典型零件加工工艺(DOC)
典型零件加工工艺总结
![典型零件加工工艺总结](https://img.taocdn.com/s3/m/d9b6b9bb05a1b0717fd5360cba1aa81144318ff1.png)
典型零件加工工艺总结一、零件概述本次工艺总结以某机械加工企业的典型零件为例,该零件为传动轴,主要用于传递动力和运动。
零件材料为45号钢,具有一定的强度和耐磨性。
二、加工工艺流程1. 毛坯准备:根据零件图纸,制备毛坯。
本例中,采用直径为Φ50mm的45号钢棒料,长度略大于图纸要求。
2. 粗加工:对毛坯进行粗车和粗铣,初步去除余量,加工出大致的几何形状。
3. 半精加工:进一步精加工,使零件达到半成品状态,为精加工做准备。
4. 精加工:对零件进行精车、精铣和磨削等加工,确保尺寸精度和表面粗糙度达到要求。
5. 热处理:对精加工后的零件进行淬火和回火处理,提高其力学性能。
6. 质量检测:对处理后的零件进行全面的质量检测,确保满足图纸要求。
7. 表面处理:根据需要,对零件进行喷漆、镀铬等表面处理,以提高其耐腐蚀性和美观度。
8. 包装入库:将处理后的零件进行包装,并存入成品库。
三、工艺总结1. 优点:a. 采用了合理的加工顺序,保证了加工质量和效率。
b. 使用了先进的数控机床和加工中心,提高了加工精度和自动化程度。
c. 对关键尺寸进行了有效的质量检测和控制,确保了产品的一致性和可靠性。
2. 不足之处:a. 在热处理环节中,部分零件出现了裂纹,需要进一步优化热处理工艺参数。
b. 在表面处理环节中,部分零件表面处理效果不佳,需加强表面处理质量控制。
3. 改进措施:a. 对热处理工艺进行优化,调整淬火和回火温度、时间等参数,减少裂纹的产生。
b. 加强表面处理设备维护和质量控制,提高表面处理效果。
c. 在质量检测环节中增加抽检频次,及时发现并处理不合格品,提高产品质量稳定性。
四、结论通过对典型零件的加工工艺总结,我们可以得出以下结论:在机械加工过程中,要注重加工顺序的合理安排、先进设备的选用、关键尺寸的质量检测和控制等方面;同时也要关注热处理和表面处理等环节中存在的问题,并采取相应的改进措施,以提高零件的加工质量和效率。
典型零件机械加工工艺过程
![典型零件机械加工工艺过程](https://img.taocdn.com/s3/m/39d6d74ba5e9856a57126050.png)
典型零件机械加工工艺过程1轴类零件加工分析(1)轴类零件加工的工艺路线1)基本加工路线外圆加工的方法很多,基本加工路线可归纳为四条。
①粗车—半精车—精车对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。
②粗车—半精车—粗磨—精磨对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。
③粗车—半精车—精车—金刚石车对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。
④粗车—半精—粗磨—精磨—光整加工对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。
2)典型加工工艺路线轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。
对普通精度的轴类零件加工,其典型的工艺路线如下:毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检。
(1)轴类零件的预加工轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。
校直毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值,(2)轴类零件加工的定位基准和装夹1)以工件的中心孔定位在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。
中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。
当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。
2)以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。
典型零件的加工工艺
![典型零件的加工工艺](https://img.taocdn.com/s3/m/b62da701ce84b9d528ea81c758f5f61fb736282e.png)
典型零件的加工工艺1. 引言典型零件的加工工艺是指对常见的机械零件进行加工的工艺流程和方法。
随着制造业的发展,加工工艺也不断发展和创新,以提高产品的质量和生产效率。
本文将介绍几种典型零件的加工工艺,包括铣削、车削、钻孔和焊接等。
2. 铣削工艺铣削是现代制造业中最常用的加工工艺之一,用于加工各种形状复杂的零件。
其基本原理是利用旋转的刀具对工件进行切削。
铣削工艺包括以下几个步骤:•工件固定:将待加工的工件固定在铣床上。
•刀具选择:根据工件材料和形状选择合适的刀具。
•加工参数设置:包括切削速度、进给速度和轴向进给量等。
•铣削操作:根据零件的要求进行铣削操作,包括平面铣削、立体铣削和孔加工等。
•完成后的处理:对加工好的零件进行检查和清洁。
3. 车削工艺车削是将工件固定在车床上,利用刀具对工件进行旋转切削的加工工艺。
