医学统计学知识点笔记

合集下载

医科大学医学统计学重点知识总结

医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。

医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。

2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。

变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。

注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。

有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。

样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。

在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结医学统计学是医学研究中不可或缺的一部分,它涉及到数据的收集、分析和解释,帮助医学工作者从大量数据中提取有价值的信息。

以下是新版医学统计学的知识点归纳总结:1. 研究设计:研究设计是统计分析的前提,包括观察性研究和实验性研究。

观察性研究如队列研究、病例对照研究,而实验性研究如随机对照试验(RCT)。

2. 数据类型:医学统计学中的数据可分为定性数据和定量数据。

定性数据如性别、血型,定量数据如血压、体重。

3. 描述性统计:描述性统计用于描述数据集的特征,包括集中趋势(均值、中位数、众数)和离散程度(方差、标准差、极差)。

4. 概率分布:在统计学中,概率分布描述了随机变量取值的概率。

常见的分布有正态分布、二项分布和泊松分布。

5. 假设检验:假设检验是统计推断的核心,用于判断样本数据是否支持某个假设。

常见的检验方法有t检验、卡方检验和F检验。

6. 置信区间:置信区间提供了一个范围,用以估计总体参数的可能值。

95%的置信区间意味着有95%的把握认为总体参数落在这个区间内。

7. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响。

简单线性回归和多元线性回归是常见的回归分析方法。

8. 生存分析:生存分析关注个体生存时间的分布和相关因素,常用于肿瘤学和流行病学研究。

Kaplan-Meier估计和Cox比例风险模型是生存分析中的重要工具。

9. 诊断试验评价:诊断试验评价涉及敏感性、特异性、阳性预测值和阴性预测值等指标,用于评估诊断方法的准确性。

10. 样本量计算:样本量计算是研究设计的重要环节,它决定了研究的可行性和结果的可靠性。

样本量计算需要考虑效应大小、显著性水平和检验力。

11. 多变量分析:多变量分析用于同时考虑多个变量对结果的影响,如多元回归分析和判别分析。

12. 统计软件的应用:统计软件如SPSS、SAS和R在医学统计分析中扮演着重要角色,它们提供了数据处理和统计分析的功能。

医学统计学学习笔记

医学统计学学习笔记

医学统计学笔记一、绪论及基本概念1. 资料类型①计量资料(定量资料、数值变量资料):连续型、离散型②计数资料(定性资料、无序分类变量、名义变量):二分类、多分类③等级资料(半定量资料、有序分类变量)信息量:计量资料>等级资料>计数资料2.误差类型①过失误差:可避免②系统误差:具有明确的方向性,可避免③随机误差:分为随机测量误差和随机抽样误差,没有固定的大小和方向,不可避免3.核心概念参数:u、σ;固定的常数,总体的统计指标,参数大小客观存在,但往往未知。

统计量:X̅,S,P;样本的统计指标,参数附近波动的随机变量。

概率为参数,频率为统计量。

4.医学统计工作的基本步骤:设计、收集资料、整理资料、分析资料二、计量资料的统计描述1.集中趋势的描述a.算术均数,简称均数(mean):主要适用于对称分布或偏度不大的资料,尤其适合正态分布资料。

不能用于开口型资料。

u(总体均数),X(样本均数)。

b.几何均数(geometric mean,G):适用于经对数转换后呈对称分布。

观察值不能为0 、不能同时有正有负。

同一资料算得的几何均数小于算术均数。

c.中位数(median, M)和百分位数(precentile, Px):适用于各种分布类型资料。

当计量资料适合计算均数或几何均数时,不宜用中位数表示其平均水平。

用频数表法计算百分位数时,组距不一定要相等。

P x=L x+i x(n∗x%−∑f L)f xL x:第x百分位数所在组段的下限i x:第x百分位数所在组段的组距f x:第x百分位数所在组段的频数∑f L:第x百分位数所在组段上一组段累计频数d.调和均数(harmonic mean,H):适用于表达呈极严重的正偏态分布资料的平均水平。

