中考数学模拟专题练习计算题

合集下载

中考数学模拟题《整式及其运算》专项测试卷(附答案)

中考数学模拟题《整式及其运算》专项测试卷(附答案)

中考数学模拟题《整式及其运算》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a = D .623a a a ÷= 9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( )A .52αB .56aC .58aD .68a10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定12.(2023·江苏徐州·统考中考真题)下列运算正确的是( )A .236a a a ⋅=B .422a a a ÷=C .()235a a =D .224235a a a +=13.(2023·辽宁·统考中考真题)下列运算正确的是( )A .2323a a a +=B .743a a a ÷=C .()2224a a -=-D .()2236b b = 14.(2023·湖北鄂州·统考中考真题)下列运算正确的是( )A .235a a a +=B .235a a a ⋅=C .235a a a ÷=D .()325a a = 15.(2023·山东·统考中考真题)下列运算正确的是( )A .2242a a a +=B .()32639a a -=-C .23544a a a ⋅=D .623a a a ÷=16.(2023·湖北十堰·统考中考真题)下列计算正确的是( )A =B .33(2)8a a -=-C .842a a a ÷=D .22(1)1a a -=-17.(2023·山东日照·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()32628m m -=-C .222()x y x y +=+D .232235ab a b a b +=18.(2023·江苏无锡·统考中考真题)下列运算正确的是( )A .236a a a ⨯=B .235a a a +=C .22(2)4a a -=-D .642a a a ÷=19.(2023·河北·统考中考真题)代数式7x -的意义可以是( )A .7-与x 的和B .7-与x 的差C .7-与x 的积D .7-与x 的商20.(2023·辽宁营口·统考中考真题)下列计算结果正确的是( )A .3332a a a ⋅=B .222853a a aC .824a a a ÷=D .()32639a a -=- 21.(2023·山东东营·统考中考真题)下列运算结果正确的是( )A .339x x x ⋅=B .336235x x x +=C .()32626x x =D .()()2232349x x x +-=- 22.(2023·四川巴中·统考中考真题)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》 书中记载的图表给出了()n a b +展开式的系数规律.1 0()1a b +=1 1 1()a b a b +=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b当代数式432125410881x x x x -+-+的值为1时,则x 的值为( )A .2B .4-C .2或4D .2或4-23.(2023·四川巴中·统考中考真题)若x 满足2350x x +-=,则代数式2263x x +-的值为( )A .5B .7C .10D .13-24.(2023·河北·统考中考真题)光年是天文学上的一种距离单位 一光年是指光在一年内走过的路程 约等于129.4610km ⨯.下列正确的是( )A .12119.4610109.4610⨯-=⨯B .12129.46100.46910⨯-=⨯C .129.4610⨯是一个12位数D .129.4610⨯是一个13位数25.(2023·湖北宜昌·统考中考真题)在日历上 某些数满足一定的规律.如图是某年8月份的日历 任意选择其中所示的含4个数字的方框部分 设右上角的数字为a ,则下列叙述中正确的是( ).A .左上角的数字为1a +B .左下角的数字为7a +C .右下角的数字为8a +D .方框中4个位置的数相加 结果是4的倍数26.(2023·湖北恩施·统考中考真题)下列运算正确的是( )A .()2211m m -=-B .()3326m m =C .734m m m ÷=D .257m m m += 27.(2023·黑龙江牡丹江·统考中考真题)下列计算正确的是( )A .248a a a ⋅=B .3332a a a -=C .()3236ab a b =D .()222a b a b +=+ 28.(2023·黑龙江牡丹江·统考中考真题)观察下面两行数:15111929⋯,,,,,1361015⋯,,,,,取每行数的第7个数 计算这两个数的和是( )A .92B .87C .83D .78二 填空题29.(2023·四川雅安·统考中考真题)若2a b += 1a b -=,则22a b -的值为 .30.(2023·四川德阳·统考中考真题)在初中数学文化节游园活动中 被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛 活动规则是:在九宫格中 除了已经填写的三个数之外的每一个方格中 填入一个数 使每一横行 每一竖列以及两条对角线上的3个数之和分别相等 且均为m .王小明抽取到的题目如图所示 他运用初中所学的数学知识 很快就完成了这个游戏,则m = .167 4 31.(2023·四川广安·统考中考真题)定义一种新运算:对于两个非零实数a b 、 x y a b a b=+※.若()221-=※,则()33-※的值是 . 32.(2023·四川凉山·统考中考真题)已知2210x x --=,则3231052027x x x -++的值等于 .三 解答题33.(2023·甘肃兰州·统考中考真题)计算:()()()2234x y x y y y +---.34.(2023·河北·统考中考真题)现有甲 乙 丙三种矩形卡片各若干张 卡片的边长如图1所示(1)a .某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙) 如图2和图3 其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S 当2a =时 求12S S +的值(2)比较1S 与2S 的大小 并说明理由.35.(2023·浙江金华·统考中考真题)已知13x = 求()()()212134x x x x +-+-的值.36.(2023·湖南·统考中考真题)先化简 再求值:()()()222233a a a a a -+-++ 其中13a =-.37.(2023·浙江嘉兴·统考中考真题)观察下面的等式:222222223181,5382,7583,9784,-=⨯-=⨯-=⨯-=⨯(1)写出221917-的结果.(2)按上面的规律归纳出一个一般的结论(用含n 的等式表示 n 为正整数)(3)请运用有关知识 推理说明这个结论是正确的.参考答案一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 【答案】D【分析】根据合并同类项 同底数幂的除法 完全平方公式 积的乘方 逐一计算判断即可.【详解】解:A 532a a a -= 故选项A 错误B 633a a a ÷= 故选项B 错误C ()2222a b a ab b -=-+ 故选项C 错误D ()3263a b a b = 故选项D 正确故选D .【点睛】本题考查整式的运算.熟练掌握合并同类项 同底数幂的除法 完全平方公式 积的乘方法则 是解题的关键.2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y 【答案】D【分析】利用同底数幂的乘法的逆运算可得1333x x +=⨯ 再代入计算即可.【详解】解:∵3x y =∵13333x x y +=⨯=故选D【点睛】本题考查的是同底数幂的乘法运算的逆运算 熟记“m n m n a a a +=”是解本题的关键.3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n 【答案】C【分析】先逐步分析前面5次操作 可得整式串每四次一循环 再求解第四次操作后所有的整式之和为:0m n n m m n n m ++----+= 结合202345053÷=⋅⋅⋅ 从而可得答案.【详解】解:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后得到整式串m n n m - m - n -第4次操作后得到整式串m n n m - m - n -n m -+ 第5次操作后得到整式串m n n m - m - n - n m -+ m⋅⋅⋅⋅⋅⋅归纳可得:以上整式串每四次一循环第四次操作后所有的整式之和为:0m n n m m n n m ++----+=∵202345053÷=⋅⋅⋅∵第2023次操作后得到的整式中各项之和与第3次操作后得到整式串之和相等∵这个和为m n n m m n n m ++---=-故选C【点睛】本题考查的是整式的加减运算 代数式的规律探究 掌握探究的方法 并总结概括规律并灵活运用是解本题的关键.4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-【答案】A【分析】把所求代数式2243m m +-变形为22(2)3m m +- 然后把条件整体代入求值即可.【详解】解:∵2210m m +-=∵221m m +=∵2243m m +-22(2)3m m =+- 213=⨯-1=-.故选:A .【点睛】此题主要考查了代数式求值以及“整体代入”思想 解题的关键是把代数式2243m m +-变形为22(2)3m m +-.5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=【答案】D【分析】根据整式的加减 幂的乘方 同底数幂的乘除法逐项判断即可.【详解】A 2a 与3b 不是同类项 不可合并 此项运算错误B ()23236a a a ⨯== 此项运算错误 C 24246a a a a +⋅== 此项运算错误D 31312a a a a -÷== 此项运算正确故选:D .【点睛】本题考查了整式的加减 幂的乘方 同底数幂的乘除法 熟记各运算法则是解题关键. 6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 【答案】A【分析】根据同底数幂的乘法与幂的乘方 完全平方公式 整式的乘法对每个式子一一判断即可.【详解】解:A 235x x x 本选项符合题意B ()339x x = 本选项不符合题意 C ()21x x x x +=+ 本选项不符合题意D ()2221441a a a -=-+ 本选项不符合题意故选:A .【点睛】此题主要考查了整式的混合运算 正确掌握相关运算法则是解题关键.7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-【答案】D【分析】A 不能合并 本选项错误 B 利用完全平方公式展开得到结果 即可作出判断 C 和D 利用积的乘方及幂的乘方运算法则计算得到结果 即可作出判断.【详解】解:2a 和3b 不是同类项 不能合并 故A 选项错误 不符合题意222()2a b a ab b -=-+ 故B 选项错误 不符合题意()3236ab a b = 故C 选项错误 不符合题意 ()3253412a a a ⋅-=- 故D 选项正确 符合题意故选:D .【点睛】此题考查了完全平方公式 合并同类项 同底数幂的除法 积的乘方与幂的乘方 熟练掌握完全平方公式是解本题的关键.8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a =D .623a a a ÷=【答案】B【分析】根据同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 逐项分析判断即可求解.【详解】A. 3a 与2a 不能合并 故该选项不正确 不符合题意B. 23a a a ⋅= 故该选项正确 符合题意C. ()326a a = 故该选项不正确 不符合题意D. 624a a a ÷= 故该选项不正确 不符合题意故选:B .【点睛】本题考查了同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 熟练掌握以上运算法则是解题的关键.9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( ) A .52αB .56aC .58aD .68a【答案】D 【分析】根据积的乘方与幂的乘方法则计算即可.【详解】解:()()332326228a a a == 故选:D .【点睛】本题考查积的乘方与幂的乘方 熟练掌握积的乘方与幂的乘方运算法则是解题的关键. 10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 【答案】D【分析】根据积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 进行计算即可求解.【详解】解:A. 333()pq p q =-- 故该选项不正确 不符合题意B. 43222x x x x x ⋅+⋅= 故该选项不正确 不符合题意C. 5= 故该选项不正确 不符合题意D. ()326a a = 故该选项正确 符合题意故选:D .【点睛】本题考查了积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 熟练掌握以上运算法则是解题的关键.11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定 【答案】C【分析】根据题意 由勾股定理可得222+=a b c 易得222c a b -= 然后用,,a b c 分别表示1S 和2S 即可获得答案.【详解】解:如下图∵,,a b c 为直角三角形的三边 且c a b >>。