车削工艺适用于加工外圆、内圆和螺纹等形状的零件。
车削工艺的步骤如下:•工件固定:将工件用卡盘或卡钳固定在车床上。
•选择刀具:根据工件的材质和形状选择合适的刀具。
•加工参数设置:包括转速、进给速度和切削深度等参数的设定。
•车削操作:根据零件的要求进行车削操作,包括外圆车削、内圆车削和螺纹车削等。
•检查和修整:对加工好的零件进行检查和修整,确保质量要求。
4. 钻孔工艺钻孔是在工件上使用钻床或钻头进行孔加工的一种工艺。
钻孔工艺的步骤如下:•工件固定:将待加工的工件固定在钻床工作台上。
•选择合适的钻头:根据孔径和材质选择合适的钻头。
•加工参数设置:设置钻削转速、进给速度和冷却液的使用等。
•钻孔操作:用钻头对工件进行孔加工,按照要求进行孔的深度和直径的控制。
•清洁和检查:对加工好的孔进行清理和检查,确保孔的质量。
5. 焊接工艺焊接是将两个或多个工件通过熔化和凝固的过程连接在一起的工艺。
焊接工艺的步骤如下:•工件准备:准备待焊接的工件,包括清洁和坡口处理等。
•焊接机器设置:根据材料和焊接方式设置焊接机器的参数,包括电流、电压和焊接速度等。
典型零件的机械加工工艺分析.doc
![典型零件的机械加工工艺分析.doc](https://img.taocdn.com/s3/m/3039a16bccbff121dd3683eb.png)
第4章典型零件的机械加工工艺分析本章要点本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下:1.介绍机械加工工艺规程制订的原则与步骤。
2.以轴类、箱体类、拨动杆零件为例,分析零件机械加工工艺规程制订的全过程。
本章要求:通过典型零件机械加工工艺规程制订的分析,能够掌握机械加工工艺规程制订的原则和方法,能制订给定零件的机械加工工艺规程。
§4.1 机械加工工艺规程的制订原则与步骤§4.1.1机械加工工艺规程的制订原则机械加工工艺规程的制订原则是优质、高产、低成本,即在保证产品质量前提下,能尽量提高劳动生产率和降低成本。
在制订工艺规程时应注意以下问题:1.技术上的先进性在制订机械加工工艺规程时,应在充分利用本企业现有生产条件的基础上,尽可能采用国内、外先进工艺技术和经验,并保证良好的劳动条件。
2.经济上的合理性在规定的生产纲领和生产批量下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,一般要求工艺成本最低。
充分利用现有生产条件,少花钱、多办事。
3.有良好的劳动条件在制订工艺方案上要注意采取机械化或自动化的措施,尽量减轻工人的劳动强度,保障生产安全、创造良好、文明的劳动条件。
由于工艺规程是直接指导生产和操作的重要技术文件,所以工艺规程还应正确、完整、统一和清晰。
所用术语、符号、计量单位、编号都要符合相应标准。
必须可靠地保证零件图上技术要求的实现。
在制订机械加工工艺规程时,如果发现零件图某一技术要求规定得不适当,只能向有关部门提出建议,不得擅自修改零件图或不按零件图去做。
§4.1.2 制订机械加工工艺规程的内容和步骤1.计算零件年生产纲领,确定生产类型。
2.对零件进行工艺分析在对零件的加工工艺规程进行制订之前,应首先对零件进行工艺分析。
其主要内容包括:(1)分析零件的作用及零件图上的技术要求。
(2)分析零件主要加工表面的尺寸、形状及位置精度、表面粗糙度以及设计基准等;(3)分析零件的材质、热处理及机械加工的工艺性。
典型零件加工工艺报告模板
![典型零件加工工艺报告模板](https://img.taocdn.com/s3/m/cc8dd6ad9a89680203d8ce2f0066f5335a81670f.png)
典型零件加工工艺报告模板一、项目概述本报告介绍了一种典型的零件加工工艺,并详细说明了过程中的步骤和注意事项。
该工艺适用于某汽车制造公司的配件生产。
本报告旨在为其他业界同行提供参考。
二、加工材料和设备加工材料本加工工艺使用的材料为优质钢材。
加工设备本加工工艺使用的设备包括以下几个部分:1.车床:用于加工圆形零件;2.铣床:用于加工平面及半圆面零件;3.钻床:用于加工孔洞;4.磨床:用于加工高精度零件。
三、加工工艺流程本工艺共分为以下七步:第一步:车床加工1.将钢材切割至适当长度;2.将钢材端面进行车削;3.按照绘图要求,进行外径和内径的车削;4.进行粗磨和细磨;5.零件检验。
第二步:铣床加工1.固定零件;2.用端铣刀进行端面铣削;3.前后刀架分别进行侧面铣削;4.矫正铣削形成的棱角,进行毛刺清理;5.零件检验。
第三步:钻床加工1.固定要加工的零件;2.通过合适的切割液进行加工;3.零件检验。
第四步:铣床加工1.固定零件;2.进行平面或半圆面的铣削;3.矫正铣削形成的棱角,进行毛刺清理;4.零件检验。
第五步:磨床加工1.对加工完毕的零件进行磨削;2.分别进行粗磨和细磨;3.进行毛刺清理;4.零件检验。
第六步:温处理1.对加工完成的零件进行温度加热处理;2.控制温度和加热时间;3.冷却零件至室温;4.零件检验。
第七步:表面处理和包装1.按要求进行表面处理;2.进行包装。
四、加工注意事项和质量控制加工注意事项•在加工前进行质检,保证加工质量;•加工加油、冷却、清洗等均需严格实行;•合理选择工序次序及加工方法;•严格监督检验环节,对不合格零件进行返工或报废处理。
质量控制1.加工前进行质检,对各工序及工具进行检查;2.结合现代物流管理模式,实现信息化和精细化;3.实施过程化管理,减少交叉操作;4.完善设备检测体系,确保设备的正常运行。