计算方法为求倒数的均值后再取其倒数。

SPSS:在Transform中输入公式。

2.离散(dispersion)趋势的描述a.极差(range,R):也称为全距。

b.四分位数间距(quartile range,Q):即统计图中箱子的高度,常用于偏态资料离散度的描述,多与M 合用。

2024年度-医学统计学重点笔记一复习必备

2024年度-医学统计学重点笔记一复习必备
u分布
即标准正态分布,当样本量足够大时(n>30),t分布近似u分布。
14
总体均数置信区间估计
置信区间的概念
按一定的置信水平(1-α),根据样 本统计量估计总体参数所在的范围。
置信区间的计算
根据样本均数、标准差和样本量计算 置信区间。常用的置信水平为95%和
99%。
置信区间的意义
表示总体参数有100(1-α)%的可能性 落在此区间内。
适用条件
01
R×C列联表资料,即多行多列列联表,用于分析两个多分类变
量之间的关联。
检验统计量
02
卡方值,计算公式为χ2=∑(O-E)2/E,其中O为观察频数,E为
理论频数。
拒绝域
03
根据自由度和显著性水平确定拒绝域,自由度为(R-1)(C-1)。
29
配对设计四格表资料卡方检验
01
适用条件
配对设计四格表资料,即两个相 关样本的二分类变量之间的关联 分析。
26
06
卡方检验
27
四格表资料卡方检验
适用条件
四格表资料,即2×2列联表,用于分析两个二分类变量之间的关联。
检验统计量
卡方值,计算公式为χ2=(ad-bc)2N/(a+b)(c+d)(a+c)(b+d),其 中N为样本总量。
拒绝域
根据自由度和显著性水平确定拒绝域,自由度为1。
28
R×C列联表资料卡方检验
正态分布在医学中的应用 许多医学指标如身高、体重、血压等服从或近似服从正态 分布;在估计医学参考值范围、质量控制等方面有广泛应 用。
正态性检验方法 图形法(直方图、P-P图、Q-Q图)、计算法(偏度系数 和峰度系数检验、Shapiro-Wilk检验、KolmogorovSmirnov检验等)。

医学统计学学习笔记

医学统计学学习笔记

医学统计学学习笔记第一章绪论冉美岭康复0931班学号09260431201、医学统计学:是运用数理统计、概率论的原理和方法于医学科研和实践,研究医学资料和信息的收集、整理和分析的一门应用科学。

统计方法的两个特点:用数量反映质量,利用样本推断总体。

2、医学统计学的意义:为了预防疾病,研究病因,促进健康,必须运用医学统计学方法透过偶然现象来探其规律性,得出科学推断。

3、总体:是根据研究目的所确定的同质的研究对象的全体。

4、样本:是根据随机的原则从总体中抽出有代表性的一部分观察单位。

5、描述总体特征的有关指标称为参数:如总体平均数、总体标准差、总体率等。

6、反映样本特征的有关指标称为统计量:如样本均数、样本标准差、样本率等。

7、抽样误差是不可避免的,一般来说,样本越大则抽样误差越小,越和总体的情况相接近,用样本推断总体的精确度越高,反之亦然。

8、随机化:是抽样研究和抽样分配时十分重要的原则。

具有代表性、随机性、独立性、可比性。

9、概率:是描述某事件发生的可能性大小的一个量度。

10、医学统计资料的类型:①计量资料:是对每个观察单位用定量方法测定某项指标量的大小,一般有度量衡单位。

②计数资料:是将观察单位按某种属性或类别分组,所得各组的观察单位数,没有度量衡单位。

③等级资料:是将观察单位按某种属性的不同程度分组,所得各组的观察单位数。

11、医学统计工作的基本步骤:①统计设计②搜集资料③整理资料④分析资料第二章计量资料的统计描述1、计量资料的统计描述分为两个方面:集中趋势、离散趋势2、频数表:是一种统计表:即同时列出观察值的可能取值及其出现的频数。

3、频数表的编制步骤:①计算全距R=X max—X min②确定拟分组数(k)和组距(i),根据全距的大小和组段数来计算组距i= R K③划分组段:划分组段的基本要求是第一个组段应包括最小值,最后一个组段应包括最大值。

各组段只包含下限值但不包含上限值,故在列组段时只列出下限值,不列出上限值,但最后一个组段要依据具体情况进行封口,即要同时列出下限值和上限值。

医学统计学复习笔记

医学统计学复习笔记

统 计1. 统计工作步骤: 研究设计、收集资料、整理资料、分析资料 。

2. 定量资料: 以定量值表达每个观察单位的某项观察指标,如血脂、心率等,各观察值 间只有量的差别,有连续性。

3. 定性资料: 以定性方式表达每个观察单位的某项观察指标,如血型、性别等,各观察 值间有质的区别,无连续性。

4. 等级资料: 以等级方式表达每个观察单位的某项观察指标,如疗效等级,各观察值间 有质的区别,无数值大小5. 总体:是指按照研究目的所确定的研究对象中所有观察单位某项指标取值的集合。