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。

中考综合模拟测试《数学卷》含答案解析

中考综合模拟测试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.计算:(-3)×(- 13)=()A. -1B. 1C. -9D. 92.如图,下面几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是( )A. B. C. D.3.计算(-2x2y)3的结果是( )A. -8x6y3B. 6x6y3C. -8x5y3D. -6x5y34.如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=()A. 50°B. 65°C. 75°D. 85°5.设点A(-3,a),B(b,12)在同一个正比例函数图象上,则ab的值为()A.23- B.32- C. -6 D.326.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF交于点E,则DE AF的值为()A. 35B. 34C. 12D. 237.已知两个一次函数y=3x+b 1和y=-3x+b 2若b 1<b 2<0,则它们图象的交点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图, 在三边互不相等的△ABC 中, D ,E ,F 分别是AB ,AC ,BC 边的中点.连接DE ,过点C 作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有( )A. 3对B. 4对C. 5对D. 6对9.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A ,B 的任意一点,则∠APB=( )A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120° 10.将抛物线M :y=- 13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M'.若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,则∠ACB=( ) A 45°B. 60°C. 90°D. 120° 二.填空题(共4小题)11.不等式-2x+1>-5的最大整数解是________.12.如图,五边形ABCDE 的对角线共有 ________条.13.如图,在x 轴上方,平行于x 轴的直线与反比例函数y =1k x和y =2k x 的图象分别交于A 、B 两点,连接OA 、OB ,若△AOB 的面积为6,则k 1﹣k 2=_____.14.如图,在正方形ABCD 中,AB=4,E 是BC 边中点, F 是CD 边上的一点, 且DF=1.若M 、N 分别是线段AD 、AE 上的动点,则MN+MF 的最小值为________ .三.解答题(共11小题)15.计算:2(3)|25|20-+--.16.化简:(22739a a a +--﹣43a a ++)÷33a a +-. 17.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使△ADE 与△ABC 相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18.2016年4月23日是我国第一个”全民阅读日”某校开展了”建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书情况的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?19.如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.20.某市为了创建绿色生态城市,在城东建了”东州湖”景区,小明和小亮想测量”东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算”东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,2≈1.414.)21.上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离 (千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?22.孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:”如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)23.如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.24.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.25.问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.答案与解析一.选择题(共10小题)1.计算:(-3)×(- 13)=()A. -1B. 1C. -9D. 9 【答案】B【解析】【分析】根据两数相乘,同号得正,把绝对值相乘,再进行计算.【详解】解:1313⎛⎫-⨯-=⎪⎝⎭.故答案为:B.【点睛】此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是( )A. B. C. D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看上下都是正方形,故选:D.【点睛】本题主要考查左视图,掌握三视图是解题的关键.3.计算(-2x2y)3的结果是( )A. -8x6y3B. 6x6y3C. -8x5y3D. -6x5y3【答案】A【解析】【分析】根据幂的乘方与积的乘方运算法则进行运算即可.【详解】(-2x2y)3=-8x6y3.故选A.4.如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=()A. 50°B. 65°C. 75°D. 85°【答案】C【解析】【分析】根据对顶角性质可知∠BAD=∠1=40°,然后利用平行线性质可得∠CAB=115°,据此进一步计算求解即可. 【详解】∵∠BAD与∠1是对顶角,∴∠BAD=∠1=40°,∵AB∥CD,∴∠2+∠CAB=180°,∴∠CAB=180°−∠2=115°,∴∠CAD=∠CAB−∠BAD=75°,故选:C.【点睛】本题主要考查了平行线性质以及对顶角性质,熟练掌握相关概念是解题关键.5.设点A(-3,a),B(b,12)在同一个正比例函数的图象上,则ab的值为()A.23- B.32- C. -6 D.32【答案】B【解析】【分析】设正比例函数的解析式为y=kx,将两点在分别代入函数解析式,就可表示出a,b,然后代入求出ab的值.【详解】设正比例函数的解析式为y=kx(k≠0)∴a=-3k,bk=1 2∴b=1 2k∴13322 ab kk=-⋅=-.故答案为:B.【点睛】此题考查了一次函数图象上点的坐标特征,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.6.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF交于点E,则DE AF的值为()A 35B.34C.12D.23【答案】A【解析】【分析】利用勾股定理求出BC的长,再根据直角三角形的两个面积公式就可求出AD的长,利用勾股定理求出DC 的长,然后利用角平分线的定义,可得到tan∠ACF=tan∠ECD,然后利用锐角三角函数的定义,就可求出DE与AF的比值.【详解】解:在△ABC中2222201525BC AB AC+=+=∵AD是高∴1122AD BC AB AC⋅=⋅∴25AD=20×15解之:AD=12.在Rt△ADC中,222215129 DC AC AD--=∵CF平分∠ACB,∴∠ACF=∠ECD∴tan ∠ACF=tan ∠ECD ∴AF DE AC DC =即159AF DE = ∴35DE AF =. 故答案为:A .【点睛】本题主要考查三角函数的应用,解题的关键是掌握勾股定理、三角函数的定义得到式子求解. 7.已知两个一次函数y=3x+b 1和y=-3x+b 2若b 1<b 2<0,则它们图象的交点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】将两函数联立方程组,解方程组求出两函数的交点坐标,再根据b 1<b 2<0 ,就可得到b 2-b 1>0,b 2+b 1<0,就可确定出交点的横纵坐标的符号,从而可判断出两函数图像的交点所在的象限. 【详解】解:1233y x b y x b =+⎧⎨=-+⎩解之:212162b b x b b y -⎧=⎪⎪⎨+⎪=⎪⎩∵ b 1<b 2<0∴b 2-b 1>0,b 2+b 1<0∴x >0,y <0∴它们图像的交点在第四象限.故答案为:D .【点睛】本题主要考查两直线相交或平行的问题及象限内点的坐标特点,掌握根据直线解析式求得交点坐标且各象限内点的坐标特点是解题的关键.8.如图, 在三边互不相等△ABC 中, D ,E ,F 分别是AB ,AC ,BC 边的中点.连接DE ,过点C 作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有( )A. 3对B. 4对C. 5对D. 6对【答案】C【解析】【分析】 利用已知条件可证得DE ,EF 都是△ABC 的中位线,同时可证得AE=EC ,CF=12BC ,利用三角形中位线定理可得到DE=12BC ,DE ∥BC ,EF ∥AB ,从而可以推出∠EDC=∠FCN ,DE=CF ,再利用AAS 证明△DEN ≌△CFN ,然后利用有两组对边平行的四边形是平行四边形,可证得四边形EFCM 是平行四边形,再利用平行四边形的性质可以推出△EMC ≌△CFE ,△ADE ≌△CME ,△ADE ≌△CEF, △BCD ≌△MDC .【详解】证明:∵D ,E ,F 分别是AB ,AC ,BC 边的中点.∴CF=12BC ,DE 是△ABC 的中位线,EF 是△ABC 的中位线,AE=EC ∴DE=12BC ,DE ∥BC ,EF ∥AB , ∴∠EDC=∠FCN ,DE=CF在△DEN 和△CFN 中DNE CNF EDC FCN DE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DEN ≌△CFN (AAS );∵EF ∥AB ,CM ∥AB∴EF ∥CM ,DE ∥BC∴四边形EFCM 是平行四边形,∴EM=CF=DE ,EF=CM,在△EMC 和△CFE 中,EM CF EF CM CE EC =⎧⎪=⎨⎪=⎩∴△EMC ≌△CFE (SSS );在△ADE 和△CME 中,AE EC AED CEM DE ME =⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△CME(SAS);∴△ADE≌△CEF,∴DE∥BC又BD∥CM∥EF∴四边形DBCM是平行四边形,∴△BCD≌△MDC∴图中的全等三角形一共有5对.故答案为:C.【点睛】本题考查的是三角形中位线定理、全等三角形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D.若点P是⊙O上异于点A,B的任意一点,则∠APB=()A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120°【答案】D【解析】【分析】利用垂径定理及已知可得到∠OAD=30°,再求出∠AOB的度数,再分情况讨论:当点P在优弧AB上时,利用圆周角定理就可取出∠P的度数;当点P在劣弧上时,利用圆内接四边形的对角互补,就可求出∠AP1B 的度数.【详解】连接OA,OB,∵ 弦AB 垂直平分半径OC∴OD=12OA , ∴∠OAD=30°,∵OA=OB∴∠OAB=∠OBA=30°,∴∠AOB=180°-∠OAB-∠OBA=180°-30°-30°=120°;当点P 在优弧AB 上时∠APB=12∠AOB=12×120°=60°; 当点P 在劣弧上时,∠APB+∠AP 1B=180°∴∠AP 1B=180°-60°=120°.∴∠APB=120°或60°.故答案为:D .【点睛】此题考查了垂径定理,以及圆周角定理,熟练掌握垂径定理是解本题的关键.10.将抛物线M :y=- 13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M'.若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,则∠ACB=( ) A. 45°B. 60°C. 90°D. 120° 【答案】C【解析】【分析】利用二次函数的平移规律:上加下减,左加右减,可求出抛物线M'的函数解析式,由此可得到点C 的坐标,再由y=0求出抛物线M'与x 轴的两个交点A ,B 的坐标,然后利用勾股定理求出AC 2、BC 2、AB 2,由此可以推出AC 2+BC 2=AB 2,利用勾股定理的逆定理,可求出∠ACB 的度数.【详解】∵y=-13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M', ∴抛物线M'的解析式为y=21(2)33x -++ ∵ 若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,∴点C (-2,3)当y=0时21(2)303x -++=解之:x 1=1,x 2=-5∴点A(1,0),点B(-5,0)∴AB2=|-5-1|2=36AC2=32+32=18,BC2=32+32=18∴AC2+BC2=AB2∴∠ACB=90°.故答案为:C.【点睛】本题考查抛物线与x轴的交点、二次函数与几何变换、勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.二.填空题(共4小题)11.不等式-2x+1>-5的最大整数解是________.【答案】2【解析】【分析】先求出不等式的解集,再求出不等式的最大整数解.【详解】解-2x+1>-5-2x>-6x<3,∴这个不等式的最大整数解为2.故答案为:2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.如图,五边形ABCDE的对角线共有________条.【答案】5【解析】【分析】根据n边形的对角线的总数量为(3)2n n,再将n=5代入计算可求出结果.【详解】五边形的对角线的条数为:(53)552-⨯=. 故答案为:5. 【点睛】此题考查了多边形的对角线,掌握多边形的对角线公式是解题的关键.13.如图,在x 轴上方,平行于x 轴的直线与反比例函数y =1k x和y =2k x 的图象分别交于A 、B 两点,连接OA 、OB ,若△AOB 的面积为6,则k 1﹣k 2=_____.【答案】-12. 【解析】【分析】根据AB ∥x 轴,设1211k k x k A x B x k x(,),(,),得到21k x AB x k -=,根据△AOB 的面积为6,列方程即可得到结论.【详解】∵AB ∥x 轴,∴设1211k k x k A x B x k x(,),(,) ∴21k x AB x k -=, ∵△AOB 的面积为6,∴(2111•62k x k x k x-()=, ∴k 1﹣k 2=﹣12,故答案为:﹣12.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2y k ,且保持不变. 14.如图,在正方形ABCD 中,AB=4,E 是BC 边的中点, F 是CD 边上的一点, 且DF=1.若M 、N 分别是线段AD 、AE 上的动点,则MN+MF 的最小值为________ .【答案】955【解析】【分析】作点F 关于AD 的对称点G ,过点G 作GN ⊥AE 于点N ,交AD 于点M ,可证得MG=MF ,△MDG ≌△MDF ,DF=DG=1 ,可推出MN+MF=NG ,根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长;利用正方形的性质,可求出BE 的长,同时可以推出∠B=∠ANM=∠FDM ,∠AMN=∠BAE=∠FMD ,再利用有两组对应角相等的三角形相似,可证得△ABE ∽△MNA ∽△FMD ,然后利用相似三角形的性质及勾股定理就可求出MN ,MG 的长,由此看求出NG 的长.【详解】作点F 关于AD 的对称点G ,过点G 作GN ⊥AE 于点N ,交AD 于点M ,∴MG=MF ,△MDG ≌△MDF ,DF=DG=1∴∠GMD=∠DMF∴MN+MF=MN+MG=NG根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长.∵正方形BCD ,点E 是BC 的中点∴BE=12BC=12AB=2∴∠B=∠ANM=∠FDM=90°,∠BAE+∠MAN=90°,∵∠AMN+∠MAN=90°,∴∠AMN=∠BAE ,∵∠AMN=∠DMG∴∠AMN=∠BAE=∠FMD∴△ABE ∽△MNA ∽△FMD ∴AB MD BE DF =即421MD = 解之:MD=2,∴AM=AD-MD=4-2=2 ∴2AB MN BE AN== 设AN=x ,则MN=2x∴AN 2+MN 2=AM 2,∴x 2+4x 2=4解之:∴在Rt △MDG 中,=∴NG=MN+MG==. 【点睛】本题考查了轴对称−最短距离问题,相似三角形的判定和性质,正确的确定M ,N 的位置是解题的关键.三.解答题(共11小题)15.计算:2(3)|2|-+-【答案】7【解析】【分析】先计算乘方,化简绝对值,计算算术平方根,再进行实数的加减混合运算即可解答.【详解】解:原式=9+5-2-25=7-5【点睛】本题考查实数的混合运算,解题关键是熟练掌握绝对值的化简和算术平方根的意义.16.化简:(22739a a a +--﹣43a a ++)÷33a a +-. 【答案】269(3)a a ++ 【解析】【分析】根据分式的运算法则,先去括号,然后除一个数等于乘这个数的倒数即可.【详解】解:原式=(273(3)(3)a a a a +-+-﹣43a a ++)÷33a a +-. =2273(3)a a a +-+﹣2(4)(3)(3)a a a +-+ =269(3)a a ++ 【点睛】本题考查分式的除法,需要注意,在去括号时,括号中的每一项都要除后面的除数17.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使△ADE 与△ABC 相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)【答案】详见解析【解析】【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AC 的交点即为所求作的点.【详解】如图,点E 即为所求作的点.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.18.2016年4月23日是我国第一个”全民阅读日”某校开展了”建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书情况的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?【答案】(1)见解析;(2)6本书;(3)4800本书【解析】【分析】(1)观察两统计图可知全班捐赠图书的总数=其它书的数量÷其它书的数量所占的百分比,列式计算;再利用全班捐赠图书的总数×捐赠工具类书的数量所占的百分比,就可求出捐赠工具类书的数量,就可补全条形统计图;然后利用部分的数量÷总数,就可求出文学类和科普类所占的百分比,从而可以补全扇形统计图中的数据;(2)用全班捐赠图书的总数除以八年级5班的人数,列式计算;(3)用800×平均每一个人的捐赠图书的数量,列式计算.【详解】(1)解:全班捐赠图书的总数为24÷8%=300(本),则捐赠工具类书有300×20%=60(本),文学类百分比为120300×100%=40%,科普类百分比为96300×100%=32%,完成统计图如下:八年级5班全班同学捐赠图书情况统计图(2)解:八年级5班平均每人捐赠了30050=6本书;(3)解:∵800×6=4800,估算这个年级学生共可捐赠4800本书.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确它们各自的含义,利用数形结合的思想解答.19.如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.【答案】证明见解析【解析】【分析】由菱形的性质得出AD∥BC,AB=BC,得出∠A=∠CBF,证明△ABE≌△BCF(SAS),即可得出BE=CF.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠A=∠CBF.在△ABE和△BCF中,∵AE=BF,∠A=∠CBF,AB=BC,∴△ABE≌△BCF(SAS),∴BE=CF.点睛:本题考查了菱形的性质、平行线的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.20.某市为了创建绿色生态城市,在城东建了”东州湖”景区,小明和小亮想测量”东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算”东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,2≈1.414.)【答案】1057米.【解析】分析】先根据题意得出△BCD是等腰直角三角形,故可得出CD=BD,再由锐角三角函数的定义得出AD的长,进而可得出结论.【详解】∵∠BCD=45°,CD⊥AB,∴△BCD是等腰直角三角形,∴CD=BD.∵BC=350米,∴CD=BD=350×2=2≈175×1.414=247.45米,∴AD=CD•tan73°≈247.45×3.2709≈809.38米,∴AB=AD+BD=809.38+247.45≈1057(米).答:”东州湖”东西两端之间AB的长为1057米.【点睛】本题是锐角三角函数在实际问题中的考查,在解决此类题型的时候,我们首先需要抽象出数学模型,然后构造出直角三角形,最后利用三角函数解决.21.上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离 (千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?【答案】详见解析【解析】试题分析:由图象知AB过(0,320)和((2,120)两点,故可设AB所在直线解析式为y=kx+b,代入即可求出a,b 的值,从而确定函数关系式;(2)先求出CD所在直线解析式,令y=0,则可求出x的值,从而可知小颖一家当天几点到达姥姥家.试题解析:(1)由图象知:A(0,320),B(2,120)设AB所在直线解析式为y=kx+b,把A、B坐标代入得:320 2120 bk b=⎧⎨+=⎩解得:320 {100 bk==-故AB所在直线解析式为y=-100x+320; (2)由图象知:CD过点(2.5,120)和(3,80)设CD所在直线解析式为y=mx+n,则有2.5120 {380m nm n+=+=解得:80320 mn=-⎧⎨=⎩故CD所在直线解析式为y=-80x+320令y=0时,-80x+320=0,解得x=4所以:8+4=12故小颖一家当天12点到达姥姥家.22.孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:”如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)【答案】小超的回答正确,图表见解析【解析】【分析】根据题意列表,再根据表中的数据可求出所有等可能的结果数及点数之和等于6和点数之和等于7的情况数,然后分别求出点数之和等于6与点数之和等于7的概率,由此可作出判断.【详解】列表如下共有36种等可能的结果数,其中点数之和等于6占5种,点数之和等于7的占6种,∴点数之和为6的概率为536,点数之和为7的概率为61366故小超的回答正确.【点睛】本题考查了利用列表法或树状图求概率的方法:先利用列表法或树状图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念计算出这个事件的概率=mn.23.如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.【答案】(1)证明见解析;(2)325.【解析】【分析】(1)由弦切角等于同弧所对的圆周角得:∠C=∠ABD,再根据直角三角形两锐角互余得出结论;(2)作弦心距,由勾股定理得:OE=3,再证明△OEB∽△BDA,列比例式可以求AD的长.【详解】:(1)∵BD为⊙O的切线,∴∠C=∠ABD,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠C+∠BAD=90°,(2)连接OB,过O作OE⊥AB于E,∴AE=BE=12AB=4,由勾股定理得:OE22OB BE-2254-3,∵BD为⊙O的切线,∴OB⊥BD,∴∠OBD=90°,∵∠ADB=90°,∴AD∥OB,∴∠DAB=∠ABO,∵∠D=∠OEB=90°,∴△OEB∽△BDA,∴BE OB AD AB=,∴458 AD=,∴AD=325;则线段AD的长为325.【点睛】本题考查了切线的性质和垂径定理、以及三角形的外接圆,是常考题型,熟练掌握切线的性质和垂径定理:圆的切线垂直于经过切点的半径.24.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1) B(-1.2);(2) y=57x?66x-;(3)见解析.【解析】【分析】(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.【详解】(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB 为等腰三角形,∴AO=BO ,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD ,△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ),∵A (2,1),∴OD=AC=1,BD=OC=2,∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==, ∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP ,∴可知点P 在线段OA 的下方,过P 作PE ∥y 轴交AO 于点E ,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得5∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13 ),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13 ).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.【答案】(1)12;(2)9;(3)能实现;170(米).【解析】【分析】(1)当AD⊥BC时,△ABC的面积最大.(2)由题意矩形邻边之和为6,设矩形的一边为m,另一边为6﹣m,可得S=m(6﹣m)=﹣(m﹣3)2+9,利用二次函数的性质解决问题即可.(3)由题意,AC=100,∠ADC=60°,即点D在优弧ADC上运动,当点D运动到优弧ADC的中点时,四边形鱼塘面积和周长达到最大值,此时△ACD为等边三角形,计算出△ADC的面积和AD的长即可得出这个四边形鱼塘面积和周长的最大值.【详解】(1)如图①中,∵BC=6,AD=4,∴当AD⊥BC时,△ABC的面积最大,最大值=12×6×4=12.故答案为12.(2)∵矩形的周长为12,∴邻边之和为6,设矩形的一边为m,另一边为6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3时,S有最大值,最大值为9.(3)如图③中,∵AC=50米,AB=40米,BC=30米,∴AC2=AB2+BC2∴∠ABC=90°,作△AOC,使得∠AOC=120°,OA=OC,以O为圆心,OA长为半径画⊙O,∵∠ADC=60°,∴点D在优弧ADC上运动,当点D是优弧ADC的中点时,四边形ABCD面积取得最大值,设D′是优弧ADC上任意一点,连接AD′,CD′,延长CD′到F,使得D′F=D′A,连接AF,则∠AFC=30°=12∠ADC,∴点F在D为圆心DA为半径的圆上,∴DF=DA,∵DF+DC≥CF,∴DA+DC≥D′A+D′C,∴DA+DC+AC≥D′A+D′C+AC,∴此时四边形ADCB的周长最大,最大值=40+30+50+50=170(米).答:这个四边形鱼塘周长的最大值为170(米).【点睛】本题主要是最大值的考查,求最大值,常用方法为:(1)利用平方为非负的性质求解;(2)利用三角形两边之和大于第三边求解,在求解过程中,关键在与将要求解的线段集中到一个三角形中。