五、生产线性能指标1.首检合格率:99%以上;2.失效率:每3000件产品不良品不超过5件;3.生产效率:单台设备最高生产1000件以上;4.每月育成能力:500万台件以上。
典型薄壁零件数控铣削加工工艺
![典型薄壁零件数控铣削加工工艺](https://img.taocdn.com/s3/m/3333c0c3cd22bcd126fff705cc17552706225e74.png)
典型薄壁零件数控铣削加工工艺【摘要】本文针对典型薄壁零件的数控铣削加工工艺进行了全面分析和总结。
首先介绍了薄壁零件的特点及加工要求,包括对形状精度、表面质量和结构稳定性等方面的要求。
然后详细阐述了数控铣削加工工艺流程,包括铣削顺序、切削参数和进给速度等内容。
接着就刀具选择与加工参数进行了探讨,指导读者在实际加工过程中如何选择合适的工具和设定参数。
随后分析了薄壁零件加工中常见的问题,并提出了解决方案。
对优化薄壁零件数控铣削加工工艺进行了探讨,包括加工效率和质量的提升策略。
结论部分总结了本文的研究成果,并展望了未来发展趋势。
通过本文的阐述,读者可以深入了解薄壁零件加工过程中的关键技术,为相关领域的工程师和研究人员提供了有益参考。
【关键词】薄壁零件、数控铣削、加工工艺、刀具选择、加工参数、常见问题、优化、总结、未来发展趋势、展望。
1. 引言1.1 典型薄壁零件数控铣削加工工艺薄壁零件数控铣削加工工艺是一种用于加工形状复杂、壁薄的零件的精密加工技术。
随着现代制造业的发展,对零件精度和质量的要求越来越高,薄壁零件的加工难度也相应增加。
在传统加工方法下,薄壁零件容易受到变形、扭曲等问题影响,而数控铣削技术的出现为解决这些难题提供了有效途径。
典型薄壁零件数控铣削加工工艺包括薄壁零件特点及加工要求、数控铣削加工工艺流程、刀具选择与加工参数、薄壁零件加工中的常见问题以及优化薄壁零件数控铣削加工工艺。
通过合理选择刀具和加工参数,结合先进的数控技术,可以有效提高薄壁零件的加工精度和质量,同时减少加工过程中产生的浪费和损耗。
本文将重点探讨典型薄壁零件数控铣削加工工艺的特点、加工流程、技术要点以及发展趋势,以期为相关领域的从业者提供参考和借鉴。
通过不断优化工艺,提高加工效率和质量,为推动薄壁零件加工技术的发展作出积极贡献。
2. 正文2.1 薄壁零件特点及加工要求薄壁零件是指在其最小截面的厚度很薄的零件,通常用于航空、汽车、电子等领域。
典型零件加工工艺
![典型零件加工工艺](https://img.taocdn.com/s3/m/709d807fef06eff9aef8941ea76e58fafab045f2.png)
典型零件加工工艺典型零件加工工艺是指在机械加工过程中,对于常见的零件进行加工的一种标准流程。
具体的工艺过程会根据不同的零件类型和加工要求而有所变化,但总体上可以分为以下几个步骤:1. 零件设计和加工准备:在加工过程开始之前,首先需要进行零件的设计和加工准备工作。
这包括根据零件的功能和要求进行设计,确定所需的加工设备、工具和材料。
同时,需要对零件进行尺寸和形状的测量和检查,以确保加工的准确性和合格性。
2. 材料选择和准备:根据零件的材料要求,选择适当的原材料,并进行材料的准备工作。
这包括将原材料切割成合适的尺寸和形状,并进行去毛刺、除锈等处理,以提高加工质量和效率。
3. 加工工艺选择和加工过程优化:根据零件的形状、尺寸和材料特性,选择适当的加工工艺。
常见的加工工艺包括车削、铣削、钻削、磨削等。
在加工过程中,需要根据不同的工艺要求,选择合适的切削工具、切削速度和进给量,以保证加工质量和工艺效率。
4. 加工操作和加工监控:根据加工工艺要求,进行具体的加工操作。
这包括将零件固定在加工设备上,进行切削、磨削等加工过程。
在加工过程中,需要对加工质量进行实时监控,以及时发现和纠正加工中的问题,并保证加工质量达到要求。
5. 表面处理和检验:在零件加工完成后,可能需要进行一些表面处理,如去除切削留下的毛刺、涂覆保护层等。
同时,还需要进行零件的检验和测试,以确保加工质量和尺寸精度符合设计要求。
6. 最终组装和包装:在加工完成并通过检验后,对于需要进行组装的零件,可以进行最终的组装工作。
同时,还需要对零件进行包装,以保护零件在运输和使用过程中的安全和完整性。
通过以上的典型零件加工工艺,可以有效地提高零件的加工质量和效率,确保零件的尺寸精度和性能符合设计要求。
在实际应用中,还可以根据具体的加工需求和工艺要求进行相应的调整和优化,以提高加工的灵活性和经济性。
典型零件加工工艺是机械制造过程中至关重要的一环,为了保证零件的精度、质量和性能达到设计要求,需要经过一系列的加工步骤和工艺控制。
[精选]典型零件加工工艺
![[精选]典型零件加工工艺](https://img.taocdn.com/s3/m/50ec52ca690203d8ce2f0066f5335a8102d2661f.png)
[精选]典型零件加工工艺(一)数控车削加工典型零件工艺分析实例1.编写如图所示零件的加工工艺。
(1)零件图分析如图所示零件,由圆弧面、外圆锥面、球面构成。
其中Φ50外圆柱面直径处不加工,而Φ40外圆柱面直径处加工精度较高。
零件材料:45钢毛坯尺寸:Φ50×110(2)零件的装夹及夹具的选择采用机床三爪自动定心卡盘,零件伸出三爪卡盘外75mm左右,以外圆定位并夹紧。
(3)加工方案及加工顺序的确定以零件右端面和中心轴作为坐标原点建立工件坐标系。
根据零件尺寸精度及技术要求,零件从右向左加工,将粗、精加工分开来考虑。
