高考数学1.简单几何体专题1

合集下载

【金版学案】2021届高考数学总温习 基础知识名师讲义 第八章 第一节空间简单几何体的结构 理(1)

【金版学案】2021届高考数学总温习 基础知识名师讲义 第八章 第一节空间简单几何体的结构 理(1)

【金版学案】2021届高考数学总温习基础知识名师讲义第八章第一节空间简单几何体的结构近三年广东高考中对本章考点考查的情形年份题号赋分所考查的知识点201175根据几何体的三视图求体积1814在四棱锥的背景下证明线面垂直,求二面角的余弦值201265通过三视图求圆柱、圆锥的体积1813在四棱锥中证明线面垂直,求二面角的正切值201355四棱台的三视图、体积65空间中的线面平行、垂直关系1814图形的翻折、证明线面垂直、求二面角的余弦值本章内容要紧包括:空间几何体的结构、简单几何体的表面积和体积、空间中各类关系的证明、空间向量的应用.近几年对本章内容的考查,要紧表此刻:①三视图与表面积、体积相结合,考查对空间几何体的熟悉;②求角,常见的是异面直线所成的角,直线与平面所成的角,二面角;③求距离,常见的是点到直线的距离,点到平面的距离,直线与直线的距离,直线到平面的距离;④直线和平面的各类位置关系的判定和性质.对这些内容的考查,着重考查空间想象能力,要求“四会”:①会画图;②会识图;③会析图;④会用图.预测高考仍以客观题考查对空间图形的熟悉,和面积、体积的计算,以解答题考查空间中直线与平面位置关系的证明.客观题和解答题都会是中等难度.在温习立体几何时应当注意以下五个方面:1.直线和平面的各类位置关系的判定和性质,这种试题一样难度不大,多为选择题或填空题.温习中第一要清楚相关的概念、判定、性质定理,第二在否定某些错误的判按时,能举出适当的反例.另外,能将文字语言、符号语言、图形语言灵活准确地进行转化,平常的训练要注意触类旁通.2.证明空间线、面平行或垂直.已知联想性质,由求证联想判定,寻觅求证思路.通过对复杂空间图形直观图的观看和分解,发觉其中的平面图形或典型的空间图形(如正方体、正四面体等),以便联想有关的平面几何或立体几何知识.培育依照题设条件的性质适当添加辅助线(或面)的能力,把握平行或垂直的化归方式.3.计算角与距离的问题.求角或距离的关键是将空间的角或距离灵活转化为平面上的角或距离,然后将所求量置于一个三角形中,通过解三角形最终求得所需的角或距离.解题原那么是一作、二证、三求解(即作图、证明、求解).熟练把握异面直线所成角、线面角、二面角、点面距离的计算方式.4.简单的几何体的面积与体积问题.熟记特殊几何体的现成的公式.会将侧面展开,转化为求平面图形的面积问题;要注意解题技术,如等积变换、割补思想的应用.5.能熟练利用向量法研究空间中涉及直线和平面的各类问题.借助空间向量的运算,利用基向量法和坐标法,运用计算的方式研究三维空间几何图形的性质,能合理选取空间向量及合理成立空间直角坐标系,从而灵活运用向量法论证空间中平行与垂直两类关系,能求解空间中的角与距离,都着重考查应用空间向量求异面直线所成的角、线面角、二面角,证明线线平行、线面平行和证明异面直线垂直和线面垂直等大体问题.第八章立体几何与空间向量第一节空间简单几何体的结构认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征知识梳理空间简单几何体及其结构一、柱、锥、台、球的结构特点1.柱体.(1)棱柱:一样的,有两个面相互平行,其余各面都是四边形,而且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个相互平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共极点叫做棱柱的极点(如图a).底面是三角形、四边形、五边形……的棱柱别离叫做三棱柱、四棱柱、五棱柱……(2)圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的底面;不管旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线(如图b).棱柱与圆柱统称为柱体.2.锥体.(1)棱锥:有一个面是多边形,其余各面都是有一个公共极点的三角形,由这些面所围成的几何体叫做棱锥;那个多边形面叫做棱锥的底面或底;有公共极点的各个三角形面叫做棱锥的侧面;各侧面的公共极点叫做棱锥的极点;相邻侧面的公共边叫做棱锥的侧棱(如图c).底面是三角形、四边形、五边形……的棱锥别离叫做三棱锥、四棱锥、五棱锥……(2)圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面(如图d).棱锥与圆锥统称为锥体.3.台体.(1)棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部份叫做棱台;原棱锥的底面和截面别离叫做棱台的下底面和上底面;棱台也有侧面、侧棱、极点(如图e).(2)圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部份叫做圆台;原圆锥的底面和截面别离叫做圆台的下底面和上底面;圆台也有侧面、母线、轴(如图f).圆台和棱台统称为台体.4.球及其有关概念.以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径(如图g).用一个平面去截一个球,截面是圆面.球面被通过球心的平面截得的圆叫做大圆.球面被不通过球心的平面截得的圆叫做小圆.球的任意截面(不是大圆面)的圆心与球心的连线垂直于截面,假设设球的半径为R,截面圆的半径为r,截面圆的圆心与球心的连线长为d,那么d2=R2-r2.5.组合体.由柱、锥、台、球等几何体组成的复杂的几何体叫组合体(如图h).二、特殊的棱柱、棱锥、棱台直棱柱:侧棱与底面垂直的棱柱.正棱柱:底面是正多边形的直棱柱.正棱锥:底面是正多边形,棱锥的极点在底面上的射影是正多边形的中心.各侧面是全等的等腰三角形.正棱台:两底是正多边形,且两底中心连线垂直于底面的棱台叫做正棱台.也能够以为它是由正棱锥截得的棱台.正棱台各侧面是全等的等腰梯形.三、几种常见凸多面体间的关系四、一些特殊棱柱、棱锥、棱台的概念和要紧性质名称棱柱直棱柱正棱柱图形定义有两个面互相平行,而其余每相邻两个面的交线都互相平行的多面体侧棱垂直于底面的棱柱底面是正多边形的直棱柱侧棱平行且相等平行且相等平行且相等侧面的形状平行四边形矩形全等的矩形对角面的形状平行四边形矩形矩形平行于底面的截面的形状与底面全等的多边形与底面全等的多边形与底面全等的正多边形名称棱锥正棱锥棱台正棱台图形定义有一个面是多边形,其余各面是有一个公共顶点的三角形的多面体底面是正多边形,且顶点在底面的射影是正多边形的中心用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分由正棱锥截得的棱台侧棱相交于一点但不一定相等相交于一点且相等延长线交于一点相等且延长线交于一点侧面的形状三角形全等的等腰三角形梯形全等的等腰梯形对角面的形状三角形等腰三角形梯形等腰梯形平行于底面与底面相似的多与底面相似的正与底面相似的多与底面相似的正的截面形状边形多边形边形多边形其他性质高过底面中心;侧棱与底面、侧面与底面、相邻两侧面所成角都相等两底中心连线即高;侧棱与底面、侧面与底面、相邻两侧面所成角都相等基础自测1.以下命题中正确的选项是( )A.棱柱的底面必然是平行四边形B.棱锥的底面必然是三角形C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:棱柱、棱锥、棱台的底面是任意多边形.答案:D2.下面多面体中有12条棱的是( )A.四棱柱B.四棱锥C.五棱锥D.五棱柱解析:四棱柱有4条侧棱,上下底面四边形各有4条边,共12条棱.应选A.答案:A3.在以下图的几何体中,有______个是柱体.解析:柱体包括棱柱与圆柱,图中①③⑤⑦都是柱体.故填4.答案:44.由7个面围成,其中两个面是相互平行且全等的正五边形,其他面都是全等的矩形,那么那个几何体的名称是____________.解析:依照棱柱的概念可知,该几何体是正五棱柱.答案:正五棱柱1.到正方体ABCDA1B1C1D1的三条棱AB,CC1,A1D1所在直线的距离相等的点( )A.有且只有1个B.有2个C.有3个D.有无数个解析:∵到三条两两垂直的直线距离相等的点在以三条直线为轴,以正方体棱长为半径的圆柱面上,∴三个圆柱面有无数个交点,应选D.答案:D2.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数是( )A.20 B.15C.12 D.10解析:一个下底面5个点,每一个下底面的点关于5个上底面的点,知足条件的对角线有2条,因此共有5×2=10条.答案:D1.如图,已知正三棱柱ABCA1B1C1的底面边长为2 cm,高为5 cm,一质点自点A动身,沿着三棱柱的侧面绕行两周抵达点A1的最短线路的长为________cm.答案:132.以下结论正确的选项是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,那么此棱锥可能是六棱锥D.圆锥的极点与底面圆周上的任意一点的连线都是母线解析:A错误.如下图,由两个结构相同的三棱锥叠放在一路组成的几何体,各面都是三角形,但它不必然是棱锥.B 错误.假设△ABC不是直角三角形或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥.C错误.假设六棱锥的所有棱长都相等,那么底面多边形是正六边形.由几何图形知,假设以正六边形为底面,侧棱长必然要大于底面边长.答案:D。