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.22.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7 4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a65.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>17.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°8.已知方程组,则x﹣y=()A.5B.2C.3D.49.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<110.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有个.13.圆内接正方形的边长为3,则该圆的直径长为.14.计算:(+a)•=.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了人,扇形统计图中表示“C”的圆心角为°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.参考答案与解析一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.2【分析】直接估算无理数大小的方法以及实数比较大小的方法分析得出答案.【解答】解:∵1<<2;∴0<<1;故﹣2<﹣<<1<2;故选:D.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.【解答】解:从上面看,得到的视图是:;故选:A.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000202=2.02×10﹣7.故选:D.4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a6【分析】根据合并同类项的运算法则、同底数幂的除法、积的乘方分别进行计算即可得出答案.【解答】解:A、2a﹣a=a,故本选项错误;B、6a2÷2a=3a,故本选项正确;C、6a+2a=8a,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误;故选:B.5.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个【分析】根据众数和中位数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知7个出现次数最多,所以众数为7个;因为共有50个数据;所以中位数为第25个和第26个数据的平均数,即中位数为7个.故选:A.6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1;解不等式2x﹣4≤1,得:x≤;则1<x≤;故选:B.7.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】利用对顶角相等及三角形内角和定理,可求出∠4的度数,由直线l1∥l2,利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:∵∠A+∠3+∠4=180°,∠A=30°,∠3=∠1=85°;∴∠4=65°.∵直线l1∥l2;∴∠2=∠4=65°.故选:D.8.已知方程组,则x﹣y=()A.5B.2C.3D.4【分析】方程组两方程相减即可求出所求.【解答】解:;①﹣②得:(2x+3y)﹣(x+4y)=16﹣13;整理得:2x+3y﹣x﹣4y=3,即x﹣y=3;故选:C.9.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<1【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.【解答】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D选项错误.故选:C.10.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.【分析】根据题意,作出合适的辅助线,然后根据矩形的性质和正方形的性质,可以得到BG和EG的长,从而可以得到tan∠EBC的值.【解答】解:作EF⊥DC于点F,作EG⊥BC交BC的延长线于点G;则四边形CGEF是矩形;设AB=2a;∵在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE;∴EF=a,BC=2a;∴EG=a,CG=a;∴tan∠EBC=;故选:A.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2;=2(x2﹣2xy+y2);=2(x﹣y)2.故答案为:2(x﹣y)2.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有20个.【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个;∵摸到红色球的频率稳定在0.2左右;∴口袋中得到红色球的概率为0.2=;∴=;解得:x=20;即白球的个数为20个;故答案为:20.13.圆内接正方形的边长为3,则该圆的直径长为3.【分析】连接BD,利用圆周角定理得到BD是圆的直径,然后根据边长利用勾股定理求得直径的长即可.【解答】解:如图;∵四边形ABCD是⊙O的内接正方形;∴∠C=90°,BC=DC;∴BD是圆的直径;∵BC=3;∴BD===3;故答案为:3.14.计算:(+a)•=.【分析】先把括号内通分,然后约分得到原式的值.【解答】解:原式=•=•=.故答案为.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为32m2.【分析】设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,首先列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8;∵墙长为15m;∴16﹣2x≤15;∴0.5≤x<8;∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.【分析】过点F作FH⊥AD于H,易证∠DFH=30°,设CF=x,则DF=6﹣x,DH=(6﹣x),HF =(6﹣x),EH=DE+DH=5﹣,由折叠的性质得EF=CF=x,在Rt△EFH中,EF2=EH2+HF2,即可得出答案.【解答】解:过点F作FH⊥AD于H,如图所示:∵四边形ABCD是菱形,∠A=60°;∴AB=CD=6,∠EDF=120°;∴∠FDH=60°;∴∠DFH=30°;设CF=x;则DF=6﹣x,DH=DF=(6﹣x),HF=(6﹣x);∴EH=DE+DH=2+(6﹣x)=5﹣;由折叠的性质得:EF=CF=x;在Rt△EFH中,EF2=EH2+HF2;即x2=(5﹣)2+[(6﹣x)]2;解得:x=;∴CF=;故答案为:.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣2+1﹣2=﹣.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.【分析】先根据题意列举出所有可能的结果与取出的两个球上的汉字恰能组成“中国”或“加油”的情况,再利用概率公式即可求得答案.【解答】解:列举如下:中国加油中/(国,中)(加,中)(油,中)国(中,国)/(加,国)(油,国)加(中,加)(国,加)/(油,加)油(中,油)(国,油)(加,油)/所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“中国”或“加油”的情况有4种;则取出的两个球上的汉字恰能组成“中国”或“龙岩加油”的概率为=.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答】(1)证明:∵BE⊥CE,AD⊥CE;∴∠E=∠ADC=90°;∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°;∴∠EBC=∠DCA.在△BCE和△CAD中;;∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7;∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13;∴△ACD的周长为:5+12+13=30;故答案为:30.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了500人,扇形统计图中表示“C”的圆心角为72°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.【分析】(1)从两个统计图中可知“A非常了解”的人数为150人,占调查人数的30%,可求出调查人数;用360°乘以“C”所占的百分比即可得出“C”的圆心角度数;(2)用总人数减去其它等级的人数求出B等级的人数,从而补全条形统计图;(3)用总人数乘以不太了解垃圾分类人数所占的百分比即可.【解答】解:(1)小明共调查的总人数是:150÷30%=500(人);扇形统计图中表示“C”的圆心角为:360°×=72°;故答案为:500,72;(2)B等级的人数有:500×40%=200人,补全条形统计图如图所示:(3)根据题意得:50000×=5000(人);答:估计50000名市民中不太了解垃圾分类相关知识的人数有5000人.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为(50﹣x)元,平均每天的销量为(20+2x)件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?【分析】(1)根据“这种衬衫的售价每降低1元时,平均每天能多售出2件”结合每件衬衫的原利润及降价x元,即可得出降价后每件衬衫的利润及销量;(2)根据总利润=每件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵每件衬衫降价x元;∴每件衬衫的利润为(50﹣x)元,销量为(20+2x)件.故答案为:(50﹣x);(20+2x).(2)依题意,得:(50﹣x)(20+2x)=1600;整理,得:x2﹣40x+300=0;解得:x1=10,x2=30.∵为了扩大销售,尽快减少库存;∴x=30.答:每件衬衫应降价30元.22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.【分析】(1)连接OD,AD,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,推出OD∥AC,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)设AD=3k,BD=4k,根据勾股定理得到AB=5k,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,AD;∵AB是⊙O的直径;∴AD⊥BC;∵AB=AC;∴∠BAD=∠CAD;∵OA=OD;∴∠OAD=∠ODA;∴∠DAC=∠ADO;∴OD∥AC;∵DE⊥AC;∴OD⊥DE;∴DE是⊙O的切线;(2)∵tan B==;∴设AD=3k,BD=4k;∴AB=5k;∵∠AED=∠ADB=90°,∠BAD=∠DAE;∴△ABD∽△DAE;∴=;∴=;∴k=;∴AB=5k=.故答案为:.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.【分析】(1)设直线AB的解析式为y=kx+b,把A,B两点坐标代入,转化为解方程组即可.(2)由题意M(m,m+1),N(m,﹣m+4),根据MN=MP,构建方程解决问题即可.(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.由BT∥OJ,推出∠BJO =∠TBJ,推出tan∠TBJ=tan∠BJO=,推出=,设EK=m,BK=2m,则BE=m,推出EK =BE,由点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK,推出当D,E,K 共线,DE+EK的值最小.【解答】解:(1)设直线AB的解析式为y=kx+b;∵点A的坐标是(﹣1,0),点B(2,3);∴;解得:;∴直线AB的解析式为y=x+1;(2)∵点B(2,3),点C(3,);∴直线BC的解析式为y=﹣x+4;∵点P(m,0),PM∥y轴,交直线AB于点M,交直线BC于点N;∴M(m,m+1),N(m,﹣m+4);∵MN=MP;∴m+1=(﹣m+4)﹣(m+1);解得:m=;∴M(,);(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.∵直线BC的解析式为y=﹣x+4;∴tan∠BJO=;∵BT∥OJ;∴∠BJO=∠TBJ;∴tan∠TBJ=tan∠BJO=;∴=,设EK=m,BK=2m,则BE=m;∴EK=BE;∵点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK;∴当D,E,K共线,DE+EK的值最小,此时DE=DJ=2,EK=BK=1;∴点P在整个运动过程中的运动时间的最小值为2+1=3秒,此时E(4,2).24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是AD=BE,位置关系是AD⊥BE;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.【分析】(1)由等腰直角三角形的性质可得AO=BO,DO=EO,∠AOB=∠DOE=90°,由“SAS”可证△BOE≌△AOD,可得AD=BE,∠OBE=∠OAD,由直角三角形的性质可得AD⊥BE;(2)通过证明△AOD∽△BOE,可得=,∠OAD=∠OBE,可得结论;(3)如图3,连接AO,DO,由勾股定理可求AO的长,由(2)可知:△BEO∽△ADO,可求AD=2BE,由勾股定理可求解.【解答】解:(1)如图1,延长AD,BE交于点H;∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF;∴AO=BO,DO=EO,∠AOB=∠DOE=90°;∴∠BOE=∠AOD;∴△BOE≌△AOD(SAS);∴AD=BE,∠OBE=∠OAD;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;故答案为:AD=BE,AD⊥BE;(2)AD=BE不成立,AD⊥BE仍然成立;理由如下:如图2,连接AO,DO;∵AB=AC,DE=DF,∠BAC=∠EDF=60°;∴△ABC和△DEF是等边三角形;∵OB=OC,OE=OF;∴∠DOE=90°=∠AOB,DO=EO,AO=BO;∴∠AOD=∠BOE,;∴△AOD∽△BOE;∴=,∠OAD=∠OBE;∴AD=BE;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;(3)如图3,连接AO,DO;∵AC=3=AB,OB=OC,BC=6;∴AO⊥BC,BO=3;∴AO===6;由(2)可知:△BEO∽△ADO,AD⊥BE;∴==2;∴AD=2BE;∵AB2=AD2+BD2;∴45=4BE2+(5+BE)2;∴BE=﹣1;∴AD=2﹣2;∴sin∠ABD==.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.【分析】(1)将点A,B坐标代入抛物线解析式中,求解即可得出结论;(2)先求出点E坐标,进而表示出OM,利用三角形面积公式建立方程求解即可得出结论;(3)先判断出△MON∽△DEM,得出;再分点M在线段OE上和EO的延长线上,表示出ME,ON,进而得出n=,即可得出结论.【解答】解:∵抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0);∴设抛物线的解析式为y=a(x+1)(x﹣4)=ax2﹣3ax﹣4a;∴﹣4a=2;∴a=﹣;∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知,抛物线的解析式为y=﹣x2+x+2;∴C(0,2),对称轴为x=;∵点D和点C关于对称轴对称;∴D(3,2);∵DE⊥OB;∴E(3,0);∵N(0,n),且N在线段OC上;∴CN=OC﹣ON=2﹣n;∵ME=ON=n;∴OM=OE﹣ME=3﹣n;∵△CMN的面积是;∴S△CMN=CN•OM=(2﹣n)(3﹣n)=;∴n=或n=(舍去);∴M(,0);(3)∵∠DME=∠MNO=α,∠MON=∠DEM;∴△MON∽△DEM;∴;∵D(3,2);∴DE=2;设M(m,0);当m=0时,点M和点O重合,不能构成三角形MON;当点M在线段OE上时,则0<m<3;∴OM=m,ME=3﹣m;∴ON=n;∴;∴n===;∴0<n<;当点M在x轴负半轴时,则m<0;∴OM=﹣m,ME=3﹣m;∴ON=﹣n;∴;∴n===;∴n<0;即n的取值范围n<且n≠0.。