加工工艺顺序为:车削右端面→复合型车削固定循环粗、精加工右端需要加工的所有轮廓(粗车Φ44、Φ40.5、Φ34.5、Φ28.5、Φ22.5、Φ16.5外圆柱面→粗车圆弧面R14.25→精车外圆柱面Φ40.5→粗车外圆锥面→粗车外圆弧面R4.75→精车圆弧面R14→精车外圆锥面→精车外圆柱面Φ40→精车外圆弧面R5)。
(4)选择刀具选择1号刀具为90°硬质合金机夹偏刀,用于粗、精车削加工。
(5)切削用量选择粗车主轴转速n=630r/min,精车主轴转速V=110m/min,进给速度粗车为f=0.2mm/r,精车为f=0.07mm/r。
2.编写如图1-26所示的轴承套的加工工艺(1)零件图分析零件表面由内圆锥面,顺圆弧,逆圆弧和外螺纹等组成。
有多个直径尺寸与轴向尺寸有较高的尺寸精度和表面粗糙度要求(如果加工质量要求较高的表面不多可列出)。
零件材料:45号钢毛坯尺寸:φ80×112(2)零件的装夹及夹具的选择内孔加工时,以外圆定位,用三爪自动定心卡盘夹紧,需掉头装夹;加工外轮廓时,以圆锥心轴定位,用三爪卡盘夹持心轴左端,右端利用中心孔顶紧。
(3)加工方案及加工顺序的确定以零件右端面中心作为坐标原点建立工件坐标系。
根据零件尺寸精度及技术要求,确定先内后外,先粗后精的原则。
典型零件加工工艺(轴和套筒)
![典型零件加工工艺(轴和套筒)](https://img.taocdn.com/s3/m/2ec1200afe4733687f21aa21.png)
25
1)主要表面及其精度要求 ①支承轴颈
是两个锥度为1:12的圆锥面,分别与两个双列 短圆锥轴承相配合。
支承轴颈是主轴部件的装配基准,其精度直接 影响主轴部件的回转精度,尺寸精度一般为IT5。
主轴两支承轴颈的圆度允差和对其公共轴线的 斜向圆跳动允差均为0.005 mm,表面粗糙度Ra值不 大于0.63µm。
21
热处理工序的安排
结构尺寸不大的中碳钢普通轴类锻件,一般在切削加工 前进行调质热处理。
对于重要的轴类零件(如机床主轴),则:
一般在毛坯锻造后安排正火处理,达到消除锻造应 力,改善切削性能的目的;
粗加工后安排调质处理,以提高零件的综合力学性 能,并作为需要表面淬火或氮化处理的零件的预备热处 理;
5
二、轴类零件的材料和毛坯
1、轴类零件的常用毛坯:
①光轴、直径相差不大的阶梯轴常采用热轧或 冷拉的圆棒料;
②直径相差较大的阶梯轴和比较重要的轴大都 采用锻件。
③当轴的结构形状复杂或尺寸较大时,也有采
用铸件的。
自由锻
中小批
毛坯锻造
模锻
大批大量
6
2、轴类零件的材料:
1)一般轴类零件:45钢应用最多,一般须经调
轴上有相对运动的轴颈和经常拆卸的表面,需要进
行表面淬火处理,安排在磨削前。或在粗磨后、精磨前
渗氮处理
22
四、 机床主轴加工工艺及其分析
23
24
(1)零件分析 对机床主轴的共同要求是必须满足机床
的工作性能:即回转精度、刚度、热变形、 抗振性、使用寿命等多方面的要求。
车床主轴是带有通孔的多阶台轴,普通 精度等级,材料为45钢。
9
顶尖的实施
典型零件加工工艺
![典型零件加工工艺](https://img.taocdn.com/s3/m/3f611463cec789eb172ded630b1c59eef8c79afa.png)
典型零件加工工艺1. 引言典型零件加工工艺是指对机械零件进行加工的工艺流程和方法。
在现代制造业中,机械零件的加工是非常重要的环节,直接影响到产品的质量和性能。
本文将介绍几种典型的零件加工工艺,并对其特点和应用范围进行分析。
2. 钻孔加工钻孔加工是一种常见的零件加工工艺,在机械制造中广泛应用。
其主要目的是在工件上形成圆形的孔洞,以适应其他零件的连接和安装。
钻孔加工一般可以分为手工钻孔和机械钻孔两种方式。
2.1 手工钻孔手工钻孔是指通过人工操作钻头进行加工的方式。
这种方式适用于一些小型和简单的工件加工,对加工精度要求不高的情况。
手工钻孔的优点是操作简单,成本低,但加工效率相对较低。
2.2 机械钻孔机械钻孔是指通过机械设备进行钻孔加工的方式。
这种方式适用于大批量生产和要求较高加工精度的情况。
机械钻孔的优点是自动化程度高,加工效率高,但设备投资成本相对较高。
3. 铣削加工铣削加工是一种通过旋转刀具对工件进行切削的加工方式。
铣削加工具有广泛的适用范围,可以加工平面、曲面、倒角等各种形状的零件。
根据刀具的不同,铣削加工可以分为平面铣削、立铣、立铣镗等。
3.1 平面铣削平面铣削主要用于加工平面零件,通过平面铣刀在工件上旋转切削,使工件表面形成平面。
这种方式适用于加工平整的零件表面,具有加工效率高、切削力小、加工精度高等优点。
3.2 立铣立铣主要用于加工立面、槽口、凹槽等形状的零件。
通过立铣刀在工件上进行切削,可以形成各种形状的加工面。
立铣加工具有灵活性高、适应性强等特点,广泛应用于各种复杂零件的加工。
3.3 立铣镗立铣镗是一种同时进行铣削和镗削的加工方式。
通过立铣镗刀具,在工件上进行切削和展向控制,可以同时完成铣削和镗削操作。
立铣镗加工可以实现高精度和高表面质量的要求,适用于一些高精度零件的加工。
4. 车削加工车削加工是一种通过旋转工件对其进行切削的加工方式。
车削加工一般适用于加工旋转对称的零件,可以加工出各种圆柱形、圆锥形、球面等形状的零件。
数控加工工艺大作业典型轴类零件的数控加工工艺设计.doc
![数控加工工艺大作业典型轴类零件的数控加工工艺设计.doc](https://img.taocdn.com/s3/m/530655d6240c844769eaee6c.png)
