高中数学正态分布 (6)

合集下载

高考高中数学正态分布

高考高中数学正态分布

S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
x2 x1
4、特殊区间的概率:
若X~N (,s 2 ),则对于任何实数a>0,概率
a
P( a x ≤ a) ,s ( x)dx a
为如图中的阴影部分的面积,对于固定的 和 s 而言,该面 积 的随概着率越s 大的,减即少X而集变中大在。这周说围明概s率越越小大, 落。在区间 ( a, a]
s ( x)
1
2 s
e
( x )2 2s 2
y
y
μ= -1
σ=0.5
μ=0
, x (, )
y μ=1
σ=1
σ=2
-3 -2 -1 0 1 2 x -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 4 x
(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=μ对称.
上述数据的分布有怎样的特点?
频率分布 直方图
第一步:分组
确定组数,组距?
第二步:列出频率分布表
区间 号
1
区间
频数
153.5~157.5 5
2 157.5~161.5 8
3 161.5~165.5 10
4 165.5~169.5 15
5 169.5~173.5 18
6 173.5~1775 18
7 177.5~181.5 8
(6)当μ一定时,曲线的形状由σ确定 . σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中.
正态曲线下的面积规律
• X轴与正态曲线所夹面积恒等于1 。 • 对称区域面积相等。

高中数学教案正态分布

高中数学教案正态分布

高中数学教案精选-正态分布教学目标:1. 理解正态分布的概念及其特征;2. 学会计算正态分布的概率密度函数;3. 能够应用正态分布解决实际问题。

教学重点:正态分布的概念及其特征,正态分布的概率密度函数。

教学难点:正态分布的概率密度函数的计算及应用。

教学准备:教材、多媒体教学设备。

教学过程:一、导入(5分钟)1. 引入正态分布的概念,引导学生思考自然界中存在的对称分布现象;2. 通过实例让学生感受正态分布的形状,引导学生观察正态分布曲线的特点。

二、新课讲解(15分钟)1. 讲解正态分布的定义及数学表达式;2. 引导学生理解正态分布的参数含义,讲解均值和标准差的计算方法;3. 推导正态分布的概率密度函数,解释概率密度函数的性质。

三、案例分析(15分钟)1. 提供几个实际问题,让学生应用正态分布进行分析;2. 引导学生运用正态分布的概率密度函数计算问题的概率;3. 让学生通过讨论,总结正态分布的应用方法。

四、课堂练习(10分钟)1. 提供一些练习题,让学生独立完成,巩固所学知识;2. 引导学生通过练习题,加深对正态分布的理解。

五、总结与拓展(5分钟)1. 对本节课的内容进行总结,让学生掌握正态分布的核心概念;2. 提出一些拓展问题,激发学生的学习兴趣,引导学生进行深入学习。

教学反思:本节课通过引入实例,让学生感受正态分布的形状,引导学生观察正态分布曲线的特点,从而引出正态分布的概念。

在新课讲解环节,通过讲解正态分布的定义、参数含义和概率密度函数的推导,让学生理解正态分布的数学表达式及性质。

在案例分析环节,提供实际问题,让学生应用正态分布进行分析,巩固所学知识。

在课堂练习环节,提供一些练习题,让学生独立完成,加深对正态分布的理解。

在总结与拓展环节,对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。

六、应用举例(15分钟)1. 通过具体的例子,如考试分数、身高、体重等数据,让学生应用正态分布进行分析;2. 引导学生利用正态分布的概率密度函数计算特定数据的概率;3. 让学生通过实际案例,理解正态分布在实际问题中的应用价值。

高中数学必修三正态分布知识点

高中数学必修三正态分布知识点

高中数学必修三正态分布知识点正态分布的定义:如果随机变量ξ的总体密度曲线是由或近似地由下面的函数给定:x∈R,则称ξ服从正态分布,这时的总体分布叫正态分布,其中μ表示总体平均数,σ叫标准差,正态分布常用来表示。

当μ=0,σ=1时,称ξ服从标准正态分布,这时的总体叫标准正态总体。

叫标准正态曲线。

正态曲线x∈R的有关性质:(1)曲线在x轴上方,与x轴永不相交;(2)曲线关于直线x=μ对称,且在x=μ两旁延伸时无限接近x 轴;(3)曲线在x=μ处达到最高点;(4)当μ一定时,曲线形状由σ的大小来决定,σ越大,曲线越“矮胖”,表示总体分布比较离散,σ越小,曲线越“瘦高”,表示总体分布比较集中。

在标准正态总体N(0,1)中:二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p),并记独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.二项分布的判断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。

高中数学正态分布

高中数学正态分布

指数分布与正态分布关系
指数分布是一种连续型概率分布 ,用于描述两个连续事件之间的 时间间隔。
在某些情况下,指数分布可以近 似为正态分布。具体来说,当指 数分布的参数 $lambda$ 足够大 时,指数分布 $Exp(lambda)$ 可以用正态分布 $N(frac{1}{lambda}, frac{1}{lambdasqrt{2}})$ 来近似 。然而,这种近似通常不如二项 分布和泊松分布逼近正态分布那 样准确。
多元正态分布的定义
多元正态分布是指多个随机变 量组成的向量服从正态分布的 情况。
多元正态分布的性质
多元正态分布具有一些重要的 性质,如联合分布、边缘分布 、条件分布和独立性等。
多元正态分布在统计学中 的应用
多元正态分布广泛应用于多元 统计分析中,如多元线性回归 、主成分分析、因子分析等。
多元正态分布的参数估计 和假设检验
对于多元正态分布的参数估计 和假设检验,可以使用最大似 然估计、协方差矩阵的估计和 多元t检验等方法进行。
感谢您的观看
THANKS
对两个正态总体均值或方差进行 比较的假设检验,如t检验和F检 验的两样本版本。
置信区间构建
利用样本数据构造总体均值的置 信区间,以估计总体均值可能落 入的范围。
01
02
单样本假设检验
对单个正态总体均值或方差进行 假设检验,如t检验和F检验。
03
04
配对样本假设检验
对配对观测值之差的均值进行假 设检验,如配对t检验。
智商分布
智商测试的结果也符合正态分布,大 部分人的智商处于中等水平,极高和 极低的智商相对较少。
生产过程中质量控制
产品质量分布
在生产线上,产品质量往往呈现 正态分布,大部分产品符合质量 标准,极少数产品存在严重缺陷

高三数学正态分布知识点

高三数学正态分布知识点

高三数学正态分布知识点正文:正态分布是概率论和统计学中经常应用的一种重要分布。

其特点是在均值附近的概率较高,而在离均值较远处的概率较低。

在高中数学的学习中,正态分布也是一个重要的知识点。

本文将介绍高三数学正态分布的相关知识。

一、正态分布的定义正态分布,又称为高斯分布,是一种连续型概率分布。

对于一个服从正态分布的随机变量X,其概率密度函数可以表示为:f(x) = (1 / sqrt(2 * π * σ^2)) * exp(-(x - μ)^2 / (2 * σ^2))其中,μ是均值,σ是标准差。

