高中数学 椭圆 超经典 知识点+典型例题讲解

合集下载

高中数学椭圆大题经典例题

高中数学椭圆大题经典例题

高中数学中椭圆大题的经典例题题目:已知椭圆 C:x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√3/3,过点 A(0,b) 和 B(a,0)的直线与原点的距离为√3/2。

(1)求椭圆 C 的方程;(2)设 P 是椭圆 C 上一点,E、F 是椭圆 C 上的两动点,如果直线 PE,PF 的斜率都存在,且满足 kPE * kPF = -2/3,试探究△OEF 的形状,并说明理由。

(3)试问:是否存在以 PE,PF 为邻边的平行四边形?如果存在,求出所有这样的平行四边形;如果不存在,说明理由。

解析:(1)由题意,离心率 e = c/a = √3/3,直线 AB 的方程为 y = -√3x + b,利用点到直线的距离公式得到 b = √3/2。

又因为 a^2 = b^2 + c^2,解得 a = √3, b = 1。

所以椭圆 C 的方程为 x^2/3 + y^2 = 1。

(2)设 P(x0,y0),E(x1,y1),F(x2,y2),由 kPE * kPF = -2/3,得到 (y0 - y1)(y0 - y2) / (x0 - x1)(x0 - x2) = -2/3。

根据椭圆方程和斜率公式,化简得到 (x0^2 - 1)(x0^2 - 3) = -4(x0^2 - 1),解得 x0^2 = 1 或 x0^2 = 3(舍去)。

所以△OEF是直角三角形。

(3)假设存在以 PE,PF 为邻边的平行四边形,则 PE // PF,即存在 m,使得 kPE = kPF = m。

联立方程求解得 m = -√5/5 或 m = √5/5。

当 m = -√5/5 时,P(-√15/3, √15/5),E(-√15/5, √15/5),F(-√15/5, -√15/5),此时ΔOEF 是等腰三角形,不满足题意。

当 m = √5/5 时,P(-√15/3, -√15/5),E(-√15/5, -√15/5),F(-√15/5, √15/5),此时ΔOEF 是等腰三角形,满足题意。

高中数学:学霸归纳总结椭圆性质及最经典题型讲解

高中数学:学霸归纳总结椭圆性质及最经典题型讲解

高中数学:学霸归纳总结椭圆性质及最经典题型讲解
展开全文
1.椭圆的概念
平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:
(1)若a>c,则集合P为椭圆;
(2)若a=c,则集合P为线段;
(3)若a<c,则集合P为空集.
第1课时椭圆及其性质
思维提升:
椭圆定义的应用技巧
(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等.
(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.
思维提升:
(1)利用椭圆几何性质的注意点及技巧
①注意椭圆几何性质中的不等关系
在求与椭圆有关的一些范围问题时,经常用到x,y的范围,离心率的范围等不等关系.
②利用椭圆几何性质的技巧
求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系.
(2)求椭圆的离心率问题的一般思路
求椭圆的离心率或其范围时,一般是依据题设得出一个关于a,b,c的等式或不等式,即可得离心率或离心率的范围.。

高中数学:椭圆知识点归纳总结及经典例题

高中数学:椭圆知识点归纳总结及经典例题

y
B2
A1
b a A2
F1 O c F2
x
B1
1. 若椭圆的连个焦点把长 轴分成三等份,则椭圆 的离心率为(

1 A.
1 B.
2 C.
D. 无法确定
6
3
3
2. 椭圆
x2 a2
y2 b2
1( a b 0)的左焦点为 F1( c,0), A( a,0)、 B(0,b)是两个顶点,
如果 F1到直线 AB的距离为 b ,则椭圆的离心率 e
解:如图所示,椭圆 x 2 y2 1 的焦点为 F1 3,0 , F2 3,0 . 12 3
点 F1 关于直线 l : x y 9 0 的对称点 F 的坐标为(- 9, 6),直线 FF2 的方程为 x 2y 3 0.
x 2y 3 0 解方程组 x y 9 0 得交点 M 的坐标为(- 5, 4).此时 MF1 MF2 最小. 所求椭圆的长轴: 2a MF1 MF2 FF2 6 5 ,∴ a 3 5 ,又 c 3 ,
例 2 已知椭圆的中心在原点,且经过点 P 3,0 , a 3b ,求椭圆的标准方程.
分析: 因椭圆的中心在原点,故其标准方程有两种情况. 法,
根据题设条件,运用待定系数
求出参数 a 和 b (或 a 2 和 b 2 )的值,即可求得椭圆的标准方程.
解:当焦点在 x 轴上时,设其方程为
x2 a2
y2 b2
∴ b2 a2 c2
2
35
32
36 .因此,所求椭圆的方程为
x2 y2 1. 45 36
例10
2
已知方程 x k5
2
y 3k
1表示椭圆,求 k 的取值范围.
分析:关键是根据题意,列出点 P 满足的关系式.