目录1.零件图工艺分析2设备选择3确定零件的定位基准和装夹方式4确定加工顺序及进给路线5刀具的选择6确定切削用量7填写数控加工工艺文件轴类零件的数控加工工艺的编制及加工图1.零件图工艺分析零件车削工艺分析如图1-1所示,零件材料处理为:45钢,下面对该零件进行数控车削工艺分析。
零件如图:图1-1 零件图1.1数控加工工艺基本特点数控机床加工工艺与普通机床加工原则上基本相同,但数控机床是自动进行加工,因而有如下特点:①数控加工的工序内容比普通机床的加工内容复杂,加工的精度高,加工的表面质量高,加工的内容较丰富。
②数控机床加工程序的编制比普通机床工艺编制要复杂些。
这是因为数控机床加工存在对刀、换刀以及退刀等特点,这都无一例外的变成程序内容,正是由于这个特点,促使对加工程序正确性和合理性要求极高,不能有丝毫的差错。
否则加工不出合格的零件。
在编程前我们一定要对零件进行工艺分析,这是必不可少的一步,如图1-1我要对该零件进行精度分析,选择加工方法、拟定加工方案、选择合理的刀具、确定切削用量。
该零件由螺纹、圆柱、圆锥、圆弧等表面组成。
可控制球面形状精度、30°的锥度等要求。
经上面的分析,我可以采用以下工艺措施:(1)为便于装夹,为了保证工件的定位准确、稳定,夹紧方面可靠,支撑面积较大,零件的左端是最大直径圆柱ф85mm,中段的圆柱ф80mm。
右端是螺纹,应先装夹毛坯加工出左端圆弧及圆柱ф85mm、ф80mm调头装夹ф80mm的圆柱加工右端螺纹、圆柱及锥面,毛坯选ф85×350mm。
1.2设备选择根据该零件的外形是轴类零件,只有在数控车床上加工才能保证其加工的尺寸精度和表面质量。
我选择在本校的数控机床HNC-CK6140加工该零件。
1.3确定零件的定位基准和装夹方式1.3.1粗基准选择原则(1)为了保证不加工表面与加工表面之间的位置要求,应选不加工表面作粗基准。
(2)合理分配各加工表面的余量,应选择毛坯外圆作粗基准。
汽车典型零件加工工艺
![汽车典型零件加工工艺](https://img.taocdn.com/s3/m/f43d2f7fa9956bec0975f46527d3240c8547a153.png)
汽车典型零件加工工艺一、发动机零件加工工艺发动机是汽车的核心部件之一,其零件加工工艺至关重要。
常见的发动机零件包括缸体、缸盖、曲轴等。
1. 缸体加工工艺缸体是发动机的主要承载部件,其加工工艺主要包括以下几个步骤:(1)原材料准备:选择高质量的铸铁材料,进行熔炼和浇铸。
(2)铸造:将熔化的铁液注入模具中,待其冷却凝固后取出。
(3)去砂:将铸造后的缸体进行去砂处理,以去除表面的砂粒。
(4)车削:利用车床对缸体进行车削,使其达到所需的尺寸和精度要求。
(5)热处理:通过热处理工艺,提高缸体的硬度和强度。
(6)精加工:对缸体进行刨削、铣削等精细加工,以提高其表面质量和配合精度。
2. 缸盖加工工艺缸盖是发动机中与缸体直接相连的部件,其加工工艺与缸体相似,主要包括以下步骤:(1)原材料准备:选择适合的铸铁材料,并进行熔炼和浇铸。
(2)铸造:将熔化的铁液倒入模具中,待其冷却凝固后取出。
(3)去砂:将铸造后的缸盖进行去砂处理,以去除表面的砂粒。
(4)车削:利用车床对缸盖进行车削,使其达到所需的尺寸和精度。
(5)热处理:通过热处理工艺,提高缸盖的硬度和强度。
(6)精加工:对缸盖进行刨削、铣削等精细加工,以提高其表面质量和配合精度。
3. 曲轴加工工艺曲轴是发动机中的重要零件,其加工工艺较为复杂,主要包括以下几个步骤:(1)原材料准备:选择高质量的合金钢材料,进行锻造或铸造。
(2)粗车:将原材料进行粗车加工,使其初步达到所需的外形尺寸。
(3)热处理:通过热处理工艺,提高曲轴的硬度和强度。
(4)精车:利用车床对曲轴进行精车加工,使其达到所需的尺寸和精度要求。
(5)抛光:对曲轴进行抛光处理,以提高其表面质量和光洁度。
(6)平衡:通过动平衡机对曲轴进行平衡处理,以减小振动和噪音。
二、底盘零件加工工艺底盘是汽车的支撑和运动部件,其零件加工工艺对车辆的性能和安全性有着重要影响。
常见的底盘零件包括悬挂系统、制动系统、转向系统等。
1. 悬挂系统零件加工工艺悬挂系统是汽车底盘的重要组成部分,其零件加工工艺主要包括以(1)原材料准备:选择适合的合金钢材料,进行锻造或铸造。
典型零件加工工艺过程
![典型零件加工工艺过程](https://img.taocdn.com/s3/m/48951a5c11a6f524ccbff121dd36a32d7375c792.png)
强化质量管理体系:建立完善的质量管理体系,对加工过程进行全面监控和管理, 确保每个环节的质量控制。
引入先进技术和设备:积极引入先进的加工技术和设备,提高加工效率和精度,提 升零件加工质量。
感谢您的观看
检验环节:对加工 完成的零件进行检 验,包括尺寸、形 状、表面质量等方 面的检查,确保零 件符合设计要求
检验标准:制定明 确的检验标准,为 检验人员提供依据 ,确保零件质量稳 定可靠
质量记录:对加工 过程监控和检验结 果进行记录,便于 后续追溯和分析, 为持续改进提供数 据支持
05
零件加工后的质量检测 与评估
案例分析:具体零 件加工过程中的形 位公差控制实例
表面粗糙度控制
影响因素:切削参数、刀具 类型、材料性质等
定义:表面粗糙度是指零件 表面微观不平度的程度
控制方法:选择合适的切削 参数和刀具类型,采用先进
的加工工艺
检测方法:采用表面粗糙度 测量仪进行测量
加工过程监控与检验
加工过程监控:对 零件加工过程中的 关键工序进行实时 监控,确保加工质 量符合要求