二、正态分布的性质1. 对称性:正态分布是以均值为对称轴,两侧面积相等的曲线。

2. 峰度:正态分布的峰度是指曲线的陡峭程度,峰度值为3。

3. 切点:正态分布曲线与均值之间会有两个切点,也即均值加减标准差的位置。

三、标准正态分布标准正态分布是指均值为0,标准差为1的正态分布。

它是对正态分布进行标准化后的结果。

对于一个服从正态分布的随机变量X,可以通过以下公式将其转化为标准正态分布的随机变量Z:Z = (X - μ) / σ四、正态分布的应用正态分布在实际生活和科学研究中具有广泛的应用,以下是几个常见的应用场景:1. 质量控制:正态分布可以帮助企业在生产过程中进行质量控制,通过控制产品的均值和标准差,来确保产品的质量稳定。

2. 统计分析:正态分布在统计学中扮演了重要角色,可以用于分析和描述大量数据的分布情况,从而得出结论或进行预测。

3. 考试评分:在考试评分过程中,教师常常采用正态分布来确定分数段及相应的等级,从而更公平地进行评价。

4. 实验设计:科学实验中常常会涉及到测量误差和数据分布的问题,正态分布可以作为参考,帮助科研人员进行实验设计和数据分析。

五、常用的正态分布应用题1. 求解概率:给定正态分布的均值和标准差,可以求解指定区间的概率。

2. 求解分位数:给定正态分布的均值和标准差,可以求解给定概率下的分位数,即求解落在该概率下的随机变量取值。

高考高中数学正态分布

高考高中数学正态分布

高考高中数学正态分布在高考的数学领域中,正态分布是一个颇为重要的知识点。

对于许多同学来说,它可能一开始会让人感到有些困惑,但只要我们深入理解,就会发现其中的规律和魅力。

首先,让我们来了解一下正态分布到底是什么。

简单来说,正态分布是一种常见的概率分布。

想象一下,我们对某个群体进行测量,比如学生的身高、考试成绩、零件的尺寸等等,得到的数据往往会呈现出一种特定的分布形态,这就是正态分布。

正态分布的特点非常显著。

它是一个对称的“钟形曲线”,曲线的最高点在均值处,也就是数据的平均水平。

而且,大部分的数据会集中在均值附近,离均值越远,数据出现的频率就越低。

这就像是大多数学生的成绩会集中在平均分附近,特别高和特别低的分数相对较少。

那么,正态分布在高考数学中有哪些具体的应用呢?一个重要的方面是概率计算。

给定一个正态分布的参数,比如均值和标准差,我们可以计算某个区间内数据出现的概率。

比如说,已知某班级考试成绩服从正态分布,均值是 80 分,标准差是 10 分,我们就可以计算出成绩在 70 分到 90 分之间的学生所占的比例。

在解题过程中,我们常常需要将给定的数值标准化。

这是因为正态分布表中给出的是标准正态分布(均值为 0,标准差为 1)的概率值。

通过标准化公式,将原始数据转化为标准正态分布中的数值,然后就可以利用正态分布表来查找相应的概率。

举个例子,假设某地区高考数学成绩服从正态分布,均值为100 分,标准差为 15 分。

现在要计算成绩大于 120 分的考生比例。

我们首先将120 分标准化:(120 100) /15 ≈ 133 。

然后,在标准正态分布表中查找大于 133 的概率,就能得到成绩大于 120 分的考生比例。

对于正态分布的理解,还需要注意几个要点。

其一,标准差反映了数据的离散程度。

标准差越大,数据越分散;标准差越小,数据越集中。

其二,正态分布在实际生活中的应用非常广泛。

除了前面提到的成绩、身高、尺寸等,还包括产品质量控制、医学中的生理指标、经济数据等等。

北师大版高中数学选修2-3课件:2.6 正态分布(共46张PPT)

北师大版高中数学选修2-3课件:2.6 正态分布(共46张PPT)

重点难点
[重点] 认识分布密度曲线的特点,曲线所表示的意义;正态分布曲线的性质、 标准正态曲线N(0,1) . [难点] 认识分布密度曲线的特点,曲线所表示的意义;通过正态分布曲线的图 形特征,归纳正态分布曲线的性质.
教学建议
如何使学生从抽象转化到具体、直观的问题里来,是我们教学的一个重 点和难点.要借助具体实例及多媒体课件演示,有条件的让学生也上机 进行实习,通过实验了解一些概念的形成过程.具体的方法是利用直方 图来引进正态曲线.
例2 某厂生产的圆柱形零件的外 直径X服从正态分布N(4,0.52), 质量人员从该厂生产的1000件零 件中随机抽查1件,测得它的外直 径为5.7 cm,试问该厂生产的这 批零件是否合格?
解:由于X服从正态分布N(4,0.52), 由正态分布的性质可知,正态分布N(4, 0.52)在(4-3×0.5,4+3×0.5)之外取值 的概率只有0.003,而5.7∉(2.5,5.5), 这说明在一次试验中,出现了几乎不 可能发生的小概率事件,据此可以认 为这批零件是不合格的.
预习探究
正态分布密度曲线
正态曲线
预习探究
预习探究
预习探究
[思考] 某一集成块使用寿命X可看作是连续型随机变量吗? 解:可以,因为它的可能取值是任何一个非负实数,我们是无法一一列出的.
预习探究
[思考] 正态分布密度函数f(x)有最值吗?
预习探究
[讨论] 正态分布中的参数μ,σ的含义分别是什么?
6.结合正态分布曲线的图形特征,归纳正态分布曲线的性质.正态分布曲 线的作图较难,教材没做要求,授课时可以借助几何画板作图,学生只要了 解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质.
三维目标

人教版数学高二-《正态分布》精品课件 新课标

人教版数学高二-《正态分布》精品课件 新课标

• [题后感悟] 解答此类题目的关键在于将待求 的问题向(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ -3σ,μ+3σ)这三个区间进行转化,然后利用 上述区间的概率求出相应概率,在此过程中依 然会用到化归思想及数形结合思想.
高中数学
• 3.设在一次数学考试中,某班学生的分数服 从X~N(110,202),且知满分150分,这个班 的学生共54人.求这个班在这次数学考试 中及格(不小于90分)的人数和130分以上的 人数.
高中数学
• A.三科总体的标准差及平均数都相同 • B.甲、乙、丙三科的总体的平均数不相同 • C.丙科总体的平均数最小 • D.甲科总体的标准差最小 • 解析: 由题图可得,甲、乙、丙三科的平均
分一样,但它们的标准差大小不同,σ甲<σ乙 <σ丙. • 答案: D
高中数学
(2011湖北高考)已知随机变量ξ服从 正态分布N(2,σ2),且P(ξ<4)=0.8,则 P(0<ξ<2)=( )
(3)曲线在 x=μ
处达到峰值 1 ; σ 2π
高中数学
1
σ
μ
• (4)曲线与x轴之间的面积为 • (5)当 越一大定时,曲线随着
沿x轴平移,如图①;

越小
的变化而
• (6)当μ一定时,曲线的形状由σ确定,σ ,曲线越“瘦高”;σ , 曲 线 越
“.正态总体在三个特殊区间内取值的概率值 • P(μ-σ<X≤μ+σ)= 0. ;682 6 • P(μ-2σ<X≤μ+2σ)= 0.954 4 ; • P(μ-3σ<X≤μ+3σ)= 0.997 4 .
越大,曲线越“矮胖”,表示总体越分散;σ 越小,曲线越“高瘦”,表示总体的分布越集 中,这个性质可直接判断.由正态曲线性质知 μ1<μ2,σ1<σ2. • 答案: A