人教A版高中数学选择性必修第一册3.1椭圆 经典例题及配套练习题

人教A版高中数学选择性必修第一册3.1椭圆 经典例题及配套练习题

3.1 椭圆3.1.1 椭圆及其标准方程例1 已知椭圆的两个焦点坐标分别是(−2,0),(2,0),并且经过点(52,−32),求它的标准方程.解:由于椭圆的焦点在x轴上,所以设它的标准方程为x2a2+y2b2=1(a>b>0).由椭圆的定义知c=2,2a=√(52+2)2+(−32)2+√(52−2)2+(−32)2=2√10,所以a=√10,所以b2=a2−c2=10−4=6.所以,所求椭圆的标准方程为x2 10+y26=1.例2 如图3.1-5,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P 在圆上运动时,线段PD的中点M的轨迹是什么?为什么?图3.1-5分析:点P在圆x2+y2=4上运动,点P的运动引起点M运动.我们可以由M为线段PD的中点得到点M与点P坐标之间的关系式,并由点P的坐标满足圆的方程得到点M的坐标所满足的方程.解:设点M的坐标为(x,y),点P的坐标为(x0,y0),则点D的坐标为(x0,0),由点M是线段PD的中点,得x=x0,y=y02.因为点P(x0,y0)在圆x2+y2=4上,所以x02+y02=4.①把x0=x,y0=2y代入方程①,得x2+4y2=4,即x24+y2=1.所以点M的轨迹是椭圆.例3如图3.1-6,设A,B两点的坐标分别为(−5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是−49,求点M的轨迹方程.图3.1-6分析:设点M的坐标为(x,y),那么直线AM,BM的斜率就可用含x,y的关系式分别表示.由直线AM,BM的斜率之积是−49,可得出x,y之间的关系式,进而得到点M的轨迹方程.解:设点M的坐标为(x,y),因为点A的坐标是(−5,0),所以直线AM的斜率k AM=yx:5(x≠−5).同理,直线BM的斜率k BM=yx;5(x≠5).由已知,有y x:5×yx;5=−49(x≠±5),化简,得点M的轨迹方程为x2 25+y21009=1(x≠±5).点M的轨迹是除去(−5,0),(5,0)两点的椭圆.练习1.如果椭圆x2100+y236=1上一点P到焦点F1的距离等于6,则点P到另一个焦点F2的距离为____【答案】14【分析】根据椭圆的定义|PF1|+|PF2|=2a及椭圆x2100+y236=1上一点P到焦点F1的距离等于6,可得PF2的长.【详解】解:根据椭圆的定义|PF1|+|PF2|=2a,又椭圆x2100+y236=1上一点P到焦点F1的距离等于6,∴6+|PF2|=20,故|PF2|=14,2.求适合下列条件的椭圆的标准方程.(1)a=4,b=1,焦点在x轴上;(2)a=4,c=√15,焦点在y轴上;(3)a+b=10,c=2√5.【答案】(1)x216+y2=1;(2)y216+x2=1;(3)x236+y216=1或y236+x216=1.【分析】(1)根据已知直接得出方程;(2)根据已知求得b,即可得出方程;(3)由已知联立求得a,b即可得出方程.【详解】(1)a=4,b=1,焦点在x轴上的椭圆方程为x216+y2=1;(2)由a=4,c=√15可得b2=a2−c2=1,又焦点在y轴上,所以标准方程为y216+x2=1;(3)联立{a+b=10 c=2√5a2=b2+c2,解得a=6,b=4,所以标准方程为x236+y216=1或y236+x216=1.3.已知经过椭圆x225+y216=1的右焦点F2作垂直于x轴的直线AB,交椭圆于A,B两点,F1是椭圆的左焦点.(1)求ΔAF1B的周长;(2)如果AB不垂直于x轴,ΔAF1B的周长有变化吗?为什么?【答案】(1)20;(2)不变,理由见解析【分析】根据椭圆的定义ΔAF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a求解.【详解】(1)由椭圆的定义得:|AF1|+|AF2|=2a=10,|BF1|+|BF2|=2a=10,所以ΔAF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=20.(2)不变,由椭圆的定义ΔAF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a.只受a的影响,不受AB与x轴的位置关系影响.4.已知A,B两点的坐标分别是(−1,0),(1,0),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的商是2,点M的轨迹是什么?为什么?【答案】点M的轨迹是直线x=−3,并去掉点(−3,0)【分析】设出点M的坐标,求出直线AM,BM斜率,由k AMk BM=2可求出.【详解】设点M的坐标为(x,y),则k AM=yx:1(x≠−1),k BM=yx;1(x≠1),当y≠0时,k AMk BM =x;1x:1=2,整理得x=−3(y≠0),所以点M的轨迹是直线x=−3,并去掉点(−3,0).3.1.2 椭圆的简单几何性质例4 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标.解:把原方程化成标准方程,得x2 52+y242=1,于是a=5,b=4,c=√25−16=3.因此,椭圆的长轴和短轴的长分别是2a=10和2b=8,离心率e=ca =35,两个焦点坐标分别是F1(−3,0)和F2(3,0),四个顶点坐标分别是A1(−5,0),A2(5,0),B1(0,−4)和B2(0,4).练习5.你能用圆规作出图中椭圆焦点的位置吗?你的依据是什么?【答案】能. 依据见解析.【分析】根据椭圆中a2=b2+c2的几何表示,即原点、焦点、短轴端点构成直角三角形,且体现a2=b2+c2求解.【详解】能.如图,以点B2(或B1)为圆心, |OA2|(或|OA1|)为半径画圆弧,与x轴交于点F1,F2,则点F1,F2就是椭圆的两个焦点.依据:因为在Rt△B2OF2中,|OB2|=b,|B2F2|=|OA2|=a,所以|OF2|=c,同理有|OF1|=c.6.求下列椭圆的焦点坐标:(1)x2100+y236=1;(2)2x2+y2=8.【答案】(1)(8,0)和(−8,0);(2)(0,2)和(0,−2)【分析】由椭圆方程得到a2,b2,根据c2=a2−b2求出c,即可得解;【详解】解:(1)因为椭圆方程为x2100+y236=1,焦点在x轴,所以a2=100,b2=36,因为c2=a2−b2,即c=√a2−b2=√100−36=8,所以椭圆的焦点坐标为(8,0)和(−8,0)(2)因为2x2+y2=8,所以y28+x24=1,焦点在y轴,所以a2=8,b2=4,因为c2=a2−b2,即c=√a2−b2=√8−4=2,所以椭圆的焦点坐标为(0,2)和(0,−2) 7.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.【答案】(1)x236+y232=1(2)y225+x216=1【详解】试题分析:(1)由离心率公式,求得c,再由a,b,c的关系,求得b,即可得到椭圆方程;(2)由离心率公式,求得a,再由a,b,c的关系,求得b,即可得到椭圆方程试题解析:(1)a=6,e=,即,解得c=2,b2=a2﹣c2=32,则椭圆的标准方程为:=1;(2)c=3,e=,即,解得,a=5,b2=a2﹣c2=25﹣9=16.则椭圆的标准方程为:=1.8.求适合下列条件的椭圆的标准方程:(1)经过P(−3,0),Q(0,−2)两点;(2)长轴长等于20,离心率等于35.【答案】(1)x 29+y 24=1 (2)x 2100+y 264=1或y 2100+x 264=1.【分析】(1)设出椭圆方程,根据椭圆经过点A (−3,0),B (0,−2),得出{a =3b =2 ,代入方程即可.(2)由条件可得{2a =20c a =35 ,则可得{a =10c =6b =8 ,根据焦点所在的轴代入对应的标准方程即可. 【详解】解:(1)设椭圆方程为:x 2a 2+y 2b 2=1,因为椭圆经过点A (−3,0),B (0,−2), A (−3,0),B (0,−2)分别为左顶点和下顶点, 所以得{a =3b =2,所以椭圆标准方程为x 29+y 24=1.(2)椭圆的长轴长等于20, 离心率等于35依题意: {2a =20c a =35 ,所以{a =10c =6,由b 2=a 2−c 2=64,即b =8所以椭圆标准方程为:x 2100+y 264=1或y 2100+x 264=1.9.比较下列每组中椭圆的形状,哪一个更接近于圆?为什么? (1)9x 2+y 2=36与x 216+y 212=1;(2)x 2+9y 2=36与x 26+y 210=1. 【答案】(1)x 216+y 212=1更接近于圆;(2)x 26+y 210=1更接近于圆.【分析】探究可得离心率e 越大,椭圆越扁;e 越小,椭圆越圆. 所以只需比较离心率的大小即可得出结果.【详解】因为椭圆的离心率e =ca =√1−(b a )2,所以e 越大,ba 越小,椭圆越扁;e 越小,ba 越大,椭圆越圆. (1)椭圆9x 2+y 2=36即x 24+y 236=1,其离心率e 1=√1−436=2√23,椭圆x 216+y 212=1的离心率e 2=√1−1216=12,因为e 2<e 1,所以椭圆x 216+y 212=1更接近于圆; (2)椭圆x 2+9y 2=36即x 236+y 24=1,其离心率e 3=√1−436=2√23,椭圆x 26+y 210=1的离心率e 4=√1−610=√105,因为e4<e3,所以椭圆x26+y210=1更接近于圆.例5 如图3.1-11,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上.由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC⊥F1F2,|F1B|=2.8cm,|F1F2|=4.5cm.试建立适当的平面直角坐标系,求截口BAC所在椭圆的方程(精确到0.1cm).图3.1-11解:建立如图3.1-11所示的平面直角坐标系,设所求椭圆方程为x2 a2+y2b2=1(a>b>0).在Rt△BF1F2中,|F2B|=√|F1B|2+|F1F2|2=√2.82+4.52.由椭圆的性质知,|F1B|+|F2B|=2a,所以a=12(|F1B|+|F2B|)=12(2.8+√2.82+4.52)≈4.1;b=√a2−c2=√4.12−2.252≈3.4.所以,所求的椭圆方程为x2 4.12+y23⋅42=1.例6 动点M(x,y)与定点F(4,0)的距离和M到定直线l:x=254的距离的比是常数45,求动点M的轨迹.解:如图3.1-12,设d是点M到直线l:x=254的距离,根据题意,动点M的轨迹就是集合。