结论:总结箱体类零件加工工艺的重要性和发展趋势,强调其在机械制造领域的重要地位和作用
其他典型零件加工工艺案例
轴类零件加工工艺 案例
盘套类零件加工工 艺案例
叉架类零件加工工 艺案例
箱体类零件加工工 艺案例
07 总结与展望
典型零件加工工艺过程总结
零件加工工艺过程概述 零件加工工艺流程 零件加工工艺特点 零件加工工艺发展趋势
度等
检测方法:采 用各种量具、 仪器进行测量
检测数据记录: 详细记录每个 零件的检测数
典型零件的加工工艺
![典型零件的加工工艺](https://img.taocdn.com/s3/m/c5211c04844769eae009edfe.png)
图4-1
二、轴类零件的材料、毛坯和热处理
• 轴类零件的毛坯常用棒料和锻件。光滑轴、直径相差不大 的非重要阶梯轴宜选用棒料,一般比较重要的轴大都采用 锻件作为毛坯,只有某些大型的、结构复杂的轴采用铸件。 • 根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两 种。中小批生产多采用自由锻,大批大量生产时通常采用 模锻。 • 45钢是轴类零件的常用材料,它价格便宜,经过调质(或 正火)后,可得到较好的切削性能,而且能够获得较高的 强度和韧性,淬火后表面硬度可达45~52HRC。 • 40Cr等合金结构钢适用于中等精度而转速较高的轴类零 件。这类钢经调质和淬火,具有较好的综合力学性能。
3.主轴的检验
• 主轴的最终检验要按一定顺序进 行,先检验各个外圆的尺寸精度、 素线平行度和圆度,再用外观比 较法检验各表面的粗糙度和表面 缺陷,最后再用专用检具检验各 表面之间的位置精度,这样可以 判明和排除不同性质误差之间对 测量精度的干扰。 • 检验前、后支承轴径对公共基准 的同轴度误差,通常采用如图4-6 所示的方法。 • C6150型车床主轴上其他各表面 相对于支承轴径位置精度的检验 常在图4-7所示的专用检具上进行。
6加工方法和加工设备的选择
More to learn
定位基准选择
(1)精基准的选择 精基准选择时应尽量符合“基准重合” 和“基准统一”原则,保证主要加工表面(主要轴径的支 承孔)的加工余量均匀,同时定位基面应形状简单、加工 方便,以保证定位质量和夹紧可靠。此外,精基准的选择 还与生产批量的大小有关。箱体零件典型的定位方案有两 种:
图4-11
(2)粗基准的选择 箱体零件加工面较多,粗基准选择时 主要考虑各加工面能否分配到合理的加工余量,以及加工 面与非加工面之间是否具有准确的相互位置关系。箱体零 件上一般有一个(或几个)主要的大孔,为了保证孔加工 的余量均匀,应以该毛坯孔作为粗基准。箱体零件上的不 加工面以内腔为主,它和加工面之间有一定的相互位置关 系。箱体中往往装有齿轮等传动件,它们与不加工的内壁 之间只有不大的间隙,如果加工出的轴承孔与内腔壁之间 的误差太大,就有可能使齿轮安装时与箱体壁相碰。从这 一要求出发,应选内壁为粗基准,但这将使夹具结构十分 复杂。考虑到铸造时内壁与主要孔都是由同一个泥芯浇铸 的,因此实际生产中常以孔为主要粗基准,限制4个自由 度,而辅之以内腔或其他毛坯孔为次要基准面,以实现完 全定位。
轴类零件加工工艺.doc
![轴类零件加工工艺.doc](https://img.taocdn.com/s3/m/12237425804d2b160b4ec083.png)
轴类零件加工工艺轴类零件加工工艺1 轴类零件的功用、结构特点及技术要求轴类零件是机器中经常遇到的典型零件之一。
它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。
按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。
轴用轴承支承,与轴承配合的轴段称为轴颈。
轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,通常有以下几项:1.1 尺寸精度起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高(IT5~IT7)。
装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。
1.2 几何形状精度轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。
对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。
1.3 相互位置精度轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定的。
通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。
普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~0.03mm,高精度轴(如主轴)通常为0.001~0.005mm。
1.4 表面粗糙度一般与传动件相配合的轴径表面粗糙度为Ra2.5~0.63μm,与轴承相配合的支承轴径的表面粗糙度为Ra0.63~0.16μm。
2 轴类零件的毛坯和材料2.1 轴类零件的毛坯轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式。