正态分布 课件

正态分布  课件


• 特别地有:P(μ-σ<X≤μ+σ)= 0.6862 ;
• P(μ-2σ<X≤μ+2σ)= 0.9544 ;
• P(μ-3σ<X≤μ+3σ)= 0.9974 .
[答案] B
[解析] 仔细对照正态分布密度函数:f(x)= 21πσe-
(x-μ)2
2σ2 (x∈R),注意指数 σ 和系数的分母上的 σ 要一致,以及
正态分布
• 1.当样本容量无限增大时,它的频率分 布直方图 无限接近于 一条总体密度曲 线,在总体所在系统相对稳定的情况下, 总体密度曲线就是或近似地是以下函数的 图象:
• 其中μ和σ(σ>0)为参数.我们称φμ,σ(x)的图 象为 正态分布密度曲线,简称 正态曲线 .
• (4)曲线与x轴之间的面积为 1 ;
• (5) 当 σ 一 定 时 , 曲 线 随 μ 的 变 化而沿 x 轴 平移;
• (6)当μ一定时,曲线的形状由σ确定:σ越小,
曲线越“
瘦高”,表示总体的分布越
集中 ;σ越大,曲线越“
矮胖 ”,表示
总体的分布越 分散 .
• 4.若X~N(μ,σ2),则对任何实数a>0,概
率P(μ-a<X≤μ+a)=
称 性 得 P(3<X≤4) = P(6<X≤7) , 所 以
P(6<X≤7)=
=0.1359.
• [点评] 解此类题首先由题意求出μ及σ的
值,然后根据三个特殊区间上的概率值及
正态曲线的特点(如对称性,与x轴围成的 面积是1等)进行求解.
• [例5] 某年级的一次信息技术测验成绩近 似服从正态分布N(70,102),如果规定低于 60分为不及格,求:

6-5 正态分布 课件 高中数学新北师大版选择性必修第一册 (2023~2024学年)

6-5 正态分布 课件 高中数学新北师大版选择性必修第一册 (2023~2024学年)
正态分布是最常见、最重要的连续型随机变量的分布,是刻画误差分布
的重要模型,因此也称为误差模型.
学习目标
新课讲授
课堂总结
正态分布的特点: 如果一个随机变量X服从正态分布,那么对于任何实数a,b(a<b),随机变 量X在区间(a,b]的概率可以用P(a<X≤b)来表示.它的几何意义就是随机变量X 的分布密度曲线在区间(a,b]对应的曲边梯形面积的值(如图).
如果随机变量X服从正态分布,那么这个正态分布完全由参数μ,σ(σ>0) 确定,记为X~N(μ,σ2).其中EX=μ,DX=σ2.曲线与x轴之间的面积为1.
学习目标
新课讲授
课堂总结
正态曲线有如下性质: (1)曲线在x轴的上方,与x轴不相交. (2)曲线是单峰的,关于直线x=μ对称. (3)曲线的最高点位于x=μ处. (4)当x<μ时,曲线上升;当x>μ时,曲线下降;并且当曲线向左、右两 边无限延伸时,以x轴为渐近线(如图).
课堂总结
y
2 =0.5
1 =1
为形状参数
3=2
x
若μ固定,σ越大, 曲线越“矮胖”,表示总体的分布越分散; σ越小, 曲线越“高瘦”,表示总体的分布越集中.
学习目标
新课讲授
课堂总结
练一练
一次教学质量检测中,甲、乙、丙三科考试成绩的正态分布密度曲线 如图所示,下列说法中正确的是( A ) A.甲科总体的标准差最小 B.丙科总体的平均数最小 C.乙科总体的标准差及平均数都比甲小,比丙大 D.甲、乙、丙总体的平均数不相同
通常认为这种情况在一次试验中几乎是不可能发生的,认为是小概率事件. 因此,在实际应用中,通常认为服从正态分布N(μ,σ)的随机变量X只取区间 (μ-3σ,μ+3σ]之间的值,并称之为3σ原则.

北师大版高中数学选修2-3课件2.6正态分布

北师大版高中数学选修2-3课件2.6正态分布
e2
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
3.如果知道了 X 的分布密度曲线,则 X 取值于任何范围(例如{a<X<b})
的概率,都可以通过计算该曲线下相应部分的面积而得到,因此,我们说 X 的
分布密度函数 f(x)完全描述了 X 的规律.计算面积,实际上是计算分布密度
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
1234
2 设随机变量 ξ 服从正态分布 N(0,1),P(ξ>1)=p,则 P(-1<ξ<0)等于( )
A.12p
B.1-p
C.1-2p
D.12-p
解析:∵1=P(ξ<-1)+P(-1<ξ<0)+P(0<ξ<1)+P(ξ>1)=2P(ξ>1)+2P(-1<ξ<0)
题型一
题型二
解答此类题目的关键在于充分利用正态分布曲线的对称性,把待求 区间的概率向已知区间内的概率进行转化.
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
题型一
题型二
题型二 正态分布的应用
【例 2】 在某次数学考试中,考生的成绩 X 服从一个正态分布,即 X~N(90,100).
=2p+2P(-1<ξ<0),∴P(-1<ξ<0)=12-p. 答案:D
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
1234
3 下列曲线可以作为正态分布密度曲线的是( )
答案:D
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固