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义:1、椭圆的定义:平面与两个定点F i 、F 2的距离之和等于定长(大于 IRF 2I )的点的轨迹叫做椭圆。

这两个定点 F i 、F 2叫做椭圆的 焦点,两焦点的距离 厅汀2|叫做椭圆的 焦距。

对椭圆定义的几点说明:(1) “在平面”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2) “两个定点”的设定不同于圆的定义中的“一个定点” ,学习时注意区分;(3) 作为到这两个定点的距离的和的 “常数”,必须满足大于| F i F 2|这个条件。

若不然, 当这个“常数”等于| F i F 2|时,我们得到的是线段 F 1F 2;当这个“常数”小于| F i F 2|时,无 轨迹。

这两种特殊情况,同学们必须注意。

(4) 下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个 对称中心,我们把它的两条对称轴与椭圆的交点记为 A i , A 2, B i , B 2,于是我们易得| A i A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F i |、|B i F 2|+|B i F i |也等于那个“常数”。

同学们想一想 其中的道理。

(5)中心在原点、焦点分别在 x 轴上,y 轴上的椭圆标准方程分别为:2 2 2 2i (a b 0),77i (a b 0),a ba b2 2 2相同点是:形状相同、大小相同;都有 a > b > 0, a c b 。

不同点是:两种椭圆相对于坐标系的位置不同, 它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(一c , 0)和(c , 0),第二个椭圆的焦点坐标为(0,— c )和(0, c )。

椭圆的 焦点在x 轴上 标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上标准方程中y 2项的分母较大。

(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标; 一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只2 2要X 2 每 i (a b 0)的有关性质中横坐标x 和纵坐标y 互换,就可以得出 a b2 2^2 —2 i (a b 0)的有关性质。

专题39 椭圆知识点和典型例题(解析版)

专题39 椭圆知识点和典型例题(解析版)

专题39 椭圆知识点和典型例题〔解析版〕1、定义:平面内与两个定点,的距离之和等于常数〔大于〕的点的轨迹称为椭圆.即:。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置 焦点在轴上焦点在轴上 图形标准方程 范围且 且 顶点、、、、轴长 短轴的长长轴的长焦点 、、焦距对称性 关于轴、轴、原点对称离心率e 越小,椭圆越圆;e 越大,椭圆越扁题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;通径 过椭圆的焦点且垂直于对称轴的弦称为通径:2b 2/a焦半径公式⎪⎭⎫ ⎝⎛-2325,【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c ==∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合以下条件的椭圆标准方程:〔1〕与椭圆2212x y +=有相同的焦点,且经过点3(1,)2〔2〕经过(2,(22A B 两点 【详解】〔1〕椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.〔2〕设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, 得:14213241mnm n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如下图,因为2c =,那么(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4=,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <. 又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足,设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=,∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆C 〔1〕求椭圆C 的标准方程;〔2〕O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,假设存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||2b cF F MN c MN a===由得c a =21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.〔Ⅱ〕假设0m =,那么()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 假设0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=.设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-=得()2224240k x mkx m +++-=,由得()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:〔特别注意〕要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学椭圆专题一.相关知识点1.椭圆的概念平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。

这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a,|F1F2|=2c,其中a>0,c>0,且a,c为常数}。

(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2.椭圆的标准方程和几何性质3.椭圆中常用的4个结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时P在短轴端点处;当x=±a时,|OP|有最大值a,这时P在长轴端点处。

(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2。

(3)已知过焦点F1的弦AB,则△ABF2的周长为4a。

(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c。

一、细品教材1.(选修1-1P34例1改编)若F1(3,0),F2(-3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.x225+y216=1 B.x2100+y29=1 C.y225+x216=1 D.x225+y216=1或y225+x216=12.(选修1-1P42A组T6改编)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.22 B.2-12C.2- 2 D.2-1走进教材答案1.A; 2.D 二、双基查验1.设P是椭圆x24+y29=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.8 C.6 D.182.方程x25-m+y2m+3=1表示椭圆,则m的范围是()A.(-3,5) B.(-5,3) C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)3.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或214.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________。

(完整)高中数学椭圆知识点与例题,推荐文档

(完整)高中数学椭圆知识点与例题,推荐文档

2知识点一:椭圆的定义第一定义:平面内一个动点 P 到两个定点F i 、F 2的距离之和为定值焦点的距离叫作椭圆的焦距知识点二:椭圆的标准方程椭圆的焦点总在长轴上题型一、椭圆的定义 1、方程.x 22 y 2x 2 2 y 2 10化简的结果是2、若 ABC 的两个顶点 A 4,0 ,B 4,0 , ABC 的周长为18,则顶点C 的轨迹方程是2 2椭圆(PF i2aF 1F 2),这个动点P 的轨迹叫椭圆•这两个定点叫椭圆的焦点,两注意:若(PRPF 2F i F 2 ),则动点 P 的轨迹为线段F i F 2 ;若(PF iF 1F 2),则动点P 的轨迹不存在.1 .当焦点在x2X~2a 2厂(a b 0),其中 c 2a 2b 22.当焦点在y 轴上时,椭圆的标准方程:2 ya2X d 21(a b 0),b 2其中a 2b 2.注意: 只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;在椭圆的两种标准方程中,都有(b 0)和c 2a 2b 2 ;当焦点在X 轴上时,椭圆的焦点坐标为(c,0) , ( c,0); 当焦点在y 轴上时,椭圆的焦点坐标为 (0,c) , (0, c)3、椭圆—L 1上的点M到焦点F1的距离为2, N为MF_!的中点,贝y ON (O为坐25 9标原点)的值为()A. 4B. 2C. 83 D.—X y24、椭圆———1两焦点为Fp F2, A 3,1 ,点P在椭圆上,贝U PR PA的最大值25 16为____ ,最小值为____题型二、椭圆的标准方程5、方程Ax2+By2=C表示椭圆的条件是(A) A, B同号且A M B ( B) A, B同号且C与异号(C) A, B, C同号且A M B ( D)不可能表示椭圆2 26、若方程—- 1 ,5 k k 3(1)表示圆,则实数k的取值是_____________ . __________(2) ______________________________________________________ 表示焦点在x轴上的椭圆,则实数k的取值范围是 _______________________________________ . __________(3) ______________________________________________________ 表示焦点在y型上的椭圆,则实数k的取值范围是 _______________________________________ . __________(4)表示椭圆,则实数k的取值范围是______________ . _________227、椭圆—y_1的焦距为2,贝U m =4m8、已知椭圆 2 mx3y2 6m0的一个焦点为(0, 2)求m的值9、已知椭圆的中心在原点,且经过点P 3,0 , a 3b,求椭圆的标准方程.2 210、求与椭圆4x 9y 36共焦点,且过点(3, 2)的椭圆方程。

