ⊥,11B C BC =,再由线面垂直的判定可得AO ⊥平面11BB C C ,从而有1AC B ∠即为直线1AC 与平面11BB C C 所成的角,解三角形可解得直线1AC 与平面11BB C C 所成角的正弦值.方法二:以D 为原点,分别以射线DB ,1DB ,CD 为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系O xyz -,运用线面角的空间向量的求解方法可求得答案.【详解】解:(Ⅰ)连结1BC ,与1BC 交于点O ,连结OD ,四边形11BB C C 是平行四边形,O 为1BC 中点, D 为AB 中点,得1//AC OD ,又OD ⊂平面1CDB ,故1//AC 平面1CDB ;(Ⅱ)方法一:由12AB AC ==,12AC AB ==,且O 为1BC ,1BC 的中点,得1AO BC ⊥,1AO B C ⊥,11B C BC =,又1BC ,1CB 为平面11BB C C 内两条相交直线,得AO ⊥平面11BB C C ,故1AC B ∠即为直线1AC 与平面11BB C C 所成的角;由60BAC ∠=︒,2AB AC ==,2BC =,得四边形11BB C C 为菱形,又11B C BC =,故四边形11BB C C 为正方形,122BC =, 则1ABC 为等腰直角三角形,且12BAC π∠=,故14AC B π∠=,12sin 2AC B ∠=, 因此,直线1AC 与平面11BB C C 所成角的正弦值为22.方法二:以D 为原点,分别以射线DB ,1DB ,CD 为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系O xyz -,则()0,0,0D ,()1,0,0A -,()1,0,0B ,()13,0A -,()13,0B ,由60BAC ∠=︒,2AB AC ==,ABC 为正三角形,故CD AB ⊥,又1B D AB ⊥,所以AB ⊥平面1CDB , 设()0,,C y z ,由2CA =,123CA = 得(22223,38,y z y z ⎧+=⎪⎨-+=⎪⎩即3263y z ⎧=⎪⎪⎨⎪=⎪⎩,故3260,C ⎛ ⎝⎭,由11B C BC,得1C ⎛- ⎝⎭,所以1AC ⎛= ⎝⎭,()1BB =-,1,BC ⎛=- ⎝⎭; 设平面11BB C C 的一个法向量为()111,,n x y z =,由10,0,n BB n BC ⎧⋅=⎨⋅=⎩得111110,30,x x ⎧=⎪⎨+-=⎪⎩可取n =, 设直线1AC 与平面11BB C C 所成角为θ, 则1112sin cos ,2AC nAC n AC n θ⋅===, 因此,直线1AC 与平面11BB C C 所成角的正弦值为2. 【点睛】思路点睛:线面角的二种求法:1.几何法:一般要有三个步骤:一作,二证,三算.}2. 向量法:直线a 的方向向量和平面α的法向量分别为m 和n .直线a 的方向向量和平面α所成的角θ满足: ||sin .||||n m n m θ⋅=⋅ 24.(1)证明见解析;(2)13. 【分析】(1)以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可证得1//A B 平面1MCD; (2)利用空间向量法可求得平面1MCD 与平面11C CD 夹角的余弦值.【详解】(1)以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系A xyz -.因为正方体1111ABCD A BC D -的棱长为2,M 是1AA 的中点,所以()0,0,0A 、()2,2,0C 、()0,2,0D 、()0,0,1M 、()10,2,2D 、()10,0,2A 、()2,0,0B ,()10,2,1MD =,()2,2,1MC =-.设平面1MCD 的法向量为(),,m x y z =,由120220m MD y z m MC x y z ⎧⋅=+=⎨⋅=+-=⎩,令1y =,则2z =-,2x =-,所以()2,1,2m =--.因为()12,0,2A B =-,所以()()21220120A B m ⋅=⨯-+⨯+-=,因为1A B ⊄平面1MCD ,所以1//A B 平面1MCD; (2)由(1)知,平面1MCD 的法向量()2,1,2m =--.又平面11C CD 的法向量为()0,2,0AD =.设平面1MCD 与平面11C CD 的夹角为θ, 则21cos cos ,323m ADm AD m AD θ⋅=<>===⨯⋅, 所以平面1MCD 与平面11C CD 夹角的余弦值为13. 【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.25.(1)证明见解析;(215.【分析】(1)AC 与BD 交于点O ,连接FO 、FD ,证明FO AC ⊥,FO BD ⊥,然后得到FO ⊥平面ABCD 即可;(2)以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立空间直角坐标系,然后求出平面BFC 和平面ACF 的法向量,然后可算出答案.