高中数学正态分布知识点+练习

高中数学正态分布知识点+练习

正态分布高考正态分布要求层次重难点正态分布A利用实际问题的直方图,了解正态分布 曲线的特点及曲线所表示的意义.例题一) 知识内容1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直 方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随 机变量 X ,则这条曲线称为 X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是 1,而随机变量 X 落在指定的两个数 a ,b之 间的概率就是对应的曲边梯形的面积.2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的 准差为 的正态分布通常记作 N( , 2) . 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为 0 ,标准差为 1的正态分布叫做标准正态分布. ⑶重要结论: ①正态变量在区间 ( ,) ,( 2 , 2 ) ,( 3 , 3 )内,取值的概率分别是 68.3% ,95.4%, 99.7% .②正态变量在 ( , ) 内的取值的概率为 1,在区间 ( 3故正态变量的取值几乎都在距 x 三倍标准差之内,这就是正态分布的 3 原则.变化中都只是起着均匀、 微小的作用, 则表示这样的随机现象的随机变量的 概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为 f(x)2π(x)2e 2,x 中 , 是参数,且0 ,式中的参数 和 分别为正态变量的数学期望和标准差.期望为 、标3 ) 之外的取值的概率是 0.3% ,R ,其二)典例分析:例1】 已知随机变量 X 服从正态分布 N (3 ,a 2) ,则 P (X 3) ( )值的概率为 0.4,则 X 在 0,2 内取值的概率为【例4】 已知随机变量 X 服从正态分布 N (2, 2),P (X ≤ 4) 0.84,则P (X ≤0) ( ) A . 0.16B .0.32C . 0.68D.0.84N (0 ,4) ,则不属于区间 ( 4,4) 这个尺寸范围的零件约占总数的【例 6】已知 X N ( 1,2),若 P( 3≤X ≤-1) 0.4,则 P( 3≤X ≤1) ()A . 0.4B . 0.8C . 0.6 D.无法计算【例 7】设随机变量 服从正态分布N (2 ,9) ,若 P(c 2) P( c2) ,则c ________【例 8】 设 ~ N(0 ,1),且 P(| | b)a(0 a 1,b 0) ,则 P( ≥ b) 的值是_________________________________________(用a 表示).例 9 】 设随机变量 服从正态分布 N (0 ,1) , a0 ,则下列结论正确的个数是 ___ .⑴ P(| | a) P(| | a) P(| | a)⑵ P(| | a) 2P( a) 1⑶ P(| | a) 1 2P( a)A .15B .C .D .例2】 在某项测量中,测量结果 X 服从正态分布 N 10 ,若 X 在 0 ,1 内取例 3】 对于标准正态分布 N 0 ,1 的概率密度函数1 xe 2πx 22列说法不正确的是( )A . f x 为偶函数 BC . f x 在 x 0时是单调减函数,在 x ≤0时是单调增函数 D最大值为x 关于 x 1 对称1 2π例5】 某种零件的尺寸服从正态分布⑷ P(| | a) 1 P(| | a)如果随机变量 ~ N( , 2),E D 1 ,求 P( 1 1)的值.A .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值A .该市这次考试的数学平均成绩为 80 分B .分数在 120 分以上的人数与分数在 60 分以下的人数相同C .分数在 110 分以上的人数与分数在 50 分以下的人数相同D .该市这次考试的数学标准差为 10【例16】 灯泡厂生产的白炽灯寿命 (单位: h ),已知 ~ N (1000,302) ,要使灯泡的平均寿命为 1000h 的概率为 99.7%,则灯泡的最低使用寿命应控制在 _____ 小时以上.【例 17】 一批电池(一节)用于手电筒的寿命服从均值为 35.6小时、标准差为 4.4小时的正态分布, 随机从这批电池中任意取一节, 问这节电池可持续使用不少于 40 小时的概率 是多少例 10 】 例 11 】 正 态 变 量 X~ N(1, 2)P(c X 2c)P(2c X 3c) 0.4,求 P(X ≤ 0.5)的值.【例 12】 A . f(x)列函数是正态分布密度函数的是( )(x r)2 2B . f(x)2πex222πC . f(x)1 (x2 2π e1)2例 13 】 若正态分布密度函数 (x 1)2(x R) ,下列判断正确的是(【例 14】 设 的概率密度函数为 f(x) 1(x 1)2 12 e 22π,则下列结论错误的是()B . P( 1≤ ≤ 1) P( 1 1)D . 1~ N(0 ,1)【例 15】某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密 度函数为 f(x) 1(x 80)21e 200 ,则下列命题中不正确的是( )10 22πf (x)x 2f(x)2A . P( 1) P( 1)C . f (x) 的渐近线是 x 0例 18】 某班有 48 名同学,一次考试后的数学成绩服从正态分布,平均分为 80,标准差为 10,理论上说在 80 分到 90分的人数是 ___0 x ≤1【例 19】已知连续型随机变量 的概率密度函数 f (x)x a 1≤ x 2 ,x ≥ 2⑴求常数a 的值;⑵求 P(1 3) . 2P(132).ke x ≥ 0ke x ≥0,求 k 的值及 P(X 0.1). 0 x 0【例 22】 美军轰炸机向巴格达某铁路控制枢纽投弹,炸弹落弹点与铁路控制枢纽的100 |x |距离 X 的密度函数为f (x) 10000| x |≤ 100,若炸弹落在目标 40 米以内时,将导致该铁0 |x| 100路枢纽破坏,已知投弹 3颗,求巴格达铁路控制枢纽被破坏的概率.例 20 】 已知连续型随机变量x ≤1的概率密度函数 f(x) ax 21≤ x 2 , 求 a 的值及 0x ≥2例 21 】 设随机变量 X 具有概率密度 f (x)1x R .⑴求 , ;⑵求 P(|x 1| 2) 及P(1 2 x 1 2 2) 的值.例 24】 某校高中二年级期末考试的物理成绩 服从正态分布 N (70 ,102) .⑴若参加考试的学生有 100人,学生甲得分为 80 分,求学生甲的物理成绩排名; ⑵若及格( 60分及其以上)的学生有 101人,求第 20 名的物理成绩. 已知标准正态分布表 (0.97) 0.833 .【例 25】 在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布 N (70 ,100) .已知成绩在 90分以上(含 90分)的学生有 12名.⑴试问此次参赛学生总数约为多少人⑵若该校计划奖励竞赛成绩排在前 50 名的学生,试问设奖的分数线约为多少分 附:标准正态分布表 (1.30) 0.9032 , (1.31) 0.9049 , (1.32) 0.9066 .x 2 2x 1例 23】 设 X ~ N ( , 2) ,且总体密度曲线的函数表达式为:f(x)2πe。

人教版高中数学选修2-3第6讲:数学期望与方差及正态分布(教师版)

人教版高中数学选修2-3第6讲:数学期望与方差及正态分布(教师版)