(完整版)高中数学椭圆经典例题详解

(完整版)高中数学椭圆经典例题详解

椭圆标准方程典型例题例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.分析:把椭圆的方程化为标准方程,由2=c ,根据关系222c b a +=可求出m 的值.解:方程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准方程.解:当焦点在x 轴上时,设其方程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92=a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知10922=+ba .又b a 3=,联立解得812=a ,92=b ,故椭圆的方程为198122=+x y .例3 ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解.(2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x . (2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ① 由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12FPF Rt ∆中,21sin 1221==∠PF PF F PF , 可求出621π=∠F PF ,3526cos21=⋅=πPF c ,从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x .例5 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积. 解:如图,设()y x P ,,由椭圆的对称性,不妨设P 在第一象限. 由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =.例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例7 已知椭圆1222=+y x , (1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫ ⎝⎛--+-x x y x x x , 即 12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =. 说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.解:如图所示,椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x . 解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x .例10 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k . 说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例11 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0.例12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程. 分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为151522=+y x .例13 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹.分析:本题是已知一些轨迹,求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹. 解:设点M 的坐标为),(y x ,点P 的坐标为),(00y x ,则2x x =,0y y =.因为),(00y x P 在圆122=+y x 上,所以12020=+y x .将x x 20=,y y =0代入方程12020=+y x 得1422=+y x .所以点M 的轨迹是一个椭圆1422=+y x .说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为),(y x ,设已知轨迹上的点的坐标为),(00y x ,然后根据题目要求,使x ,y 与0x ,0y 建立等式关系, 从而由这些等式关系求出0x 和0y 代入已知的轨迹方程,就可以求出关于x ,y 的方程, 化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.例14 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求. 解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ; 所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标. 再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,又因为ON 为21F MF ∆的中位线,所以4212==MF ON ,故答案为A .说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这一定义,即a MF MF 221=+,利用这个等式可以解决椭圆上的点与焦点的有关距离.例16 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围. 解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点. ∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x ①。

高中数学椭圆经典考点及例题讲解 (1)

高中数学椭圆经典考点及例题讲解 (1)