高考数学空间几何体练习题及答案解析

高考数学空间几何体练习题及答案解析

高考数学空间几何体练习题一、选择题1.如图,设地球半径为,点、在赤道上,为地心,点在北纬60°的纬线(为其圆心)上,且点、、、共面,若=90°,则异面直线与所成角的余弦值为A.B.C.D.2.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.23.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为的菱形,则该棱柱的体积等于( )(A)(B)(C)(D)4.如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()5. 设分别是中所对边的边长,则直线与的位置关系是()A.平行B.垂直C.重合D.相交但不垂直6. 异面直线a,b成80o角,点P是a,b外的一个定点,若过P点有且仅有2条直线与a,b所成的角相等且等于θ,则θ属于集合( )A.{θ|0o<θ<40o} B.{θ|40o<θ<50o} C.{θ|40o<θ<90o} D.{θ|50o<θ<90o}7.在二面角的两个面内,分别有直线a,b,它们与棱l都不垂直,则()A .当该二面角是直二面角时,可能a//b ,也可能a ⊥bB .当该二面角是直二面角时,可能a//b ,但不可能a ⊥bC .当该二面角不是直二面角时,可能a//b ,但不可能a ⊥bD .当该二面角不是直二面角时,不可能a//b ,也不可能a ⊥b8. 在正方体ABCD -A1B1C1D1中,E 、F 分别为A1D1、B1C1的中点,则在面BCC1B1内到BC 的距离是到EF 的距离的2倍的点的轨迹是( )A .一条线段B .椭圆的一部分C .抛物线的一部分D .双曲线的一部分.9.已知直线,平面,且,给出四个命题:①若,则; ②若,则;③若,则; ④若,则其中正确命题的个数是 A 、4 B 、3 C 、2 D 、110. 长方体一个顶点上三条棱的长分别是6、8、10,且它的八个顶点都在同一个球面上,这个球的表面积是( ) A.B.C.D.11. 如图,在正方体中,M 、N 分别为棱和中点,则异面直线CM 与所成角的正弦值为( )A. B. C. D.12. 在直三棱柱A1B1C1-ABC 中,∠BAC =,AB =AC =AA1=1.已知G 与E 分别为A1B1和CC1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD ⊥EF ,则线段DF 的长度的取值范围为 ( )A .[ ,1)B .[,2)C .[1,)D .[,)13. 已知正四棱锥P —ABCD 的棱长都等于a ,侧棱PB 、PD 的中点分别为M 、N ,则截面AMN 与底面ABCD 所成二面角的大小为A.B.C.D.14.下面命题正确的是A.已知直线,点,直线,则与异面B.已知直线,直线,则C.已知平面,直线,直线,则D.若直线与所成的角相等,则15. 已知平面平面,直线,直线,点,点,记点之间的距离为,点到直线的距离为,直线和的距离为,则()A.B.C.D.16.设为互不重合的平面,l,m,n为互不重合的直线,给出下列四个命题:①若则∥;②若∥∥,则∥;③若∥则∥④若∥则m∥n.其中真命题的个数是()(A)1 (B)2 (C)3 (D)417.已知直线、,平面、,且,给出下列四个命题,其中正确命题的个数为(1)若,则(2)若,则(3)若,则(4)若,则(A) (B) (C)(D)18. 已知是不同的两个平面,直线,直线,命题;命题没有公共点,则的()A.充分不必要的条件 B.必要不充分条件C.充要条件D.既不充分又不必要19. 已知直线和平面m,直线直线b的一个必要不充分的条件是()(A)且(B)且(C)且(D)与m所成角相等20.(给出下列两个命题:甲:异面直线m,n分别在平面α、β内,且n∥α,且m∥β,则α∥β.乙:两平面互相垂直,分别在这两个平面内且互相垂直的两条直线,一定分别与另一平面垂直.正确的判断是A.甲、乙均假B.甲、乙均真C.甲真乙假D.甲假乙真21.设l,m,n是空间三条互相不重合的直线,α,β是空间两个不重合的平面,则下列结论中①当m ,且n 时,“n∥m”是“n∥α”的充要条件②当m 时,“m⊥β”是“αβ”的充要条件③当n⊥α时,“n⊥β”是“α∥β”成立的充要条件④当m 且n是l在α内的射影时,“m⊥n”是“l⊥m”的充要条件正确的个数有( )(A)1个(B)2个(C)3个(D)4个22.设为互不相同的平面,为不重合的三条直线,则的一个充分不必要条件是( ).A. B.C. D.23.在正方体中,分别为和的中点,则与平面所成的角为( ).A. B. C. D.24.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC 与直线C1D1的距离相等,则动点P的轨迹所在的曲线是()A.直线B.圆C.双曲线 D.抛物线25. 从正方体的八个顶点中任取四个点,在能构成的一对异面直线中,其所成的角的度数不可能是A.B.C.D.26. 已知是直线,是平面,给出下列命题:①若内有两相交直线;②③;④⑤其中正确的命题序号是A.①③⑤B.②④C.①⑤D.①④27. 已知直线m ,n 和平面,则m//n 的必要非充分条件是()A.m//且n//B.m且nC.m//且D.m ,n与成等角28. 在正四面体P---ABC中,D、E、F,分别是AB、BC、CA的中点,下面四个结论不成立的是A.BC∥平面PDF B.DF垂直平面PAEC.平面PDE垂直于平面ABC D.平面PDF垂直平面PAE29.设表示平面,l为直线,l不在平行内,有下列三个事实①②③,以任意两个作为条件,另一个作为结论可构造三个命题,其中正确命题的个数是()A.1 B.2C.3 D.030.设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①;②;③;④其中真命题的序号是()A.①④B.②③C.①③D.②④二、填空题31.斜三棱柱ABC- A1B1C1中,二面角C-A1A-B为120°,侧棱AA1于另外两条棱的距离分别为7cm、8cm,AA1=12cm,则斜三棱柱的侧面积为______ .32.在三棱锥的四个面中,最多有___ 个面为直角三角形.33.在矩形ABCD中,4,3,AB BC==若沿AC将矩形折成一个直二面角B AC D--,则四面体ABCD的外接球的体积为4O___________________。

2020年高考数学专题讲解:立体几何(一)

2020年高考数学专题讲解:立体几何(一)

年级:辅导科目:数学课时数:课题立体几何(一)教学目的教学内容一、知识网络二、命题分析立体几何在高考中考查的主要内容有:空间几何体的性质、线面关系的判定与证明、表面积与体积的运算、空间几何体的识图,空间中距离、角的计算等.从近几年高考来看,一般以2~3个客观题来考查线面关系的判定、表面积与体积、空间中的距离与角、空间几何体的性质与识图等,以1个解答题来考查线面关系的证明以及距离、角的计算.在高考中属于中档题目.而三视图作为新课标的新增内容,在2011年高考中,有多套试卷在此知识点命题,主要考查三视图和直观图,特别是通过三视图来确定原图形的相关量.预计今后高考中,三视图的考查不只在选择题、填空题中出现,很有可能在解答题中与其他知识点结合在一起命题.三、复习建议在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.(3)从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相结合,考查转化的思想方法,如要把立体.4.空间几何体的直观图画空间几何体的直观图常用画法,基本步骤是:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′= .(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度变为.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度.5.中心投影与平行投影(1)平行投影的投影线互相,而中心投影的投影线相交于一点.(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在投影下画出来的图形.(三)基础自测1.(2010·北京理)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )[答案] C[解析] 本题考查了三视图知识,解题的关系是掌握三视图与直观图的知识,特别是应明确三视图是从几何体的哪个方向看到的.由三视图中正(主)视图、侧(左)视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.2.(2010·福建理)如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台[答案] D[解析] ∵EH∥A1D1,∴EH∥B1C1∴B1C1∥面EFGH,B1C1∥FG,∴Ω是棱柱,故选D.3.右图为水平放置的正方形ABCO,它在直角坐标系xOy中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为( )A.12B.22C.1 D. 2[答案] B[解析] 如图,在平面直观图中,B′C′=1,∠B′C′D′=45°,∴B′D′=2 2 .4.已知某物体的三视图如图所示,那么这个物体的形状是( )A.六棱柱 B.四棱柱 C.圆柱 D.五棱柱[答案] A[解析] 由俯视图可知,该物体的形状是六棱柱,故选A.5.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体最多为________个.[答案] 7[解析] 由主视图和左视图知,该几何体由两层组成,底层最多有3×2=6个,上层只有1个,故最多为7个.6.(2010·新课标理)正(主)视图为一个三角形的几何体可以是________.(写出三种)[答案] 三棱锥、三棱柱、圆锥(其他正确答案同样给分).[解析] 本题考查空间几何体的三视图.本题属于开放性题目,答案不唯一.正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.7.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .[分析] 由三视图的形状大小,还原成几何体;再利用体积公式和表面积公式求解.[解析] (1)由该几何体的俯视图、主视图、左视图可知,该几何体是四棱锥.且四棱锥的底面ABCD 是边长为6和8的矩形,高VO =4,O 点是AC 与BD 的交点.∴该几何体的体积V =13×8×6×4=64. (2)如图所示,OE ⊥AB ,OF ⊥BC ,侧面VAB 中,VE =VO 2+OE 2=42+32=5,∴S △VAB =12×AB ×VE =12×8×5=20, 侧面VBC 中,VF =VO 2+OF 2=42+42=42,∴S △VBC =12×BC ×VF =12×6×42=12 2. ∴该几何体的侧面积S =2(S △VAB +S △VBC )=40+24 2.[点评] 由三视图还原成几何体,需要对常见的柱、锥、台、球的三视图非常熟悉,有时还可根据三视图的情况,还原成由常见几何体组合而成的组合体.(四)典型例题1.命题方向:空间几何体的结构特征[例1] 下列命题中,成立的是( )A .各个面都是三角形的多面体一定是棱锥B .四面体一定是三棱锥C .棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥D .底面多边形既有外接圆又有内切圆,且侧棱相等的棱锥一定是正棱锥[分析] 结合棱锥、正棱锥的概念逐一进行考查.[解析] A 是错误的,只要将底面全等的两个棱锥的底面重合在一起,所得多面体的每个面都是三角形,但这个多面体不是棱锥;B 是正确的,三个面共顶点,另有三边围成三角形是四面体也必定是个三棱锥;对于C ,如图所示,棱锥的侧面是全等的等腰三角形,但该棱锥不是正棱锥;D 也是错误的,底面多边形既有内切圆又有外接圆,如果不同心,则不是正多边形,因此不是正棱锥.[答案] B[点评] 本题考查棱锥、正棱锥的概念以及四面体与三棱锥的等价性,当三棱锥的棱长都相等时,这样的三棱锥叫正四面体.判断一个命题为真命题要考虑全面,应特别注意一些特殊情况.跟踪练习1:以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥、得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[答案] A[解析] ①应以直角三角形的一条直角边为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转可得到圆台;③它们的底面为圆面,④用平行于圆锥底面的平面截圆锥,可得到一个圆锥和圆台.应选A.2.命题方向:直观图[例2] 若已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为( )A.32a2 B.34a2 C.62a2 D.6a2[解析] 如图是△ABC的平面直观图△A′B′C′.作C′D′∥y′轴交x′轴于D′,则C′D′对应△ABC的高CD,∴CD=2C′D′=2·2·C′O′=22·32a=6a.而AB=A′B′=a,∴S△ABC=12·a·6a=62a2[答案] C[点评] 解决这类题的关键是根据斜二测画法求出原三角形的底和高,将水平放置的平面图形的直观图,还原成原来的图形,其作法就是逆用斜二测画法,也就是使平行于x轴的线段的长度不变,而平行于y轴的线段长度变为直观图中平行于y′轴的线段长度的2倍.跟踪练习2已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 [分析] 先根据题意画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.[答案] D[解析] 如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2. 3.命题方向:三视图[例3] 下列图形中的图(b)是根据图(a)中的实物画出的主视图和俯视图,你认为正确吗?若不正确请改正并画出左视图.[解析] 主视图和俯视图都不正确.主视图的上面的矩形中缺少中间小圆柱形成的轮廓线(用虚线表示);左视图的轮廓是两个矩形叠放在一起,上面的矩形中有2条不可视轮廓线.下面的矩形中有一条可视轮廓线(用实线表示),该几何体的三视图如图所示:[点评] 简单几何体的三视图的画法应从以下几个方面加以把握:(1)搞清主视、左视、俯视的方向,同一物体由放置的位置不同,所画的三视图可能不同.(2)看清简单组合体是由哪几个基本元素组成.(3)画三视图时要遵循“长对正,高平齐,宽相等”的原则,还要注意几何体中与投影垂直或平行的线段及面的位置关系.跟踪练习3(2010·浙江文)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.3523cm 3B.3203cm 3C.2243cm 3D.1603cm 3 [答案] B[解析] 本题考查了三视图及几何体体积的求解.由三视图可知,该几何体是由一个正四棱台和一个长方体构成的一个组合体,V 台=13×2×(16+42×82+64)=2243cm 3, V 长方体=4×4×2=32cm 3 ∴V 总=V 台+V 长方体=2243+32=3203cm 3.(五)思想方法点拨:1.要注意牢固把握各种几何体的结构特点,利用它们彼此之间的联系来加强记忆,如棱柱、棱锥、棱台为一类;圆柱、圆锥、圆台为一类;或分成柱体、锥体、台体三类来分别认识.只有对比才能把握实质和不同,只有联系才能理解共性和个性.2.要适当与平面几何的有关概念、图形和性质进行对比,通过平面几何与立体几何相关知识的比较,丰富自己的空间想象力.对组合体可通过把它们分解为一些基本几何体来研究.3.画图时要紧紧把握住一斜——在已知图形中垂直于x 轴的线段,在直观图中均与x 轴成45°;二测——两种度量形式,即在直观图中,平行于x 轴的线段长度不变,平行于y 轴的线段变为原长度的一半.4.三视图(1)几何体的三视图的排列规则:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图右面,高度与主视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.注意虚、实线的区别.(2)应用:在解题的过程中,可以根据三视图的形状及图中所涉及到的线段的长度,推断出原几何图形中的点、线、面之间的关系及图中的一些线段的长度,这样我们就可以解出有关的问题.5.本节常涉及一些截面问题,它把空间图形的性质、画法及有关论证、计算融为一体,常见的、基本的截面问题,如直截面、对角截面、中截面等,要求熟知并掌握.要知道这些截面的形状、位置,并能画出其图形,这常常可以将较难的问题变得简单,如“用一个平面截一个球,截面是圆面”这一点很重要,它把有关球的一些问题转化为圆的问题来解决.(六)课后强化作业一、选择题1.(2010·陕西理)若某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23 C .1 D .2[答案] C[解析] C 该几何体是如图所示的直三棱柱V =12×1×2×2=1. 2.下列命题中:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆,其中正确命题的个数为( )A .0B .1C .2D .3[答案] C[解析] 命题①、②都对,命题③一个平面与球相交,其截面是一个圆面,故选C.[点评] 要注意球与球面的区别.3.(2009·上海文,16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )[答案] B[解析] 本题考查三视图的基本知识及空间想象能力.由题可知,选B.4.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A.33πB.233πC.3πD.π3- 11 - [答案] A[解析] 由三视图知,该几何体是底半径为1的圆锥,轴截面是边长为2的正三角形,∴高为3,体积V =33π. 5.如图,△O ′A ′B ′是△OAB 水平放置的直观图,则△OAB 的面积为( )A .6B .3 2C .6 2D .12[答案] D[解析] 若还原为原三角形,则易知OB =4,OA ⊥OB ,OA =6,∴S △AOB =12×4×6=12. 6.棱长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为( )A.22 B .1 C .1+22 D. 2 [答案] D[解析] 由条件知球O 半径为32,球心O 到直线EF 的距离为12,由垂径定理可知直线EF 被球O 截得的线段长d =2⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122= 2. 7.(2010·广东)如图所示,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )[答案] D[解析] 本小题考查线面垂直的判定方法及三视图的有关概念.由于AA ′∥BB ′∥CC ′及CC ′⊥平面ABC ,知BB ′⊥平面ABC ,又CC ′=32BB ′,且△ABC 为正三角形,故正(主)视图为D.8.用单位正方体搭一个几何体,使它的主视图和俯视图如图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与15[答案] C [解析] 由俯视图知几何体有三行和三列,且第三列的第一行,第二行都没有小正方体,其余各列各行都有小正- 12 -。