人教版高中数学 数学期望与方差及正态分布__________________________________________________________________________________ __________________________________________________________________________________1.理解离散型变量的数学期望与方差的概念.2.熟练掌握离散型变量的数学期望与方差的公式.3.熟练掌握离散型变量的数学期望与方差的性质.4.能利用数学期望与方差解决简单的实际问题.5.理解概率密度曲线和正态分布的概念.1.离散型随机变量X 的数学期望一般地,若离散型随机变量X 的概率分布如下表所示,则称1122n n x p x p x p +++为离散型随机变量X 的数学期望,记为()E X ,其中0i p ≥,i =1,2,…,n ,12p p + 1.n p ++=一般地,若离散型随机变量X 的概率分布如下表所示,则称2221122()()()n n x p x p x p μμμ-+-++-为离散型随机变量X 的方差,记为()V X ,即2;σi p ≥0,i =1,2,…,n ,121,n p p p +++=()E X μ=3.离散型随机变量X 的标准差随机变量X 的方差也称为X 的概率分布的方差,X 的方差V (X )的算术平方根称为X 的标准差,即σ=4.必备公式(1)离散型随机变量:X 的数学期望(均值)公式、方差公式、标准差公式 E(X)=1122n n x p x p x p +++;V (X )=221122()()x p x p μμ-+-+2()n n x p μ+-;σ=.(2)二项分布的数学期望、方差的计算公式 当X ~B (n ,p )时,E (X )=np ;V (X )=np(1-p). 5.离散型随机变量方差的性质设ξ是离散型随机变量,则其方差具有如下性质: (1)V (k )=0(k 为常数); (2)2();V k k V ξξ= (3)();V k V ξξ+=(4)2()(,).V a b a V a b ξξ+=∈R6.概率密度曲线(1)若数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,我们将此曲线称为概率密度曲线.(2)正态密度曲线的函数表达式为22()2()e,,0,x P x x μσσμ--=∈>∈R R7.正态分布(1)若X 是一个随机变量,对任给区间(a ,b ],P (a <X ≤b )恰好是正态密度曲线下方和X 轴上(a ,b ]上方所围成的图形的面积;我们就称随机变量X 服从参数为μ和2σ的正态分布,简记为X ~N (2,μσ).(2)我们将正态分布N (0,1)称为标准正态分布,通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率.8.正态密度曲线图象的特征(1)当x <μ时,曲线上升;当x >μ时,曲线下降;当曲线向左右两边无限延伸以x 轴为渐近线. (2)正态曲线关于直线x =μ对称;(3)σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡. (4)在正态曲线下方和x 轴上方范围内的区域面积为1.类型一.离散型随机变量X 的数学期望则E (X )等于( ) A.0 B.-1C.13-D.12-[答案] C[解析] 由111()(1)01236E X =-⨯+⨯+⨯=1.3-练习1:某学校要从5名男生和2名女生中选出2人做上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望E ξ______.(结果用最简分数表示)[答案]47[解析] ξ可取0,1,2,因此252710(0),(1)21C P P C ξξ=====11522710,21C C C = 22271101014(2),012.212121217C P E C ξξ====⨯+⨯+⨯=类型二.离散型随机变量的方差、标准差例2:已知随机变量X 的分布表为:[解析] 因为E (X )=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5,所以22()(0 2.5)0.1(1 2.5)0.15(2V X =-⨯+-⨯+-222.5)0.25(3 2.5)0.25⨯+-⨯+2(4 2.5)0.15(5-⨯+-22.5)0.1 2.05.⨯=练习1:甲、乙两名射手在同一条件下进行射击,分布表如下:射手乙:谁的射击水平比较稳定.[解析] 1()100.290.680.29,E X =⨯+⨯+⨯=2221()(109)0.2(99)0.6(89)0.2V X =-⨯+-⨯+-⨯0.20.20.4,=+= 2()100.490.280.49,E X =⨯+⨯+⨯=2222()(109)0.4(99)0.2(89)0.40.8V X =-⨯+-⨯+-⨯=,因为12()(),V X V X <所以射手甲的射击水平比较稳定.类型三.二项分布的数学期望与方差例3:已知随机变量ξ~B (n ,p ),且 2.4, 1.44,E V ξξ==则n ,p 的值为( ) A.8,0.3 B.6,0.4 C.2,0.2 D.5,0.6[答案] B[解析] 由np =2.4,np (1-p )=1.44,解得n =6,p =0.4.练习3:设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. [解析]13,,7E nP P ξ===13721,(1)217n D nP P ξ∴=⨯==-=⨯118(1).77-=类型四.离散型随机变量方差的性质例4:一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分为100分,某生选对每道题的概率为0.8,则这名考生在这次考试中成绩的数学期望与标准差为( )A.80,8B.80,64C.70,4D.70,3 [答案] A[解析] 答对题数为,ξ成绩为4.ξ先分析ξξ⋅~B (25,0.8),所以E ξ=25×0.8=20,所以(4)480,E E V ξξξ===25×0.8×0.2=4,所以(4)V ξ=2464,V ξ=8.=练习4:已知ξ的分布列如下表,设23,ηξ=+则E η=()A .3B .4C .-1D .1[答案] A [解析] 11111012363E ξ=-⨯+⨯+⨯=-,17(23)232333E E E ηξξ=+=+=-⨯+= 类型五.数学期望与方差的计算与应用例5:一个人每天开车上班,从他家到上班的地方有6个交通岗,假设他在各交通岗遇到红灯的事件互相独立,并且概率都是1.3假定他只在遇到红灯或到达上班地点时才停止前进.(1)设ξ为这个人的首次停止前经过的路口数.求ξ的分布表; (2)设η为这个人的途中遇到红灯的次数,求η的期望和方差; (3)求这个人首次停止前已经过两个交通岗的概率. [解析] (1)ξ的取值为0,1,2,3,4,5,6,212121(0),(1),(2)(),33333P P P ξξξ====⨯==⨯342121(3)(),(4)(),(5)3333P P P ξξξ==⨯==⨯==56212(),(6)().333P ξ⨯==所以ξ的分布表如下:(2)由题意知:1~(6,),3Bη则162,(13E V npηη=⨯==114)6(1).333p-=⨯⨯-=(3)由(1)知4 (2).27 Pξ==练习5:有一名运动员投篮的命中率为0.6,现在他进行投篮训练,若没有投进则继续投篮,若投进则停止,但最多投篮5次,求他投篮次数的数学期望.[解析]若该运动员投篮1次,则P(ξ=1)=0.6;若投篮2次,则说明他第1次没有投进,而第2次投进,P(ξ=2)=0.4×0.6=0.24;若投篮3次,则说明他前2次没有投进,而第3次投进,P(ξ=3)=0.42×0.6;若投篮4次,则说明他前3次没有投进,而第4次投进,P(ξ=4)=0.43×0.6;若投篮5次,则说明他前4次没有投进,而第5次投进与否均可,所以概率为P(ξ=5)=0.44×1.所以ξ的概率分布为:所以,投篮次数的数学期望为Eξ=1×0.6+2×0.24+3×0.096+4×0.0384+5×0.0256=1.6496.类型六.正态密度曲线的特征例6:下面给出了关于正态曲线的四个叙述:①曲线在x轴上方且与x轴不相交;②当x>μ时,曲线下降;当x<μ时,曲线上升;③当μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中;④曲线关于直线x=μ对称,且当x=μ时,位于最高点.其中正确的是()A.1个B.2个C.3个D.4个[答案] C[解析]①、②、④都正确,③不正确,应该是当μ一定时,σ越小,总体分布越集中,σ越大,总体分布越分散.练习6:若2(1)2(),xf x x R--=∈,则下列判断正确的是()A.f(x)有最大值,也有最小值B.f(x)有最大值,无最小值C.f(x)无最大值,有最小值D.f(x)无最大值,也无最小值[答案]B[解析]这个函数就是正态分布N(1,1)的概率密度函数.类型七.正态分布例7:已知正态总体的数据落在区间(-3,-1)内的概率和落在(3,5)内的概率相等,那么这个正态总体的数学期望为________.[答案]1[解析]区间(-3,-1)与(3,5)的长度相等,这说明正态曲线在两个区间上对称,易知两区间关于x=1对称,所以正态分布的数学期望是1.练习7:设随机变量ξ服从标准正态分布N (0,1),已知( 1.96)0.025Φ-=,那么(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.975[答案] C[解析] 由( 1.96)1(1.96)0.025Φ-=-Φ=,得(1.96)0.975Φ=,(|| 1.96)(1.96)( 1.96)0.9750.025P ξ<=Φ-Φ-=-=0.951.若某篮球运动员投篮命中率P =0.6,则其两次投篮命中次数η的数学期望为( ) A .0.6 B .1.2C .1.3D .0.8[答案] B2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则(0)P ξ==( )A .0 B.12C.13D.23[答案] C3.已知连续型随机变量ξ的概率密度函数f (x )=()()01,1(14),504,x x x <-⎧⎪⎪-≤≤⎨⎪⎪>⎩则P (ξ=3)的值为( )A.15B .0C .3D .不确定[答案] B4.如果随机变量ξ服从(,0)N μ,而且()P C ξ≤=()P C ξ>=P ,那么P 等于( ) A .0 B .0.5C .1D .不确定[答案] B5.若从1,2,4,6,9这5个数字之中任取2个,则这2个数之积的数学期望是( ) A .8 B .17.3 C .9 D .9.5 [答案] B6.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的教学期望E ξ=______. [答案]237.某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望. [答案] (1)因为抽取比例为311,102,510555=⨯=⨯+由115=得,应在甲组抽取2人,在乙组抽取1人.(2)从甲组抽取的工人中恰有1名女工人的概率11462108.15C C P C ⋅== (3)ξ的可能取值为0,1,2,31234211056(0),75C C P C C ξ==⋅=1112146342212110510528(1),75C C C C C P C C C C ξ==⋅+⋅=21622110510(3),75C C P C C ξ==⋅=31(2)1(0)(1)(3).75P P P P ξξξξ==-=-=-==分布列如下表:数学期望282810123 1.6.757575E ξ=⨯+⨯+⨯= 8.设篮球队A 与B 进行比赛,每场比赛均有一球队获胜,若一球队胜4场,则比赛结束,假定A ,B 两队在每场比赛中获胜的概率都是12,试求需要比赛场数ξ的分布列及数学期望. [答案] 依题意知,比赛场数ξ的取值为4,5,6,7.411(4)2,28P ξ∴==⨯=3341112(5)()2,2228P C ξ==⋅⨯⨯⨯= 33251115(6)()()2,22216P C ξ==⋅⋅⨯⨯=33361115(7)()()2.23216P C ξ==⋅⋅⨯⨯=从而随机变量ξ的分布列为:∴随机变量专的数学期望为1255934567.88161616E ξ=⨯+⨯+⨯+⨯=__________________________________________________________________________________________________________________________________________________________________基础巩固1.如果两名士兵在一次射击比赛中,士兵甲得1分,2分,3分的概率分别为0.4,0.1,0.5;士兵乙得1分,2分,3分的概率分别为0.1,0.6,0.3,那么两名士兵得胜希望较大的是( )A .甲B .乙C .甲与乙相同D .无法确定[答案] B2.同时抛掷2枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上的,ξ=0表示结果中没有正面向上的,则E ξ=( )A .0.6B .0.75C .0.85D .0.95[答案] B3.如果ξ是离散型随机变量,32,ηξ=+那么( ) A.32,9E E D D ηξηξ=+= B.3,32E E D D ηξηξ==+ C.32,94E E D E ηξηξ=+=+ D.34,32E E D D ηξηξ=+=+[答案] A4.某地有A ,B ,C ,D 四人先后感染了甲型H1N1流感,其中只有A 到过疫区,B 肯定是受A 感染的,对于C ,因为难以断定他是受A 还是受B 感染,于是假定他受A 和受B 感染的概率都是12,同样也假定D 受A ,B 和C 感染的概率都是13,在这种假定之下,B ,C ,D 中直接受A 感染的人数X 就是一个随机变量,X 的均值(即数学期望)=( )A.125B.116 C.87D.23[答案] B5.设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. [答案] 1821;76.在某次测量中,测量结果ξ服从正态分布N (1,2σ)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为______.[答案] 0.87.(2014浙江卷)随机变量X 的取值为0,1,2.若P (X =0)=15,E (X )=1,则D (X )=________.[答案] 258.(2015东城二模)某校高一年级开设A ,B ,C ,D ,E 五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A 课程,不选B 课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(1)求甲同学选中C 课程且乙同学未选中C 课程的概率;(2)用X 表示甲、乙、丙选中C 课程的人数之和,求X 的分布列和数学期望. [答案] (1)设事件A 为“甲同学选中C 课程”,事件B 为“乙同学选中C 课程”.则1223C 2()C 3P A ==,2435C 3()C 5P B ==.因为事件A 与B 相互独立,所以甲同学选中C 课程且乙同学未选中C 课程的概率为224()()()()[1()]3515P AB P A P B P A P B ==-=⨯=.(2)设事件C 为“丙同学选中C 课程”.则2435C 3()C 5P C ==.X 的可能取值为:0,1,2,3.1224(0)()35575P X P ABC ===⨯⨯=(1)()()()P X P ABC P ABC P ABC ==++2221321232035535535575=⨯⨯+⨯⨯+⨯⨯=.(2)()()()P X P ABC P ABC P ABC ==++2322231333335535535575=⨯⨯+⨯⨯+⨯⨯=.23318(3)()35575P X P ABC ===⨯⨯=.X 为分布列为:4()0123757575757515E X =⨯+⨯+⨯+⨯==.能力提升1.如果~(5,0.1)B ξ,那么P (ξ≤2)=( ) A .0.0729 B .0.00856 C .0.91854 D .0.99144[答案] D2.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400[答案] B3.1盒产品中有9件正品和3件废品,若每次取1件产品,取出后不再放回,则在取得正品前已取出的废品数ξ的数学期望E ξ=______.[答案] 0.34.某射击选手每次射击击中目标的概率为0.8,现在他连续向一个目标射击,直到第一次击中目标为止,则射击次数ξ这一随机变量的数学期望为______.[答案]545.从分别标有数字1,2,3,…,n 的n 张卡片中任取一张,若卡片上数字ξ是随机变量,则ξ的数学期望为______.[答案]12n + 6.(2014湖南卷)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.[答案] (1)1315(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=13×25=215,P (X =100)=13×35=315,P (X =120)=23×25=415,P (X =220)=23×35=615.故所求的分布列为数学期望为E (X )=0×215+100×315+120×415+220×615300480132021001401515++===. 7.(2015湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.11[答案] (1)107; (2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,∴1(3,)5X B , 于是00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()P X C ===,3303141(3)()()125P X C ===,故X 的分布列为 X 的数学期望为()355E X =⨯=. 8.(2014天津)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.[答案] (1)设“选出的3名同学来自互不相同的学院”为事件A ,则()120337373104960C C C C P A C ??==.所以,选出的3名同学来自互不相同学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3.()346310k k C C P x k C -×==()0,1,2,3k =. 所以,随机变量X 的分布列是随机变量X 的数学期望()12362103050E X ??=+??.。