中考数学模拟题汇总《有理数的运算》练习题及答案

中考数学模拟题汇总《有理数的运算》练习题及答案

中考数学模拟题汇总《有理数的运算》练习题及答案1、下列各数中,是负数的为( ) A .﹣1B .0C .0.2D .123、下列各数中,不是负数的是( ) A .−2 B .3C . −58D .−0.104、﹣2的绝对值是( ) A .﹣2B .1C .2D .125、|﹣6|=( ) A .﹣6 B .6C .﹣D . 6、−72的相反数是( ) A .−72B .−27C .27D .727、5的相反数是( )A .15B .15- C .5D .5-8、2的倒数是( ) A. 2B.12C. 12-D. -29、﹣3的倒数是( ) A .﹣B .C .﹣3D .310、下列各数中,最小的数是( ) A .﹣3B .0C .1D .211、在﹣3,﹣1,0,1这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0D .112、计算−23−(−16)的结果为( )A .−12B .12C .−56D .5613、计算1—2+3—4+5—6+…+2019—202014、算式743×369﹣741×370之值为何?( ) A .﹣3 B .﹣2C .2D .315、计算++++…+的结果是_______.A .B .C .D .16、﹣12020=( )A .1B .﹣1C .2020D .﹣202017、计算20190+(31)﹣1=____________. 18、某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是( ) A. 0.36×106B. 3.6×105C. 3.6×106D. 36×10519、2019年我国的GDP 总量为629180亿元,将629180亿用科学记数法表示为( ) A . 6.2918×105元 B . 6.2918×1014元 C . 6.2918×1013元 D . 6.2918×1012元 20、若1x =−4,则x 的值是( ) A .4B .14C .−14D .﹣421、电子文件的大小常用B ,KB ,MB ,GB 等作为单位,其中1GB =210MB ,1MB =210KB ,1KB =210B .某视频文件的大小约为1GB ,1GB 等于( )A.230B B.830B C.8×1010B D.2×1030B22、2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元23、数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4 B.﹣4或10 C.﹣10 D.4或﹣1024、实数2√10介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间25、实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()A.a>b B.﹣a<b C.a>﹣b D.﹣a>b26、实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b>027、下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是128、|﹣2020|的结果是()A.12020B.2020 C.−12020D.﹣202029、2019的相反数是()A.B.﹣C.|2019| D.﹣201930、某图书馆现在有图书约985000册,数据985000用科学记数法可表示为()A.985×103B.98.5×104C.9.85×105D.0.985×106填空题31、用“>”或“<”符号填空:﹣7 ﹣9.32、如果某同学的量化分奖2分记+2分,则该同学扣1分应记做_______分.33、在数1,0,﹣1,|﹣2|中,最小的数是.34、与﹣2的和为0的是______.35、计算:23﹣(﹣2)= .36、将数6260000用科学记数法表示为.37、的相反数是.38、2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为人次.39、计算:(﹣﹣)÷=.40、某年一月份,哈尔滨市的平均气温约为-20℃,绥化市的平均气温约为-23℃,则两地的温差为________℃.41、有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.42、按照要求,用四舍五入法表示数:1.804=______(精确到0.01)三、解答题43、有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.44、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5(1)问收工时距O地多远?(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升? 45、计算:121()24234-+-⨯-46、计算:|﹣3|﹣(-1)0+(﹣2)2参考答案与解析1、下列各数中,是负数的为( ) A .﹣1 B .0 C .0.2 D .12【答案】A【解析】利用正数与负数的定义判断即可.﹣1是负数;0既不是正数也不是负数;0.2是正数;12是正数.2、下列各数中,不是负数的是( ) A .−2 B .3 C . −58D .−0.10【答案】B【解析】利用负数的定义判断即可得到结果. A.−2是负数,故本选项不符合题意; B.3是正数,不是负数,故本选项符合题意;是负数,故本选项不符合题意; D.−0.10是负数,故本选项不符合题意。

中考仿真模拟考试 数学试题 附答案解析

中考仿真模拟考试 数学试题 附答案解析
A. B.
C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4

中考数学专题练习计算题(I卷)

中考数学专题练习计算题(I卷)

中考专题演练—计算(I 卷)全卷满分100分 考试时间60分钟第一部分(共36分)一、选一选(本大题共12小题,每小题3分,共36分。

在给出四个选项中,只有一项是符合题目要求的) 1.在实数,,0,,,﹣1.414,有理数有( )A .1个B .2个C .3个D .4个2.若2(2)30a b -++=,则2017()a b +的值是( )A .0B .1C .1-D .20173.4的算术平方根是( )A .-4B .4C .-2D .2 4.下列运算正确的是( )A .532a a a =+B .532a a a =⋅C .532)(a a = D .10a ÷52a a =5.下列运算中,正确的是( )A .﹣2﹣1=﹣1B .﹣2(x ﹣3y )=﹣2x+3yC .D .5x 2﹣2x 2=3x26.如果a 的倒数是-1,那么a 2009等于( ) A .1B .-1C .2009D .-20097.数轴上与1,2对应的点分别为A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则22x x -+=( )A .2B .22C .32D .28.下列运算正确的是( )A .(x -y )2=x 2-y 2B .x 2·y 2 =(xy )4C .x 2y +xy 2 =x 3y 3D .x 6÷y 2 =x 4 9.下列运算正确的是( )A . 2a ﹣3b=5abB . a 2•a 3=a 5C . (2a )3=6a 3D . a 6+a 3=a 910.下列算式正确的是()A .222()a b a b +=+ B .22()ab ab = C .325()a a =D .23a a a •=11.某活动中共募集捐款32000000元,将数据32000000用科学计数法表示为( ) A .80.3210⨯B .63.210⨯C .73.210⨯D .63210⨯12.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为( ) A . 4.73×108B . 4.73×109C . 4.73×1010D . 4.73×1011第二部分(共64分)二、算一算13.因式分解(每小题3分,共18分)(1)2242x x -+= (2)=-a ax 42(3)2232________.a b ab b ++= (4)2484x x -+=(5)=-2233b a (6)(a +2)(a ﹣2)+3a=14.计算(每小题3分,共18分)(1)110|23|2sin 60()(2017)2o --++- (2)﹣2tan60°+(﹣1)0﹣()﹣2(3)()1184sin 45201620174-⎛⎫-+--- ⎪⎝⎭(4)|﹣4|+﹣﹣cos45°学校 姓名 年级密 封 线 内 不 要 答 题密 封线Ox 21密 封 线 内 不 要 答 题密 封线(5)01π32sin 4520173-⎛⎫-+- ⎪⎝⎭ (6)0333tan 308(2017)π-+⋅︒---15.化简及求值(每小题4分,共28分) (1)22139m m m -+- (2)(x +2)2+(1﹣x )(2+x )﹣3(3)先化简代数式⎪⎭⎫ ⎝⎛-++222a a a÷412-a ,然后选取一个合适..的a 值,代入求值(4)先化简分式a 2-9a 2+6a +9 ÷a -3a 2+3a -a -a 2a 2-1 ,然后在0,1,2,3中选一个你认为合适的a 值,代入求值(5)已知a=﹣3,b=2,求代数式的值.(6)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.(7)实数x 满足x 2﹣2x ﹣1=0,求代数式(2x ﹣1)2﹣x (x +4)+(x ﹣2)(x +2)的值中考专题演练—计算(I 卷)参考答案与试题解析一、 选一选(本题有12小题,每小题3分,共36分)题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案 D C DBDBCDBDCB二、算一算13.因式分解(每小题3分,共18分)(1) 22(1)x - (2) (2)(2)a x x -+ (3) 2()b a b + (4) 24(1)x - (5)3()()a b a b -+ (6)(4)(1)a a +-14.计算(每小题3分,共18分)(1)原式= 3 (2)原式= -8 (3)原式= 3 (4)原式= 3 (5)原式=43(6)原式= 1 15.化简及求值(每小题4分,共28分) (1)13m - (2)3x +3(3)原式=41)2)(2()2(2)2)(2()2(2-÷⎥⎦⎤⎢⎣⎡-+++-+-a a a a a a a a=)2)(2()2)(2(42-+-++a a a a a=42+a取a =1,得原式=5(4)22(3)(3)(3)2(3)31a a a a a a a a a a a a +-+-=-=+=+--原式 当2a =时,原式=4(5)原式 =÷=÷(a+b )=当a=﹣3,b=2时,原式==﹣(6)原式=•=2x+8,当x=1时,原式=2+8=10(7)原式=4x 2﹣4x +1﹣x 2﹣4x +x 2﹣4=4x 2﹣8x ﹣3 =4(x 2﹣2x )﹣3 =4﹣3 =1。

中考全真模拟测试 数学试题 附答案解析

中考全真模拟测试 数学试题 附答案解析
答案与解析
一.选择题
1.计算 的结果是( )
A.1 8B.9C.-9D.-1.8
【答案】B
【解析】
【分析】
先去括号,然后计算,即可得到答案.
【详解】解: ;
故选择:B.
【点睛】本题考查了有理数的减法运算,解题的关键是掌握去括号法则.
2.如图,直线 , , ,则 的度数是()
A. B. C. D.
【答案】C
5.若不等式组 无解,那么m的取值范围是()
A.m>2B.m<2C.m≥2D.m≤2
【答案】D
【解析】
【分析】
先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.
【详解】解:
由①得,x>2,
由②得,x<m,
又因为不等式组无解,
所以根据”大大小小解不了”原则,
m≤2.
读书时间(小时)
7
8
9
10
11
学生人数
6
10
9
8
7
A.9,8B.9,9C.9.5,9D.9.5,8
【答案】A
【解析】
【分析】
根据中位数和众数的定义进行解答即可.
【详解】由表格,得该班学生一周读书时间的中位数和众数分别是9,8.
【点睛】本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.
15.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.
16.如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为_____(度).
17.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.

