统计学第八章 时间序列分析

合集下载

统计学 第8章 时间序列分析

统计学 第8章 时间序列分析
第8章时间序列分析首先概述了时间序列的概念,即由同一现象在不同时间上的观察数据按时间顺序排列形成的数列。进而阐述了时间序列的种类,包括绝对数时间序列、相对数时间序列和平均数时间序列,并详细解释了这些序列的特点和应用场景。在编制时间序列时,需遵循保证数据可比性的原则,如时间一致、总体范围一致、经济内容、计算口径和计算方法一致等。接下来,章节深入探讨了时间序列的水平分析与速度分析,通过计算发展水平、平均发展水平、增长量和平均增长量等指标,揭示现象在不同时间上的发展变化水平和高低差异,以及增长变化的数量和速度。这些分析方

第八章时间序列分析

第八章时间序列分析

第⼋章时间序列分析第⼋章时间序列分析与预测【课时】6学时【本章内容】§ 时间序列的描述性分析时间序列的含义、时间序列的图形描述、时间序列的速度分析§ 时间序列及其构成分析时间序列的构成因素、时间序列构成因素的组合模型§ 时间序列趋势变动分析移动平均法、指数平滑法、模型法§ 时间序列季节变动分析[原始资料平均法、趋势-循环剔除法、季节变动的调整§ 时间序列循环变动分析循环变动及其测定⽬的、测定⽅法本章⼩结【教学⽬标与要求】1.掌握时间序列的四种速度分析2.掌握时间序列的四种构成因素3.掌握时间序列构成因素的两种常⽤模型4.掌握测定长期趋势的移动平均法5.了解测定长期趋势的指数平滑法6.;7.掌握测定长期趋势的线性趋势模型法8.了解测定长期趋势的⾮线性趋势模型法9.掌握分析季节变动的原始资料平均法10.掌握分析季节变动的循环剔出法11.掌握测定循环变动的直接法和剩余法【教学重点与难点】1.对统计数据进⾏趋势变动分析,利⽤移动平均法、指数平滑法、线性模型法求得数据的长期趋势;2.对统计数据进⾏季节变动分析,利⽤原始资料平均法、趋势-循环剔除法求得数据的季节变动;3.对统计数据进⾏循环变动分析,利⽤直接法、剩余法求得循环变动。

【导⼊】;很多社会经济现象总是随着时间的推移不断发展变化,为了探索现象随时间⽽发展变化的规律,不仅要从静态上分析现象的特征、内部结构以及相互关联的数量关系,⽽且应着眼于现象随时间演变的过程,从动态上去研究其发展变动的过程和规律。

这时需要⼀些专门研究按照时间顺序观测的序列数据的统计分析⽅法,这就是统计学中的时间序列分析。

通过介绍⼀些时间序列分析的例⼦,让同学们了解时间序列的应⽤,并激发学⽣学习本章知识的兴趣。

1.为了表现中国经济的发展状况,把中国经济发展的数据按年度顺序排列起来,据此来研究。

2.公司对未来的销售量作出预测。

这种预测对公司的⽣产进度安排、原材料采购、存货策略、资⾦计划等都⾄关重要。

统计学罗文宝主编 第八章时间序列分析单选题多选题参考答案

统计学罗文宝主编 第八章时间序列分析单选题多选题参考答案

第八章 时间序列分析二、单项选择题1.根据时期数列计算序时平均数应采用( C )。

A 、几何平均法 B.加权算术平均法 C.简单算术平均法 D.首末折半法2.间隔相等的时点数列计算序时平均数应采用(D )。

A.几何平均法B.加权算术平均法C.简单算术平均法D.首末折半法3.数列中各项数值可以直接相加的时间数列是(B )。

A.时点数列B.时期数列C.平均指标动态数列D.相对指标动态数列4.时间数列中绝对数列是基本数列,其派生数列是(D )。

A. 时期数列和时点数列B. 绝对数时间数列和相对数时间数列C. 绝对数时间数列和平均数时间数列D.相对数时间数列和平均数时间数列5.下列数列中哪一个属于动态数列( D )。

A.学生按学习成绩分组形成的数列B.工业企业按地区分组形成的数列C.职工按工资水平高低排列形成的数列D.出口额按时间先后顺序排列形成的数列6.已知某企业1月、2月、3月、4月的平均职工人数分别为190人、195人、193人和201人。