高中数学2-6正态分布同步课件北师大版选修

高中数学2-6正态分布同步课件北师大版选修


题型二
正态曲线及性质
(1)证明:f(x)是偶函数; (2)求f(x)的最大值;
(3)利用指数函数的性质说明f(x)的增减性.
[思路探索]本题综合考查统计的知识及函数的性质.用定义判定
函数奇偶性,用单调性法求最值,用增减性的定义结合指数函
数的性质判定函数的增减性.
规律方法
本题总结了标准正态分布的概率密度函数的一些性
(5)当σ一定时,曲线随着μ的变化而沿x轴平移,如图;
(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越 “瘦高”,表示总体的分布越集中;σ越大,曲线越“矮
胖”,表示总体的分布越分散,如图.
2.3σ原则 由P(μ-3σ<X≤μ+3σ)=0.997知,随机变量X在区间
(μ-3σ,μ+3σ)之外取值的概率为0.3%.于是若X~
2.正态分布中参数μ,σ的意义及其对正态分布曲线形状
的影响.(易混点) 3.利用正态分布解决实际问题.(难点)
自学导引
1.正态分布: 正态分布是现实中最常见的分布,它有两个重要的参数 均值
μ和方差σ2(σ>0)
,通常用 X~N(μ,σ2)
表示 X 服从参数
为 μ和σ2 的正态分布.正态分布的分布密度函数为: f(x) 2 x-μ 1 = exp- 2 ,-∞<x< +∞,其中 exp {g(x)} 2σ σ 2π . = eg(x)
3.正态分布密度函数的性质
(1)函数图像关于直线 x=μ 对称;
(2)σ(σ>0)的大小决定函数图像的“ 胖 ”“
(3)P(μ-σ<X<μ+σ)= P(μ-2σ<X<μ+2σ)= P(μ-3σ<X<μ+3σ)= ; 68.3% 95.4% ; 99.7% .