2023届上海市区域中考数学模拟试题分层分类汇编专项真题练习—解答题(基础题)含解析

2023届上海市区域中考数学模拟试题分层分类汇编专项真题练习—解答题(基础题)含解析

2023届上海市区域中考数学模拟试题分层分类汇编专项真题试卷练习—解答题(基础题)目录一.实数的运算(共2小题) (1)二.二次根式的性质与化简(共1小题) (2)三.反比例函数与一次函数的交点问题(共1小题) (2)四.二次函数的性质(共1小题) (2)五.二次函数图象与几何变换(共1小题) (3)六.待定系数法求二次函数解析式(共2小题) (3)七.抛物线与x轴的交点(共1小题) (4)八.三角形的重心(共1小题) (4)九.*平面向量(共1小题) (4)一十.圆心角、弧、弦的关系(共1小题) (5)一十一.作图—应用与设计作图(共1小题) (5)一十二.相似三角形的判定与性质(共6小题) (5)一十三.特殊角的三角函数值(共4小题) (7)一十四.解直角三角形(共1小题) (8)一十五.解直角三角形的应用(共1小题) (8)一十六.解直角三角形的应用-坡度坡角问题(共1小题) (8)一十七.解直角三角形的应用-仰角俯角问题(共1小题) (9)一.实数的运算(共2小题)1.(2023•宝山区一模)计算:.2.(2023•青浦区一模)计算:.二.二次根式的性质与化简(共1小题)3.(2023•长宁区一模)计算:.三.反比例函数与一次函数的交点问题(共1小题)4.(2023•普陀区一模)如图,在平面直角坐标系xOy中,正比例函数y=kx(k≠0)的图象与反比例函数y=(x>0)的图象交于点A(3,a).(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向上平移m(m>0)个单位,新函数的图象与反比例函数y=(x>0)的图象交于点B,如果点B的纵坐标是横坐标的3倍,求m的值.四.二次函数的性质(共1小题)5.(2023•松江区一模)已知二次函数y=2x2﹣4x﹣1.(1)用配方法求这个二次函数的顶点坐标;(2)在所给的平面直角坐标系xOy中(如图),画出这个二次函数的图象;(3)请描述这个二次函数图象的变化趋势.五.二次函数图象与几何变换(共1小题)6.(2023•奉贤区一模)已知抛物线y=﹣x2+2x+3,将这条抛物线向左平移3个单位,再向下平移2个单位.(1)求平移后新抛物线的表达式和它的开口方向、顶点坐标、对称轴,并说明它的变化情况;(2)在如图所示的平面直角坐标系内画出平移后的抛物线.六.待定系数法求二次函数解析式(共2小题)7.(2023•杨浦区一模)在平面直角坐标系xOy中,点A(1,m)、B(3,n)在抛物线y=ax2+bx+2上.(1)如果m=n,那么抛物线的对称轴为直线;(2)如果点A、B在直线y=x﹣1上,求抛物线的表达式和顶点坐标.8.(2023•长宁区一模)已知y关于x的函数﹣2tx﹣3是二次函数.(1)求t的值并写出函数解析式;(2)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式,并写出该二次函数图象的开口方向、顶点坐标和对称轴.七.抛物线与x轴的交点(共1小题)9.(2023•徐汇区一模)已知二次函数y=﹣3x2+6x+9.(1)用配方法把二次函数y=﹣3x2+6x+9化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点的坐标;(2)如果将该函数图象向右平移2个单位,所得的新函数的图象与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,求四边形DACB的面积.八.三角形的重心(共1小题)10.(2023•杨浦区一模)如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,且DE经过△ABC的重心G.(1)设,=(用向量表示);(2)如果∠ACD=∠B,AB=9,求边AC的长.九.*平面向量(共1小题)11.(2023•奉贤区一模)如图,在△ABC中,点D在边BC上,BD=AB=BC,E是BD的中点.(1)求证:∠BAE=∠C;(2)设=,=,用向量、表示向量.一十.圆心角、弧、弦的关系(共1小题)12.(2023•宝山区一模)如图,已知圆O的弦AB与直径CD交于点E,且CD平分AB.(1)已知AB=6,EC=2,求圆O的半径;(2)如果DE=3EC,求弦AB所对的圆心角的度数.一十一.作图—应用与设计作图(共1小题)13.(2023•杨浦区一模)新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,△ABC的顶点A、B、C都在格点上.请按要求完成下列问题:=;sin∠ABC=;(1)S△ABC=S△ABC.(不要求写作法,(2)请仅用无刻度的直尺在线段AB上求作一点P,使S△ACP但保留作图痕迹,写出结论)一十二.相似三角形的判定与性质(共6小题)14.(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么=,=.(用向量、表示)15.(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.16.(2023•长宁区一模)已知:如图,在△ABC中,点D在边BC上,且AD=AB,边BC的垂直平分线EF交边AC于点E,BE交AD于点G.(1)求证:△BDG∽△CBA;(2)如果△ADC的面积为180,且AB=18,DG=6,求△ABG的面积.17.(2023•松江区一模)如图,已知△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD =2DB.(1)如果BC=4,求DE的长;(2)设=,=,用、表示.18.(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.19.(2023•青浦区一模)已知:如图,在△ABC中,点D、E分别在边BC、AC上,AD、BE 相交于点F,∠AFE=∠ABC,AB2=AE•AC.(1)求证:△ABF∽△BCE;(2)求证:DF•BC=DB•CE.一十三.特殊角的三角函数值(共4小题)20.(2023•崇明区一模)计算:4cos30°﹣cos45°tan60°+2sin245°.21.(2023•金山区一模)计算:+2cot30°•sin60°.22.(2023•普陀区一模)计算:﹣4cot30°•cos230°.23.(2023•奉贤区一模)计算:4cos30°•sin60°+.一十四.解直角三角形(共1小题)24.(2023•松江区一模)如图,已知△ABC中,AB=AC=10,BC=12,D是AC的中点,DE ⊥BC于点E,ED、BA的延长线交于点F.(1)求∠ABC的正切值;(2)求的值.一十五.解直角三角形的应用(共1小题)25.(2023•杨浦区一模)如图,某条道路上通行车辆限速为60千米/小时,在离道路50米的点P处建一个监测点,道路的AB段为监测区.在△ABP中,已知∠A=45°,∠B=30°,车辆通过AB段的时间在多少秒以内时,可认定为超速?(精确到0.1秒)(参考数据:=1.732)一十六.解直角三角形的应用-坡度坡角问题(共1小题)26.(2023•崇明区一模)如图,一根灯杆AB上有一盏路灯A,路灯A离水平地面的高度为9米,在距离路灯正下方B点15.5米处有一坡度为i=1:的斜坡CD.如果高为3米的标尺EF竖立在地面BC上,垂足为F,它的影子的长度为4米.(1)当影子全在水平地面BC上(图1).求标尺与路灯间的距离;(2)当影子一部分在水平地面BC上,一部分在斜坡CD上(图2),求此时标尺与路灯间的距离为多少米?一十七.解直角三角形的应用-仰角俯角问题(共1小题)27.(2023•松江区一模)小明想利用测角仪测量操场上旗杆AB的高度.如图,他先在点C处放置一个高为1.6米的测角仪(图中CE),测得旗杆顶部A的仰角为45°,再沿BC的方向后退3.5米到点D处,用同一个测角仪(图中DF),又测得旗杆顶部A的仰角为37°.试求旗杆AB的高度.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)上海市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(11套)-03解答题(基础题)答案与试题解析一.实数的运算(共2小题)1.(2023•宝山区一模)计算:.【正确答案】﹣3﹣2.解:原式=2×﹣|1﹣|+=1﹣(﹣1)+=1﹣+1﹣2(+2)=2﹣﹣2﹣4=﹣3﹣2.2.(2023•青浦区一模)计算:.【正确答案】.解:===.二.二次根式的性质与化简(共1小题)3.(2023•长宁区一模)计算:.【正确答案】﹣1.解:原式=+=+(2﹣)=+﹣=﹣1.三.反比例函数与一次函数的交点问题(共1小题)4.(2023•普陀区一模)如图,在平面直角坐标系xOy中,正比例函数y=kx(k≠0)的图象与反比例函数y=(x>0)的图象交于点A(3,a).(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向上平移m(m>0)个单位,新函数的图象与反比例函数y =(x>0)的图象交于点B,如果点B的纵坐标是横坐标的3倍,求m的值.【正确答案】(1)y=x;(2).解:(1)根据题意,将点A(3,a)代入反比例函数y=,得3a=3,解得a=1,∴点A坐标为(3,1),将点A(3,1)代入正比例函数y=kx,得3k=1,解得k=,∴正比例函数解析式为y=x;(2)这个正比例函数的图象向上平移m(m>0)个单位,得y=,设点B横坐标为t,则纵坐标为,∵点B的纵坐标是横坐标的3倍,∴=3t,解得t=1或t=﹣1(舍),∴点B坐标为(1,3),将点B坐标代入y=,得3=+m,解得m=.四.二次函数的性质(共1小题)5.(2023•松江区一模)已知二次函数y=2x2﹣4x﹣1.(1)用配方法求这个二次函数的顶点坐标;(2)在所给的平面直角坐标系xOy中(如图),画出这个二次函数的图象;(3)请描述这个二次函数图象的变化趋势.【正确答案】(1)二次函数y=2x2﹣4x﹣1图象的顶点坐标为(1,﹣3);(2)画图象见解答过程;(3)当x≤1时,y随x的增大而减小;当x>1时,y随x的增大而增大.解:(1)∵y=2x2﹣4x﹣1=2(x﹣1)2﹣3,∴二次函数y=2x2﹣4x﹣1图象的顶点坐标为(1,﹣3);(2)由(1)知抛物线顶点为(1,3),由y=2x2﹣4x﹣1可得抛物线过(0,﹣1),(2,﹣1),(3,5),(﹣1,5),如图:(3)当x≤1时,y随x的增大而减小,当x>1时,y随x的增大而增大.五.二次函数图象与几何变换(共1小题)6.(2023•奉贤区一模)已知抛物线y=﹣x2+2x+3,将这条抛物线向左平移3个单位,再向下平移2个单位.(1)求平移后新抛物线的表达式和它的开口方向、顶点坐标、对称轴,并说明它的变化情况;(2)在如图所示的平面直角坐标系内画出平移后的抛物线.【正确答案】(1)平移后新抛物线的表达式为y=﹣(x+2)2+2,抛物线开口方向向下,顶点坐标为(﹣2,2),对称轴为直线x=﹣2,当x>﹣2时,y随x的增大而减小,当x<﹣2时,y随x的增大而增大;(2)图象见解答.解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴将抛物线向左平移3个单位,再向下平移2个单位得新抛物线解析时为y=﹣(x﹣1+3)2+4﹣2,即y=﹣(x+2)2+2,∴抛物线开口方向向下,顶点坐标为(﹣2,2),对称轴为直线x=﹣2,当x>﹣2时,y随x的增大而减小,当x<﹣2时,y随x的增大而增大;(2)∵抛物线的顶点为(﹣2,2),对称轴为x=﹣2,当x=﹣1或﹣3时,y=1,当x=0或﹣4时,y=﹣2,∴用五点法画出函数图象,如图所示:六.待定系数法求二次函数解析式(共2小题)7.(2023•杨浦区一模)在平面直角坐标系xOy中,点A(1,m)、B(3,n)在抛物线y=ax2+bx+2上.(1)如果m=n,那么抛物线的对称轴为直线x=2;(2)如果点A、B在直线y=x﹣1上,求抛物线的表达式和顶点坐标.【正确答案】(1)x=2;解:(1)∵A(1,m)、B(3,n),m=n,∴点A和点B为抛物线上的对称点,∴抛物线的对称轴为直线x=2;故x=2;(2)把A(1,m)、B(3,n)分别代入y=x﹣1得m=0,n=2,∴A(1,0)、B(3,2),把A(1,0)、B(3,2)分别代入y=ax2+bx+2得,解得,∴抛物线解析式为y=x2﹣3x+2,∵y=x2﹣3x+2=(x﹣)2﹣,∴抛物线的顶点坐标为(,﹣).8.(2023•长宁区一模)已知y关于x的函数﹣2tx﹣3是二次函数.(1)求t的值并写出函数解析式;(2)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式,并写出该二次函数图象的开口方向、顶点坐标和对称轴.【正确答案】(1)t=2,y=4x2﹣4x﹣3;(2)开口向上,顶点坐标为(,﹣4),对称轴为直线x=.解:(1)根据题意得t+2≠0且t2﹣2=2,解得t=2,所以抛物线解析式为y=4x2﹣4x﹣3;(2)y=4x2﹣4x﹣3=4(x﹣)2﹣4,∵a=4>0,∴该二次函数图象的开口向上,顶点坐标为(,﹣4),对称轴为直线x=.七.抛物线与x轴的交点(共1小题)9.(2023•徐汇区一模)已知二次函数y=﹣3x2+6x+9.(1)用配方法把二次函数y=﹣3x2+6x+9化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点的坐标;(2)如果将该函数图象向右平移2个单位,所得的新函数的图象与x轴交于点A、B(点A 在点B左侧),与y轴交于点C,顶点为D,求四边形DACB的面积.【正确答案】(1)y=﹣3(x﹣1)2+12,图象开口向下,对称轴x=1,顶点坐标为(1,12);(2)54.解:(1)y=﹣3x2+6x+9=﹣3(x2﹣2x)+9=﹣3(x2﹣2x+1﹣1)+9=﹣3(x﹣1)2+12,∴y=﹣3(x﹣1)2+12,∵﹣3<0,∴图象开口向下,则对称轴x=1,顶点坐标为(1,12);(2)根据题意可得平移后的解析式为:y=﹣3(x﹣3)2+12,∴顶点坐标为(3,12),即D(3,12),当y=0时,即﹣3(x﹣3)2+12=0,解得:x1=1,x2=5,∵新函数的图象与x轴交于点A、B(点A在点B左侧),∴A(1,0),B(5,0),当x=0是,y=﹣15,∴点C的坐标为(0,﹣15),=S△ABD+S△ABC如图所示S四边形ACBD=×4×12+×4×15=54,∴四边形DACB的面积为54.八.三角形的重心(共1小题)10.(2023•杨浦区一模)如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,且DE经过△ABC的重心G.(2)如果∠ACD=∠B,AB=9,求边AC的长.(2)边AC的长为3.解:(1)连接AG并延长交BC于M,如图:∵G是△ABC的重心,∴AG=2MG,∴=,∵DE∥BC,∴△ADG∽△ABM,△ADE∽△ABC,∴===,∴DE=BC,∵=,DE∥BC,∴=;故;(2)∵AB=9,由(1)知=,∴AD=6,∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,∴=,即AC2=AB•AD,∴AC2=9×6,解得AC=3(负值已舍去),∴边AC的长为3.九.*平面向量(共1小题)11.(2023•奉贤区一模)如图,在△ABC中,点D在边BC上,BD=AB=BC,E是BD的中点.(1)求证:∠BAE=∠C;(2)设=,=,用向量、表示向量.【正确答案】(1)证明见解答;(2)=2﹣.(1)证明:∵BD=AB=BC,E是BD的中点,∴BE=BD,∴=,==,又∵∠ABE=∠CBA,∴△ABE∽△CBA,∴∠BAE=∠C;(2)解:∵=,=,∴=﹣=﹣,∵BD=AB=BC,∴BD=DC,∴==﹣,∴=+=+﹣=2﹣.一十.圆心角、弧、弦的关系(共1小题)12.(2023•宝山区一模)如图,已知圆O的弦AB与直径CD交于点E,且CD平分AB.(1)已知AB=6,EC=2,求圆O的半径;(2)如果DE=3EC,求弦AB所对的圆心角的度数.【正确答案】(1);(2)120°.解:(1)连接OA,如图,设⊙O的半径为r,则OA=r,OE=r﹣2,∵CD平分AB,∴AE=BE=3,CD⊥AB,在Rt△OAE中,32+(r﹣2)2=r2,解得r=,即⊙O的半径为;(2)连接OB,如图,∵DE=3EC,∴OC+OE=3EC,即OE+CE+OE=3CE,∴OE=CE,∴OE=OC=OA,在Rt△OAE中,∵sin A==,∴∠A=30°,∵OA=OB,∴∠B=∠A=30°,∴∠AOB=180°﹣∠A﹣∠B=120°,即弦AB所对的圆心角的度数为120°.一十一.作图—应用与设计作图(共1小题)13.(2023•杨浦区一模)新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,△ABC的顶点A、B、C都在格点上.请按要求完成下列问题:=4;sin∠ABC=;(1)S△ABC=S△ABC.(不要求写作法,(2)请仅用无刻度的直尺在线段AB上求作一点P,使S△ACP但保留作图痕迹,写出结论)【正确答案】(1)4,;(2)作图见解答过程.解:(1)由图可得:S△ABC=3×3﹣×1×3﹣×3×1﹣×2×2=4,过A作AD⊥BC于D,如图:∵וAD=4,∴AD=,∴sin∠ABC===,故4,;(2)如图:点P即为所求点.一十二.相似三角形的判定与性质(共6小题)14.(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么=,=.(用向量、表示)【正确答案】(1);(2),.解:∵AD∥BC,AE∥CD,∴四边形AECD为平行四边形,∴AE=CD,∵EF:CD=1:3,∴EF:AE=1:3,EF:AF=1:2,∵AD∥BC,∴△BEF∽△DAF,∴;(2)联结FC,如图,由(1)可得AF=2EF,∵,∴,,∴=,=,∵,AD=EC,∴,∴==,∴==.故,.15.(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.【正确答案】(1)(2)证明见解析.证明:(1)∵AD∥BC,∴∠ADB=∠DBC,又∵∠EAD=∠BDC,∴△ADE∽△DBC,∴AE:AD=DC:BD,∴AE•BD=AD•DC;(2)∵AE:AD=DC:BD,且,∴=,而∠EDF=∠BDC,∴△DEF∽△DBC,∴∠DEF=∠DBC,∴EF∥BC.16.(2023•长宁区一模)已知:如图,在△ABC中,点D在边BC上,且AD=AB,边BC的垂直平分线EF交边AC于点E,BE交AD于点G.(1)求证:△BDG∽△CBA;(2)如果△ADC的面积为180,且AB=18,DG=6,求△ABG的面积.【正确答案】(1)证明见解答过程;(2)60.(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵EF垂直平分BC,∴EB=EC,∴∠EBC=∠C,∵∠GBD=∠C,∠BDG=∠CBA,∴△BDG∽△CBA;(2)解:由(1)知△BDG∽△CBA,∴=,∵AB=18,DG=6,∴==,∴=,∴=,=180,∵S△ADC=90,∴S△ABD∵AC=AB=18,DG=6,∴AG=12,∴=,∴=,=S△ABD=×90=60.∴S△ABG17.(2023•松江区一模)如图,已知△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD =2DB.(1)如果BC=4,求DE的长;(2)设=,=,用、表示.【正确答案】(1)DE=;(2)=+.解:(1)∵DE∥BC,∴∠ADE=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴=,∵AD=2DB,∴=,∴=,∴DE=BC,∵BC=4,∴DE=;(2)由(1)知DE=BC,∴BC=DE,∵DE∥BC,=,∴=,∴=+=+.18.(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.【正确答案】(1)EA:AB的值为;(2).解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEF∽△DCF,∴,∴,∵DF=2AF,∴,∴;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=2AF,∴,∵,,∴,,∴.19.(2023•青浦区一模)已知:如图,在△ABC中,点D、E分别在边BC、AC上,AD、BE 相交于点F,∠AFE=∠ABC,AB2=AE•AC.(1)求证:△ABF∽△BCE;(2)求证:DF•BC=DB•CE.【正确答案】(1)证明见解析;(2)证明见解析.证明:(1)∵AB2=AE•AC,∴,∵∠BAE=∠CAB,∴△ABE∽△ACB,∴∠ABF=∠C,∠ABC=∠AEB,∵∠ABC=∠AFE,∴∠AFE=∠AEB,∴180°﹣∠AFE=180°﹣∠AEB,即∠AFB=∠BEC,∴△ABF∽△BCE;(2)∵△ABF∽△BCE,∴,∠CBE=∠BAF,∵∠BDF=∠ADB,∴△DBF∽△DAB,∴,∴=,∴DF•BC=DB•CE.一十三.特殊角的三角函数值(共4小题)20.(2023•崇明区一模)计算:4cos30°﹣cos45°tan60°+2sin245°.【正确答案】2﹣+1.解:原式=4×﹣×+2×()2=2﹣+2×=2﹣+1.21.(2023•金山区一模)计算:+2cot30°•sin60°.【正确答案】4.解:原式=+2××=+3=1+3=4.22.(2023•普陀区一模)计算:﹣4cot30°•cos230°.【正确答案】﹣4.解:原式=﹣4×=﹣3=﹣﹣3=﹣4.23.(2023•奉贤区一模)计算:4cos30°•sin60°+.【正确答案】5+.解:原式=4××+=3+=3+2+=5+.一十四.解直角三角形(共1小题)24.(2023•松江区一模)如图,已知△ABC中,AB=AC=10,BC=12,D是AC的中点,DE ⊥BC于点E,ED、BA的延长线交于点F.(1)求∠ABC的正切值;(2)求的值.【正确答案】(1)tan B=;(2)=2.解:(1)过A作AH⊥BC于H,如图:∵AB=AC=10,BC=12,∴BH=CH=BC=6,在Rt△ABH中,AH===8,∴tan B===;(2)由(1)知tan B=,∴tan C=,∴=,∵D是AC的中点,AC=10,∴CD=5,∴DE=4,CE=3,∴BE=BC﹣CE=12﹣3=9,∵tan B=,∴=,∴EF=12,∴DF=EF﹣DE=12﹣4=8,∴==2.一十五.解直角三角形的应用(共1小题)25.(2023•杨浦区一模)如图,某条道路上通行车辆限速为60千米/小时,在离道路50米的点P处建一个监测点,道路的AB段为监测区.在△ABP中,已知∠A=45°,∠B=30°,车辆通过AB段的时间在多少秒以内时,可认定为超速?(精确到0.1秒)(参考数据:=1.732)【正确答案】见试题解答内容解:过P作PH⊥AB于H,如图:由已知可得,PH=50米,在Rt△APH中,∵∠PAH=45°,∴∠APH=∠PAH=45°,∴AH=PH=50米,在Rt△BPH中,tan30°=,∴BH==50≈86.6米,∴AB=AH+BH≈136.6米,∵60千米/小时=米/秒,而136.6÷≈8.2(秒),∴车辆通过AB段的时间在8.2秒以内时,可认定为超速.一十六.解直角三角形的应用-坡度坡角问题(共1小题)26.(2023•崇明区一模)如图,一根灯杆AB上有一盏路灯A,路灯A离水平地面的高度为9米,在距离路灯正下方B点15.5米处有一坡度为i=1:的斜坡CD.如果高为3米的标尺EF竖立在地面BC上,垂足为F,它的影子的长度为4米.(1)当影子全在水平地面BC上(图1).求标尺与路灯间的距离;(2)当影子一部分在水平地面BC上,一部分在斜坡CD上(图2),求此时标尺与路灯间的距离为多少米?【正确答案】(1)标尺与路灯间的距离为8米;(2)此时标尺与路灯间的距离为14米.解:如图1,连接AE并延长,交BC于点G,由题意可知,AB=9米,EF=3米,FG=4米,∵AB⊥BC,EF⊥BC,∴AB∥EF,∴△GEF∽△GAB,∴,即,∴BG=12米,∴BF=BG﹣FG=12﹣4=8(米),∴标尺与路灯间的距离为8米;(2)如图2,连接AE并延长,交CD于点H,过点H作HN⊥AB于点N,交EF于点M,过点H作HP⊥BC交BC延长线于点P,由题意可得,CF+CH=4米,,设CH=x米,则CF=(4﹣x)米,HP=米,CP=米,∴MF=BN=HP=米,MH=米,∴AN=米,ME=米,∵BC=15.5米,∴NH=米,∵AB⊥BC,EF⊥BC,∴AB∥EF,∴∠EMH=∠ANH,∠HEM=∠HAN,∴△HEM∽△HAN,∴,即,整理得:2x2+9x﹣35=0,解得:x1=﹣7(不符合题意,舍去),,则CF=4﹣x=4﹣=1.5(米),∴BF=BC﹣CF=15.5﹣1.5=14(米),∴此时标尺与路灯间的距离为14米.一十七.解直角三角形的应用-仰角俯角问题(共1小题)27.(2023•松江区一模)小明想利用测角仪测量操场上旗杆AB的高度.如图,他先在点C处放置一个高为1.6米的测角仪(图中CE),测得旗杆顶部A的仰角为45°,再沿BC的方向后退3.5米到点D处,用同一个测角仪(图中DF),又测得旗杆顶部A的仰角为37°.试求旗杆AB的高度.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)【正确答案】旗杆AB的高度是12.1米.解:设直线EF交AB于G,如图:根据题意,∠AEG=45°,∠AFG=37°,EF=3.5米,∴△AEG的等腰直角三角形,∴AG=GE,设AG=GE=x米,则旗杆AB高度为(x+1.6)米,∴GF=GE+EF=(x+3.5)米,在Rt△AGF中,tan∠AFG=,∴tan37°=,即0.75=,解得:x=10.5,∴x+1.6=10.5+1.6=12.1,答:旗杆AB的高度是12.1米.。