新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。

高考数学一轮专项复习ppt课件-基本立体图形、简单几何体的表面积与体积(北师大版)

高考数学一轮专项复习ppt课件-基本立体图形、简单几何体的表面积与体积(北师大版)

(50 mm-100 mm);小明ቤተ መጻሕፍቲ ባይዱ一个圆锥形容器(如图)接了
24小时的雨水,则这天降雨属于哪个等级
A.小雨
√B.中雨
C.大雨
D.暴雨
由题意,一个半径为2200=100(mm)的圆面内的降 雨充满一个底面半径为2200×135000=50(mm),高为 150(mm)的圆锥, 所以积水的厚度为13π×π×50120×02150=12.5(mm),
√D.若两条线段平行,则在直观图中对应的两条线段仍然平行
由直观图的画法规则知,角度、长度都有可能改变,而线段的平行 关系不变,正方形的直观图是平行四边形.
自主诊断
4.若一个圆锥的底面半径和高都是1,则它的母线长等于___2__,它的体积 π
等于___3__. 由轴截面可得圆锥的母线长为 12+12= 2,体积为13×π×12×1=π3.
(2)(多选)下面关于空间几何体的叙述正确的是
A.底面是正多边形的棱锥是正棱锥
B.用平面截圆柱得到的截面只能是圆和矩形
√C.长方体是直平行六面体 √D.存在每个面都是直角三角形的四面体
当顶点在底面的投影是正多边形的中心时才是正棱锥,故A不正确; 当平面与圆柱的母线平行或垂直时,截得的截面才为圆或矩形,否则 为椭圆或椭圆的一部分,故B不正确; 长方体是直平行六面体,故C正确; 如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC, 四个面都是直角三角形,故D正确.
侧面形状 _平__行__四__边__形__
_三__角__形__
_梯__形__
知识梳理
(2)旋转体的结构特征
名称
圆柱
圆锥
圆台

图形
母线 互相平行且相等, 相交于_一__点__ 延长线交于_一__点__ 垂直 于底面

2020届高考数学理一轮复习空间几何体及其三视图、直观图文科

2020届高考数学理一轮复习空间几何体及其三视图、直观图文科
栏目索引
文数
课标版
第一节 空间几何体及其三视图、直观图
教材研读
栏目索引
1.空间几何体的结构特征
多 (1)棱柱:侧棱都① 平行且相等 ,上、下底面平行且是② 全等 的多边形. 面 (2)棱锥:底面是多边形,侧面是有一个公共顶点的三角形. 体 (3)棱台:可以由平行于棱锥底面的平面截棱锥得到,其上、下底面是③ 相似 多边形
旋 (1)圆柱:可以由④ 矩形 绕其任一边所在直线旋转得到. 转 (2)圆锥:可以由直角三角形绕其⑤ 直角边 所在直线旋转得到. 体 (3)圆台:可以由直角梯形绕其⑥ 垂直于底边的腰 所在直线或等腰梯形绕其上、下
底边中点的连线所在直线旋转得到,也可由平行于圆锥底面的平面截圆锥得到. (4)球:可以由半圆或圆绕其⑦ 直径 所在直线旋转得到
栏目索引
2.三视图与直观图
三视图 画三视图的规则:长对正,高平齐,宽相等 空间几何体的直观图常用⑧ 斜二测 画法来画,规则如下: (1)原图形中x轴、y轴、z轴两两垂直(原点为O),直观图中相应x'轴,y'轴满足∠x'O'y'=
直观图 ⑨ 45°(或135°) (O'为原点),z'轴与x'轴和y'轴所在平面垂直. (2)原图形中平行于坐标轴的线段在直观图中仍 平行于相应坐标轴 ,平行于x轴 和z轴的线段长度在直观图中保持原长度 不变 ,平行于y轴的线段长度在直观 图中长度为 原来的一半
栏目索引
2-1 (2014课标Ⅰ,8,5分)如图,网格纸的各小格都是正方形,粗实线画出 的是一个几何体的三视图,则这个几何体是 ( )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 答案 B 由题中三视图可知该几何体的直观图如图所示,则这个几何 体是三棱柱,故选B.