则该企业一季度的平均职工人数的计算方法为(B )。

7.说明现象在较长时期内发展的总速度的指标是(C )。

A 、环比发展速度 B.平均发展速度 C.定基发展速度 D.环比增长速度8.已知各期环比增长速度为2%、5%、8%和7%,则相应的定基增长速度的计算方法为(A )。

A.(102%×105%×108%×107%)-100%B. 102%×105%×108%×107%C. 2%×5%×8%×7%D. (2%×5%×8%×7%)-100%4201193195190+++、A 3193195190++、B 1422011931952190-+++、C 422011931952190+++、D9.平均发展速度是( C )。

A.定基发展速度的算术平均数B.环比发展速度的算术平均数C.环比发展速度的几何平均数D.增长速度加上100%10.若要观察现象在某一段时期内变动的基本趋势,需测定现象的( C )。

时间序列分析课件讲义

时间序列分析课件讲义
7
3.5E+09 3.0E+09 2.5E+09 2.0E+09 1.5E+09 1.0E+09
5.0E+08 99:01 99:07 00:01 00:07 01:01 01:07 02:01 02:07
Y
8
单变量时间序列分析
趋势模型
确定型趋势模型
平滑模型 季节模型
水平模型
加法模型
9
乘法模型
ARMA模型 ARIMA模型 (G)ARCH类模型
42
(2)ADF检验 DF检验只对存在一阶自相关的序列适用。 ADF检验 适用于存在高阶滞后相关的序列。 y = y t 1 + t
表述为
y t = y t 1 + t
t
存在高阶滞后相关的序列,经过处理可以表述为 y t = y t 1 + 1yt 1+ 2yt 2 + ....... + p1yt p1 + t 上式中,检验假设为
34
特别地,若 其中,{ t }为独立同分布,且E( t ) = 0,
D( t )
2 = <
yt= y t 1+ t
t = 1,2,......
,则{
(random waik process) 。可以看出,随机游动过程是 单位根过程的一个特例。
yt }为一随机游动过程

(2) 季节差分
3. 随机性
23
(四)ARMA模型及其改进 1. 自回归模型 AR(p) 模型的一般形式
( B) yt
=
et
AR (p) 序列的自相关和偏自相关 rk :拖尾性 k :截尾性

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。

它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。

本文将介绍时间序列分析的基本概念、常见的方法和应用领域。

一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。

它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。

时间序列的分析要求数据点之间存在一定的相关性和规律性。

二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。

趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。

三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。

常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。

2. 平稳性检验平稳性是时间序列分析的基本假设。

平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。

常见的平稳性检验方法有单位根检验和ADF检验。

3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。

常用的时间序列模型有ARIMA模型、AR模型和MA模型等。

通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。

4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。

常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。

根据诊断结果,我们可以对模型进行改进,提高预测的准确性。

四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。

在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。

在金融学中,它可以帮助我们预测股票价格和利率走势。

在气象学中,时间序列分析可以用于预测天气变化和自然灾害。

在市场营销中,它可以帮助我们预测销售量和用户行为。

统计学 时间序列分析

统计学 时间序列分析

三 11.0
四 12.6
五 14.6
六 16.3
七 18.0
月末全员人数(人) a 2000 2000 2200 2200 2300
b
要求计算:①该企业第二季度各月的劳动生产率 ; ②该企业第二季度的月平均劳动生产率; ③该企业第二季度的劳动生产率。
6.2 时间序列分析的水平指标
6.2.1 发展水平与平均发展水平 --相对数(平均数)时间序列
时间 1月1日 5月31日 8月31日 12月31日
社会劳动者 人数
362
390
416
420
解:则该地区该年的月平均人数为:
362390539041634164204
y 2
2
2
534
39.765万人
6.2 时间序列分析的水平指标
6.2.1 发展水平与平均发展水平 --相对数(平均数)时间序列
月份 工业增加值(万元)
6.1 时间序列概述
6.1.2 时间序列的种类
绝对数序列
时期序列