对于外圆直径相差不大的轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。
根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。
中小批生产多采用自由锻,大批大量生产时采用模锻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
箱体类零件加工工艺箱体零件是机器或部件的基础零件,轴、轴承、齿轮等有关零件按规定的技术要求装配到箱体上,连接成部件或机器,使其按规定的要求工作,因此箱体零件的加工质量不仅影响机器的装配精度和运动精度,而且影响机器的工作精度、使用性能和寿命。
下面以图1所示齿轮减速箱体零件的加工为例讨论箱体类零件的工艺过程。
图1 某车床主轴箱体简图箱体类零件的结构特点和技术要求分析图3所示零件为某车床主轴箱体类零件,属于中批生产,零件的材料为HT200铸铁。
一般来说,箱体零件的结构较复杂,内部呈腔形,其加工表面主要是平面和孔。
对箱体类零件的技术要求分析,应针对平面和孔的技术要求进行分析。
1.平面的精度要求箱体零件的设计基准一般为平面,本箱体各孔系和平面的设计基准为G面、H面和P面,其中G面和H面还是箱体的装配基准,因此它有较高的平面度和较小表面粗糙度要求。
2.孔系的技术要求箱体上有孔间距和同轴度要求的一系列孔,称为孔系。
为保证箱体孔与轴承外圈配合及轴的回转精度,孔的尺寸精度为IT7,孔的几何形状误差控制在尺寸公差范围之内。
为保证齿轮啮合精度,孔轴线间的尺寸精度、孔轴线间的平行度、同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,均应有较高的要求。
3.孔与平面间的位置精度箱体上主要孔与箱体安装基面之间应规定平行度要求。
本箱体零件主轴孔中心线对装配基面(G、H面)的平行度误差为0.04mm。
4.表面粗糙度重要孔和主要表面的粗糙度会影响连接面的配合性质或接触刚度,本箱体零件主要孔表面粗糙度为0.8μm,装配基面表面粗糙度为1.6μm。
箱体类零件的材料及毛坯箱体零件的材料常用铸铁,这是因为铸铁容易成形,切削性能好,价格低,且吸振性和耐磨性较好。
根据需要可选用HT150~350,常用HT200。
在单件小批量生产情况下,为缩短生产周期,可采用钢板焊接结构。
某些大负荷的箱体有时采用铸钢件。
在特定条件下,可采用铝镁合金或其它铝合金材料。
铸铁毛坯在单件小批生产时,一般采用木模手工造型,毛坯精度较低,余量大;在大批量生产时,通常采用金属模机器造型,毛坯精度较高,加工余量可适当减小。
单件小批生产直径大于50mm的孔,成批生产大于30mm的孔,一般都铸出预孔,以减少加工余量。
铝合金箱体常用压铸制造,毛坯精度很高,余量很小,一些表面不必经切削加即可使用。
箱体类零件的加工工艺过程箱体零件的主要加工表面是孔系和装配基准面。
如何保证这些表面的加工精度和表面粗糙度,孔系之间及孔与装配基准面之间的距离尺寸精度和相互位置精度,是箱体零件加工的主要工艺问题。
箱体零件的典型加工路线为:平面加工-孔系加工-次要面(紧固孔等)加工。
图1车床主轴箱体零件,其生产类型为中小批生产;材料为HT200;毛坯为铸件。
该箱体的加工工艺路线如表1。
表1车床主轴箱体零件的加工工艺过程箱体类零件的加工工艺过程分析一、主要表面的加工方法选择箱体的主要加工表面有平面和轴承支承孔。
箱体平面的粗加工和半精加工主要采用刨削和铣削,也可采用车削。
当生产批量较大时,可采用各种组合铣床对箱体各平面进行多刀、多面同时铣削;尺寸较大的箱体,也可在多轴龙门铣床上进行组合铣削,可有效提高箱体平面加工的生产率。
箱体平面的精加工,单件小批量生产时,除一些高精度的箱体仍需手工刮研外,一般多用精刨代替传统的手工刮研;当生产批量大而精度又较高时,多采用磨削。
为提高生产效率和平面间的位置精度,可采用专用磨床进行组合磨削等。
箱体上公差等级为IT 7级精度的轴承支承孔,一般需要经过3~4次加工。
可采用扩一粗铰一精铰,或采用粗镗-半精镗一精镗的工艺方案进行加工(若未铸出预孔应先钻孔)。
以上两种工艺方案,表面粗糙度值可达Ra0. 8~1. 6μm。
铰的方案用于加工直径较小的孔,镗的方案用于加工直径较大的孔。
当孔的加工精度超过IT 6级,表面粗糙度值Ra小于0. 4μm时,还应增加一道精密加工工序,常用的方法有精细镗、滚压、珩磨、浮动镗等。
二、箱体加工定位基准的选择1.粗基准的选择粗基准的选择对零件主要有两个方面影响,即影响零件上加工表面与不加工表面的位置和加工表面的余量分配。
为了满足上述要求,一般宜选箱体的重要孔的毛坯孔作粗基准。
本箱体零件就是宜主轴孔Ⅲ和距主轴孔较远的Ⅱ轴孔作为粗基准。
本箱体不加工面中,内壁面与加工面(轴孔)间位置关系重要,因为箱体中的大齿轮与不加工内壁间隙很小,若是加工出的轴承孔与内壁有较大的位置误差,会使大齿轮与内壁相碰。
从这一点出发,应选择内壁为粗基准,但是夹具的定位结构不易实现以内壁定位。
由于铸造时内壁和轴孔是同一个型心浇铸的,以轴孔为粗基准可同时满足上述两方的要求,因此实际生产中,一般以轴孔为粗基准。
2.精基准的选择选择精基准主要是应能保证加工精度,所以一般优先考虑基准重合原则和基准同一原则,本零件的各孔系和平面的设计基准和装配基准为为G、H面和P 盖,因此可采用G、H面和P三面作精基准定位。
三、箱体加工顺序的安排箱体机械加工顺序的安排一般应遵循以下原则:1.先面后孔的原则箱体加工顺序的一般规律是先加工平面,后加工孔。
先加工平面,可以为孔加工提供可靠的定位基准,再以平面为精基准定位加工孔。