中考数学计算练习题带答案

中考数学计算练习题带答案

中考数学计算练习题带答案1. 有理数的加减法:- 计算:\( 3 - 5 + 2 - 7 \)- 答案:\( -7 \)2. 有理数的乘除法:- 计算:\( (-2) \times 3 \div (-1) \)- 答案:\( 6 \)3. 绝对值的计算:- 计算:\( |-8| + |-3| \)- 答案:\( 11 \)4. 幂的运算:- 计算:\( 2^3 \div 2^2 \)- 答案:\( 2 \)5. 多项式乘法:- 计算:\( (x + 3)(x - 2) \)- 答案:\( x^2 + x - 6 \)6. 分数的加减法:- 计算:\( \frac{3}{4} - \frac{1}{2} \)- 答案:\( \frac{1}{4} \)7. 分数的乘除法:- 计算:\( \frac{2}{3} \times \frac{3}{4} \) - 答案:\( \frac{1}{2} \)8. 解一元一次方程:- 解方程:\( 2x + 5 = 11 \)- 答案:\( x = 3 \)9. 解一元二次方程:- 解方程:\( x^2 - 4x + 4 = 0 \)- 答案:\( x = 2 \)(重根)10. 代数式的求值:- 计算:\( 3a + 2b - 5a - b \) 当 \( a = 2, b = 3 \)- 答案:\( -2a + b = -2 \times 2 + 3 = -1 \)练习题答案解析:1. 先进行加法运算,再进行减法运算。

2. 先进行乘法运算,再进行除法运算。

3. 计算绝对值,然后进行加法运算。

4. 根据幂的除法法则,同底数幂相除,指数相减。

5. 根据多项式乘法法则,先进行乘法,再合并同类项。

6. 先通分,再进行分数的加减运算。

7. 根据分数的乘法法则,分子乘分子,分母乘分母。

8. 移项,合并同类项,然后求解。

9. 利用完全平方公式分解因式,然后求解。

10. 先化简代数式,然后代入给定的值求解。

中招考试数学模拟试卷(附带有答案)

中招考试数学模拟试卷(附带有答案)

中招考试数学模拟试卷(附带有答案)(满分:120分;考试时间:120分钟)第I卷(选择题共30分)一、选择题(本题共10小题,共30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,不选或选出的答案超过一个均记零分。

)1.关于0,下列说法中正确的是( )A. 0没有倒数B. 0没有绝对值C. 0没有相反数D. 0没有平方根2.下列运算正确的是()A.x6+x6=2x12B. a2•a4-(-a3)2=0C. (x-y)2=x2-2xy-y2D. (a+b)(b-a)=a2+b23.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若∠1=34°,则∠2的度数是()A. 68°B. 56°C. 65°D. 43°4.下列各式计算错误的是()A. B.C. D.5.在使用科学计算器时,依次按键的方法如图所示,显示的结果在数轴上对应的点可以是()A. 点AB. 点BC. 点CD. 点D6.下列说法正确的是()A.“买中奖率为的奖券10张,中奖”是必然事件B. “汽车累积行驶10000km,从未出现故障”是不可能事件C. 襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D. 若两组数据的平均数相同,则方差小的更稳定7.如图已知扇形的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面积为( )A. 4B. 6C. 9D. 128.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A. B. C. D.9.如图,某舰艇以28海里小时向东航行.在A处测得灯塔M在北偏东方向,半小时后到B处.又M在北偏东方向,此时灯塔与舰艇的距离MB是.A.海里B. 海里C. 海里D. 14海里10.如图,抛物线与轴交于点,与轴的交点在点与点之间(不包括这两点),对称轴为直线.有下列结论:abc<0;5a+3b+c>0;-< a<-;④若点,在抛物线上,则.其中正确结论的个数是()A. B. C. D.第II卷(非选择题共90分)二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.)11.华为公司始终坚持科技创新,她堪称为中国企业的脊梁.华为麒麟990芯片是目前市场运行速度最快的芯片,它采用7纳米制造工艺,已知7纳米=0.000000007米,用科学记数法将0.000000007表示为________.12.分解因式:=___________13.我县抽考年级有1万多名学生参加考试,为了了解这些学生的抽考学科成绩,便于质量分析,从中抽取了200名考生的抽考学科成绩进行统计分析.这个问题中,下列说法:①这1万多名学生的抽考成绩的全体是总体;②每个学生是个体;③200名考生是总体的一个样本;④样本容量是200.你认为说法正确的有______ 个.14.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树________棵.15.已知关于x,y的二元一次方程组的解满足x+y>1,则满足条件的k的最小整数是.16.如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为______.三、解答题(本大题共7小题,满分62分,解答应写出必要的文字说明、证明过程或推演步骤)17. (本题满分8分)(1)(2)化简:,并从0≤x <5中选取合适的整数代入求值.18. (本题满分8分)电子政务、数字经济、智慧社会…一场数字革命正在神州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,赛后对全体参赛学生成绩按A ,B ,C ,D 四个等级进行整理,得到如图所示的不完整的统计图表.(1)参加此次比赛的学生共有________人,a =________,b =________;(2)请计算扇形统计图中C 等级对应的扇形的圆心角的度数;(3)已知A 等级五名同学中包括来自同一班级的甲、乙两名同学,学校将从这五名同学中随机选出两名参加市级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.19. (本题满分8分)如图,AB 是⊙O 的直径,射线BC 交⊙O 于点D ,E 是劣弧AD 上一点,且,过点E 作EF ⊥BC 于点F ,延长FE 和BA的等级频数 频率 A 5 0.1 B a 0.4 C 15 b D100.2延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=6,求△GOE的面积.20.(本题满分8分)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>的解集.21.(本题满分8分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?22.(本题满分10分)如图,已知二次函数的图像经过点A(-4,0),顶点为B,一次函数的图像交y轴于点M,P是抛物线上一点,点M关于直线AP的对称点N恰好落在抛物线的对称轴直线BH上(对称轴直线BH与x轴交于点H).(1)求二次函数的表达式;(2)求点P的坐标;(3)若点G是第二象限内抛物线上一点,G关于抛物线的对称轴的对称点是E,连接OG,点F是线段OG上一点,点D是坐标平面内一点,若四边形BDEF是正方形,求点G的坐标.23.(本题满分12分)一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).(1)当∠AFD=___°时,DE// AB;当∠AFD=____°时,EF//AB;当∠AFD=____°时,DF//AC;(2)在旋转过程中,DF与AB的交点记为P,如图2,若△BFP有两个内角相等,求∠AFD的度数;(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.参考答案1.A2.B3.B4.C5.D6.D7.A8.A9.C 10.C11. 7×10-9 12. 13. 14. 2 15. 500 16.317. 18. 2018.519.解:(1)=-1+4+-2-2×=-1+4+-2-=1(2)=[-]•=•=从0≤x<5可取x=1此时原式==120.解:(1)50,20,0.3;(2)由图表可知,C等级的人数占总参赛人数的30%,360°×30%=108°,即扇形统计图中C 等级对应的扇形的圆心角的度数为108°(3)设A等级中甲,乙两名同学以外的其他三位同学分别为A1,A2,A3,树状图如图,则甲、乙两名同学都被选中的概率为.21.解:(1)如图,连接OE∵∴∠1=∠2∵OB=OE∴∠2=∠3∴∠1=∠3∴OE∥BF∵BF⊥GF∴OE⊥GF∴GF是⊙O的切线(2)设OA=OE=r在Rt△GOE中,∵AG=6,GE=6∴由OG2=GE2+OE2可得(6+r)2=(6)2+r2解得:r=3即OE=3则S△GOE=•OE•GE=×3×=922.解:(1)设直线y1=ax+b与y轴交于点D在Rt△OCD中,OC=3,tan∠ACO=.∴OD=2即点D(0,2)把点D(0,2),C(3,0)代入直线y1=ax+b得b=2,3a+b=0,解得,a=-∴直线的关系式为y1=-x+2;把A(m,4),B(6,n)代入y1=-x+2得m=-3,n=-2∴A(-3,4),B(6,-2)∴k=-3×4=-12∴反比例函数的关系式为y2=-因此y1=-x+2,y2=-(2)由S△AOB=S△AOC+S△BOC=×3×4+×3×2=9(3)由图象可知,当x<0时,不等式ax+b>的解集为x<-323解:(1)设每次下降的百分率为a根据题意,得:50(1-a)2=32解得:a=1.8(舍)或a=0.2答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500-20x)=6000整理,得x2-15x+50=0解得:x1=5,x2=10因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.24.解:(1)把x=-4,y=0代入得,解这个方程,得b=2∴二次函数的表达式是(2)∵一次函数的图像交y轴于点M(0,2)∴OM=2∴.∵∴AH=OH=2∴NH=4.∵△APM≌△APN∴PM=PN,则PM2=PN2过点P作PQ⊥BH于Q,交y轴于R.设点①如图1,当点N在AM上方时,N(-2,4)由PM2=PN2得.解得x1=-4(舍去),x2=2∴P1(2,6).②如图2,当点N在AM下方时,N(-2,4)同理可得x1=-4(舍去),.∴(3)如图3,过F作FC⊥BH于C,FT⊥GE于T,FT交x轴于点S.∵四边形BFED是正方形∴△ETF≌△BCF∴FT=FC,ET=BC设FS=CH=m,FC=FT=t,则E(m-t,m+t).∴.化简整理,得m2+2m-2mt=-t2+6t.∵△GTF∽△OSF∴即化简整理,得m2+2m-2mt=t2+2t.∴-t2+6t=t2+2t,解得t1=0(舍去),t2=2.∴m2-2m-8=0,解得m1=-2(舍去),m2=4.∴G(-6,6)25.解:(1)30;60(2),AF平分∠CAB当如图3所示:当时,;如图4所示:当时.如图5所示:当时综上所述,∠APD的度数为或或;(3)∠FMN=∠FNM.理由:如图6所示:∵∠FNM 是△BMN的一个外角∴∠FNM=∠B+∠BMN∵∠B=30°∴∠FNM=∠B+∠BMN=30°+∠BMN∵∠BMF是△AFM的一个外角∴∠BMF=∠MAF+∠AFM即∠BMN+∠FMN=∠MAF+∠AFM又∵∠MAF=30°,∠AFM=2∠BMN∴∠BMN+∠FMN=30°+2∠BMN∴∠FMN=30°+∠BMN∴∠FNM=∠FMN。

2024年广东省中考数学模拟卷及答案

2024年广东省中考数学模拟卷及答案

2024年广东省初中数学中考模拟卷(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.352.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.63.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1 4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-946.如图所示,水平放置的几何体的俯视图是()A. B. C. D.7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.599.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.1010.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A .3B .√10C .9√15D .√152二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy 2﹣2x = .12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .14.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-417.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ②18. (8分)先化简,再求值:(1+)÷,其中a=+1.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。

中考数学计算题专项训练(全)

中考数学计算题专项训练(全)