派生
时点序列

序 列
相对数序列
平均数序列
6.1 时间序列概述
6.1.2 时间序列的种类
年 份 1992 1993 1994 1995 1996 1997
职工工资总额 3939.2 4916.2 6656.4 8100.0时90期80数.0数94列05.3 (亿元)
解:①第二季度各月的劳动生产率:
四月份: y12 10 .6 2 0 1 20 0 00 0 2 0 0 603元 0人 0
五月份: y22 10 .6 4 0 1 20 0 20 0 2 0 0 60 9.4 5 元 2 人

统计学第八章 时间序列分析

统计学第八章 时间序列分析

季节指数
乘法模型中的季节成分通过季节指数来反映。 季节指数(季节比率):反映季节变动的相
对数。 1、月(或季)的指数之和等于1200%(或
400%) 。 2、季节指数离100%越远,季节变动程度
越大,数据越远离其趋势值。
用移动平均趋势剔除法计算季节指数
1、计算移动平均值(TC),移动期数为4或 12,注意需要进行移正操作。
移动平均的结果 4000 3500 3000 2500 2000 1500 1000 500 0
Example 2
移动平均法可以作为测定长期趋势的一种 较为简单的方法,在股市技术分析中有广 泛的应用。比如对某只股票的日收盘价格 序列分别求一次5日、10日、一个月的移动 平均就可以得到其5日、10日、一个月的移 动平均股价序列,进而得到5日线、10日线、 月线,用以反映股价变动的长期趋势。
1987 1800 1992 1980 1997 2880
1988 1620 1993 2520 1998 3060
1989 1440 1994 2559 1999 2700
4000
3500
销售收入
3000
2500
2000
1500
1000
500
0
年份
2000 2001 2002 2003 2004
销售 收入 3240 3420 3240 3060 3600
部分数据
销售 收入
t
1985 1080
1
1986 1260
2
1987 1800
3
1988 1620
4
1989 1440
5
……

2003 3060
19

统计学中时间序列分析的基础知识

统计学中时间序列分析的基础知识
平均预测误差是预测误差的平均数,由于正负误差相互抵消,平均误差很小,因 此平均误差不是预测精度的常用测度 平均绝对误差 平均绝对误差是避免正负预测误差相互抵消的预测精度的测量
MAE是预测误差绝对值的平均数 均方误差
均方误差是计算预测误差平方的平均数 MSE是预测误差平方和的平均数
平均绝对百分数误差 平均绝对百分数误差计算每一个预测的百分数误差 MAPE是百分数预测误差的绝对值的平均数
统计学中时间序列分析的基础知识
时间序列
时间序列分析的目的是在历史资料或时间序列中发现规律性的模式,然后将这个模 式外推未来 预测方法
定量方法 被预测变量过去的信息可以使用 使用的信息可以量化 过去的模式将会持续到未来的假定合理
定性方法 定性方法通常利用专家判断,当被预测变量的历史数据不适合或者难以获得 时,可以使用定性方法
非线性趋势回归 二次趋势方程 T=b0+b1*t+b2*t² 指数趋势方程 T=b0*(bt)^t
时间序列分解法
用时间序列分解法可以将一个时间序列分隔或分解出季节、趋势和不规则成分 加分法模型:趋势成分+季节成分+不规则或误差成分 乘法分解模型:趋势值*季节值*t期的不规则值
计算季节指数 先计算移动平均数,从数据中剔除组合在一起的季节和不规则影响,留给我们的 时间序列只包含趋势和移动平均没有剔除的随机波动
季节模式是指在超过一年的周期内,由于季节的影响,时间序列呈现重复模 式 趋势与季节模式 时间序列同时包含趋势模式和季节模式 循环模式 如果时间序列图显示出持续时间超过一年的在趋势线上下交替的点序列,则 存在循环模式 时间序列的循环成分归因于多年的经济周期
预测精度
预测误差=实际值-预测值 平均预测误差