人教版高中数学课件-正态分布

人教版高中数学课件-正态分布
高考总复习 数学
第十六章 概率与统计(选修·理科)
高考总复习 数学
第十六章 概率与统计(选修·理科)
(2)P(-4<X≤4)=P(0-4<X≤0+4) =P(μ-σ<X≤μ+σ)=0.682 6. [點評與警示] 要確定一個正態分佈的概率密度函數的解 析式,關鍵是求解析式中的兩個參數μ,σ的值,其中μ決定曲線 的對稱軸的位置,σ則與曲線的形狀和最大值有關.
第十六章 概率与统计(选修·理科)
高考总复习 数学
第十六章 概率与统计(选修·理科)
高考总复习 数学
第十六章 概率与统计(选修·理科)
1.正態曲線與正態分佈
(1)函數 ,
其中實數μ和σ(σ>0)為參數.我們稱φμ,σ(x)的圖象為正態分佈密
度曲線,簡稱
正態曲線.
高考总复习 数学
第十六章 概率与统计(选修·理科)
3.(1)正態總體在三個特殊區間內取值的概率值.
P(μ-σ<X≤μ+σ)=
0.68;26P(μ-2σ<X≤μ+2σ)=
;P(0μ.-9534σ4<X≤μ+3σ)=
0.9974.
高考总复习 数学
第十六章 概率与统计(选修·理科)
(2)3σ原則
服 從 於 正 態 分 佈 N(μ , σ2) 的 隨 機 變 數 X 只 取
∴P(-2≤ξ≤2)=1-2×0.023=0.954,故選C.
[答案] C
高考总复习 数学
第十六章 概率与统计(选修·理科) 3.(2011·深圳一模)設隨機變數X~N(1,32),且P(X≤0)= P(X>a-6),則實數a的值為________.
[答案] 8
高考总复习 数学
第十六章 概率与统计(选修·理科)

正态分布-人教版高中数学

正态分布-人教版高中数学

知识图谱-正态分布正态分布的概念正态分布的性质与应用第04讲_正态分布错题回顾正态分布知识精讲一. 正态分布密度函数如果随机变量的概率密度函数,,我们称其图象为正态分布密度曲线. 其中是圆周率;是自然对数的底;是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为.二. 正态分布如果随机变量落在区间上的概率为,则称随机变量满足正态分布.正态分布由参数唯一确定,如果随机变量,根据定义有:.三. 正态曲线的性质正态曲线具有以下性质:(1)曲线在轴的上方,与轴不相交.(2)曲线关于直线对称.(3)曲线在时位于最高点.(4)当时,曲线上升;当时,曲线下降.并且当曲线向左、右两边无限延伸时,以轴为渐近线,向它无限靠近.(5)当一定时,曲线的形状由确定.越大,曲线越“矮胖”,表示总体越分散;越小,曲线越“瘦高”,表示总体的分布越集中.四. 标准正态曲线当时,正态总体称为标准正态总体,其相应的函数表示式是,,其相应的曲线称为标准正态曲线,标准正态分布记做.记,指总体取值小于的概率,则.任何正态分布的概率问题均可利用公式转化为标准正态分布的概率问题.五. 正态分布在三个特殊区间的概率值1. 原则在实际应用中,通常认为服从正态分布的随机变量只取之间的值,并简称为原则. 在此区间以外取值的概率只有0.0026,此为小概率事件.2. 三个特殊区间的概率值三点剖析一. 注意事项1. 参数是反映随机变量取值的平均水平的特征数,可以用样本均值去估计;是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.把的正态分布叫做标准正态分布;2. 正态分布是自然界中最常见的一种分布,许多现象都近似地服从正态分布,如长度测量误差,正常生产条件下各种产品的质量指标等;3. 一般的,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似地服从正态分布.题模精讲题模一正态分布的概念例1.1、设随机变量,若,则=()A、B、pC、D、例1.2、设随机变量X~N(μ,62),Y~N(μ,82).记p1=p(X≤μ-6),p2=p (Y≥μ+8),则有()A、p1=p2B、p1>p2C、p1<p2D、p1,p2大小关系无法判断例1.3、设有一正态总体,它的概率密度曲线是函数的图象,且,则这个正态总体的均值与标准差分别是( )A、10与8B、10与2C、8与10D、2与10例1.4、证明若服从()则一定有:.题模二正态分布的性质与应用例2.1、正态总体为,时,概率密度函数是:,.(1)证明是偶函数;(2)求的最大值;(3)利用指数函数的性质说明的增减性.例2.2、若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在以下设计的,如果某地成年男子的身高(单位:cm),则该地公共汽车门的高度应设计为多高?例2.3、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表Φ(x0)=P(x<x0)例2.4、从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z-N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.随堂练习随练1.1、若正态曲线函数为,则( )A、有最大值,也有最小值B、有最大值,没有最小值C、无最大值,也无最小值D、没有最大值,但有最小值随练1.2、若随机变量,且,,则等于()A、B、C、D、随练1.3、已知,若,则()A、0.2B、0.3C、0.7D、0.8随练1.4、设服从,试求:(1)(2)(3)(4)随练1.5、某校在模块考试中约有1000人参加考试,其数学考试成绩ξ~N(90,a2),(a>0试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的学生人数约为()A、200B、300C、400D、600随练1.6、某县农民平均收入服从元,元的正态分布.求:(1)此县农民年均收入在500元~520元之间的人数的百分比.(2)若要使农民的年均收入在()内的概率不小于0.95,则的值应至少为多大?随练1.7、一投资者在两个投资方案中选择一个,这两个投资方案的利润(万元)分别服从正态分布和,投资者要求利润超过5万元的概率尽量地大,那么他应选择哪一个方案?自我总结课后作业作业1、设随机变量,则的值为()A、1B、2C、D、4作业2、已知随机变量服从正态分布N(2,1),且P(1≤x≤3)=0.6826,则P(x <1)=()A、0.1588B、0.1587C、0.1586D、0.1585作业3、设随机变量ξ服从正态分布N(μ,σ2),且函数f(x)=x2+4x+ξ没有零点的概率为,则μ为()A、1B、4C、2D、不能确定作业4、以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于()A、Φ(μ+σ)-Φ(μ-σ)B、Φ(1)-Φ(-1)D、2Φ(μ+σ)C、Φ()作业5、在下列命题中,①“”是“”的充要条件;②的展开式中的常数项为2;③设随机变量,若,则.其中所有正确命题的序号是()A、②B、③C、②③D、①③作业6、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在90分以上(含90分)的学生有12名.(1)试问此次参赛学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表作业7、某厂生产的零件外直径(mm),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9 mm和7.5 mm,则可认为()A、上、下午生产情况均为正常B、上、下午生产情况均为异常C、上午生产情况正常,下午生产情况异常D、上午生产情况异常,下午生产情况正常。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.415
产品 尺寸 (mm)
25.475 25.535
复习
样本容量增大时 频率分布直方图
频率 组距
总体密度曲 线
产品 尺寸 (mm)
复习
样本容量增大时 频率分布直方图
频率 组距
总体密度曲 线
产品 尺寸 (mm)
引入
这个试验是英国科学家 高尔顿设计的,具体如下:在一 块木板上,订上n+1层钉子,第1 层2个钉子,第2层3个钉子,……, 第n+1层n+2个钉子,这些钉子 所构成的图形跟杨辉三角形 差不多.自上端放入一小球,任 其自由下落,在下落过程中小 球碰到钉子时,从左边落下的 概率是P,从右边落下的概率是 1-P, 碰 到 下 一 排 也 是 如 此 . 最 后落入底板中的某个格.
4、若X~N(5,1),求P(5<X<6), P(6<X<7).
20/3作业:
1、袋中有5个大小相同的小球,其中1个小球 和4个黑球,每次从中任取一球,每次取出的 黑球不再放回,直到取出白球为止,求取球数 X的期望和方差(必须先求分布列)
2、设X ~ N(1,1),求P(3 X 4)
3、设X ~ N(,1),求P( 3 X 2)
复习
100个产品尺寸的频率分布直方图
频率
各条形状面积有什么特点?
组距 为产品在该区间上的频率,所有的面积之和为1
25.235 25.295 25.355
25.415
产品 尺寸 (mm)
25.475 25.535
复习
200个产品尺寸的频率分布直方图
频率 组距
25.235 25.295 25.355
(5)方差相等、均数不等的正态分布图示
σ=0.5
μ=0 μ= -1
μ= 1
若 固定,
随值
的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
新知三——正态曲线的性质
(6)均数相等、方差不等的正态分布图示
μ=0
=0.5 =1
若 固定, 大
时, 曲线“矮而 胖”;
小时, 曲线 “瘦而高”, 故
新知二
/组距
y
f (x)
1
2
( x )2
e 2 2
x
(,)
O
图2.4 3
x
新知二
思考:你能否求出小球落
在(a, b]上的概率吗?
f (x)
1
2
e
(
x )2 2 2
x
(,0)
ab
若用X表示落下的小球第1次与高尔顿板底部接触时的 坐标,则X是一个随机变量. X落在区间(a,b]的概率(阴影部分的面积)为:
多少?
(2)若这次考试共有2000名考生,试估计考试成绩 在(80,100]间的考生大约有多少人?
补充例题5
练习:1、已知一次考试共有60名同学参加,考生的
成绩X~(100, 52 ),据此估计,大约应有57人的分
数在下列哪个区间内?( C)
A. (90,110] B. (95,125] C. (100,120] D.(105,115]
新知一
连续性随机变量的概率密度函数
f (x)
1
2
e
(
x )2 2 2
x (,)
3、正态曲线解析式的特点:
1
(4)解析式前有个正的系数为 2 ,后面是一个以e
为底数的指数型函数,其幂指数