中考专项训练——计算题集训一(计算)1. 计算:3082145+-Sin2.计算:3.计算:2×(-5)+23-3÷12 .4.计算:22+(-1)4+(5-2)0-|-3|;5.计算:22+|﹣1|﹣.6.计算:︒+-+-30sin 2)2(20.7.计算,8.计算:(1)()()022161-+--(2)a(a-3)+(2-a)(2+a)9. 计算:(3)0- (12)-2 +tan45°10. 计算:()()0332011422---+÷-集训二(分式化简)1. (2011.南京)计算.2. (2011.常州)化简:21422---x x x3.(2011.淮安)化简:(a+b )2+b (a ﹣b ).4. (2011.南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.5. (2011.苏州)先化简,再求值:(a ﹣1+)÷(a 2+1),其中a=﹣1.6.(2011.宿迁)已知实数a 、b 满足ab =1,a +b =2,求代数式a 2b +ab 2的值.7. (2011.泰州)化简.8.(2011.无锡)a(a-3)+(2-a)(2+a)9.(2011.徐州)化简:11()a a a a--÷;10.(2011.扬州)化简2111x x x -⎛⎫+÷ ⎪⎝⎭集训三(解方程)1. (2011•南京)解方程x 2﹣4x+1=0.2. (2011.常州)解分式方程2322-=+x x3.(2011.连云港)解方程:3x = 2x -1 .4. (2011.苏州)已知|a ﹣1|+=0,求方裎+bx=1的解.5. (2011.无锡)解方程:x 2+4x -2=06.(2011.盐城)解方程:x x -1 - 31-x= 2.7.(2011.泰州)解方程组,并求的值.集训四(解不等式)1.(2011.南京)解不等式组,并写出不等式组的整数解.2.(2011.常州)解不等式组()()()⎩⎨⎧+≥--+-14615362x x x x3.(2011.连云港)解不等式组:⎩⎨⎧2x +3<9-x ,2x -5>3x .4.(2011.南通)求不等式组⎩⎨⎧3x -6≥x -42x +1>3(x -1)的解集,并写出它的整数解.5.(2011.苏州)解不等式:3﹣2(x ﹣1)<1.6. (2011.宿迁)解不等式组⎪⎩⎪⎨⎧<+>+.221,12x x8.解不等式组:102(2)3x x x -≥⎧⎨+>⎩9. 解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。

中考数学仿真模拟测试题(附答案解析)

中考数学仿真模拟测试题(附答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。

备战2023年杭州中考数学真题分类汇编(5年中考1年模拟)11计算综合题含详解

备战2023年杭州中考数学真题分类汇编(5年中考1年模拟)11计算综合题含详解

专题11计算综合题1.(2022•杭州)计算:2(6)(3-⨯-■3)2-.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算321(6)()232-⨯--.(2)如果计算结果等于6,求被污染的数字.2.(2021•杭州)以下是圆圆解不等式组()()21112x x +>-⎧⎪⎨-->-⎪⎩①②的解答过程:解:由①,得21x +>-,所以3x >-.由②,得12x ->,所以1x ->,所以1x >-.所以原不等式组的解集是1x >-.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.3.(2020•杭州)以下是圆圆解方程13123x x +--=的解答过程.解:去分母,得3(1)2(3)1x x +--=.去括号,得31231x x +-+=.移项,合并同类项,得3x =-.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.4.(2019•杭州)化简:242142x x x ----圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+--圆圆的解答正确吗?如果不正确,写出正确的答案.5.(2022•上城区一模)(122+;(2)sin 30tan 45︒+︒.6.(2022•拱墅区一模)计算:(13(5)2--;(2)11x x x x+-+.7.(2022•西湖区一模)已知224M x x =-+,244N x x =-+,请比较M 和N 的大小.以下是小明的解答:2(1)33M x =-+ ,2(2)0N x =- ,M N ∴ .小明的解答过程是否有错误?如果有错误,请写出正确的解答.8.(2022•钱塘区一模)化简:2(2)(1)(1)x x x --+-.圆圆的解答如下:222(2)(1)(1)413x x x x x --+-=+--=.圆圆的解答正确吗?如果不正确,请写出正确的解答过程.9.(2022•淳安县一模)化简:23311x x x ----.方方的解答如下:原式3(1)33132(1)2(1)(1)(1)(1)(1)(1)(1)(1)1x x x x x x x x x x x x x x +-+---=-==+-+-+-+-+.方方的解答正确吗?如果不正确,请写出正确的解答过程.10.(2022•富阳区一模)圆圆解答“先化简,再求值:21211x x ++-,其中1x =.”的过程如图,请指出解答过程中错误步骤的序号,并写出正确的解答过程.11.(2022•临安区一模)以下是方方化简212(111a a a a a +-+÷++的解答过程.解:原式221(11)2a a a a+=-+⋅+21(2)a a a a +=⨯+22a a a +=+方方的解答过程是否有错误?如果有,请写出正确的解答过程.12.(2022•钱塘区二模)先化简,再求值.21(1)11a a a ÷+--,其中2cos30tan 45a =︒-︒.13.(2022•西湖区校级一模)(1)计算:02|(3)tan 60π---+︒;(2)化简:333x x x+--.14.(2022•萧山区校级一模)下面是小明同学解不等式的过程,解不等式:2132132x x -->-解:2(21)3(32)1x x ->--42961x x ->--49612x x ->--+55x ->-1x >你认为正确吗?错误的话,请你写出正确的做法.15.(2022•萧山区一模)以下是婷婷解方程(3)2(3)x x x -=-的解答过程:解:方程两边同除以(3)x -,得:2x =,∴原方程的解为2x =.试问婷婷的解答过程是否有错误?如果有错误,请写出正确的解答过程.16.(2022•滨江区一模)以下是小滨在解方程(2)(3)3x x x +-=-时的解答过程.解原方程可化为(2)(3)(3)x x x +-=--,解得原方程的解是3x =-.小滨的解答是否有错误?如果有错误,请写出正确的解答过程.17.(2022•上城区二模)已知:2210x x -+=,求代数式2(3)(1)(1)x x x ++-+的值.18.(2022•余杭区一模)对于不等式211132x x -+- ,圆圆的解法如下:解:原不等式可化为2(21)13(1)x x --+ 去括号得42133x x ---合并同类项得70x所以原不等式的解为0x 圆圆的解法是否正确?如果不正确,请提供正确的解法.19.(2022•富阳区二模)下面是小明同学解不等式的过程:2132132x x -->-解:2(21)3(32)1x x ->--42961x x ->--49612x x ->--+55x ->-1x <请你判断小明的解法正确还是错误.如果错误,请提供正确的解答过程.20.(2022•西湖区校级模拟)以下是圆圆解不等式组()243112x x x -<⎧⎪⎨->+⎪⎩①②的过程:解:由①,得2x <-.由②,得312x x ->+,所以4x >.所以原不等式组无解.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.21.(2022•富阳区一模)以下是圆圆分式方程21233x x x-=---的解答过程:解:方程两边都乘以3x -,得212x -=--①.移项得122x -=---②.解得5x =③.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.22.(2022•西湖区校级二模)(1)计算:0|1(2)+--;(2)化简:28242a a ---.23.(2022•西湖区校级模拟)以下是圆圆同学解不等式组()3121122x x x x -<+⎧⎪⎨-+⎪⎩①② 的解答过程:解:由①,得31x ->,所以4x >.由②,得122x x -+,所以3x - ,所以3x.所以原不等式组的解集是4x >.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.24.(2022•下城区校级二模)以下是圆圆同学化简22142a a a ---的解答过程:解:原式21222(2)(2)2a a a a a a a =-=-+=++--圆圆的解答是否有错误?如果有错误,请写出正确的解答过程.25.(2022•杭州模拟)以下是圆圆解方程12(3)155x x x--=--的解答过程:解:去分母,得12(3)1x --=;去括号,得1621x -+=;移项,得26x =;合并同类项,得3x =.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.26.(2022•江干区校级模拟)化简:1111x x x ---+.小马的解答如下,小马的解答正确吗?如果不正确,写出正确的解答.解:11(1)(1)111x x x x x x --=+----+211x x x =+-+-2x =27.(2022•拱墅区模拟)先化简,可求值:22222(xy y x y x x x xy---÷+,其中x =1y =.专题11计算综合题1.(2022•杭州)计算:2(6)(3-⨯-■3)2-.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算321(6)()232-⨯--.(2)如果计算结果等于6,求被污染的数字.【答案】见解析【详解】(1)321(6)()232-⨯--1(6)86=-⨯-18=--9=-;(2)设被污染的数字为x ,根据题意得:32(6)()263x -⨯--=,解得:3x =,答:被污染的数字是3.2.(2021•杭州)以下是圆圆解不等式组()()21112x x +>-⎧⎪⎨-->-⎪⎩①②的解答过程:解:由①,得21x +>-,所以3x >-.由②,得12x ->,所以1x ->,所以1x >-.所以原不等式组的解集是1x >-.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【答案】见解析【详解】圆圆的解答过程有错误,正确过程如下:由①得221x +>-,23x ∴>-,32x ∴>-,由②得12x -<,1x ∴-<,1x ∴>-,∴不等式组的解集为1x >-.3.(2020•杭州)以下是圆圆解方程13123x x +--=的解答过程.解:去分母,得3(1)2(3)1x x +--=.去括号,得31231x x +-+=.移项,合并同类项,得3x =-.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.【答案】见解析【详解】圆圆的解答过程有错误,正确的解答过程如下:去分母,得:3(1)2(3)6x x +--=.去括号,得33266x x +-+=.移项,合并同类项,得3x =-.4.(2019•杭州)化简:242142x x x ----圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+--圆圆的解答正确吗?如果不正确,写出正确的答案.【答案】见解析【详解】圆圆的解答错误,正确解法:242142x x x ----42(2)(2)(2)(2)(2)(2)(2)(2)(2)x x x x x x x x x x +-+=---+-+-+24244(2)(2)x x x x x ---+=-+22(2)(2)x x x x -=-+2x x =-+.5.(2022•上城区一模)(122+;(2)sin 30tan 45︒+︒.【答案】见解析【详解】(122+342=+-5=;(2)sin 30tan 45︒+︒112=+32=.6.(2022•拱墅区一模)计算:(13(5)2--;(2)11x x x x+-+.【答案】见解析【详解】(1)原式258=+-1=-;(2)原式11x x x++-=2xx =2=.7.(2022•西湖区一模)已知224M x x =-+,244N x x =-+,请比较M 和N 的大小.以下是小明的解答:2(1)33M x =-+ ,2(2)0N x =- ,M N ∴ .小明的解答过程是否有错误?如果有错误,请写出正确的解答.【答案】见解析【详解】小明的解答过程有误,正确解答为:224M x x =-+ ,244N x x =-+,22(24)(44)M N x x x x ∴-=-+--+222444x x x x =-+-+-2x =,当0x时,20x ,即0M N - ,此时M N ;当0x <时,20x <,即0M N -<,此时M N <.8.(2022•钱塘区一模)化简:2(2)(1)(1)x x x --+-.圆圆的解答如下:222(2)(1)(1)413x x x x x --+-=+--=.圆圆的解答正确吗?如果不正确,请写出正确的解答过程.【答案】见解析【详解】解答不正确.2(2)(1)(1)x x x --+-22(2)(1)x x =---22441x x x =-+-+45x =-+.9.(2022•淳安县一模)化简:23311x x x ----.方方的解答如下:原式3(1)33132(1)2(1)(1)(1)(1)(1)(1)(1)(1)1x x x x x x x x x x x x x x +-+---=-==+-+-+-+-+.方方的解答正确吗?如果不正确,请写出正确的解答过程.【答案】见解析【详解】方方的解答错误,正确解答如下:原式3(1)3(1)(1)(1)(1)x x x x x x +-=-+-+-333(1)(1)x x x x +-+=+-2261x x +=-.10.(2022•富阳区一模)圆圆解答“先化简,再求值:21211x x ++-,其中1x =.”的过程如图,请指出解答过程中错误步骤的序号,并写出正确的解答过程.【答案】见解析【详解】步骤①、②有误,原式121(1)(1)(1)(1)1x x x x x x -=+=+-+--当1x =时,原式3=.11.(2022•临安区一模)以下是方方化简212(111a a a a a +-+÷++的解答过程.解:原式221(11)2a a a a+=-+⋅+21(2)a a a a +=⨯+22a a a +=+方方的解答过程是否有错误?如果有,请写出正确的解答过程.【答案】见解析【详解】方方的解答过程有错误,正确解答过程如下:原式211(2)11a a a a a -++=÷++211(2)a a a a a +=⋅++2a a =+.12.(2022•钱塘区二模)先化简,再求值.21(1)11a a a ÷+--,其中2cos30tan 45a =︒-︒.【答案】见解析【详解】21(1)11a a a ÷+--11(1)(1)1a a a a a -+=÷+--1(1)(1)a a a a a -=⋅+-11a =+,2cos30tan 45a =︒-︒ 3212=⨯-1=-,∴当1a =时,原式3===.13.(2022•西湖区校级一模)(1)计算:02|(3)tan 60π---+︒;(2)化简:333x x x+--.【答案】见解析【详解】(1)原式21=--+ 1=.(2)原式33 xx-=-1=.14.(2022•萧山区校级一模)下面是小明同学解不等式的过程,解不等式:21321 32x x-->-解:2(21)3(32)1x x->--42961x x->--49612x x->--+55x->-1x>你认为正确吗?错误的话,请你写出正确的做法.【答案】见解析【详解】小明的解法有错误.正确的做法:2(21)3(32)6x x->--,42966x x->--,49662x x->--+,510x->-,2x<.15.(2022•萧山区一模)以下是婷婷解方程(3)2(3)x x x-=-的解答过程:解:方程两边同除以(3)x-,得:2x=,∴原方程的解为2x=.试问婷婷的解答过程是否有错误?如果有错误,请写出正确的解答过程.【答案】见解析【详解】婷婷的解答过程有错误;正确的解答过程为:移项得(3)2(3)0x x x---=,(3)(2)0x x--=,30x-=或20x-=,所以13x=,22x=.16.(2022•滨江区一模)以下是小滨在解方程(2)(3)3x x x +-=-时的解答过程.解原方程可化为(2)(3)(3)x x x +-=--,解得原方程的解是3x =-.小滨的解答是否有错误?如果有错误,请写出正确的解答过程.【答案】见解析【详解】小滨的解答有错误,忽略了30x -=的情况,正确的解答为:方程可化为:(2)(3)(3)x x x +-=--,移项得:(2)(3)(3)0x x x +-+-=,分解因式得:(3)(3)0x x -+=,所以30x -=或30x +=,解得:13x =,23x =-.17.(2022•上城区二模)已知:2210x x -+=,求代数式2(3)(1)(1)x x x ++-+的值.【答案】见解析【详解】2(3)(1)(1)x x x ++-+223321x x x x x =+++---22x =+,2210x x -+= ,2(1)0x ∴-=,1x ∴=,当1x =时,原式212224=⨯+=+=.18.(2022•余杭区一模)对于不等式211132x x -+- ,圆圆的解法如下:解:原不等式可化为2(21)13(1)x x --+ 去括号得42133x x --- 合并同类项得70x所以原不等式的解为0x圆圆的解法是否正确?如果不正确,请提供正确的解法.【答案】见解析【详解】步骤①错误,导致后面错误,正确解法如下:原不等式可化为2(21)63(1)x x --+ ,去括号得42633x x ---,合并同类项得75x,所以原不等式的解为57x .19.(2022•富阳区二模)下面是小明同学解不等式的过程:2132132x x -->-解:2(21)3(32)1x x ->--42961x x ->--49612x x ->--+55x ->-1x <请你判断小明的解法正确还是错误.如果错误,请提供正确的解答过程.【答案】见解析【详解】小明的解法有错误.正确的做法:2(21)3(32)6x x ->--,42966x x ->--,49662x x ->--+,510x ->-,2x <.20.(2022•西湖区校级模拟)以下是圆圆解不等式组()243112x x x -<⎧⎪⎨->+⎪⎩①②的过程:解:由①,得2x <-.由②,得312x x ->+,所以4x >.所以原不等式组无解.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【答案】见解析【详解】圆圆的解答过程错误,正确过程如下:由①,得2x >-,由②,得3312x x ->+,所以25x <,∴不等式组的解集为225x -<<.21.(2022•富阳区一模)以下是圆圆分式方程21233x x x -=---的解答过程:解:方程两边都乘以3x -,得212x -=--①.移项得122x -=---②.解得5x =③.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【答案】见解析【详解】圆圆的解答过程错误,2-没有乘3x -,正确的解法是:21233x x x-=---,方程两边都乘3x -,得212(3)x x -=---,去括号,得2126x x -=--+,移项,得2162x x -+=-+-,合并同类项,得3x =,检验:当3x =时,30x -=,所以3x =是增根,即原方程无解.22.(2022•西湖区校级二模)(1)计算:0|1(2)+--;(2)化简:28242a a ---.【答案】见解析【详解】(1)原式11=+-=;(2)原式82(2)(2)(2)(2)(2)a a a a a +=-+-+-82(2)(2)(2)a a a -+=+-824(2)(2)a a a --=+-42(2)(2)aa a -=+-2(2)(2)(2)a a a -=-+-22a =-+.23.(2022•西湖区校级模拟)以下是圆圆同学解不等式组()3121122x x x x -<+⎧⎪⎨-+⎪⎩①② 的解答过程:解:由①,得31x ->,所以4x >.由②,得122x x -+,所以3x -,所以3x .所以原不等式组的解集是4x >.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【答案】见解析【详解】圆圆的解答过程是错误的,由①,得3321x x -<+,所以4x <.由②,得124x x -+,所以5x - ,所以5x - .所以原不等式组的解集是54x -<.24.(2022•下城区校级二模)以下是圆圆同学化简22142a a a ---的解答过程:解:原式21222(2)(2)2a a a a a a a =-=-+=++--圆圆的解答是否有错误?如果有错误,请写出正确的解答过程.【答案】见解析【详解】解答有错误.正解:原式21(2)(2)2a a a a =-+--22(2)(2)(2)(2)a a a a a a +=-+-+-22(2)(2)a a a a --=+-2(2)(2)a a a -=+-12a =+.25.(2022•杭州模拟)以下是圆圆解方程12(3)155x x x --=--的解答过程:解:去分母,得12(3)1x --=;去括号,得1621x -+=;移项,得26x =;合并同类项,得3x =.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【答案】见解析【详解】圆圆的解答过程有错误,正确的解答过程:12(3)155x x x--=--,去分母,得12(3)5x x --=-,去括号,得1625x x -+=-,移项,得2561x x +=+-,合并同类项,得310x =,系数化为1,得:103x =,检验:当103x =时,50x -≠,103x ∴=是原方程的根.26.(2022•江干区校级模拟)化简:1111x x x ---+.小马的解答如下,小马的解答正确吗?如果不正确,写出正确的解答.解:11(1)(1)111x x x x x x --=+----+211x x x =+-+-2x =【答案】见解析【详解】不正确,正确解答如下:1111x x x ---+2222(1)11111x x x x x x x +--=-----222111x x x x x +-+-+=-221x =-.27.(2022•拱墅区模拟)先化简,可求值:22222(xy y x y x x x xy---÷+,其中x =1y =.【答案】见解析【详解】原式2()()()()x y x x y x x y x y -+=⋅+-x y =-,当x=1y=-时,原式1)==+11=.。