平面的面积大,以平面定位加工孔的夹具结构简单、可靠,反之则夹具结构复杂、定位也不可靠。
由于箱体上的孔分布在平面上,先加工平面可以去除铸件毛坯表面的凹凸不平、夹砂等缺陷,对孔加工有利,如可减小钻头的歪斜、防止刀具崩刃,同时对刀调整也方便。
2.先主后次的原则箱体上用于紧固的螺孔、小孔等可视为次要表面,因为这些次要孔往往需要依据主要表面(轴孔)定位,所以这些螺孔的加工应在轴孔加工后进行。
对于次要孔与主要孔相交的孔系,必须先完成主要孔的精加工,再加工次要孔,否则会使主要孔的精加工产生断续切削、振动,影响主要孔的加工质量。
3.孔系的数控加工由于箱体零件具有加工表面多,加工的孔系的精度高,加工量大的特点,生产中常使用高效自动化的加工方法。
过去在大批、大量生产中,主要采用组合机床和加工自动线,现在数控加工技术,如加工中心、柔性制造系统等已逐步应用于各种不同的批量的生产中。
车床主轴箱体的孔系也可选择在卧式加工中心上加工,加工中心的自动换刀系统,使得一次装夹可完成钻、扩、铰、镗、铣、攻螺纹等加工,减少了装夹次数,实行工序集中的原则,提高了生产率。
齿轮知识介绍齿轮简介齿轮是能互相啮合的有齿的机械零件,它在机械传动及整个机械领域中的应用极其广泛。
现代齿轮技术已达到:齿轮模数0.004~100毫米;齿轮直径由1毫米~150米;传递功率可达上十万千瓦;转速可达几十万转/分;最高的圆周速度达300米/秒。
齿轮在传动中的应用很早就出现了。
公元前三百多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。
中国古代发明的指南车中已应用了整套的轮系。
不过,古代的齿轮是用木料制造或用金属铸成的,只能传递轴间的回转运动,不能保证传动的平稳性,齿轮的承载能力也很小。
19世纪出现的滚齿机和插齿机,解决了大量生产高精度齿轮的问题。
1900年,普福特为滚齿机装上差动装置,能在滚齿机上加工出斜齿轮,从此滚齿机滚切齿轮得到普及,展成法加工齿轮占了压倒优势,渐开线齿轮成为应用最广的齿轮。
齿轮种类齿轮应用广泛,种类很多。
按齿廓曲线可分为渐开线齿轮、摆线齿轮、圆弧齿轮等。
按外形可分为圆柱齿轮、锥齿轮、非圆齿轮、齿条、蜗杆-蜗轮等;按轮齿所在的表面可分为外齿轮和内齿轮;按齿线形状可分为直齿轮、斜齿轮、人字齿轮、曲线齿轮等。
按制造方法可分为铸造齿轮、切制齿轮、轧制齿轮、烧结齿轮等。
按齿面硬度可分为软齿面和硬齿面两种。
齿轮图示:齿轮材料制造齿轮常用的钢有调质钢、淬火钢、渗碳淬火钢和渗氮钢。
铸钢的强度比锻钢稍低,常用于尺寸较大的齿轮;灰铸铁的机械性能较差,可用于轻载的开式齿轮传动中;球墨铸铁可部分地代替钢制造齿轮;塑料齿轮多用于轻载和要求噪声低的地方,与其配对的齿轮一般用导热性好的钢齿轮。
齿轮加工设备按照被加工齿轮种类不同,齿轮加工机床可分为两大类:1.圆柱齿轮加工机床5)精加工:精修基准、精加工齿形1、基准的选择对于齿轮加工基准的选择常因齿轮的结构形状不同而有所差异。
带轴齿轮主要采用顶点孔定位;对于空心轴,则在中心内孔钻出后,用两端孔口的斜面定位;孔径大时则采用锥堵。
顶点定位的精度高,且能作到基准重合和统一。
对带孔齿轮在齿面加工时常采用以下两种定位、夹紧方式。
(1)以内孔和端面定位这种定位方式是以工件内孔定位,确定定位位置,再以端面作为轴向定位基准,并对着端面夹紧。
这样可使定位基准、设计基准、装配基准和测量基准重合,定位精度高,适合于批量生产。
但对于夹具的制造精度要求较高。
(2)以外圆和端面定位当工件和加剧心轴的配合间隙较大时,采用千分表校正外圆以确定中心的位置,并以端面进行轴向定位,从另一端面夹紧。
这种定位方式因每个工件都要校正,故生产率低;同时对齿坯的内、外圆同轴要求高,而对夹具精度要求不高,故适用于单件、小批生产。
综上所述,为了减少定位误差,提高齿轮加工精度,在加工时应满足以下要求:1)应选择基准重合、统一的定位方式;2)内孔定位时,配合间隙应近可能减少;3)定位端面与定位孔或外圆应在一次装夹中加工出来,以保证垂直度要求。
2、齿轮毛坯的加工齿面加工前的齿轮毛坯加工,在整个齿轮加工过程中占有很重要的地位。
因为齿面加工和检测所用的基准必须在此阶段加工出来,同时齿坯加工所占工时的比例较大,无论从提高生产率,还是从保证齿轮的加工质量,都必须重视齿轮毛坯的加工。
在齿轮图样的技术部要求中,如果规定以分度圆选齿厚的减薄量来测定齿侧间隙时,应注意齿顶圆的精度要求,因为齿厚的检测是以齿顶圆为测量基准的。
齿顶圆精度太低,必然使测量出的齿厚无法正确反映出齿侧间隙的大小,所以,在这一加工过程中应注意以下三个问题:1)当以齿顶圆作为测量基准时,应严格控制齿顶圆的尺寸精度;2)保证定位端面和定位孔或外圆间的垂直度;3)提高齿轮内孔的制造精度,减少与夹具心轴的配合间隙;3、齿形及齿端加工齿形加工是齿轮加工的关键,其方案的选择取决于多方面的因素,如设备条件、齿轮精度等级、表面粗糙度、硬度等。
常用的齿形加工方案在上节已有讲解,在此不再叙述。
齿轮的齿端加工有倒圆、倒尖、倒棱和去毛刺等方式。
经倒圆、倒尖后的齿轮在换档时容易进入啮合状态,减少撞击现象。
倒棱可除去齿端尖角和毛刺。
倒圆时,铣刀告诉旋转,并沿圆弧作摆动,加工完一个齿后,工件退离铣刀,经分度再快速向铣刀靠近加工下一个齿的齿端。
齿端加工必须在淬火之前进行,通常都在滚(插)齿之后,剃齿之前安排齿端加工。
4、轮加工过程中的热处理要求在齿轮加工工艺过程中,热处理工序的位置安排十分重要,它直接影响齿轮的力学性能及切削加工性。