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P ABCD 中,底面ABCD 为正方形,⊥PD 平面ABCD ,2PD AB ,点,,E F G 分别为,,PC PD BC 的中点.(1)求证:EF PA ⊥;(2)求二面角D FG E 的余弦值.2.如图所示,该几何体是由一个直角三棱柱ADE BCF 和一个正四棱锥P ABCD 组合而成,AF AD ⊥,2AEAD .(1)证明:平面⊥PAD 平面ABFE ;(2)求正四棱锥P ABCD 的高h ,使得二面角C AF P 的余弦值是223.3.四棱锥P ABCD-中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为ADC∠为锐角,M为PB的中点.(Ⅰ)求证:PD∥面ACM.(Ⅱ)求证:PA⊥CD.(Ⅲ)求三棱锥P ABCD-的体积.4.如图,四棱锥S ABCD-满足SA⊥面ABCD,90DAB ABC∠=∠=︒.SA AB BC a===,2AD a=.(Ⅰ)求证:面SAB⊥面SAD.(Ⅱ)求证:CD⊥面SAC.SB A DMC BAPD5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD .6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A .E DABC C 1B 1A 1DAB CEF P7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA PB =,::2:2:1AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQ PD的值.8.在正方体1111ABCD A B C D -中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO . (1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若λ=2,求证:平面CDE ⊥平面CD 1O .9.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD =︒∠,侧面PAB ⊥底面ABCD ,90BAP =︒∠,2AB AC PA ===,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC .(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB . (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所在的角相等,求PMPD的值.10.如图,在三棱柱111ABC A B C -,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,E ,F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F ∥平面AEG . (1)求1CGCC 的值. (2)求证:1EG AC ⊥. (3)求二面角1A AG E --的余弦值.A 1B 1C 1G F AB CEM F E CBAPD11.如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(Ⅰ)若点F 为PD 上一点且13PF PD =,证明:CF ∥平面PAB .(Ⅱ)求二面角B PD A --的大小. (Ⅲ)在线段PD 上是否存在一点M ,使得CM PA ⊥?若存在,求出PM 的长;若不存在,说明理由.12.如图,在四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,CD AB ∥,BC CD ⊥,EA ED ⊥,4AB =,2BC CD EA ED ====.Ⅰ证明:BD AE ⊥.Ⅱ求平面ADE 和平面CDE 所成角(锐角)的余弦值.DABCEPF DBCA13.己知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,且2PA AB ==.60ABC ∠=︒,BC 、PD 的中点分别为E ,F .(Ⅰ)求证BC PE ⊥.(Ⅱ)求二面角F AC D --的余弦值.(Ⅲ)在线段AB 上是否存在一点G ,使得AF 平行于平面PCG ?若存在,指出G 在AB 上的位置并给予证明,若不存在,请说明理由.14.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60︒.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求二面角F BE D --的余弦值.(Ⅲ)设点M 线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.DDABCEF15.如图,PA ⊥面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点. (Ⅰ)求证:AM ⊥平面PBC . (Ⅱ)求二面角A PC B --的余弦值. (Ⅲ)在线段PC 上是否存在点D ,使得BD AC ⊥,若存在,求出PDPC的值,若不存在,说明理由.16.如图所示,在四棱锥P -ABCD 中,AB ⊥平面,//,PAD AB CD E 是PB 的中点,2,5,3,2AHPD PA AB AD HD===== . (1)证明:PH ⊥平面ABCD ;(2)若F 是CD 上的点,且23FC FD ==,求二面角B EF C --的正弦值.MDABCP17.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=︒,Q为AB 的中点.(Ⅰ)证明:CQ ⊥平面ABE ; (Ⅱ)求多面体ACED 的体积; (Ⅲ)求二面角A -DE -B 的正切值.18.如图1 ,在△ABC 中,AB =BC =2, ∠B =90°,D 为BC 边上一点,以边AC 为对角线做平行四边形ADCE ,沿AC 将△ACE 折起,使得平面ACE ⊥平面ABC ,如图2.(1)在图 2中,设M 为AC 的中点,求证:BM 丄AE ; (2)在图2中,当DE 最小时,求二面角A -DE -C 的平面角.19.如图所示,在已知三棱柱ABF -DCE 中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得AF ∥平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.20.已知在四棱锥P -ABCD 中,底面ABCD 是菱形,AC =AB ,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点.(Ⅰ)求证:AF ∥平面PCE ;(Ⅱ)若22AB AP ==,求平面P AD 与平面PCE 所成锐二面角的余弦值.21.如图,五面体P ABCD 中,CD ⊥平面P AD ,ABCD 为直角梯形,,2BCD PD BC CD π∠===1,2AD AP PD =⊥. (1)若E 为AP 的中点,求证:BE ∥平面PCD ; (2)求二面角P -AB-C 的余弦值.22.如图(1)所示,已知四边形SBCD 是由Rt △SAB 和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点,21AD DC ==,2AB =.现将△SAB沿AB 进行翻折,使得二面角S -AB -C 的大小为90°,得到图形如图(2)所示,连接SC ,点E ,F 分别在线段SB ,SC 上. (Ⅰ)证明:BD AF ⊥;(Ⅱ)若三棱锥B -AEC 的体积为四棱锥S -ABCD 体积的25,求点E 到平面ABCD 的距离.23.四棱锥S-ABCD中,AD∥BC,,BC CD⊥060SDA SDC∠=∠=,AD DC=1122BC SD==,E为SD的中点.(1)求证:平面AEC⊥平面ABCD;(2)求BC与平面CDE所成角的余弦值.24.已知三棱锥P-ABC,底面ABC是以B为直角顶点的等腰直角三角形,P A⊥AC,BA=BC=P A=2,二面角P-AC-B的大小为120°.(1)求直线PC与平面ABC所成角的大小;(2)求二面角P-BC-A的正切值.25.如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,090=∠=∠BCD ABC ,AB CB DC PD PA 21====,E 是PB 的中点, (Ⅰ)求证:EC ∥平面APD ;(Ⅱ)求BP 与平面ABCD 所成的角的正切值; (Ⅲ)求二面角P -AB -D 的余弦值.26.四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,P A =2,PB =PD =22,E ,F ,G ,H 分别为棱P A ,PB ,AD ,CD 的中点.(1)求CD 与平面CFG 所成角的正弦值;(2)探究棱PD 上是否存在点M ,使得平面CFG ⊥平面MEH ,若存在,求出PDPM的值;若不存在,请说明理由.试卷答案1以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz ,则 0,0,0D ,0,2,0A ,2,0,0C,0,0,2P ,1,0,1E ,0,0,1F ,2,1,0G .(1)∵0,2,2PA ,1,0,0EF,则0PA EF ,∴PA EF .(2)易知0,0,1DF,2,11FG, 设平面DFG 的法向量111,,m x y z ,则m DF m FG ,即1111020z x yz ,令11x ,则1,2,0m 是平面DFG 的一个法向量,同理可得0,1,1n 是平面EFG 的一个法向量,∴210cos ,552m n m nm n, 由图可知二面角D FG E 为钝角, ∴二面角D FG E 的余弦值为105.2.(1)证明:直三棱柱ADE BCF 中,AB 平面ADE ,所以:AB AD ,又AD AF ,所以:AD平面ABFE ,AD 平面PAD ,所以:平面PAD 平面ABFE .(2)由(1)AD平面ABFE ,以A 为原点,,,AB AE AD 方向为,,x y z 轴建立空间直角坐标系A xyz ,设正四棱锥P ABCD 的高h ,2AE AD ,则0,0,0A ,2,2,0F ,2,0,2C ,1,,1P h . 2,2,0AF,2,0,2AC,1,,1APh .设平面ACF 的一个法向量111,,m x y z ,则:1111220220m AF x y n ACx z ,取11x ,则111y z ,所以:1,1,1m .设平面AFP 的一个法向量222,,n x y z ,则222222200n AF x y n APx hy z ,取21x ,则21y ,21z h ,所以:1,1,1n h ,二面角C AF P 的余弦值是223,所以:211122cos ,3321m n h m n m nh , 解得:1h .3.E ODPABC M(Ⅰ)证明:连结AC 交BD 于O ,则O 是BD 中点, ∵在PBD △中,O 是BD 的中点,M 是PB 的中点, ∴PD MO ∥,又PD ⊄平面ACM ,MO ⊂平面ACM ,∴PD ∥平面ACM .(Ⅱ)证明:作PE CD ⊥,则E 为CD 中点,连结AE , ∵底面ABCD 是菱形,边长为2,面积为,∴11sin 222sin 222S AD DC ADC ADC =⨯⨯⨯∠⨯=⨯⨯∠⨯=∴sin ADC ∠,60ADC ∠=︒, ∴ACD △是等边三角形, ∴CD AE ⊥, 又∵CD PE ⊥, ∴CD ⊥平面PAE , ∴CD PA ⊥.(Ⅲ)11233P ABCD ABCD V S PE -=⨯=⨯.4.DABCSE(1)证明:∵SA ⊥平面ABCD ,AB ⊂平面ABCD , ∴AB SA ⊥, 又∵90BAD ∠=︒, ∴AB AD ⊥, ∵SA AD A =, ∴AB ⊥平面SAD , 又AB ⊂平面SAB , ∴平面SAB ⊥平面SAD . (Ⅱ)证明:取AD 中点为E ,∵90DAB ABC ∠=∠=︒,2AD a =,BC a =,E 是AD 中点, ∴ABCE ∠是矩形,CE AB a ==,DE a =,∴CD =,在ACD △中,AC,CD =,2AD a =, ∴222AC CD AD +=, 即CD AC ⊥,又∵SA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD SA ⊥, ∴CD ⊥平面PAC . 5.P F ECB AD(Ⅰ)证明:∵PD ⊥底面ABCD ,BC ⊂平面ABCD , ∴PD BC ⊥,又∵底面ABCD 为矩形, ∴BC CD ⊥, ∴BC ⊥平面PCD , ∵BC ⊂平面PBC , ∴平面PCD ⊥平面PBC .(Ⅱ)证明:∵PD DC =,E 是PC 中点, ∴DE PC ⊥,又平面PCD ⊥平面PBC ,平面PCD 平面PBC PC =, ∴DE ⊥平面PBC , ∴DE PB ⊥, 又∵EF PB ⊥,EF DE E =,∴PB ⊥平面EFD .6.E A 1B 1C 1CBAD(Ⅰ)证明:连结1A B , ∵D 是1AB 的中点, ∴D 是1A B 的中点,∵在1A BC △中,D 是1A B 的中点,E 是1A C 的中点, ∴DE BC ∥,又DE ⊄平面11BCC B ,BC ⊂平面11BCC B , ∴DE ∥平面11BCC B .(Ⅱ)证明:∵111ABC A B C -是直棱柱, ∴1AA ⊥平面ABC , ∴1AA AB ⊥, 又AB AC ⊥, ∴AB ⊥平面11ACC A , ∵AB ⊂平面11ABB A , ∴平面11ABB A ⊥平面11ACC A .7.以A 为坐标原点,建立空间直角坐标系(2,0,0)B,D ,(0,0,2)P,C(1)(BD =-,(1,2)PC =-, ∵0BD PC •=∴BD PC ⊥(2)(1,AC =,(0,0,2)AP =,平面PAC 的法向量为(2,1,0)m =-(0,2)DP =,(1,0,0)AP =,平面DPC 的法向量为(0,2,1)n =--.2cos ,3m n m n m n•==•,二面角B PC D --的余弦值为3.(3)∵AQ AP PQ AP tPD =+=+,[]0,1t ∈ ∴(0,0,2)(0,2,2)(0,2,22)AQ t t t =+-=- 设θ为直线AQ 与平面PAC 所成的角2sin cos ,3AQ m AQ m AQ mθ•===• 2222223684332(22)tt t t t t =⇒=-++-,解得2t =(舍)或23. 所以,23PQ PD =即为所求.8.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是,.由cos==.所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0 得 取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E ,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得取x 2=2,得z 2=-λ,即n =(-2,0,λ) .因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.9.(Ⅰ)证明:在平行四边形ABCD 中, ∵AB AC =,135BCD =︒∠,45ABC =︒∠, ∴AB AC ⊥,∵E ,F 分别为BC ,AD 的中点, ∴EF AB ∥,∴EF AC ⊥,∵侧面PAB ⊥底面ABCD ,且90BAP =︒∠, ∴PA ⊥底面ABCD ,∴PA EF ⊥, 又∵PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,∴EF ⊥平面PAC .(Ⅱ)证明:∵M 为PD 的中点,F 为AD 的中点, ∴MF PA ∥,又∵MF ⊄平面PAB ,PA ⊂平面PAB , ∴MF ∥平面PAB ,同理,得EF ∥平面PAB , 又∵MFEF F =,MF ⊂平面M EF ,EF ⊂平面M EF ,∴平面MEF ∥平面PAB ,又∵ME ⊂平面M EF , ∴ME ∥平面PAB .(Ⅲ)解:∵PA ⊥底面ABCD ,AB AC ⊥,∴AP ,AB ,AC 两两垂直,故以AB ,AC ,AP 分别为x 轴,y 轴和z 轴建立如图空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,2)P ,(2,2,0)D -,(1,1,0)E , 所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, ∴(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--, 易得平面ABCD 的法向量(0,0,1)m =, 设平面PBC 的法向量为(,,z)n x y =,则:n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x z -+=⎧⎨-=⎩,令1x =,得(1,1,1)n =, ∴直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等, ∴|cos ,||cos ,|ME m ME n <>=<>,即||||||||||||ME m ME n ME m ME n ⋅⋅=⋅⋅,∴|21|λ-=,解得λ=或λ=(舍去),故PM PD .D10.(1)∵1C F ∥平面AEG ,又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,∴1C F AG ∥,∵F 为1AA 的点,且侧面11ACC A 为平行四边形, ∴G 为1CC 中点, ∴112CG CC =. (2)证明:∵1AA ⊥底面ABC ,1AA AB ⊥,1AA AC ⊥, 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得(2,0,0)C ,(0,2,0)B ,1(2,0,2)C ,1(0,0,2)A , ∵E ,G 分别是BC ,1CC 的中点,∴(1,1,0)E ,(2,0,1)G , ∴1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=, ∴1EG CA ⊥, ∴1EG AC ⊥. (3)设平面AEG 的法向量为(,,)n x y z =,则:0n AE n AG ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z +=⎧⎨+=⎩,令1x =,则1y =-,2z =-, ∴(1,1,2)n =--,由已知可得平面1A AG 的法向量(0,1,0)m =, ∴6cos ,6||||n m n m n m ⋅<>==-⋅由题意知二面角1A AG E --为钝角, ∴二面角1A AG E --的余弦值为.111.