统计学第八章时间数列

统计学第八章时间数列

2020/1/19
增长速度growth rate 表明现象的增长程度
某现 基象 期报 水 告 平 报期 告 基的 期 期 基 增 水 水 期 长 平 平 发 水 量 展 平 1速
环比增长速度=环比发展速度-1 定基增长速度=定基发展速度-1
2020/1/19
增 1长 的 % 绝 环 对 逐 比 期 增 1 值 增 0 长 0上 长 1速 0 期 量 0度 水平
n 1
n 1
(5)间隔不相等不连续时点的时点数列
2020/1/19
aa1 2a2t1a2 2a3t2an12 antn1 t1t2tn1
增长量和平均增长量 •增长量growth amount
总量指标报告期水平与基期水平之差,表明 该指标在一定时期内增加或减少的绝对数量。
社会经济现象以若干年为周期的 涨落起伏相同或基本相同的一种 波浪式的变动
随机变动(I)
客观社会经济现象由于天灾、人 祸、战乱等突发事件或偶然因素 引起是无周期性波动
2020/1/19
一般模型 加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
分解方法
加法模型 T=Y-(S+C+I)
乘法模型
2020/1/19
✓水平法(几何平均法)
n
X
n
Xi
i1
n
an a0
适用:水平指标的平均发展速度计算
2020/1/19
✓方程法(累计法)
a 0 x a 0 x 2 a 0 x 3 a 0 x n a i
xx2x3xnai a0
适用:侧重于考察中长期间的累计总量
平均增长速度 = 平均发展速度-100% 表明现象在一个较长时期中逐期平均增长变化的程度

统计学_第八章__时间序列分析

统计学_第八章__时间序列分析
第八章 时间序列分析
1978—2003年GDP和最终消费(亿元) 140000 120000 100000 80000 60000 40000 20000 0
年 份 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001
GDP 最终消费
4、二者关系 (1)各逐期增长量之和等于相应的累计增长量
an a0 (a1 a0 ) (a2 a1 ) (a3 a2 ) (an an1 )
(2)相邻两期的逐期增长量之和等于相应的 累计增长量;相邻两期的累计增长量之差等于 相应的逐期增长量
(二)平均增长量 1、概念 一段时期内平均每期增加或者减少的绝 对数量。或者说是逐期增长量的序时平均数。 2、计算公式
a0 a1 a 2 a n 或 a n 1
af a f

B、如果是间断时点数列,计算方法为: 『两个假设条件: 一是假设上期期末水平等于本期期初水平; 二是假设现象在间隔期内数量变化是均匀的。』 Ⅰ、间隔期相等的时点数列,采用“首尾(首末)折半 法”计算。 先计算各间隔期的平均数;然后再将这些平均数进行 简单算术平均。例如:
第一节
时间序列分析概述
一、时间序列的概念和作用
(一)、概念: 1、时间序列:将不同时间的某一统计指标数据按照 时间的先后顺序排列起来而形成的统计序列,也称时间 数列或动态数列。 2、基本构成要素(从形式上看): 一是时间顺序(现象所属的时间)。可以是年份、季 度、月份或其他任何时间,称时间要素(常用t表示); 二是不同时间的统计数据(现象在不同时间上的观察 值)。可以是绝对数、相对数、平均数,称数据要素 (常用小写的英文字母a、b、c表示)。

统计学第8章 时间序列分析

统计学第8章 时间序列分析

a n 1
a0
(二)增长速度(增减速度)
增长速度=
增减量 基期水平
报告期水平 基期水平 基期水平
报告期水平 基期水平 1
发展速度1
环比增长速度= an an1 an 1
an1
an1
=环比发展速度 - 100%
定基增长速度= an a0 an 1
a0
a0
=定基发展速度 - 100%
例题:
时间序列的构成要素与模型
(构成要素与测定方法)
时间序列的构成要素
长期趋势
季节变动
循环波动 不规则波动
线性趋势 非线性趋势
按月(季)平均法
移动平均法
二次曲线 指数曲线
趋势剔出法
半数平均法
修正指数曲线
最小平方法
Gompertz曲线 Logistic曲线
剩余法
线性趋势
一、移动平均法
(Moving Average Method)
移动平均法(趋势图)
200
汽 150