【详解】(1)证明:AC 与BD 交于点O ,连接FO 、FD ,∵FA FC =,O 是AC 中点,且O 是BD 中点,∴FO AC ⊥,∵四边形BDEF 为菱形,60DBF ∠=︒,∴FD FB =,∴FO BD ⊥,又AC BD O =,∴FO ⊥平面ABCD ,∵FO ⊂平面ACF ,∴平面ACF ⊥平面ABCD(2)易知OA ,OB ,OF 两两垂直以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立如图所示的空间直角坐标系设2AB =,∵四边形ABCD 为菱形,60DAB ∠=︒则2BD =,∴1OB =,3OA OF ==故(0,0,0)O ,(0,1,0)B ,()3,0,0C -,()3F ∴(3,0,3CF =,3,1,0CB ,()0,1,0OB =设平面BFC 的一个法向量为(,,)n x y z = 则33030n CF x z n CB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,得()1,3,1n =-- 显然,()0,1,0OB =为平面ACF 的一个法向量∴15cos ,5OB nOB n OB n ⋅<>==-⋅ 由图知,二面角A FC B --的平面角为锐角∴二面角A FC B --的余弦值为155 【点睛】 关键点睛:用向量法求解空间角的问题时,解题的关键是建立适当的空间直角坐标系,准确地写出点的坐标和算出直线的方向向量、平面的法向量.26.(1)证明见解析;(2)31020. 【分析】(1)先证明四边形ADFE 为平行四边形,则AE ∥DF ,由此即可得证;(2)以点E 为坐标原点,建立空间直角坐标系,由123CC =,求得平面11ACC A 的法向量以及直线DE 的方向向量,再利用向量公式求解.【详解】证明:取BC 1的中点F ,连接DF ,EF ,∵E 为BC 中点,∴//EF 1CC ,112EF CC =又∵D 为AA 1的中点, //DA 1CC ,112DA CC =, ∴//EF DA ,EF DA =∴四边形ADFE 为平行四边形,∴//AE DF ,∵AE ⊄平面BDC 1,DF ⊂平面BDC 1,∴//AE 平面BDC 1.(2)由(1)及题设可知,BC ,EA ,EF 两两互相垂直,则以点E 为坐标原点,EC ,EA , EF 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由123CC =,则1(3,0,0),(3,0,23),(0,33,0),(3,0,0),(0,33,3)B C A C D -, 所以1(0,0,23),(3,33,0)CC AC ==-,设平面11ACC A 的法向量为(,,)m x y z =由100m AC m CC ⎧⋅=⎪⎨⋅=⎪⎩,得3330230x z ⎧-=⎪⎨=⎪⎩, 令1y =,则(3,1,0)m =, 又(0,33,3),(0,33,3)D ED ∴=, 所以22233cos ,||||(33)(3)(3)333102310ED m ED m ED m +⋅<>====+⋅, 设DE 与平面11ACC A 所成角为θ,则sin θ=310|cos ,|20ED m <>=, ∴DE 与平面11ACC A 所成角的正弦值为31020. 【点睛】方法点睛:证明线面平行的常用方法: (1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内; (2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错.(3)利用数量积验证垂直或求平面的法向量.(4)利用法向量求距离、线面角或二面角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AA 1 DCB B 1C 1图高二数学(选修2-1)空间向量试题宝鸡铁一中 司婷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030B .21C .1530D .10154.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离( )A .515 B .55 C .552 D .1055.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42 B .a 82 图图C .a 423 D .a 22 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离( )A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( )A .621B .338 C60210 D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形,90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面AB D 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值( )A .32B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是C B 延长线上一点,且BC BD =,则二面角B AD B --1的大小( )A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E ,F 分别为棱AB ,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积V( )A .66 B .3316 C .316D .1611.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线; ②,,,O A B C 为空间四点,且向量OC OB OA ,,不构成空间的一个基底,则点,,,O A B C一定共面;③已知向量c b a ,,是空间的一个基底,则向量c b a b a ,,-+也是空间的一个基底。