(Ⅰ)证明:过点F 作FH AD ∥, 交PA 于H ,连结BH ,如图所示,∵13PF PD =,∴13HF AD BC ==,又FH AD ∥,AD BC ∥,HF BC ∥, ∴四边形BCFH 为平行四边形, ∴CF BH ∥,又BH ⊄平面PAB ,CF ⊄平面PAB , ∴CF ∥平面PAB .z D(Ⅱ)解:∵梯形ABCD 中,AD BC ∥,AD AB ⊥, ∴BC AB ⊥, ∵PB ⊥平面ABCD , ∴PB AB ⊥,PB BC ⊥,∴如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(1,0,0)C ,(3,0,0)D ,(0,3,0)A ,(0,0,3)P ,设平面BPD 的一个法向量为(,,)n x y z =, 平面APD 的一个法向量为(,,)m a b c =, ∵(3,3,3)PD =-,(0,0,3)BP =,∴00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩,令1x =得(1,1,0)n =-,同理可得(0,1,1)m =, ∴1cos ,2||||n m n m n m ⋅<>==-⋅,∵二面角B PD A --为锐角, ∴二面角B PD A --为π3. (Ⅲ)假设存在点M 满足题意,设(3,3,3)PM PD λλλλ=-, ∴(13,3,33)CM CP PD λλλλ=+=-+-,∵(0,3,3)PA =-,∴93(33)0PA CM λλ⋅=+-=,解得12λ=,∴PD 上存在点M 使得CM PA ⊥,且12PM PD =.12.Ⅰ∵BC CD ⊥,2BC CD ==,∴BD =,同理EA ED ⊥,2EA ED ==,∴AD =,又∵4AB =,∴由勾股定理可知222BD AD AB +=,BD AD ⊥, 又∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,BD ⊂平面ABCD ,∴BD ⊥平面AED , 又∵AE ⊂平面AED , ∴BD AE ⊥.Ⅱ解:取AD 的中点O ,连结OE ,则OE AD ⊥, ∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,∴OE ⊥平面ABCD ,取AB 的中点F ,连结DF BD ∥,以O 为原点,建立如图所示的空间直角坐标系O xyz -,则(D ,(C -,E ,(DC =-,(2,0,DE =, 设平面CDE 的法向量为(,,)n x y z =,则00DC n DE n ⎧⋅=⎪⎨⋅=⎪⎩即00x z x y +=⎧⎨-+=⎩,令1x =,则1z =-,1y =,∴平面CDE 的法向量(1,1,1)n =-, 又平面ADE 的一个法向量为1(0,1,0)n =, 设平面ADE 和平面CDE 所成角(锐角)为θ, 则1113cos |cos ,|3||||nn n n n n θ⋅=<>==⋅,∴平面ADE 和平面CDE. C13.(1)证明:连结AE ,PE .∵PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴PA BC ⊥.又∵底面ABCD 是菱形,AB BC =,60ABC ∠=︒, ∴ABC △是正三角形. ∵E 是BC 的中点, ∴AE BC ⊥.又∵PA AE A =,PA ⊂平面PAE ,PE ⊂平面PAE ,∴BC ⊥平面PAE , ∴BC PE ⊥.(2)由(1)得AE BC ⊥,由BC AD ∥可得AE AD ⊥. 又∵PA ⊥底面ABCD ,∴PA AE ⊥,PA AD ⊥.∴以A 为原点,分别以AE ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系A xyz -,如图所示,则(0,0,0)A,E ,(0,2,0)D ,(0,0,2)P,1,0)B -,C ,(0,1,1)F .∵PA ⊥平面ABCD ,∴平面ABCD 的法向量为(0,0,2)AP =. 又∵(3,1,0)AC =,(0,1,1)AF =. 设平面ACF 的一个法向量(,,)n x y z =,则:AC n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即00y y z +==⎪⎩+,令1x =,则y =z ,∴(1,3,n =-. ∴21cos ,7||||AP n AP n AP n ⋅==. ∵二面角F AC D --是锐角, ∴二面角F AC D -- (3)G 是线段AB 上的一点,设(01)AG t AB t =≤≤. ∵(3,1,0)AB =-,∴,,0)G t -. 又∵(3,1,2)PC =-,(3,,2)PG t t =--. 设平面PCG 的一个法向量为(,,)n x y z =,则:1100PC n PGn ⎧⋅=⎪⎨⋅=⎪⎩,即1111112020yz ty z-=--=+,∴1()n t t =-+, ∵AF ∥平面PCG ,∴AF n ⊥,0AF n ⋅=1)0t -=, 解得12t =. 故线段AB 上存在一点G ,使得AF 平行于平面PCG ,G 是AB 中点.14.(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥. ∵ABCD 是正方形, ∴AC BD ⊥. 又DEBD D =,∴AC ⊥平面BDE .(2)∵DA ,DC ,DE 两两重叠,∴建立空间直角坐标系D xyz -如图所示.∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴EDDB. 由3AD =,可知DZ =AF ,则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C .∴(0,BF =-,(3,0,EF =-, 设平面BEF 的法向量为(,,)n x y z =,则00n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩,即3030y x ⎧-=⎪⎨-=⎪⎩,令z (4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,(3,3,0)CA =-,∴cos ,||||32n CA n CA n CA ⋅==.∵二面角F BE D --为锐角, ∴二面角F BE D -- (3)点M 线段BD 上一个动点,设(,,0)M t t ,则(3,,0)AM t t =-.∵AM ∥平面BEF ,∴0AM n ⋅=,即4(3)20t t -+=,解得2t =,此时,点M 坐标为(2,2,0),13BM BD =,符合题意.15.(1)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥.∵BC AB ⊥,PA AB A =, ∴BC ⊥平面PAB . 又AM ⊂平面PAB , ∴AM BC ⊥.∵PA AB =,M 为PB 的中点, ∴AM PB ⊥. 又∵PBBC B =,∴AM ⊥平面PBC .(2)如图,在平面ABC 内作AZ BC ∥,则AP ,AB ,AZ 两两垂直,建立空间直角坐标系A xyz -.则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM =.设平面APC 的法向量为(,,)n x y z =,则:0n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,即020x y z =⎧⎨+=⎩,令1y =,则2z =-. ∴(0,1,2)n =-.由(1)可知(1,1,0)AM =为平面PBC 的一个法向量,∴cos||||5AM nn AMAM n⋅⋅==∵二面角A PC B--为锐角,∴二面角A PC B--.(3)证明:设(,,)D v wμ是线段PC上一点,且PD PCλ=,(01)λ≤≤,即(2,,)(2,2,1)v wμλ-=-,∴22μλ=-,2vλ=,wλ=.∴(22,22,)BDλλλ=--.由0BD AC⋅=,得4[0,1]5λ=∈,∴线段PC上存在点D,使得BD AC⊥,此时45PDPCλ==.16.解:(1)证明:因为AB⊥平面PAD,所以PH AB⊥,因为3,2AHADHD==,所以2,1AH HD==,设PH x=,由余弦定可得,22221cos22x HD PH xPHDx HD x+--∠==⋅22221cos24x HA PH xPHAx HA x+--∠==⋅因为cos cosPHD PHA∠=-∠,故1PH x==,所以PH AD⊥,因为AD AB A=,故PH⊥平面ABCD.(2)以H为原点,以,,HA HP HP所在的直线分别为,,x y z轴,建立空间直角坐标系,则3139(2,3,0),(0,0,1),(1,,),(1,,0),(1,,0)2222B P E F C--,所以可得,3311(3,,0),(1,,),(2,0,),(0,3,0)2222BF BE EF FC=--=--=-=,设平面BEF的法向量(,,)n x y z=,则有:33002(1,2,4)30022x yBF nnzBE n x y⎧--=⎪⎧⋅=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩--+=⎪⎩,设平面EFC的法向量(,,)m x y z=,则有:020(1,0,4)2030z EF m x m FC m y ⎧⎧⋅=--=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩=⎩,故17cos ,21n m n m n m⋅===⋅设二面角B EF C --的平面角为θ ,则sin 21θ=.17.解(Ⅰ)证明:∵DC ⊥平面ABC ,//BE DC ∴BE ⊥平面ABC ∴CQ BE ⊥ ①又∵2AC BC ==,点Q 为AB 边中点 ∴CQ AB ⊥ ②AB BE B =故由①②得CQ ⊥平面ABE(Ⅱ)过点A 作AM BC ⊥交BC 延长线于点M ∵,AM BC AM BE ⊥⊥ ∴AM ⊥平面BEDC ∴13A CED CDE V S AM -∆=sin33AM AC π==11212CDE S ∆=⨯⨯= ∴113A CED V -=⨯= (Ⅲ)延长ED 交BC 延长线于S ,过点M 作MQ ES ⊥于Q ,连结AQ 由(Ⅱ)可得:AQM ∠为A DE B --的平面角∵1//2CD BC ∴2SC CB == ∴SE ==1MC MS ==∵SQM ∆∽SBE ∆∴QM SM BE SE=∴1225QM=即55QM=∴3tan1555AMAQMQM∠===18.(1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设,平面,则,即∴令,可得,,则有∴∴观察可得二面角的平面角19.(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥, 又平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==,∴ADC ∆为正三角形,3GC =,∴(0,0,0)G ,3,0,0)C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =,(3,0,0)GC =,设平面CEG 的一个法向量1(,,)n x y z =,则由10n GE ⋅=,10n GC ⋅=可得0,30,y z x +=⎧⎪⎨=⎪⎩令1y =,则1(0,1,1)n =-,∵(3,1,0)CD =-BA =,且(0,1,0)A -,故3,2,0)B -,故(3,2,0)BG =-, 故直线BG 与平面GCE 所成角的正弦值为11||14sin 7||||n BG n BG θ⋅==⋅.20.(Ⅰ)取PC 中点H ,连接、EH FH .∵E 为AB 的中点,ABCD 是菱形,∴//AE CD ,且12AE CD =,又F 为PD 的中点,H 为PC 的中点,∴//FH CD ,且12FH CD =,∴//AE FH ,且AE FH =,则四边形AEHF 是平行四边形,∴//AF EH .又AF ⊄平面PCE ,EH ⊂面PCE ,∴//AF 平面PCE .(Ⅱ)取BC 的中点为O ,∵ABCD 是菱形,AC AB =,∴AO BC ⊥,以A 为原点,,,AO AD AP 所在直线分别为,,z x y 轴,建立空间直角坐标系A xyz -,则)()()3,1,0,3,1,0,0,2,0BCD -,)()313,0,0,0,0,1,,02OP E ⎫-⎪⎪⎝⎭,∴()333,1,1,,,022PC EC ⎛⎫=-= ⎪ ⎪⎝⎭,()3,0,0AO =,设平面的法向量为()1,,n x y z =,则1100n PC n EC ⎧⋅=⎪⎨⋅=⎪⎩,即3033022x y z x y ⎧+-=⎪+=⎪⎩,令1y =-,则3,2x z ==,∴平面PCE 的一个法向量为)13,1,2n =-,又平面PAD 的一个法向量为()21,0,0n =.∴12121236cos ,|n ||n |4314n n n n ⋅<>===⋅++.即平面PAD 与平面PCE 621.解:(1)证明:取PD 的中点F ,连接,EF CF , 因为,E F 分别是,PA PD 的中点,所以//EF AD 且12EF AD =, 因为1,//2BC AB BC AD =,所以//EF BC 且EF BC =,所以//BE CF , 又BE ⊄平面,PCD CF ⊂平面PCD ,所以//BE 平面PCD .(2)以P 为坐标原点,,PD PA 所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则13(0,0,0),3,0),(1,0,0),(1,0,1),(2P A D C B , 13(0,3,0),(,1),(1,3,0)2PA AB AD ==-=-,设平面PAB 的一个法向量为(,,)n x y z =,则30013002n PA yn AB x z ⎧=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令2x =,得(2,0,1)n =-, 同理可求平面ABD 的一个法向量为6(3,3,0)cos ,55n m m n m n m⋅=⇒===⨯,平面ABD 和平面ABC 为同一个平面, 所以二面角P AB C --.22.解:(Ⅰ)证明:因为二面角S AB C --的大小为90°,则SA AD ⊥, 又SA AB ⊥,故SA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以SA BD ⊥; 在直角梯形ABCD 中,90BAD ADC ∠=∠=︒,21AD CD ==,2AB =, 所以1tan tan 2ABD CAD ∠=∠=,又90DAC BAC ∠+∠=︒, 所以90ABD BAC ∠+∠=︒,即AC BD ⊥; 又ACSA A =,故BD ⊥平面SAC ,因为AF ⊂平面SAC ,故BD AF ⊥.(Ⅱ)设点E 到平面ABCD 的距离为h ,因为B ABC E ABC V V --=,且25E ABC S ABCD V V --=,故511215*********ABCD S ABCD E ABCABC S SAV V S h h --∆⨯⋅⨯===⋅⨯⨯⨯梯形,故12h =,做点E 到平面ABCD 的距离为12.23.(1)E 为SD 的中点,01,602AD DC SD SDA SDC ==∠=∠=.ED EC AD DC ∴===设O 为AC 的中点,连接,EO DO 则EO AC ⊥//,AD BC BC CD ⊥ .AD BC ∴⊥又OD OA OC ==EOC EOD ∴∆≅∆ 从而EO OD ⊥AC ABCD = DO ⊂面ABCD 0AC DO =EO ∴⊥面ABCD EO ⊂面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于12AD AD ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥ FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2aOF =32EF a = 3os OF c EFO EF <== 即BC 与ECD 3(亦可以建系完成) ………………12分24.解(Ⅰ)过点P 作PO ⊥底面ABC ,垂足为O , 连接AO 、CO ,则∠PCO 为所求线面角,,AC PA ⊥,AC PO PA PO P ⊥⋂=且,AC ∴⊥平面PAO .则∠P AO 为二面角P -AC -B 平面角的补角∴∠ 60=PAO ,又23PA =∴,,1sin 2PO PCO CO ∠== 030PCO ∴∠=,直线PC 与面ABC 所成角的大小为30°.(Ⅱ)过O 作OE BC ⊥于点E ,连接PE ,则PEO ∠为二面角P -BC -A 的平面角,AC ⊥平面PAO ,AC OA ⊥045AOE ∠=,设OE 与CA 相交于F 22OE EF FO ∴=+=+在PEO ∆中,3436tan 7222POPEO EO-∠===+则二面角P -BC -A 的正切值为4367-.25.解:(Ⅰ)如图,取PA 中点F ,连接FD EF ,,E 是BP 的中点,AB EF // 且AB EF 21=,又AB DC AB DC 21,//= ∴∴DC EF //四边形EFDC 是平行四边形,故得//EC FD又⊄EC 平面⊂FD PAD ,平面PAD//EC ∴平面ADE(Ⅱ)取AD 中点H ,连接PH ,因为PD PA =,所以AD PH ⊥平面⊥PAD 平面ABCD 于AD ,⊥∴PH 面ABCD ,HB ∴是PB 在平面ABCD 内的射影 PBH ∠∴是PB 与平面ABCD 所成角四边形ABCD 中,090=∠=∠BCD ABC ∴四边形ABCD 是直角梯形AB CB DC 21== 设a AB 2=,则a BD 2=在ABD ∆中,易得a AD DBA 2,450=∴=∠.22212222a a a DH PD PH =-=-=又22224AB a AD BD ==+ABD ∆∴是等腰直角三角形,090=∠ADBa a a DB DH HB 2102212222=+=+=∴ ∴ 在PHB Rt ∆中,5521022tan ===∠a aHB PH PBH(Ⅲ)在平面ABCD 内过点H 作AB 的垂线交AB 于G 点,连接PG ,则HG 是PG 在平面ABCD 上的射影,故AB PG ⊥,所以PGH ∠是二面角D AB P --的平面角, 由a HA a AB 22,2==,又a HG HAB 21450=∴=∠ 在PHG Rt ∆中,22122tan ===∠a aHG PH PGH ∴ 二面角D AB P --的余弦值大小为.3326.(1)∵四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,PA=2,PB=PD=2,∴PA 2+AB 2=PB 2,PA 2+AD 2=PD 2, ∴PA ⊥AB ,PA ⊥AD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系,∵E ,F ,G ,H 分别为棱PA ,PB ,AD ,CD 的中点. ∴C (2,2,0),D (0,2,0),B (2,0,0), P (0,0,2),F (1,0,1),G (0,1,0), =(﹣2,0,0),=(﹣1,﹣2,1),=(﹣2,﹣1,0),设平面CFG 的法向量=(x ,y ,z ), 则,取x=1,得=(1,﹣2,﹣3),设CD与平面CFG所成角为θ,则sinθ=|cos<>|===.∴CD与平面CFG所成角的正弦值为.(2)假设棱PD上是否存在点M(a,b,c),且,(0≤λ≤1),使得平面CFG⊥平面MEH,则(a,b,c﹣2)=(0,2λ,﹣2λ),∴a=0,b=2λ,c=2﹣2λ,即M(0,2λ,2﹣2λ),E(0,0,1),H(1,2,0),=(1,2,﹣1),=(0,2λ,1﹣2λ),设平面MEH的法向量=(x,y,z),则,取y=1,得=(,1,),平面CFG的法向量=(1,﹣2,﹣3),∵平面CFG⊥平面MEH,∴=﹣2﹣=0,解得∈[0,1].∴棱PD上存在点M,使得平面CFG⊥平面MEH,此时=.。