椭圆考纲解读 1.利用椭圆的定义、几何性质求椭圆方程;2.利用椭圆的几何性质研究直线与椭圆的关系.[基础梳理]1.椭圆的定义(1)平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a>|F1F2|时,M点的轨迹为椭圆;②当2a=|F1F2|时,M点的轨迹为线段F1F2;③当2a<|F1F2|时,M点的轨迹不存在.2.椭圆的标准方程和几何性质x2y2y2x2[三基自测]1.已知椭圆x2m-2+y210-m=1的焦点在x轴上,焦距为4,则m等于()A.8B.7C .6D .5答案:A2.已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7答案:D3.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________.答案:x 24+y 23=14.过椭圆x 225+y 216=1的右焦点F 2作直线交椭圆于A 、B 两点,则△AF 1B 的周长为________.答案:205.(2017·高考全国卷Ⅰ改编)A 、B 是椭圆x 23+y 2m =1长轴的两个端点,M 为短轴的一个端点,且∠AMB =120°,求m 值.答案:1或9考点一 椭圆的定义及应用|思维突破[例1] (1)已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 (2)设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12(3)F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.74 C.72D.752[解析] (1)点P 在线段AN 的垂直平分线上, 故|P A |=|PN |.又AM 是圆的半径,∴|PM |+|PN |=|PM |+|P A |=|AM |=6>|MN |, 由椭圆定义知,点P 的轨迹是椭圆.(2)如图所示,因为到两个圆心恰好是椭圆的焦点,由椭圆的定义可知|PF 1|+|PF 2|=10,易知|PM |+|PN |=(|PM |+|MF 1|)+(|PN |+|NF 2|)-2,则其最小值为|PF 1|+|PF 2|-2=8,最大值为|PF 1|+|PF 2|+2=12,故选C.(3)由题意得a =3,b =7,c =2,∴F 1F 2=22,AF 1+AF 2=6.∵AF 22=AF 21+F 1F 22-2AF 1·F 1F 2cos 45°=AF 21-4AF 1+8,∴(6-AF 1)2=AF 21-4AF 1+8.∴AF 1=72.∴S =12×72×22×22=72.[答案] (1)B (2)C (3)C [思维升华]椭圆定义应用技巧思路应用 解读求方程 条件转化后满足椭圆定义,直接求轨迹方程求焦点三角形 求焦点三角形周长或面积,根据椭圆定义、正余弦定理,其中|PF 1|+|PF 2|=2a .平方是常用技巧求最值 利用|PF 1|+|PF 2|=2a 为定值,利用基本不等式求|PF 1|·|PF 2|最值或利用三角形求最值.如a +c 、a -c[跟踪训练]1.已知圆C 1:(x -4)2+y 2=169,圆C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 解析:设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,∴M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.答案:D2.椭圆C :x 2a 2+y 2=1(a >0)的左、右焦点分别为F 1、F 2、P 为椭圆上异于端点的任意一点,PF 1,PF 2的中点分别为M ,N .O 为坐标原点,四边形OMPN 的周长为23,则△PF 1F 2的周长是( )A .2(2+3) B.2+23 C.2+ 3D .4+23解析:因为O ,M 分别为F 1F 2和PF 1的中点,所以OM ∥PF 2,且|OM |=12|PF 2|,同理,ON ∥PF 1,且|ON |=12|PF 1|,所以四边形OMPN 为平行四边形,由题意知,|OM |+|ON |=3,故|PF 1|+|PF 2|=23,即2a =23,a =3,由a 2=b 2+c 2知c 2=a 2-b 2=2,c =2,所以|F 1F 2|=2c =22,故△PF 1F 2的周长为2a +2c =23+22,选A.答案:A3.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|P A |+|PF |的最大值为________,最小值为________.解析:如图所示,设椭圆右焦点为F 1,则|PF |+|PF 1|=6. 所以|P A |+|PF |=|P A |-|PF 1|+6.利用-|AF 1|≤|P A |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立). 所以|P A |+|PF |≤6+2, |P A |+|PF |≥6- 2.故|P A |+|PF |的最大值为6+2,最小值为6- 2. 答案:6+2 6-2考点二 椭圆的标准方程及应用|方法突破[例2] (1)△ABC 的两个顶点为A (-4,0),B (4,0),周长为18,则C 点轨迹为( ) A.x 225+y 29=1(y ≠0) B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.y 216+x 29=1(y ≠0) (2)已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.求椭圆C 2的方程.[解析] (1)(定义法)由A ,B 坐标可知|AB |=8,由△ABC 的周长为18可知AC +BC =10,由椭圆的定义可知,点C 在焦点为A (4,0),B (-4,0),长半轴长为5的椭圆上运动,则椭圆方程为x 225+y 29=1,当点C 在横轴上时,点A ,B ,C 共线,不能构成三角形,所以y ≠0,所以点C 的轨迹方程为x 225+y 29=1(y ≠0).(2)法一:(待定系数法):由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,解得a =4,故椭圆C 2的方程为y 216+x 24=1.法二:(椭圆系法):因椭圆C 2与C 1有相同的离心率,且焦点在y 轴上,故设C 2:y 24+x 2=k (k >0),即y 24k +x 2k=1. 又2k =2×2,故k =4, 故C 2的方程为y 216+x 24=1.[答案] (1)A [方法提升]求椭圆标准方程的方法[母题变式]1.本例(1)变为:一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1 B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12.得a 2=8,b 2=6,故椭圆方程为x 28+y 26=1. 答案:A2.本例(2)变为:与椭圆x 24+y 23=1有相同离心率且经过点(2,-3),求椭圆方程.解析:法一:因为e =ca =a 2-b 2a =1-b 2a2=1-34=12,若焦点在x 轴上,设所求椭圆方程为x 2m 2+y 2n2=1(m >n >0),则1-⎝⎛⎭⎫n m 2=14.从而⎝⎛⎭⎫n m 2=34,n m =32. 又4m 2+3n2=1,所以m 2=8,n 2=6. 所以方程为x 28+y 26=1.若焦点在y 轴上,设方程为y 2h 2+x 2k 2=1(h >k >0),则3h 2+4k 2=1,且k h =32, 解得h 2=253,k 2=254.故所求方程为y 2253+x 2254=1.法二:若焦点在x 轴上,设所求椭圆方程为 x 24+y 23=t (t >0),将点(2,-3)代入,得 t =224+(-3)23=2.故所求方程为x 28+y 26=1. 若焦点在y 轴上,设方程为y 24+x 23=λ(λ>0),代入点(2,-3),得λ=2512,故所求方程为y 2253+x 2254=1.考点三 椭圆的几何性质|模型突破角度1 求离心率(或范围)[例3] (1)若椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 是抛物线y 2=4x 的焦点,两曲线的一个交点为P ,且|PF |=4,则该椭圆的离心率为( )A.7-23B.2+13C.23D.12(2)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎡⎭⎫23,1B.⎣⎡⎦⎤13,22 C.⎣⎡⎭⎫13,1D.⎝⎛⎦⎤0,13 (3)已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 在椭圆上且满足PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是( )A.⎣⎡⎭⎫33,1B.⎣⎡⎦⎤33,22 C.⎣⎡⎦⎤13,12D.⎝⎛⎭⎫0,22 [解析] (1)(直接法)设P (x ,y ),由题意,得F (1,0),|PF |=x +1=4,所以x =3,y 2=12,则9a 2+12b2=1,且a 2- 1=b 2,解得a 2=11+47,即a =7+2,则该椭圆的离心率e =c a =17+2=7-23.故选A.(2)(几何法)如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=F 1F 2=2c ,即椭圆上存在一点P ,使得PF 2=2c . ∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎡⎭⎫13,1.故选C. (3)(直接法)设P (x ,y ),则x 2a 2+y 2b 2=1,y 2=b 2-b 2a 2x 2,-a ≤x ≤a ,PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ).所以PF 1→·PF 2→=x 2-c 2+y 2=⎝⎛⎭⎫1-b 2a 2x 2+b 2-c 2=c 2a 2x 2+b 2-c 2.因为-a ≤x ≤a ,所以b 2-c 2≤PF 1→·PF 2→≤b 2. 所以b 2-c 2≤c 2≤b 2.所以2c 2≤a 2≤3c 2. 所以33≤c a ≤22.故选B. [答案] (1)A (2)C (3)B [模型解法][高考类题]1.(2016·高考全国卷Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34解析:|OB |为椭圆中心到l 的距离,设l 与椭圆交于顶点A 和焦点F ,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b 2,所以e =c a =12.故选B.答案:B角度2 根据椭圆性质求值或范围[例4] (1)已知点P 是椭圆x 216+y 28=1(x ≠0,y ≠0)上的一动点,F 1,F 2为椭圆的两个焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上的一点,且F 1M →·PM →=0,则|OM →|的取值范围为( )A .[0,3)B .(0,22)C .[22,3)D .[0,4)(2)(2018·合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点.则PF →·P A →的最大值为________.[解析] (1)由题意得c =22,当点P 在椭圆的短轴端点处时,M 与点O 重合,|OM →|取得最小值0;当点P 在椭圆的长轴端点处时,点M 与F 1重合,|OM →|取得最大值22,由于x ≠0,y ≠0,故|OM →|的取值范围是(0,22).(2)设P 点坐标为(x 0,y 0).由题意知a =2, ∵e =c a =12,c =1,∴b 2=a 2-c 2=3.故所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.∵F (-1,0),A (2,0),PF →=(-1-x 0,-y 0), P A →=(2-x 0,-y 0),∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 即当x 0=-2时,PF →·P A →取得最大值4. [答案] (1)B (2)4 [模型解法][高考类题]2.(2017·高考全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)解析:依题意得,⎩⎪⎨⎪⎧3m ≥tan ∠AMB 20<m <3或⎩⎪⎨⎪⎧ m 3≥tan ∠AMB 2m >3,所以⎩⎪⎨⎪⎧3m ≥tan 60°0<m <3或⎩⎪⎨⎪⎧m 3≥tan 60°m >3,解得0<m ≤1或m ≥9.故选A. 答案:A3.(2014·高考福建卷)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+2 C .7+ 2D .62 解析:设圆的圆心为C ,则C (0,6),半径为r =2,点C 到椭圆上的点Q (10cos α,sin α)的距离|CQ |=(10cos α)2+(sin α-6)2=46-9sin 2α-12sin α=50-9(sin α+23)2≤50=52,当且仅当sin α=-23时取等号,所以|PQ |≤|CQ |+r =52+2=62,即P ,Q 两点间的最大距离是62,故选D.答案:D考点四 直线与椭圆的综合问题|方法突破[例5] (1)(2018·新乡模拟)已知椭圆x 22+y 2=1,则斜率为2的平行弦中点的轨迹方程为________.(2)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上任意一点,直线TA ,TB 的斜率之积为-34.①求椭圆C 的方程;②设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP →·OQ →+MP →·MQ →的取值范围.[解析] (1)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有x 212+y 21=1,x 222+y 22=1. 两式作差,得(x 2-x 1)(x 2+x 1)2+(y 2-y 1)(y 2+y 1)=0.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 2-y 1x 2-x 1=k AB ,代入后求得k AB =-x 02y 0. 即2=-x 02y 0,所以x 0+4y 0=0.故所求的轨迹方程为x +4y =0,将x +4y =0代入x 22+y 2=1得:x 22+⎝⎛⎭⎫-x 42=1,解得x=±43,又中点在椭圆内,所以-43<x <43.(2)①设T (x ,y ),由题意知A (-4,0),B (4,0),设直线TA 的斜率为k 1,直线TB 的斜率为k 2,则k 1=y x +4,k 2=y x -4.由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.故椭圆C 的方程为x 216+y 212=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),直线PQ 与椭圆方程联立,得⎩⎪⎨⎪⎧x 216+y 212=1y =kx +2,消去y ,得(4k 2+3)x 2+16kx -32=0.所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP →·OQ →+MP →·MQ →=x 1x 2+y 1y 2+[x 1x 2+(y 1-2)(y 2-2)]=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3.所以-20<OP →·OQ →+MP →·MQ →≤-523.当直线PQ 的斜率不存在时,OP →·OQ →+MP →·MQ →的值为-20. 综上,OP →·OQ →+MP →·MQ →的取值范围为[-20,-523].[答案] (1)x +4y =0⎝⎛⎭⎫-43<x <4 3 [方法提升][跟踪训练]1.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 解析:设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式相减得x 21-x 22a 2+y 21-y 22b2=0,∴x 1+x 2a 2+y 1-y 2x 1-x 2·y 1+y 2b 2=0.∵x 1+x 2=2,y 1+y 2=-2,k AB =-1-01-3=12, ∴2a 2+12×-2b 2=0,即a 2=2b 2. 又c =3=a 2-b 2,∴a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.故选D.答案:D2.(2018·林州模拟)已知椭圆E :x 24+y 22=1,直线l 交椭圆于A ,B 两点,若AB 的中点坐标为⎝⎛⎭⎫12,-1,则l 的方程为( ) A .2x +y =0 B .x -2y -52=0C .2x -y -2=0D .x -4y -92=0解析:设A (x 1,y 1),B (x 2,y 2),则x 214+y 212=1,x 224+y 222=1,两式作差并化简整理得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2,而x 1+x 2=1,y 1+y 2=-2,所以y 1-y 2x 1-x 2=14,直线l 的方程为y +1=14⎝⎛⎭⎫x -12,即x -4y -92=0.故选D.答案:D3.(2018·河北三市联考)已知离心率为63的椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F ,过F且与x 轴垂直的直线与椭圆交于A 、B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C 、D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解析:(1)设焦距为2c , ∵e =c a =63,a 2=b 2+c 2,∴b a =33, 由|AB |=233,易知b 2a =33,∴b =1,a =3, ∴椭圆方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0,又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1.设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2, 若以CD 为直径的圆过E 点,则EC →·ED →=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4,则(x 1+1)(x 2+1)+y 1y 2=(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1.1.[考点二、三、四](2016·高考全国卷Ⅲ)已知O 为坐标原点, F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34解析:法一:设点M (-c ,y 0),OE 的中点为N ,则直线AM 的斜率k =y 0a -c ,从而直线AM 的方程为y =y 0a -c (x +a ),令x =0,得点E 的纵坐标y E =ay 0a -c.同理,OE 的中点N 的纵坐标y N =ay 0a +c.因为2y N =y E ,所以2a +c =1a -c,即2a -2c =a +c ,所以e =c a =13.故选A.法二:如图,设OE 的中点为N ,由题意知|AF |=a -c ,|BF |=a +c ,|OF |=c ,|OA |=|OB |=a ,∵PF ∥y 轴,∴|MF ||OE |=|AF ||AO |=a -c a ,|MF ||ON |=|BF ||OB |=a +ca, 又∵|MF ||OE |=|MF |2|ON |,即a -c a =a +c 2a ,∴a =3c ,故e =c a =13.答案:A2.[考点一、二、三](2015·高考全国卷Ⅰ)已知椭圆E 的中心在坐标原点,离心率为12,E的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12解析:抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c =2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),因为离心率e =c a =12,所以a =4,所以b 2=a 2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B. 答案:B。