(
x 2 2
)
2
是一个非正
数, 在两个位置出现,两者需一致
补充例题1
例1:下列函数是正态密度函数的是
, x (y , )
μ=1
σ=0.5
μ=0
σ=1
σ=2
-3 -2 -1 0 1 2 x -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 4 x
x=
x=
x=
(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=μ对称.
问:若正态曲线是偶函数,当且仅当它所对应的正 态总体的期望值为多少?
新知三——正态曲线的性质
y ( x)
μ= -1
1
e
(
x )2 2 2
y
2
, x (y , )
μ=1
σ=0.5
μ=0
σ=1
σ=2
-3 -2 -1 0 1 2 x -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 4 x
x=
x=
x=
(1)曲线在x轴的上方,与x轴不相交.
2
(2)、若 ~ N(1,0.25), 求2的概率密度函数
(3)、若随机变量的概率分布密度函数是
, (x)
2
2
2
( x2)2
e8
,
x

R,
求E(2
1)及
D(3 1)
新知三——正态曲线的性质
( x)
y
1
e
(
x )2 2 2
, x (, )
补充例题3
练习:
1、若一个正态分布的概率函数是一个偶函数且该函
数的最大值等于 1 ,求该正态分布的概率密度函数
的解析式。 4 2
y
2、如图,是一个正态曲线, 1
试根据图象写出其正态分布 2 的概率密度函数的解析式,
求出总体随机变量的期望和
方差。
5 10 15 20 25 30 35 x
新知三——正态曲线的性质
新知五——特殊区间的概率
P( X ) 0.6826, P( 2 X 2 ) 0.9544, P( 3 X 3 ) 0.9974.
我们从上图看到,正态总体在 2 , 2 以外取值的概率只有4.6%,在 3 , 3 以外
(2)曲线是单峰的,它关于直线x=μ对称.
(3)曲线在x=μ处达到峰值(最高点)
σ
1 2π
(4)曲线与x轴之间的面积为1。
新知三——正态ቤተ መጻሕፍቲ ባይዱ线的性质
正态总体的函数表示式
(1)当x
=
f(
μ
x)
x 1
(x)2
e 2 2
2
时,函数值为最大.

(,) y
(2)f (x) 的值域为
取值的概率只有0.3 %。 由当于a 这3些时概正率态值总很体小的(X 一取般值不几超乎总过取5 值%于)区,
间通(常 称3这, 些 情3况) 之发内生,为其小他区概间率取事值件几。乎不可能.在
实际运用中就只考虑这个区间,称为 3 原则.
补充例题5
例5、在某次数学考试中,考生的成绩 服从一个 正态分布,即 ~N(90,100). (1)试求考试成绩 位于区间(70,110]上的概率是
2.4 正态分布
正态分布在统计学中是很重要的分布。
离散型随机变量最多取可列个不同值,人们感兴趣 的是它取某些特定值的概率,即感兴趣的是其分布 列;
连续型随机变量可能取某个区间上的任何值,通常 感兴趣的是它落在某个区间的概率。它取任何一个 实数的概率都为0
离散型随机变量的概率分布规律用分布列描述,而 连续型随机变量的概率分布规律用密度函数(曲线) 描述。
D.以曲线b为概率密度曲线的总体的方差比以曲线a为 概率密度曲线的总体的方差大2。
新知四——正态曲线下的面概积率规律(重要)
1、X轴与正态曲线所夹面积恒等于1 2、对称区域面积相等。
S3 S4
S1
S2
μ-a μ+a
X=
新知四——正态曲线下的面概积率规律(重要)
• 对称区域面积相等。
S(-x1, -x2)
称 为形状参数。
=2

σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中.
新知三——正态曲线的性质
的意义
总体平均数反映总体随机变量的 平均水平
= μ
产品
尺寸
(mm)
x3
x4
x1
平均x数2
新知三——正态曲线的性质
的意义
总体平均数反映总体随机变量的 平均水平 总体标准差反映总体随机变量的
2、已知X~N (0,1),则X在区间 (, 2) 内取值的概率
等于( D )
A若.0X.95~44N (B,.0.024)5,6a为C一.0个.97实72数,D.则0.02P2(8X a) 0
3、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
P(2 X 2) = 0.9544 .
引入
为了更好地考察随着试验次数的增加 , 落在在各 个球槽内的小球分布情况, 我们进一步从频率的 角度探究一下小球的分布规律 .以球槽的编号为 横坐标,以小球落 入各个球槽内的频率值为纵坐
标,可以画出频率分布直方图. 组距为1 /组距
新知一
随着重复次数的增加,这个频率直方图的形状
会越来越y像一条钟形曲线图2.4 3.
集中与分散的程度
1
产品
2
尺寸 (mm)
平均数
补充例题4
例4、把一个正态曲线a沿着横轴方向向右移动2个单 位,得到新的一条曲线b。下列说法中不正确的是
(C )
A.曲线b仍然是正态曲线;
B.曲线a和曲线b的最高点的纵坐标相等;
C.以曲线b为概率密度曲线的总体的期望比以曲线a为 概率密度曲线的总体的期望大2;
(0,
1]
2
μ=0 σ=1
(3) f (x) 的图象关于 x =μ 对称. -3 -2 -1 0 1 2 3 x
相关文档
最新文档