超实用高考数学:空间几何体知识点解析(含历年真题专项练习)

超实用高考数学:空间几何体知识点解析(含历年真题专项练习)

空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式 V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高);V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r .在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎫33,1时,V ′<0.∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面P AB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面P AB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面P AB 上, 即球心就是△P AB 的外心,根据正弦定理ABsin ∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知P A ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵P A ⊥平面ADE ,∴R 1=⎝⎛⎭⎫P A 22+r 21, 可得P A 2=R 21-r 21=102,∴P A =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵P A ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝⎛⎭⎫P A 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π. 专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+(3)2=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18 答案 C 解析 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形, 设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元 答案 B解析 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A.32π3 B .3π C.4π3 D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36 B.12 C.13 D.32答案 C解析 ∵在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等, ∴此三棱锥的外接球即以P A ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即P A =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △P AB ×PC =13×12×⎝⎛⎭⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确.12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱P A ,PB ,PC ,PD 的中点,则P A =2AA 1=4,OA =2,所以OO 1=12PO =12P A 2-OA 2=3,故该四棱台的高为3,故A 正确;由P A =PC=4,AC =4,得△P AC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×(23)2+(2)2=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r·l=2.由于侧面展开图为半圆,可知12πl2=2π,可得l=2,因此r=1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm,母线长最短50 cm,最长80 cm,则斜截圆柱的侧面面积S=________cm2.答案 2 600π解析将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S=12×(π×40)×(50+80)=2 600π(cm2).15.已知球O与棱长为4的正四面体的各棱相切,则球O的体积为________.答案82 3π解析将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O与正四面体的各棱都相切,所以球O为正方体的内切球,即球O的直径2R=22,则球O的体积V=43πR3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.答案2π2解析如图,设B1C1的中点为E,球面与棱BB1,CC1的交点分别为P,Q,连接DB,D1B1,D1P,D1E,EP,EQ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5, ∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。

专题01 立体几何部分(解析版)-2020年江苏高考数学试卷名师分析与预测

专题01 立体几何部分(解析版)-2020年江苏高考数学试卷名师分析与预测

专题一 立体几何部分一、近几年江苏高考1、(1)(2019江苏卷)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.【答案】10.【解析】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. (2)(2019江苏卷).如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E . 【解析】(1)因为D ,E 分别为BC ,AC 的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.2、(1)(2018江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为(2)(2018江苏卷)在平行六面体中,.求证:(1);(2).【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB 1平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .3、(1)(2017江苏卷)如图,圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.【答案】 32【解析】设球的半径为R ,则圆柱的底面半径为R ,高为h =2R .因为V 1=πR 2h =2πR 3,V 2=4πR 33,所以V 1V 2=32. (2)(2017江苏卷)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1) EF ∥平面ABC ; (2) AD ⊥AC .证明:(1) 在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2) 因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD. 因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.4、(1)(2016江苏卷)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A1B1C1D1,下部的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1) 若AB=6 m,PO1=2 m,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?【答案】 (1) 由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P A 1B 1C 1D 1的体积 V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCDA 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2) 设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连结O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎫2a 22+h 2=36,即a 2=2(36-h 2), 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值.因此,当PO1=2 3 m时,仓库的容积最大.(2)(2016江苏卷)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1) 直线DE∥平面A1C1F;(2) 平面B1DE⊥平面A1C1F.解析:(1) 在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2) 在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.5、(1)(2015江苏卷)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.【答案】7【解析】设新的底面半径为r ,则13π×52×4+π×22×8=13πr 2×4+πr 2×8,解得r =7.(2)(2015江苏卷)如图,在直三棱柱ABCA 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1) DE ∥平面AA 1C 1C ; (2) BC 1⊥AB 1.(1) 由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE ∥平面AA 1C 1C .(2) 因为棱柱ABCA 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AC ⊂平面ABC ,所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C ,所以AC ⊥平面BCC 1B 1. 又因为BC 1⊂平面BCC 1B 1,所以BC 1⊥AC .因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C . 因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C ,所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1.二、近几年高考试卷分析从近五年江苏高考数学来看体现了以下几个方面:1、从题型来看主要以一个填空,一个解答;(2016年填空题中没有考查体积,体积的考查体现在应用题中);2、从知识点考查的内容来看主要以填空题是关于体积的计算,解答题设置了2问,第一问考查了平行,主要时候以线面平行,使用的方法还是以中位线为主。

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.B.C.D.【答案】A【解析】由三视图知,几何体是一个三棱锥,底面是直角边长为的直角三角形,面积是,三棱锥的一条侧棱与底面垂直,且长度是,这是三棱锥的高,三棱锥的体积是.故选A.【考点】本题考查由三视图求面积、体积.2.已知一空间几何体的三视图如图所示,它的表面积是()A.B.C.D.3【答案】C【解析】该几何体是三棱柱,如下图,,其表面积为。

故选C。

【考点】柱体的表面积公式点评:由几何体的三视图来求出该几何体的表面积或者体积是一个考点,这类题目侧重考察学生的想象能力。

3.已知某一几何体的正(主)视图与侧(左)视图如图,则在下列图形中,可以是该几何体的俯视图的图形有()A.①②③⑤B.②③④⑤C.①③④⑤D.①②③④【答案】D【解析】俯视图为⑤的几何体的侧视图如下,这与题目不相符,而①②③④符合题意。

故选D。

【考点】三视图点评:本题考查简单空间图形的三视图,考查空间想象能力,是基础题.4.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)若是的中点,求证:∥平面;(3)求证:平面⊥平面.【答案】(1)4 (2)主要证明∥ (3)主要证明平面【解析】解:(1)由题意可知,四棱锥中,平面平面,,所以,平面,又,,则四棱锥的体积为.(2)连接,则∥,∥,又,所以四边形为平行四边形,∴∥,∵平面,平面,所以,∥平面.(3)∵,是的中点,∴⊥,又在直三棱柱中可知,平面平面,∴平面,由(2)知,∥,∴平面,又平面,所以,平面平面.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.点评:本题考查的知识点是直线与平面平行的判定,棱锥的体积,平面与平面垂直的判定,其中(1)的关键是由面面垂直的性质定理可得AB⊥平面ACDE,(2)的关键是分析出四边形ANME为平行四边形,即AN∥EM,(3)的关键是熟练掌握空间线线垂直,线面垂直与面面垂直之间的相互转化.5.如图是长方体被一平面所截得到的几何体,四边形为截面,长方形为底面,则四边形的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【答案】B【解析】因为,长方体中相对的平面互相平行,所以,被平面截后,EF,GH平行且相等,GF,EH 平行且相等,故四边形的形状为平行四边形,选B。

高考数学最新真题专题解析—立体几何综合(新高考卷)

高考数学最新真题专题解析—立体几何综合(新高考卷)