椭圆知识点总结附例题

椭圆知识点总结附例题

圆锥曲线与方程 椭 圆知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。

(212F F a =时为线段21F F ,212F F a <无轨迹)。

2.标准方程:222c a b =- ①焦点在x 轴上:12222=+by a x (a >b >0); 焦点F (±c ,0)②焦点在y 轴上:12222=+bx a y (a >b >0); 焦点F (0, ±c )注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b(2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

4.离心率(1)我们把椭圆的焦距与长轴长的比22c a ,即ac称为椭圆的离心率, 记作e (10<<e ),22221()b e a a==-c e 0=是圆;e 越接近于0 (e 越小),椭圆就越接近于圆; e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。

椭圆知识点归纳汇总和经典例题

椭圆知识点归纳汇总和经典例题

椭圆知识点归纳汇总和经典例题————————————————————————————————作者:————————————————————————————————日期:椭圆的基本知识1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0)不必考虑焦点位置,求出方程3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M (x , y ),点P (x 0, y 0),则x =x 0, y = 20y得x 0=x , y 0=2y.∵x 02+y 02=4, 得 x 2+(2y )2=4,即.142=+y x 所以点M 的轨迹是一个椭圆.4.范围. x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里.5.椭圆的对称性椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的长半轴长.b 叫做椭圆的短半轴长.|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a .在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2.7.椭圆的几何性质:a A 1yO F 1F 2x B 2B 1A 2c b yO F 1F 2xMc cxF 2F 1O y Mc cy xPO P 'M椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222y x 1(a b 0)a b+=>>的有关性质。

高中数学-椭圆-超经典-知识点+典型例题讲解精选全文完整版

高中数学-椭圆-超经典-知识点+典型例题讲解精选全文完整版

可编辑修改精选全文完整版学生姓名 性别 男 年级 高二 学科 数学 授课教师 上课时间2014年12月13日 第( )次课 共( )次课课时: 课时教学课题椭圆教学目标教学重点与难点选修2-1椭圆知识点一:椭圆的定义ﻫ 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.ﻫ 注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义 1.方程()()10222222=++++-y x y x 化简的结果是2.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是3.已知椭圆22169x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为知识点二:椭圆的标准方程ﻫ 1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:ﻫ 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;ﻫ 2.在椭圆的两种标准方程中,都有和;ﻫ 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。

讲练结合二.利用标准方程确定参数1.若方程25x k -+23y k -=1(1)表示圆,则实数k的取值是 .(2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k的取值范围是 .2.椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3.椭圆2214x y m+=的焦距为2,则m = 。