产 100

(万辆)50
产量 五项移动平均趋势值 五项移动中位数
0
1981
1985
1989
1993
1997
(年份)
图11-1 汽车产量移动平均趋势图
移动平均法特点
1、对原数列有修匀作用,移动项数越大,修匀 作用越强。
2、移动平均时,项数为奇数时,只需一次移动 平均,其平均值作为移动平均项中间一期; 当为偶数时,需再进行一次相邻两平均值的 移动平均。
年份
销售额 逐 期 增 减 量 环比发展速度 定基增长速
(万元) (万元)
(%)
度(%)

统计学第八章

统计学第八章

第八章 时间数列分析一、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间序列中,数值大小与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数 4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平 5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A 150万人B 150.2万人C 150.1万人D 无法确定 7.由一个9项的时间序列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度9.某企业的科技投入,2010年比2005年增长了58.6%,则该企业2006—2010年间科技投入的平均发展速度为( )A 5%6.58B 5%6.158C 6%6.58D 6%6.15810.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( ) A 简单平均法 B 几何平均法 C 加权序时平均法 D 首末折半法 11.在测定长期趋势的方法中,可以形成数学模型的是( )A 时距扩大法B 移动平均法C 最小平方法D 季节指数法 12.动态数列中,每个指标数值相加有意义的是( )。

A.时期数列 B.时点数列 C.相对数数列 D.平均数数列 13.按几何平均法计算的平均发展速度侧重于考察现象的( ) A.期末发展水平 B.期初发展水平C.中间各项发展水平D.整个时期各发展水平的总和14.累计增长量与其相应的各逐期增长量的关系表现为( ) A.累计增长量等于相应各逐期增长量之和 B.累计增长量等于相应各逐期增长量之差 C.累计增长量等于相应各逐期增长量之积 D.累计增长量等于相应各逐期增长量之商15.已知某地区2010年的粮食产量比2000年增长了1倍,比2005年增长了0.5倍,那么2005年粮食产量比2000年增长了( )。

统计学第八章时间数列

统计学第八章时间数列
环比增长速度=逐期增长量/前一期水平
=(报告期水平-前一期水平)/前一期水平 =环比发展速度-1(或100%)
发展速度与增长速度
2、定基增长速度。 定基增长速度是报告期的累计增长量与 某一固定基期水平之比,说明现象在较 长时间内总的增长速度。公式如下:
定基增长速度=累计增长量/某一固定期水平 =报告期水平-某一固定期水平)/某一固定期 水平 =定基发展速度-1(或100%)
1、移动平均法。 移动平均法是对原时间数列逐项求 序时平均数,平均项数固定,并逐 项移动得出由这些平均数构成的新 数列,它可以消除某些因素及随机 因素的影响,显示出现象的长期趋 势。
测定长期趋势的方法
设时间数列的水平顺次为: a1,a2,a3, an 若取三项平均移动平均形成的新数 列为:
a1 a 2 a 3 a 2 a3 a 4 a2 , a3 , 3 3
第八章 时间数列
第一节 第二节 第三节 第四节 时间数列概述 时间数列的水平指标 时间数列的速度指标 动态数列的因素分析
第八章 时间数列
第一节 时间数列概述 一、时间数列的概念及作用 二、时间数列的种类 三、编制时间数列的原则
时间数列的概念及作用
一)时间数列的概念
时间数列亦称动态数列,是将反映某现象的 统计指标在不同时间上的数值,按时间先后 顺序排列而形成的一种数列;如:
动态数列影响因素及其分解 模型
3、循环变动(以C表示) 循环变动是指现象以若干年为一周 期,近乎规律性的盛衰交替变动。 如经济危机就是循环变动,每一循 环周期都要经历危机、萧条、复苏 和高涨四个阶段。
动态数列影响因素及其分解 模型
4、随机变动(以I表示) 随机变动亦称不规则变动或剩余变 动,是动态数列除了上述三种变动 之外剩余的一种变动,是偶然因素 引起的一种随机波动。如自然灾害、 战争等无法预见的因素引起的波动。