高考数学最新真题专题解析—立体几何综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知正方体ABCD−A1B1C1D1,则()A. 直线BC1与DA1所成的角为90∘B. 直线BC1与CA1所成的角为90∘C. 直线BC1与平面BB1D1D所成的角为45∘D. 直线BC1与平面ABCD所成的角为45∘【答案】ABD【分析】本题主要考查直线与直线所成角及直线与平面所成角,属于中档题.【解答】解:如图,因为BC1⊥B1C,B1C//DA1,所以BC1⊥DA1,故A正确;对于选项B:因为直线BC1⊥平面CDA1B1,且CA1⊂平面CDA1B1,所以直线BC1⊥CA1,故B正确;对于选项C:连接A1C1与B1D1交于点O1,则∠O1BC1即为直线BC1与平面BB1D1D所成的角,sin∠O1BC1=O1C1BC1=12,所以∠O1BC1=30∘,故C错误;对于选项D:直线BC1与平面ABCD所成的角即为∠C1BC=45∘,所以D 正确.【母题来源】2022年新高考I卷【母题题文】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1,求二面角A−BD−C的正弦值.【答案】解:(1)设A到平面A1BC的距离为d,因为直三棱柱ABC−A1B1C1的体积为4,即可得S△ABC·AA1=4,故V A1−ABC =13S△ABC·AA1=43,又V A1−ABC =V A−A1BC=13S△A1BC·d=13×2√2×d=43,解得d =√2,所以A 到平面A 1BC 的距离为√2;(2)连接AB 1,因为直三棱柱ABC −A 1B 1C 1中,AA 1=AB , 故AA 1B 1B 为正方形,即AB 1⊥A 1B ,又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B ,AB 1⊂平面ABB 1A 1, 故AB 1⊥平面A 1BC ,所以AB 1⊥BC ,又因为AA 1⊥BC ,AB 1,AA 1⊂平面ABB 1A 1,且AB 1∩AB 1=A , 故BC ⊥平面ABB 1A 1,则BC ⊥AB , 所以BB 1,AB,BC 三条直线两两垂直, 故如图可以以B 为原点建立空间直角坐标系,设AA 1=AB =a ,BC =b ,则A 1B =√2a ,由条件可得{12a ×b ×a =412×√2a ×b =2√2,解得{a =2b =2, 则B(0,0,0),C(2,0,0),A(0,2,0),A 1(0,2,2),A 1C 的中点D(1,1,1), 所以BA ⃗⃗⃗⃗⃗ =(0,2,0),BD ⃗⃗⃗⃗⃗⃗ =(1,1,1),BC ⃗⃗⃗⃗⃗ =(2,0,0) 设平面ABD 的一个法向量为n 1⃗⃗⃗⃗ =(x,y,z),{n1⃗⃗⃗⃗ ⋅BA⃗⃗⃗⃗⃗ =0n1⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0⇒{2y=0x+y+z=0,取n1⃗⃗⃗⃗ =(1,0,−1),同理可求得平面BCD的一个法向量为n2⃗⃗⃗⃗ =(0,1,−1)所以|cos<n1⃗⃗⃗⃗ ,n2⃗⃗⃗⃗ >|=|n1⃗⃗⃗⃗⃗ ·n2⃗⃗⃗⃗⃗ ||n1⃗⃗⃗⃗⃗ |·|n2⃗⃗⃗⃗⃗ |=12,所以二面角A−BD−C的正弦值为√32.【母题来源】2022年新高考II卷【母题题文】如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED,AB=ED=2FB,记三棱锥E−ABC,E−ACF,F−ABC的体积分别为V1,V2,V3,则()A. V3=2V2B. V3=2V1C. V3=V1+V2D. 2V3=3V1【答案】CD【解析】【分析】本题主要考查三棱锥的体积,属于基础题.【解答】解:设AB=ED=2FB=2,则V1=13×2×2=43,V2=13×2×1=23.连结BD交AC于M,连结EM、FM,则FM=√3,EM=√6,EF=3,故S△EMF=1 2⋅√3⋅√6=3√22,V3=13S△EMF×AC=2,V3=V1+V2,2V3=3V1.【母题来源】2022年新高考II卷【母题题文】如图,PO是三棱锥P−ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)证明:OE//平面PAC;(2)若∠ABO=∠CBO=30∘,PO=3,PA=5,求二面角C−AE−B正弦值.【答案】解:(1)法一:连接OA、OB,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,所以PO⊥OA,PO⊥OB,所以∠POA=∠POB=90∘,又PA=PB,PO=PO,所以△POA≌△POB,所以OA=OB,作AB中点D,连接OD、DE,则有OD⊥AB,又AB⊥AC,所以OD//AC,又因为OD⊄平面PAC,AC⊂平面PAC,所以OD//平面PAC,又D、E分别为AB、PB的中点,所以,在△BPA中,DE//PA又因为平面PAC,PA⊂平面PAC,所以DE//平面PAC,又OD、DE⊂平面ODE,OD∩DE=D,所以平面ODE//平面PAC,又OE⊂平面ODE,所以OE//平面PAC;法二:(1)连接OA、OB,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,所以PO⊥OA,PO⊥OB,所以∠POA=∠POB=90∘,又PA=PB,PO=PO,所以△POA≌△POB,所以OA=OB,又AB⊥AC,在Rt△ABF,O为BF中点,延长BO,交AC于F,连接PF,所以在△PBF中,O、E分别为BF、PB的中点,所以EO//PF,因为EO⊄平面PAC,PF⊂平面PAC,所以EO//平面PAC;(2)法一:过点D作DF//OP,以DB为x轴,DO为y轴,DF为z轴.建立如图所示的空间直角坐标系.因为PO=3,PA=5,由(1)OA=OB=4,又∠ABO=∠CBO=30∘,所以OD=2,DB=2√3,),所以P(0,2,3),B(2√3,0,0),A(−2√3,0,0),E(√3,1,32设AC=a,则C(−2√3,a,0),平面AEB的法向量设为n1⃗⃗⃗⃗ =(x1,y1,z1),直线AB的方向向量可设为a⃗=(1,0,0),直线DP⊂平面AEB,直线DP的方向向量为b⃗ =(0,2,3){a ⃗ ⋅n 1⃗⃗⃗⃗ =0b ⃗ ⋅n 1⃗⃗⃗⃗ =0,所以{x 1=02y 1+3z 1=0,所以x 1=0,设y 1=3,则z 1=−2,所以n 1⃗⃗⃗⃗ =(0,3,−2);平面AEC 的法向量设为n 2⃗⃗⃗⃗ =(x 2,y 2,z 2),AC ⃗⃗⃗⃗⃗ =(0,a,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{ay 2=03√3x 2+y 2+32z 2=0,所以y 2=0,设x 2=√3,则z 2=−6,所以n ⃗ =(√3,0,−6);所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√13×√39=13√3=4√313, 二面角C −AE −B 的平面角为θ,则sinθ=√1−cos 2θ=1113, 所以二面角C −AE −B 的正弦值为1113法二:(2)过点A 作AF//OP ,以AB 为x 轴,AC 为y 轴,AF 为z 轴 建立所示的空间直角坐标系.因为PO =3,PA =5,由(1)OA =OB =4,又∠ABO =∠CBO =30°,所以,AB =4√3,所以P(2√3,2,3),B(4√3,0,0), A(0,0,0),E(3√3,1,32),设AC =a ,则C(0,a,0),平面AEB 的法向量设为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AB ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{4√3x 1=03√3x 1+y 1+32z 1=0,所以x 1=0设z 1=−2,则y 1=3, 所以n 1⃗⃗⃗⃗ =(0,3,−2);平面AEC 的法向量设为n 2⃗⃗⃗⃗ =(x,y,z),AC ⃗⃗⃗⃗⃗ =(0,a,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{ay 2=03√3x 2+y 2+32z 2=0,所以y 2=0,设x 2=√3,则z 2=−6,所以n 2⃗⃗⃗⃗ =(√3,0,−6);所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√13×√39=√1213√3=4√313二面角C −AE −B 的平面角为θ,则sinθ=√1−cos 2θ=1113, 所以二面角C −AE −B 的正弦值为1113. 【命题意图】考察棱柱、棱锥棱台、圆柱、圆锥、圆台及其简单组合体的结构特征,能画出简单空间图形并能识别立体图形的模型,考察几何体中的点线面关系,考察线线、线面、面面之间的平行和垂直关系,考察异面直线所成的角,直线和平面所成的角,二面角的平面角等的求解,考察数形结合思想,空间想象力及逻辑推导能力。

高考数学(理)一轮复习精品课件:专题《立体几何》

高考数学(理)一轮复习精品课件:专题《立体几何》

2.正棱柱与正棱 锥的结构特征 3.旋转体的 结构特征 4.三视图
考点42
空间几何体的结构、三视图
1.多面体的结构特征
2.正棱柱与正棱 锥的结构特征 3.旋转体的 结构特征 4.三视图
考点42
空间几何体的结构、三视图
定义:从一个几何体的正前方、正左方、正上方三个 不同的方向看这个几何体,描绘出的平面图形,分别 称为正(主)视图、侧(左)视图、俯视图.
2.外接球、内切 球的计算问题
在Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+
r2.
8
9
10
11
12
13Байду номын сангаас
14
考法2 空间几何体的三视图
1.识别三视 图的步骤
(1)弄清结构,明确位置 (2)先画正视图,再画俯视图,最后画侧视图 (3)被遮住的轮廓线要画成虚线
2.判断余下视图
1.计算有关 线段的长
当球内切于正方体时,切点为正方体各个 面的中心,正方体的棱长等于球的直径;
2.外接球、内切 球的计算问题
7
考法1
空间几何体的结构特征
球与旋转体的组合通常作轴截面解题. 球与多面体的组合,通过多面体的一条侧棱
1.计算有关 线段的长
和球心(或“切点”“接点”)作出截面图解题. 设球O的半径为R,截面圆O′的半径为r,M为截 面圆上任一点,球心O到截面圆O′的距离为d,则
专题8
第1 节
立体几何
空间几何体的三视图、表面积和体积
第2 节
质 第3 节
空间直线、平面平行与垂直的判定及其性
空间中的计算问题
1
考点42
空间几何体的结构、三视图

高中数学立体几何试题及答案[1]

高中数学立体几何试题及答案[1]

立体几何专题训练一、选择题(每题5分,共60分)1.在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为( )2.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )3.(2011年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+4.某几何体的三视图如图所示,则它的体积是( )(A )283π-(B )83π- (C )82π- (D )23π5.一个正三棱柱的侧棱长和底面边长相等,体积为的三视图中的俯视图如右图所示.左视图是一个矩形.则这个矩形的面积是( )(A)4 (B)6.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( )(A )1223,l l l l ⊥⊥⇒1l //2l (B )12l l ⊥,1l //3l ⇒32l l ⊥ (C )1l //2l //3l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面7.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( )B.2C.D.68.在空间,下列命题正确的是( ) A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行正视图侧视图俯视图 图19.一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360(C)292 (D)28010.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ) (A)3πa2 (B)6πa2(C)12πa2 (D)24πa211.设球的体积为V1,它的内接正方体的体积为V2,下列说法中最合适的是( )A. V1比V2大约多一半B. V1比V2大约多两倍半C. V1比V2大约多一倍D. V1比V2大约多一倍半12.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是( )(A)3 (B)2 (C)1 (D)0二、填空题(每题4分,共16分)13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于_____________.14.一个几何体的三视图如图所示,则这个几何体的体积为.15.已知四棱椎P ABCD-的底面是边长为6 的正方形,侧棱PA⊥底面ABCD,且8PA=,则该四棱椎的体积是。

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥P­ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥P­ABC 可看作由正方体PADC­BEFG 截得,如图所示,PF 为三棱锥P­ABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。