4.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

讲练结合三.待定系数法求椭圆标准方程1.若椭圆经过点(4,0)-,(0,3)-,则该椭圆的标准方程为 。

高二数学椭圆专题详细解析

高二数学椭圆专题详细解析

朗培教育椭圆专题解析1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化).2.椭圆的方程与几何性质:标准方程 )0(12222>>=+b a by a x )0(12222>>=+b a b x a y 性 质参数关系 222c b a +=焦点 )0,(),0,(c c -),0(),,0(c c -焦距 c 2范围 b y a x ≤≤||,|| b x a y ≤≤||,||顶点 ),0(),,0(),0,(),0,(b b a a --)0,(),0,(),,0(),,0(b b a a --对称性 关于x 轴、y 轴和原点对称离心率)1,0(∈=ace 准线ca x 2±=ca y 2±=考点1 椭圆定义及标准方程 题型1:椭圆定义的运用[例1 ] (湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4aB .2(a -c)C .2(a+c)D .以上答案均有可能[解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c);Ox yDPAB C(3)A Q B P A ----此时小球经过的路程为4a,故选D 【名师指引】考虑小球的运行路径要全面 【新题导练】1.短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24[解析]C. 长半轴a=3,△ABF 2的周长为4a=122.已知P 为椭圆2212516x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆22(3)4x y -+=上的点,则PM PN +的最小值为( )A . 5B . 7C .13D . 15[解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程.【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来[解析]设椭圆的方程为12222=+b y a x 或)0(12222>>=+b a ay b x ,则⎪⎩⎪⎨⎧+=-=-=222)12(4c b a c a c b , 解之得:24=a ,b =c =4.则所求的椭圆的方程为1163222=+y x 或1321622=+y x . 【名师指引】准确把握图形特征,正确转化出参数c b a ,,的数量关系.[警示]易漏焦点在y 轴上的情况. 【新题导练】3. 如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.[解析](0,1). 椭圆方程化为22x +ky 22=1. 焦点在y 轴上,则k 2>2,即k <1.又k >0,∴0<k <1.4.已知方程),0(,1sin cos 22πθθθ∈=+y x ,讨论方程表示的曲线的形状 [解析]当)4,0(πθ∈时,θθcos sin <,方程表示焦点在y 轴上的椭圆,当4πθ=时,θθcos sin =,方程表示圆心在原点的圆,当)2,4(ππθ∈时,θθcos sin >,方程表示焦点在x 轴上的椭圆5. 椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,求这个椭圆方程.[解析] ⇒⎩⎨⎧==-c a c a 23⎪⎩⎪⎨⎧==332c a ,3=∴b ,所求方程为122x +92y =1或92x +122y =1.考点2 椭圆的几何性质题型1:求椭圆的离心率(或范围)[例3 ] 在ABC △中,3,2||,300===∠∆ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .【解题思路】由条件知三角形可解,然后用定义即可求出离心率 [解析] 3sin ||||21=⋅=∆A AC AB S ABC , 32||=∴AC ,2cos ||||2||||||22=⋅-+=A AC AB AC AB BC 2132322||||||-=+=+=BC AC AB e 【名师指引】(1)离心率是刻画椭圆“圆扁”程度的量,决定了椭圆的形状;反之,形状确定,离心率也随之确定 (2)只要列出c b a 、、的齐次关系式,就能求出离心率(或范围) (3)“焦点三角形”应给予足够关注【新题导练】6.如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为 A .45 B .23 C .22D .21[解析]选B7.已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆122=+n y m x 的离心率为 [解析]由⇒⎪⎩⎪⎨⎧≠=+=02222m n n m n nm n ⎩⎨⎧==42n m ,椭圆122=+n y m x 的离心率为22 题型2:椭圆的其他几何性质的运用(范围、对称性等)[例4 ] 已知实数y x ,满足12422=+y x ,求x y x -+22的最大值与最小值 【解题思路】 把x y x -+22看作x 的函数[解析] 由12422=+y x 得22212x y -=,2202122≤≤-∴≥-∴x x ]2,2[,23)1(212212222-∈+-=+-=-+∴x x x x x y x当1=x 时,x y x -+22取得最小值23,当2-=x 时,x y x -+22取得最大值6【新题导练】9.已知点B A ,是椭圆22221x y m n+=(0m >,0n >)上两点,且BO AO λ=,则λ=[解析] 由BO AO λ=知点B O A ,,共线,因椭圆关于原点对称,1-=∴λ10.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点则1234567PF P F PF P F P F P F P F ++++++=________________ [解析]由椭圆的对称性知:352536271==+=+=+a F P F P F P F P F P F P .考点3 椭圆的最值问题[例5 ]椭圆191622=+y x 上的点到直线l:09=-+y x 的距离的最小值为___________.【解题思路】把动点到直线的距离表示为某个变量的函数[解析]在椭圆上任取一点P,设P(θθsin 3,cos 4). 那么点P 到直线l 的距离为:|9)sin(5|2211|12sin 3cos 4|22-+=+-+ϕθθθ.22≥ 【名师指引】也可以直接设点),(y x P ,用x 表示y 后,把动点到直线的距离表示为x 的函数,关键是要具有“函数思想” 【新题导练】11.椭圆191622=+y x 的内接矩形的面积的最大值为 [解析]设内接矩形的一个顶点为)sin 3,cos 4(θθ, 矩形的面积242sin 24cos sin 48≤==θθθS12. P 是椭圆12222=+by a x 上一点,1F 、2F 是椭圆的两个焦点,求||||21PF PF ⋅的最大值与最小值[解析] ],[||,)|(||)|2(||||||12211121c a c a PF a a PF PF a PF PF PF +-∈+--=-=⋅当a PF =||1时,||||21PF PF ⋅取得最大值2a , 当c a PF ±=||1时,||||21PF PF ⋅取得最小值2b13.已知点P 是椭圆1422=+y x 上的在第一象限内的点,又)0,2(A 、)1,0(B , O 是原点,则四边形OAPB 的面积的最大值是_________.[解析] 设)2,0(),sin ,cos 2(πθθθ∈P ,则θθcos 221sin 21⋅+⋅=+=∆∆OB OA S S S OPB OPA OAPB 2cos sin ≤+=θθ考点4 椭圆的综合应用题型:椭圆与向量、解三角形的交汇问题[例6 ] 已知椭圆C 的中心为坐标原点O ,一个长轴端点为()0,1,短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A 、B ,且PB AP 3=. (1)求椭圆方程; (2)求m 的取值范围.【解题思路】通过PB AP 3=,沟通A 、B 两点的坐标关系,再利用判别式和根与系数关系得到一个关于m 的不等式[解析](1)由题意可知椭圆C 为焦点在y 轴上的椭圆,可设2222:1(0)y x C a b a b+=>>由条件知1a =且b c =,又有222a b c =+,解得 21,2a b c ===故椭圆C 的离心率为22c e a ==,其标准方程为:12122=+x y (2)设l 与椭圆C 交点为A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧y =kx +m 2x 2+y 2=1得(k 2+2)x 2+2kmx +(m 2-1)=0 Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0 (*) x 1+x 2=-2km k 2+2, x 1x 2=m 2-1k 2+2∵AP =3PB ∴-x 1=3x 2 ∴⎩⎪⎨⎪⎧x 1+x 2=-2x 2x 1x 2=-3x 22 消去x 2,得3(x 1+x 2)2+4x 1x 2=0,∴3(-2km k 2+2)2+4m 2-1k 2+2=0整理得4k 2m 2+2m 2-k 2-2=0m 2=14时,上式不成立;m 2≠14时,k 2=2-2m 24m 2-1, 因λ=3 ∴k ≠0 ∴k 2=2-2m 24m 2-1>0,∴-1<m <-12 或 12<m <1容易验证k 2>2m 2-2成立,所以(*)成立 即所求m 的取值范围为(-1,-12)∪(12,1)【名师指引】椭圆与向量、解三角形的交汇问题是高考热点之一,应充分重视向量的功能 【新题导练】14.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=⋅AB OQ ,则P 点的轨迹方程是 ( )A. ()0,0132322>>=+y x y xB. ()0,0132322>>=-y x y x C. ()0,0123322>>=-y x y x D. ()0,0123322>>=+y x y x[解析] ),(),3,23(y x OQ y x AB-=-=132322=+∴y x ,选A.15. 如图,在Rt △ABC 中,∠CAB=90°,AB=2,AC=22。

椭圆知识点总结加例题

椭圆知识点总结加例题

椭圆知识点总结加例题一、椭圆的定义和性质1.1 椭圆的定义在平面上,椭圆的定义为:对于给定的两个不重合的实点F1和F2,以及一个实数2a (a>0),定义为到点F1和点F2的距离的和等于2a的点的轨迹,这个轨迹就是椭圆。

1.2 椭圆的几何性质(1)焦点性质:椭圆上到焦点的距离之和是一个常数2a。

(2)长短轴性质:椭圆有两个互相垂直的对称轴,其中较长的轴称为长轴,较短的轴称为短轴。

(3)离心率性质:椭圆的离心率e定义为焦距与长轴的比值,介于0和1之间。

(4)焦点到顶点的连线和短轴的交点为端点的线段称为短轴的焦径。

(5)焦点到顶点的连线和长轴的交点为端点的线段称为长轴的焦径。

1.3 椭圆的方程和标准方程椭圆的一般方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 其中a、b分别为椭圆长轴和短轴的半轴长。

通过坐标平移和旋转,可以得到椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 椭圆长轴在x轴上,且椭圆的中心为原点。

1.4 椭圆的参数方程和极坐标方程椭圆的参数方程:$\begin{cases}x=a\cos \theta\\ y=b\sin \theta\end{cases}$, $\theta \in [0, 2\pi)$。