统计学第八章时间序列分析与预测

统计学第八章时间序列分析与预测

分析目的
分析过去
描述动态变化
9
认识规律
揭示变化规律
统计学第八章时间序列分析与预测
预测未来
未来的数量趋势
统计学
STATISTICS
编制时间序列的基本原则
编制时间序列的目的是通过对各时间的变量数值 进行比较,分析其随时间变化的过程和规律。
各指标数值应当可比
▲所属时间可比
▲总体范围可比
▲经济内容可比
▲计算口径可比
统计学
STATISTICS
8.3 时间序列趋势变动分析
一、测定长期趋势的移动平均法 二、测定长期趋势的指数平滑法 三、测定长期趋势的模型法
统计学第八章时间序列分析与预测
统计学
STATISTICS
趋势变动分析
9
统计学第八章时间序列分析与预测
统计学 STATISTICS 一、测定长期趋势的移动平均法
9
统计学第八章时间序列分析与预测
增长速度 统计学
STATISTICS
增 长 速 度 = 基 增 期 长 水 量 平 = 报 告 水 基 平 期 - 水 基 平 期 水 平 = 发 展 速 度 - 1
环比增长速度=环比发展速度—1 定基增长速度=定基发展速度—1
平均发展速度和平均增长速度 平均增长速度 = 平均发展速度 — 1
9
统计学第八章时间序列分析与预测
平S统TAT计均IST学I发CS 展速度和平均增长速度
几何平均法(水平法)
特点:着眼于期末水平
GnG1G2
n
Gn n Gi i1
Gn x1x2
xn n xn
G = G x0-1 x= 1 ni xn = n 1 1G xi 0 -1

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种统计学方法,用于分析时间序列数据的模式、趋势和周期性。

它可以帮助我们了解随着时间推移,数据如何变化,并预测未来的发展趋势。

本文将介绍时间序列分析的基本概念、常用方法和实际应用。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据点。

它可以是连续的,例如每天的股票价格,也可以是离散的,例如每个月的销售量。

时间序列分析旨在通过观察数据中的模式和趋势,揭示数据背后的规律和关系。

二、时间序列分析的常用方法1. 描述统计法描述统计法用于计算数据的统计指标,如平均值、标准差和相关系数。

这些指标可以帮助我们了解数据的分布情况和相关性。

2. 组件分析法组件分析法将时间序列分解为趋势、季节和随机成分。

趋势表示长期的变化趋势,季节表示重复出现的周期性变化,随机成分表示无法通过趋势和季节解释的随机波动。

通过对组成部分的分析,可以更好地理解时间序列的内在规律。

3. 平稳性检验法平稳性是时间序列分析的基本假设之一。

平稳时间序列的统计特性不随时间变化而改变。

平稳性检验可以通过观察时间序列的趋势、自相关图和单位根检验等方法进行。

4. 预测方法时间序列分析的一个重要应用是预测未来的数值。

常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。

这些方法基于过去的数据,通过建立模型来预测未来的趋势和周期性。

三、时间序列分析的实际应用时间序列分析在各个领域都有广泛的应用。

在金融领域,它可以用于股票价格的预测和风险管理;在经济学领域,它可以用于 GDP 的预测和经济政策制定;在气象学领域,它可以用于天气预报和气候变化研究。

除了上述领域外,时间序列分析还用于交通流量预测、销售预测、生态学研究等。

通过对历史数据的分析,我们可以更好地理解和预测未来的发展趋势,为决策提供依据。

结论时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据中的模式和趋势。

通过对数据的描述统计、组件分析和预测,我们可以揭示数据背后的规律,并用于实际问题的解决。

统计学中常用的数据分析方法8时间序列分析

统计学中常用的数据分析方法8时间序列分析

统计学中常用的数据分析方法时间序列分析动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。

主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA 横型、ARIMAX模型、向呈自回归横型、ARCH族模型时间序列是指同一变量按事件发生的先后顺序排列起来的一组观察值或记录值。

构成时间序列的要素有两个:其一是时间,其二是与时间相对应的变量水平。

实际数据的时间序列能够展示研究对象在一定时期内的发展变化趋势与规律,因而可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。

时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。

时间序列预测法的应用:系统描述:根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述;系统分析:当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理;预测未来:一般用ARMA模型拟合时间序列,预测该时间序列未来值;决策和控制:根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