2024年广东省中考数学模拟试卷(一)-普通用卷

2024年广东省中考数学模拟试卷(一)-普通用卷

2024年广东省中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.2024的倒数是()A.2024B.C.D.2.如图是一个正方体的展开图,则与“承”字相对的是()A.华B.文C.中D.化3.下列函数中,其图象一定不经过第二象限的是()A. B.C. D.4.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A、B的坐标分别为、,则点D的坐标为()A.B.C.D.5.在比小的数中,最大的整数是()A. B.0 C.1 D.26.下列运算错误的是()A. B.C. D.7.如图,矩形ABCD中以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.8.如图,四边形ABCD内接于,连接若,,则的度数是()A.B.C.D.9.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度:的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为,广告牌顶部E的仰角为小辉的身高忽略不计,已知广告牌米,则该主楼AD的高度约为结果精确到整数,参考数据:,,A.80mB.85mC.89mD.90m10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为小时,两车之间的距离为千米,图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二、填空题:本题共5小题,每小题3分,共15分。

11.农业生产保持稳中有进,粮食产量连续9年保持在万亿斤以上,将数据“万亿”用科学记数法表示为______.12.若分式的值为0,则______.13.方程的根为______.14.现有4张完全相同的卡片分别写着数字,1,3,将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线与x轴有交点的概率为______.15.如图,抛物线的对称轴是直线,下列结论:①;②;③;④,正确的是______.三、解答题:本题共8小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012中考数学模拟专题练习:计算题(朝阳)(西城) 13.计算:22731810---⎪⎭⎫ ⎝⎛--- . 23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12b x x a +=-,12c x x a⋅=. 解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c的代数式表示);(3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c++的值是否为正数?写出你的结论并说明理由.(丰台)4. 一个扇形的圆心角为90°,半径为2,则这个扇形的面积是A.6πB. 4πC. 2πD.π13.计算:()011()33-2cos 454π-----+︒. 14. 解方程:2111x x x x++=+ (顺义)1.16 的算术平方根是 CA .4±B .8±C .4D .4-4. 把多项式2288x x -+分解因式,结果正确的是 BA .()222x +B .()222x -C .()224x -D .()224x -5.下列计算正确的是 DA .44a a a ÷=B .325(2)4a a =C .223355+=D .1025÷=13.计算:011271tan 60( 3.14)()2π---︒+-- 13.解:原式=331312--+- ----------------------------------------4分 =23 ------------------------------------------------------------5分14.求不等式组32451233x x x -≥-⎧⎪-⎨>-⎪⎩ 的正整数解. 14. 解:解不等式3245x x -≥-,得3x ≤,----------------------------1分 解不等式1233x ->- , 得5x <,------------------------------2分 所以,此不等式组的解集为3x ≤---------------------------------4分 所以,此不等式组的正整数解为 1, 2, 3 ---------------------------5分(延庆)4.不等式组 110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是BA .-31<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-39.把多项式x x x 24223+-分解因式的结果是 2)1(2-x x13.计算:︒+-+---45cos 2|2|)2011()21(02π13.计算:︒+-+---45cos 2|2|)2011()21(02π=222214⨯++- =223+14.解方程:x x+1 + 2x -1 =114. x x+1 + 2x -1 =1 )1)(1()1(2)1(-+=++-x x x x x 12222-=++-x x x x 212--=+-x x 3-=x经检验:3-=x 是原方程的解 ∴3-=x 是原方程的解.(昌平)1.-2的绝对值是 B A .-2 B .2C .-12D .12 2.下列运算正确的是AA .22()x x -=B .33x x x ⋅=C .326x x x =÷D .532x x x =+6.把代数式244ax ax a -+分解因式,下列结果中正确的是 AA .2(2)a x -B .2(2)a x +C .2(4)a x -D .(2)(2)a x x +-13.计算:01112tan 60(2010)()2-+︒--+.………………4分 ………………5分………………3分 ………………4分 ………………5分13.解:原式= 21332+-+……………………………………4分 = 133+……………………………………5分14.解不等式组:2(21)413.2x x x x --⎧⎪⎨+>⎪⎩≤-, 14.解: x -4x +2≤-4,x ≥2……………………………………2分1+3x >2xx >-1……………………………………2分∴不等式组的解集为:x ≥2……………………………………5分15.已知220x x -+=,求(2414x +-)⋅(x +2)的值. 15. 已知220x x -+=,求(2414x +-)⋅(x +2)的值 解:(2414x +-)⋅(x +2) =244(2)(2)x x x -++-⋅(x +2) ………………………2分 =22x x -…………………………3分 ∵220x x -+=,∴22x x =-. ………………………4分∴ 原式=1. …………………………5分(大兴)4.若一个多边形的内角和是外角和的2倍,则这个多边形的边数是 BA .8B .6C .5D .413. 计算:︒+-+-60sin 2232823. 13.解:原式=2-4+23- +3…………………………………………4分=0. ……………………………………………………………5分(东城) 1. 21-的绝对值是A A. 21 B. 21- C. 2 D. -2 2. 下列运算中,正确的是 DA .235a a a +=B .3412a a a ⋅=C .236a a a =÷ D .43a a a -=14.解分式方程:11322x x x -+=--14.(本小题满分5分)解:32121=-+--x x x ………………1分 去分母得 x-1+1=3(x-2)解得 x=3. ………………4分经检验:x=3是原方程的根.所以原方程的根为x=3.………………5分23.已知关于x 的一元二次方程2220x ax b ++=,0,0>>b a .(1)若方程有实数根,试确定a ,b 之间的大小关系;(2)若a ∶b =2∶3,且1222x x -=,求a ,b 的值;(3)在(2)的条件下,二次函数222y x ax b =++的图象与x 轴的交点为A 、C (点A在点C 的左侧),与y 轴的交点为B ,顶点为D .若点P (x ,y )是四边形ABCD 边上的点,试求3x -y 的最大值.23.(本小题满分7分)解:(1)∵ 关于x 的一元二次方程2220x ax b ++=有实数根,∴Δ=,04)2(22≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0.∵0,0>>b a ,∴a+b >0,a-b ≥0.∴b a ≥. …………………………2分(2) ∵a ∶b =2∶3,∴ 设2,3a k b k ==.解关于x 的一元二次方程22430x kx k ++=,得 -3x k k =-或.当12,= -3x k x k =-时,由1222x x -=得2k =.当123,= -x k x k =-时,由1222x x -=得25k =-(不合题意,舍去). ∴4,23a b ==. …………………………5分(3) 当4,23a b ==时,二次函数2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4).设z =3x -y ,则3y x z =-.画出函数2812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线经过点C 时符合题意,此时最大z 的值等于-6……………7分(房山) 1.-3的相反数等于 AA .3B .-3C .31D .-31 9.若分式121x x +-有意义,则x_12≠_.10.因式分解:39x x -=_(+3)(3)x x x -_.13.(本小题满分5分)计算:0112(π4)tan 602--+--. 13.解:原式=123132-+- -----------------------------------------------------------4分 =3332- ----------------------------------------------------------------------5分 14.(本小题满分5分)解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.14.解:去括号:5x-1286x ≤- --------------------------------------------------------------1分移项: 58126x x -≤- ------------------------------------------------------------------2分合并同类项:36x -≤ ---------------------------------------------------------------------3分系数化1:2x ≥- --------------------------------------------------------------------4分这个不等式的解集在数轴上表示如下:数轴表示 ----------------------------------------------5分16.(本小题满分5分)已知2(2)(2)40x x x y ---+=,求代数式222x xy y -+的值.16.解:∵2(2)(2)40x x x y ---+=∴222240x x x y --++= --------------------------------------------------2分∴2x y -= ---------------------------------------------------3分当2x y -=时,222x xy y -+=2()x y - ---------------------------------------------------4分=4 ----------------------------------------------------------------5分(门头沟)5.已知一组数据1,4,5,2,3,则这组数据的极差和方差分别是 AA .4,2B .4,3C .2,3D .1,5 13.计算:10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭. 13.计算:10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭. 解:10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭ 1 2 3 0 1- 2- 3-2224142=-⨯++··············································································································· 4分 5=. ············································································································································ 5分14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩并求它的正整数解. 14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 并求它的正整数解. 解:245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 由①,得x ≥-2. ········································································································· 1分 由②,得x <3. ············································································································· 2分 不等式组的解集在数轴上表示如下:··········································································································································· 3分 所以原不等式组的解集为-2≤x <3.········································································· 4分 所以原不等式组的正整数解为1,2. ········································································· 5分 (平谷)1.-5的绝对值是AA .5B .-5C .5±D .51- 6.在一次射击测试中,甲、乙、丙、丁四名运动员射击的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是 BA .甲B .乙C .丙D .丁11.一个圆锥的母线长为3cm ,侧面展开图是圆心角为120o 的扇形,则圆锥的侧面积是3π2cm . 13.计算:6)430tan 180o --+π+( 13.解: 6)430tan 180o --+π+( = ……….…………………………………………………….4分 = 1…………………………………..………………………………………………5分 (燕山)2.在直角坐标系中,点M (1,-2011)关于原点的对称点坐标是CA.(1,2011)B.(-1,-2011)C.(-1,2011)D.(-2011,1)9. 函数y =3x x +的自变量取值范围是__x ≠-3______. 10.已知x= - 4是一元二次方程mx 2+5x=6m 的一个根,则另一个根是__23____ 11.学校本学期安排初二学生参加军训,李小明同学5次实弹射击的成绩(单位:环)如下:9,4,10,8,9. 这组数据的极差是____6___(环);方差是__4.4______(环2)13.把多项式9mx 4-6mx 2+m 在实数范围内因式分解. ① ②· 613323-+⨯13.原式= m (9x 4-6 x 2+1) ………………………………………1分= m (3 x 2-1)2 ………………………………………………3分= m (3x+1)2 (3x -1) 2.………………………………………………5分14.解不等式组⎪⎩⎪⎨⎧+≤-<-);(1x 42x ,4213x 并写出不等式组的非负整数解. 14.解①得 x<3; ……………………………………………1分解②得 x ≥-2 .………………………………………………2分∴ 不等式组的解集是-2≤x<3.……………………………………………3分∴ 不等式组的非负整数解是0,1,2 .………………………………………5分15.解方程1x 112x 1x +-=-+. 15. (x+1)2=(x -2) (x+1)-(x -2), ……………………………………………1分 x 2+2x+1= x 2-x -2 -x +2, …………………………………………2分 4x=-1, ……………………………………………3分 x= -41.……………………………………………4分 经检验:x= -41是原分式方程的解.……………………………………5分。

相关文档
最新文档