其中正确的命题是:( )(A)①② (B)①③ (C)②③ (D)①②③12. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若=,b AD =,AA =1则下列向量中与BM 相等的向量是( )(A) c b a ++-2121 (B)c b a ++2121(C)+--2121 (D)+-2121二、填空题:请把答案填在题中横线上(每小题6分,共30分).13.已知向量(0,1,1)a =-,(4,1,0)b =,||29a b λ+=且0λ>,则λ= ____________.14.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 .15. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 . 16.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面D B EF 的距离 .17.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线A E 与平面AB C 1D 1所成角的正弦值 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共60分).18.(15分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,求平面A 1B C 1与平面AB CD 所成的二面角的大小19.(15分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .20.(15分)在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角.C1(1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的余弦值.21.(15分)已知棱长为1的正方体A C 1,E 、F 分别是B 1C 1、C 1D 的中点. (1)求证:E 、F 、D 、B 共面;(2)求点A 1到平面的B DEF 的距离; (3)求直线A 1D 与平面B DEF 所成的角.参考答案一、1.C ;2.A ;3.B ;4.A ;5.A ;6.C ;7.A ;8.B ; 9.D ;10.B ; 11.A ;12.C ; 二、13.3 142615.36 16.1; 17.510 三、18. 解:如图建立空间直角坐标系,11C A =(-1,1,0),A 1=(0,1,-1) 设1n 、2n 分别是平面A 1B C 1与平面AB CD 的法向量, 由011=A n 可解得1n =(1,1,1)0111=C A n易知2n =(0,0,1), 所以,212121cos n n n n ⋅=33所以平面A 1B C 1与平面AB CD 所成的二面角大小为a rccos33或 π-a rccos 33. zy xD 1A 1D B 1C 1C BA19.证明:如图建立空间直角坐标系,则11C A =(-1,1,0),C B 1=(-1,0,-1) A 1=(1,0,1), B 1=(0,-1,-1)设111C A A λ=,A A 11μ=,B B 11ν=(λ、μ、νR ∈,且均不为0)设1n 、2n 分别是平面A 1EF 与平面B 1MC 的法向量,由0= 可得 01⋅n 即 01=n0= 01⋅n 01n解得:1=(1,1,-1)由 012=⋅B n 可得 012=⋅B n ν 即 012=⋅B n012=⋅B n 012=⋅B n 012=⋅B n解得2n =(-1,1,-1),所以1n =-2n , 1n ∥2n ,所以平面A 1EF ∥平面B 1MC .20.(1)证明:∵PA ⊥平面ABCD ,∴PA ⊥AB ,又AB ⊥AD .∴AB ⊥平面PAD .又∵AE ⊥PD ,∴PD ⊥平面ABE ,故BE ⊥PD .(2)解:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a ,0),(0,2a ,0).∵PA ⊥平面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°.于是,在Rt △AED 中,由AD =2a ,得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt △AFE 中,由AE =a ,∠EAF =60°,得AF =2a,EF =23a ,∴E (0,23,21a a )于是,a a },23,21,0{=={-a ,a ,0}设AE 与CD 的夹角为θ,则由cos θ||||CD AE ⋅420)()23()21(002321)(0222222=++-⋅++⋅+⋅+-⋅a a a a a a a a AE 与CD 所成角的余弦值为42. 21.解:(1)略.(2)如图,建立空间直角坐标系D —xyz , 则知B (1,1,0),).1,21,0(),1,1,21(F E 设.),,(的法向量是平面BDEF z y x = )1,21,0(),0,1,1(,,==⊥⊥DF DB DF n DB n 由得⎪⎩⎪⎨⎧=+=⋅=+=⋅0210z y y x DB n 则⎪⎩⎪⎨⎧-=-=.21y z y x 令)21,1,1(,1--==y 得.设点A 1在平面B DFE 上的射影为H ,连结A 1D ,知A 1D 是平面B DFE 的斜线段..23)21)(1(10)1)(1(),1,0,1(1=--+⨯+--=⋅∴--=A.1222,cos ||||.2223223||||,cos ,23)21(1)1(||,2)1()1(||111111112222221=⨯>=<⨯=∴=⨯=⨯<∴=-++-==-++-=A A A A n D A A A O A 又 即点A 1到平面B DFE 的距离为1.(3)由(2)知,A 1H=1,又A 1D=2,则△A 1HD 为等腰直角三角形, 4511=∠=∠H DA DH A.45,,,11111 =∠∴∠∴⊥DH A BDFE D A DH A BDFE D A HD BDFE H A 所成的角与平面就是直线上的射影在平面是平面。