椭圆的极坐标方程:$r(\theta)=\frac{ab}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$。

二、椭圆的相关性质2.1 椭圆的离心率和焦距的关系设椭圆的长轴和短轴分别为2a和2b,焦点到几点段为2c,则椭圆的离心率e满足关系:$e=\frac{c}{a}$。

2.2 椭圆的面积和周长椭圆的面积:$S=\pi ab$。

椭圆的周长:$L=4aE(e)$,其中E(e)为第二类完全椭圆积分。

2.3 椭圆的切线和法线对于椭圆上任一点P(x,y),其切线的斜率为$k=-\frac{b^2x}{a^2y}$,切线的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,且斜率为$k$的切线方程为$y-kx+ka^2=0$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生姓名
性别 男 年级 高二 学科 数学 授课教师
上课时间 2014年12月13日
第( )次课 共( )次课
课时: 课时
教学课题
椭圆
教学目标
#
教学重点与难点
选修2-1椭圆
知识点一:椭圆的定义 平面内一个动点到两个定点

的距离之和等于常数(
),这个动

的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.
注意:若,则动点的轨迹为线段;

,则动点
的轨迹无图形.
讲练结合一.椭圆的定义 1.方程
()()10222
22
2=+++
+-y x y x 化简的结果是
2.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是
3.已知椭圆22
169
x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为
;
知识点二:椭圆的标准方程
1.当焦点在轴上时,椭圆的标准方程:
,其中

2.当焦点在轴上时,椭圆的标准方程:,其中;
注意:
1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;
2.在椭圆的两种标准方程中,都有


3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,
;当焦点在
轴上时,椭圆的焦点坐标为,。

讲练结合二.利用标准方程确定参数
1.若方程25x k -+2
3
y k -=1(1)表示圆,则实数k 的取值是 .
(2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k 的取值范围是 .
2.椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,
"
3.椭圆22
14x y m
+
=的焦距为2,则m = 。

4.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

讲练结合三.待定系数法求椭圆标准方程
1.若椭圆经过点(4,0)-,(0,3)-,则该椭圆的标准方程为 。

2.焦点在坐标轴上,且213a =,212c =的椭圆的标准方程为 3.焦点在x 轴上,1:2:=b a ,6=c 椭圆的标准方程为
4. 已知三点P (5,2)、1F (-6,0)、2F (6,0),求以1F 、2F 为焦点且过点P 的椭圆的标准方程;

知识点三:椭圆的简单几何性质
椭圆的的简单几何性质
(1)对称性
对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,
方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围
椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。

(3)顶点
①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),
A2(a,0),B1(0,―b),B2(0,b)。

③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。

a和b分别叫做椭圆的长半轴长
和短半轴长。

(4)离心率
①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。

②因为a>c>0,所以e的取值范围是0<e<1。

e越接近1,则c就越接近a,从而
越小,因
此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。

当且仅当
a=b 时,c=0,这时两个焦点重合,图形变为圆,方程为x 2+y 2=a 2。

注意: 椭圆
的图像中线段的几何特征(如下图):
(1),,;
(2),


(3),


讲练结合四.焦点三角形
1.椭圆22
1925
x y +
=的焦点为1F 、2F ,AB 是椭圆过焦点1F 的弦,则2ABF ∆的周长是 。

2.设1F ,2F 为椭圆400251622=+y x 的焦点,P 为椭圆上的任一点,则21F PF ∆的周长是多少
21F PF ∆的面积的最大值是多少

3.设点P 是椭圆
22
12516
x y +=上的一点,12,F F 是焦点,若12F PF ∠是直角,则12F PF ∆的面积为 。

变式:已知椭圆14416922=+y x ,焦点为1F 、2F ,P 是椭圆上一点. 若︒=∠6021PF F , 求21F PF ∆的面积.

4.设F 是椭圆322
x +24
2y =1的右焦点,定点A(2,3)在椭圆内,在椭圆上求一点P 使|PA|+2|PF|最小,求P
点坐标 最小值 .
知识点四:椭圆
与(a >b >0)的区别和联系
标准方程
图形

性质
焦点 ,

焦距

范围
, ,
对称性
关于x 轴、y 轴和原点对称
顶点 ,

轴 长轴长=
,短轴长=
离心率
准线方程
焦半径


注意:椭圆,(a>b>0)的相同点为形状、大小都相同,参数间的关系
都有a>b>0和,a2=b2+c2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同。

1.如何确定椭圆的标准方程
任何椭圆都有一个对称中心,两条对称轴。

当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。

此时,椭圆焦点在坐标轴上。

确定一个椭圆的标准方程需要三个条件:两个定形条件a、b,一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。

.
2.椭圆标准方程中的三个量a、b、c的几何意义
椭圆标准方程中,a、b、c三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的,分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:a>b >0,a>c>0,且a2=b2+c2。

可借助下图帮助记忆:
a、b、c恰构成一个直角三角形的三条边,其中a是斜边,b、c为两条直角边。

3.如何由椭圆标准方程判断焦点位置
椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的分母的大小,哪个分母大,焦点就在哪个坐标轴上。

4.方程Ax2+By2=C(A、B、C均不为零)表示椭圆的条件
方程Ax2+By2=C可化为,即,
所以只有A、B、C同号,且A≠B时,方程表示椭圆。

当时,椭圆的焦点在x轴上;
当时,椭圆的焦点在y轴上。

5.求椭圆标准方程的常用方法:
①待定系数法:由题目条件确定焦点的位置,从而确定方程的类型,设出标准方程,再由条件确定方
程中的参数、、的值。

其主要步骤是“先定型,再定量”;
②定义法:由题目条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。

6.共焦点的椭圆标准方程形式上的差异
共焦点,则c相同。

与椭圆(a>b>0)共焦点的椭圆方程可设为(k>-b2)。

此类问题常用待定系数法求解。

7.判断曲线关于x轴、y轴、原点对称的依据:
①若把曲线方程中的x换成―x,方程不变,则曲线关于y轴对称;
②若把曲线方程中的y换成―y,方程不变,则曲线关于x轴对称;
③若把曲线方程中的x、y同时换成―x、―y,方程不变,则曲线关于原点对称。

8.如何解决与焦点三角形△PF1F2(P为椭圆上的点)有关的计算问题
与焦点三角形有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算与解题,将有关线段
、、,有关角()结合起来,建立、之间的关系.
9.如何研究椭圆的扁圆程度与离心率的关系
长轴与短轴的长短关系决定椭圆形状的变化。

离心率,因为c2=a2-b2,a>c>0,用
a、b表示为,当越小时,椭圆越扁,e越大;当越大,椭圆趋近圆,e越小,并且0<e<1。


课后作业
18、椭圆32x +2
2y =1与椭圆22
x +32y =(0)有
(A)相等的焦距 (B)相同的离心率 (C)相同的准线 (D)以上都不对 19、椭圆192522=+y x 与125922
=-+-λ
λy x (0<k<9)的关系为
(A)相等的焦距 (B)相同的的焦点 (C)相同的准线 (D)有相等的长轴、短轴 20、椭圆12
62
2=+y x 上一点P 到左准线的距离为2,则点P 到右准线的距离为
21、点P 为椭圆116
252
2=+y x 上的动点,21,F F 为椭圆的左、右焦点,则21PF PF ⋅的最小值为__________ ,此时点P 的坐标为________________.。

相关文档
最新文档