2025届高考一轮复习《基本立体图形、简单几何体的表面积与体积》课件

2025届高考一轮复习《基本立体图形、简单几何体的表面积与体积》课件
可知 AC1⊥O1M,O1M=0.6,那么 tan∠CAC1=CACC1=OAO1M1 ,
高考一轮总复习•数学
第27页
即 12=A0O.61, 解得 AO1=0.6 2, 根据对称性可知圆柱的高为 3-2×0.6 2≈1.732-1.2×1.414=0.035 2>0.01, 所以能够被整体放入正方体内,故 D 符合题意. 故选 ABD.
高考一轮总复习•数学
第26页
设 OE∩AC=E,可知 AC= 2,CC1=1,AC1= 3,OA= 23,
那么
tan∠CAC1=CACC1=OAOE,即
1 =OE, 23
2
解得 OE= 46,且 462=38=294>295=0.62,
即 46>0.6,
所以以 AC1 为轴可能对称放置底面直径为 1.2 m 圆柱,若底面直径为 1.2 m 的圆柱与正 方体的上下底面均相切,设圆柱的底面圆心为 O1,与正方体的下底面的切点为 M,
圆台
体积 V= Sh =πr2h
V=
1 3Sh
=13πr2h=13πr2
l2-r2
V=13(S 上+S 下+ S上S下)h
=13π(r21+r22+r1r2)h
第11页
高考一轮总复习•数学
名称 棱柱 棱锥 棱台 球
体积 V= Sh
1 V= 3Sh V=13(S 上+S 下+ S上S下)h V=43πR3
= 直观图
2 4S
原图形.
高考一轮总复习•数学
以三角形为例说明原因:
第36页
S
直观图=12B′C′·O′A′·sin
高考一轮总复习•数学
第24页
解析:(1)由圆台定义知,以直角梯形垂直于底边的腰为旋转轴,其余三边旋转一周形 成的面围成的旋转体是圆台,故 A 错误;

高考数学二轮复习立体几何专题训练1含解析

高考数学二轮复习立体几何专题训练1含解析

DCB AFE南宫中学 高三二轮复习立体几何专题训练(1)1.如图所示的多面体中, ABCD 是菱形,BDEF 是矩形,ED ⊥面ABCD ,3BAD π∠=.(1)求证:平//CF AED 面B 面;(2))若BF BD a ==,求四棱锥A BDEF -的体积.2. 如图1,在Rt △ABC 中,∠ABC=90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F ,将△ABD 沿BD 折起,得到三棱锥1A BCD-,如图2所示.(Ⅰ)若M 是FC 的中点,求证:直线DM //平面1A EF;(Ⅱ)求证:BD ⊥1A F;(Ⅲ)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由.FEDABC3.(本小题共14分) 如图,在四棱锥P - ABCD 中,底面ABCD 是正方形,△PAD 是正三角形,平面PAD ⊥平面ABCD ,M 和N 分别是AD 和BC 的中点。

(I )求证:PM ⊥MN ; (II )求证:平面PMN ⊥平面PBC ; (III )在PA 上是否存在点Q ,使得平面QMN//平面PCD ?若在求出Q 点位置,并证明;若不存在,请说明理由。

4.(本小题满分12分)如图,四边形ABCD 是菱形,四边形MADN 是矩形,平面MADN ⊥平面ABCD ,E ,F 分别为MA ,DC 的中点,求证: (I)EF//平面MNCB ; (Ⅱ)平面MAC ⊥平面BND .1图 图 2ED A 1CBFMABCA 1OB 1C 15.如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,122AD CD AB ===, 点E 为AC 中点.将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.(I )在CD 上找一点F ,使//AD 平面EFB ; (II )求点C 到平面ABD 的距离.6.(本小题满分12分) 如图,在斜三棱柱ABC-A1B1C1中,O 是AC 的中点,A1O ⊥平面ABC ,∠BCA=90°,AA1=AC=BC. (I )求证: AC1⊥平面A1BC;(II )若AA1=2,求三棱锥C-A1AB 的高的大小.7.已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1)1C O面11AB D ;(2)1A C ⊥面11AB D .(3)111AB D C BD平面平面OC 1D 1B 11CD AB8.(本小题满分12分)如图,在四棱锥S —ABCD 中,底面ABCD 是直角梯形,AD 垂直于AB 和DC ,侧棱SA ⊥底面ABCD ,且SA = 2,AD = DC = 1,点E 在SD 上,且AE ⊥SD 。

高三立体几何专题复习

高三立体几何专题复习

高考立体几何专题复习一.考试要求:〔1〕掌握平面的根本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

〔2〕了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念〔对于异面直线的距离,只要求会计算已给出公垂线时的距离〕。

〔3〕了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。

〔4〕了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

〔5〕会用反证法证明简单的问题。

〔6〕了解多面体的概念,了解凸多面体的概念。

〔7〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

〔8〕了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

〔9〕了解正多面体的概念,了解多面体的欧拉公式。

〔10〕了解球的概念,掌握球的性质,掌握球的外表积、体积公式。

二.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的根底上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的根底上,掌握它们的求法(其根本方法是分别作出这些角,并将它们置于*个三角形通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步稳固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握根本的立体几何解题方法和常用解题技巧,开掘不同问题之间的在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和"说话要有根据〞的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.三.教学过程:〔Ⅰ〕根底知识详析高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考察的知识点在20个以. 选择填空题考核立几中的计算型问题, 而解答题着重考察立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着"多一点思考,少一点计算〞的开展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的容,因此在主体几何的总复习中,首先应从解决"平行与垂直〞的有关问题着手,通过较为根本问题,熟悉公理、定理的容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:〔1〕根据定义——证明两平面没有公共点;〔2〕判定定理——证明一个平面的两条相交直线都平行于另一个平面;〔3〕证明两平面同垂直于一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学1.简单几何体专题1
2020.03
1,下面的图形可以构成正方体的是()
A B C D 2,正四棱台上,下底面边长为a,b,侧棱长为c,求它的高和斜高.
3,下列命题中正确的是
()
A.由五个平面围成的多面体只能是四棱锥
B.棱锥的高线可能在几何体之外
C.仅有一组对面平行的六面体是棱台
D.有一个面是多边形,其余各面是三角形的几何体是棱锥
4,圆锥的侧面展开图是直径为a的半圆面,那么此圆锥的轴截面是()
A.等边三角形B.等腰直角三角形
C.顶角为30°的等腰三角形D.其他等腰三角形
5,把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线
长10cm.求:圆锥的母长.
6,长方体ABCD-A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方
体的表面爬到C1点的最短距离是.
7,已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},
E={棱柱},F={直平行六面体},则
( )
A .E F D C
B A ⊂⊂⊂⊂⊂
B .A
C B F
D
E ⊂⊂⊂⊂⊂
C .C A B
D F
E ⊂⊂⊂⊂⊂ D .它们之间不都存在包含关系 8,A 、B 为球面上相异两点,则通过A 、B 两点可作球的大圆有 ( ) A .一个 B .无穷多个 C .零个
D .一个或无穷多个
9,若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台,此命题是否正确,说明理由.
10,长方体三条棱长分别是AA ′=1,AB=2,AD=4,则从A 点出发,沿长方体的表面到 C ′的最短矩离是
( )
A .5
B .7
C .29
D .37
11,线段AB 长为5cm ,在水平面上向右平移4cm 后记为CD ,将CD 沿铅垂线方向向下移动3cm 后记为C ′D ′,再将C ′D ′沿水平方向向左移4cm 记为A ′B ′,依次连结构成长方体ABCD-A ′B ′C ′D ′. ①该长方体的高为 ;
②平面A ′B ′C ′D ′与面CD D ′C ′间的距离为 ; ③A 到面BC C ′B ′的距离为 .
12,四棱锥的四个侧面中,直角三角最多可能有()A.1 B.2 C.3 D.4
13,已知,ABCD为等腰梯形,两底边为AB,CD且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.
14,直线绕一条与其有一个交点但不垂直的固定直线转动可以形成()
A.平面 B.曲面C.直线 D.锥面
15,已知正三棱锥S-ABC的高SO=h,斜高SM=n,求经过SO的中点且平行于底面的截面△A1B1C1的面积.
16,有在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF 把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.
问:
①依据题意制作这个几何体;
②这个几何体有几个面构成,每个面的三角形为什么三角形;
③若正方形边长为a,则每个面的三角形面积为多少.
17,根据图中所给的图形制成几何体后,哪些点重合在一起.
18,下面是一多面体的展开图,每个面内都给了字母,请根据要求回答问题:
①如果A在多面体的底面,那么哪一面会在上面;
②如果面F在前面,从左边看是面B,那么哪一个面会在上面;
③如果从左面看是面C,面D在后面,那么哪一
个面会在上面 .
19,一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成()
A.棱锥B.棱柱C.平面D.长方体
20,有关平面的说法错误的是()A.平面一般用希腊字母α、β、γ…来命名,如平面α…
B.平面是处处平直的面
C.平面是有边界的面
D.平面是无限延展的
答案
1, C
2, 分析:棱台的有关计算都包含在三个直角梯形B E BE E E O O B B O O ''''''和,及两个直角三角形OBE 和E B O '''∆中,而直角梯形常需割成一个矩形和一个直角三角形对其进行求解,所以要熟悉两底面的外接圆半径(B O OB '',)内切圆半径(E O OE '',)的差,特别是正三、正四、正六棱台. 略解:h OO B F h EE B G ='=''='=',
2
2
22)(222
)(21)(2
1
)(22a b c a b c h a b BG a b BF --=--=∴-=-=
'=-
-=--h c b a c b a 2222141
24()()
3, B 4, A
5, 解:设圆锥的母线长为l ,圆台上、下底半径为r R ,.
Θl
l
r
R l
l
l cm -
=
∴-
=
∴=10
101
4 40
3
()
答:圆锥的母线长为40
3cm.
6, 52
7, B
8, D
9, 解:未必是棱台,因为它们的侧棱延长后不一定交于一点,如图,用一个平行于楔形底面的平面去截楔形,截得的几何体虽有两个面平行,其余各面是梯形,但它不是棱台,所以看一个几何体是否棱台,不仅要看是否有两个面平行,其余各面是否梯形,还要看其侧棱延长后是否交于一点.
小结:棱台的定义,除了用它作判定之外,至少还有三项用途:
①为保证侧棱延长后交于一点,可以先画棱锥再画棱台;
②如果解棱台问题遇到困难,可以将它还原为棱锥去看,因为它是由棱锥截来的;
③可以利用两底是相似多边形进行有关推算.
10, A
11, ①3CM②4CM③5CM;
12, D
13, 圆锥、圆台、圆锥
14, D
15, 解:设底面正三角形的边长为a,在RT△SOM中SO=h,SM=n,所以
OM=22l n -,又MO=63a ,即a=2
236l n -,)(3343222l n a s ABC
-==∴∆,
截面面积为)
(343
22l n -.
16, 解:①略.
②这个几何体由四个面构成,即面DEF 、面DFP 、面DEP 、面EFP.由平几知识可知DE=DF ,∠DPE=∠EPF=∠DPF=90°,所以△DEF 为等腰三角形,△DFP 、△EFP 、△DEP 为直角三角形.
③由②可知,DE=DF=5a,EF=2a,所以,S △DEF =23
a 2。

DP=2a ,EP=FP=a , 所以S △DPE = S △DPF = a 2,S △EPF =21
a 2.
17, 解:J 与N ,A 、M 与D ,H 与E ,G 与F ,B 与C. 18, ①F ②C ③A 19, B 20, C。

相关文档
最新文档