特点:假定事物的过去趋势会延伸到未来;预测所依据的数据具有不规则性;撇开了市场发展之间的因果关系。

①时间序列分析预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去会同样延续到未来。

事物的现实是历史发展的结果,而事物的未来又是现实的延伸,事物的过去和未来是有联系的。

市场预测的时间序列分析法,正是根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。

市场预测中,事物的过去会同样延续到未来,其意思是说,市场未来不会发生突然跳跃式变化,而是渐进变化的。

时间序列分析预测法的哲学依据,是唯物辩证法中的基本观点,即认为一切事物都是发展变化的,事物的发展变化在时间上具有连续性,市场现象也是这样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
销售收入 3年移动平均 4年移动平均 3000 2500 2000 1500 1000 500 0
中央财经大学统计学院 19
4000
3500
Example 2

移动平均法可以作为测定长期趋势的一种 较为简单的方法,在股市技术分析中有广 泛的应用。比如对某只股票的日收盘价格 序列分别求一次5日、10日、一个月的移动 平均就可以得到其5日、10日、一个月的移 动平均股价序列,进而得到5日线、10日线、 月线,用以反映股价变动的长期趋势。
4000 3500 3000 2500 2000 1500 1000 500 0
中央财经大学统计学院 28
Example 2: 销售额时间序列
ˆ Yt 40.851 0.009t 0.003t 2
中央财经大学统计学院 29
8.1.4 时间序列季节变动分析


测定目的: 确定现象的季节变化规律以用于预测 消除时间序列中的季节因素 测定季节变动,一般需要先从原时间序列中 剔除可能存在的长期趋势,因此需要在一定 的模型假定下进行,也有不同的计算方法。 实际中乘法模型较为常用,下面以乘法模型 为例,介绍移动平均剔除法(ratio-tomoving-average method) 。
中央财经大学统计学院 5
长期趋势
800 700 600 500 400 300 200 100 0 2000

观测值 趋势值
现象在较长时期内 持续发展变化的一 种趋向或状态 可以分为线性趋势 和非线性趋势

2001 2002 2003 2004
中央财经大学统计学院
6
季节变动( S )
由于季节的变化引起的现象发 展水平的规则变动。季节变动 产生的原因主要有两个: 自然因素; 人为因素: 法律、习俗、 制度等 “季节变动”也用来指周期小 于一年的规则变动,例如24小 时内的交通流量。
中央财经大学统计学院 3
8.1 时间序列的分解


8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6
时间序列的构成成分 时间序列分解模型 时间序列长期趋势分析 时间序列季节变动分析 时间序列循环变动分析 时间序列分解预测法
中央财经大学统计学院
4
8.1.1 时间序列的构成成为最近一 期(第t期)的趋势值:
M
(1) t
1 (Yt Yt 1 Yt N 1 ) N
中央财经大学统计学院
15
中心化移动平均

把时间序列连续 N 期的平均数作为 N 期的中间一期 的趋势值。 如果N为奇数,则把N期的移动平均值作为中间一期 的趋势值。 如果N为偶数,须将移动平均数再进行一次两项移 动平均,以调整趋势值的位置,使趋势值能对准某 一时期)。相当于对原序列进行一次N+1 项移动平均, 首末两个数据的权重为0.5,中间数据权重为1。
Yt Tt S t Ct I t
中央财经大学统计学院 10

乘法模型

乘法模型是假设时间序列中每一个指标数 值都是长期趋势、季节变动、循环变动和 不规则变动四种成分的乘积。在乘法模型 中, 四种成分之间保持着相互依存的关系。 一般而言,长期趋势成分用绝对量表示, 具有和时间序列本身相同的量纲,其它成 分则用相对量表示。
2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985
中央财经大学统计学院 17
中心移动平均法
销售 收入 1985 1986 1080 1260 1380 3年移 动平均 销售 4年移动平 收入 均 1080 1260 移正
1620
1440 … 3060 3600
26
4
5 … 19 20
中央财经大学统计学院
Excel的计算结果
回归统计 Multiple R R Square 0.944964 0.892958
Adjusted R Square
标准误差 观测值
0.887011
248.0092 20
Signific F ance F 150.1578 3.6E-10

一个时间序列中可能包含以下四个(或者 几个)组成成分: 长期趋势 (Secular trend ,T) 季节变动 (Seasonal Variation , S) 循环波动 (Cyclical Variation , C) 不规则波动 (Irregular Variation, I )

中央财经大学统计学院 2
为什么要进行时间序列分析?

个人、企业和政府都需要根据历史数据(时间序 列)对现象的未来发展作出预测并采取相应的决策, 时间序列分析为我们提供了相应的分析工具。 我国每年年初都要对当年的主要经济指标作出预 测,每个五年计划中要对未来五年的经济和社会 发展进行预测。 股票经纪人要对股票市场的未来走势作出及时的 预测并相应作出买入或卖出的决策。 企业经理人员的决策中经常需要对 未来的市场供求进行预测。
b n tY ( t )( Y ) n t 2 ( t ) 2
a Y bt
中央财经大学统计学院 25
Example 1: 新卫机械厂的销售收入
部分数据 销售 收入 1985 1080 1986 1987 1260 1800
t
1 2 3
1988
1989 … 2003 2004
1987 1800
1988 1620 1989 1440
4000 3500 3000 2500 2000 1500 1000 500 0
1992
1993 1994
1980
2520 2559
1997
1998 1999
销售收入
2880
3060 2700
2002
2003 2004
3240
3060 3600
M tN / 2 1 (0.5Yt Yt 1 Yt N 1 0.5Yt N ) ( N为偶数) N
中央财经大学统计学院 16
Example 1

新卫机械厂的销售收入(万元):
年份 销售 收入 1985 1080 1986 1260 年份 1990 1991 销售 收入 2160 2340 年份 1995 1996 销售 收入 2160 2340 年份 2000 2001 销售 收入 3240 3420
中央财经大学统计学院 22
2、时间回归法(趋势方程法)


使用回归分析中的最小二乘法,以时间t 或t的函数为自变量拟合趋势方程。 习惯上t的取值为从1到n。也可以取其他值, 不同取值方法不会影响到方程的拟合效果。 常用的趋势方程包括: ˆ 线性趋势方程 Y a bt

二次曲线

指数曲线


由于众多偶然因素 对时间序列造成的 影响。 不 规 则 变动是 不 可预测的。
中央财经大学统计学院
9
8.1.2 时间序列分解模型

时间序列的组成成分之间可能是乘法或加法的关 系,因此,时间序列可用多种模型进行分解,常 见的有加法模型、乘法模型和加乘混合模型。 加法模型假设时间序列中每一个指标数值都是长 期趋势、季节变动、循环变动和不规则变动四种 成分的总和,在加法模型中,四种成分之间是相 互独立的。某种成分的变动并不影响其他成分的 变动。各个成分都用绝对量表示,并且具有相同 的量纲。
1 移动平均法


移动平均法:在原时间序列内依次求连 续若干期的平均数作为其某一期的趋势 值,如此逐项递移求得一系列的移动平 均数,形成一个新的、派生的平均数时 间序列。 在新的时间序列中偶然因素的影响被削 弱,从而呈现出现象在较长时间的基本 发展趋势。
中央财经大学统计学院 14
N 期移动平均数
中央财经大学统计学院 12
8.1.3 时间序列长期趋势分析

研究目的:



通过测定和分析过去一段时间之内现象的 发展趋势,来认识和掌握现象发展变化的 规律性; 通过分析现象的长期趋势,为统计预测提 供必要的条件; 消除原有时间序列中长期趋势的影响,更 好地研究季节变动和循环变动等问题。
中央财经大学统计学院 13
ˆ a bt ct 2 Y ˆ abt Y
中央财经大学统计学院 23
趋势线的选择

1、根据散点图观察数据的特点,结合理 论分析和经验确定。 2、 比较不同回归模型的决定系数、估计 标准误等指标。

中央财经大学统计学院
24
趋势方程的估计方法


趋势方程可以使用回归分析中的最小二乘 法进行估计。 对于线性趋势方程,根据回归分析中推导 出的结果,有
1987 1988
1989
1800 1620
1440
1560 1620
1740
1800 1620
1440
中央财经大学统计学院 18
1440 1530 1755
1485 1642.5
1822.5
1890
移动平均的结果
2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985
Coefficien 标准误差 ts
t Stat
P-value
Intercept
t
1185.52
117.85
115.21
9.62
27
10.29
12.25
0.0000
相关文档
最新文档