分 为有限和无限两种。

6. 样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。

7. 同质性:同一总体或其样本的观察单位在取值方面必须有相同的性质,称为同质性。

8. 描述某总体特征的指标称为参数;描述样本特征的指标称为统计量。

9. 概率:是指随机事件发生的可能性的大小的一个度量,常用 P 表示,其小于等于 0.05 时称为小概率事件。

10. 变异: 是以具有统治性的观察单位为载体, 某项观察指标在其观察单位之间现实的 差别。

包括同质事物间的、不同观察单位间的、同一单位不同阶段的差别。

11. 整理数据最有效的形式是频数分布,根据频数分布可以初步判断指标分布的特征是 集中趋势还是离散趋势, 发现某些特大或特小的可疑值,揭示资料分布类型,便于资 料进一步分析。

12. 频数分布分为对称分布和非对称分布, 非对称分布又称为偏态分布, 包括正偏态(大 ——小)和负偏态(小——大) 。

13. 集中趋势指标: 1) 算术均数(Xbar ),最适合单峰对称资料; 2) 几何均数(G),如 抗体滴度、细菌计数,应用于等比数列、对数数列; 3)中位数(M )和百分位数,适 用于偏态分布、开口资料、分布不明资料。

14. 离散趋势指标: 1)全距(R ),又称极差,极差大说明变异度大; 2)四分位间距; 3) 方差和标准差(s ),标准差大离散程度大,及波动明显; 4) 变异系数 CV=标准差/均 数,可应用于单位不同的两组资料或均数相差悬殊的两组资料。

医学统计学知识点总结

医学统计学知识点总结

知识点1.统计学是应用概率论和数理统计的基本原理和方法,研究数据的搜集、整理、分析、表达和解释的一门学科。

2.医学统计学是应用统计学的基本原理和方法,研究医学及其有关领域数据信息的搜集、整理、分析、表达和解释的一门学科。

3.统计软件包是对资料进行各种统计处理分析的一系列程序的组合。

4.统计工作的基本步骤:研究设计、搜集资料、整理资料和分析资料。

5.科研结果的好坏取决于研究设计的好坏,研究设计是统计工作中的基础和关键,决定着整个统计工作的成败。

6.统计分析包括统计描述和统计推断。

统计描述是对已知的样本(或总体)的分布情况或特征值进行分析表述;统计推断是根据已知的样本信息来推断未知的总体。

7.医学原始资料的类型有:计量资料、计数资料、等级资料。

8.计量资料是用定量的方法对每一个观察单位的某项指标进行测定所得的资料。

9.计数资料是把观察单位按某种属性(性质)或类别进行分组,清点各组观察单位数所得资料。

10.等级资料是把观察单位按属性程度或等级顺序分组,清点各组观察单位数所得资料。

各属性之间有程度的差别。

等级资料的等级顺序不能任意颠倒。

11.同质:是指所研究的观察对象具有某些相同的性质或特征。

12.变异:是同质个体的某项指标之间的差异,即个体变异或个体差异性。

13.总体是根据研究目的确定的同质研究对象的总体。

样本是总体中具有代表性的一部分个体。

14.抽样研究是通过从总体中随机抽取样本,对样本信息进行分析,从而推断总体的研究方法。

抽样误差是由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异,其根源在于总体中的个体存在变异性,只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。

15.统计学的主要任务是进行统计推断,包括参数估计和假设检验。

16.概率是某随机事件发生可能性大小(或机会大小)的数值度量。

概率的取值为0≤P≤1。

小概率事件是指P≤0.05的随机事件。

17.频数表和频数分布图的用途:(1)揭示计量资料的分布类型。

医学统计学重点终极笔记

医学统计学重点终极笔记

医学统计学重点终极笔记Medical Statistics【Introduction】医学统计工作的内容⒈实验设计:最关键、最重要⒉收集资料:最基础[原始资料] 实验数据,现场调查资料,医疗卫生工作记录、报告、报表质量控制:精度和偏倚⒊整理资料:资料的逻辑、一致性检查,原始数据的加工(频数分布表)⒋分析资料:统计描述(表、图、离散趋势、集中趋势)和统计推断资料的类型⑴计量资料:定量方法测定数值大小所得的资料⑵计数资料:按性质或类别分组,然后计数⑶等级分组资料:具有计数资料的特性,又有半定量的性质(“+ , -”表示)变异:不同个体在相同环境下,对外界环境因素发生的不同反应,即个体差异总体:同质的个体所构成的全体。

[同质性,大量性,差异性]样本:从总体中抽取部分个体的过程称为抽样,所抽得的部分是样本。

样本包含的个体数目称为样本含量样本的特征:⑴代表性⑵随机性⑶可靠性*抽样的要求:代表性,随机性,可靠性,可比性完全随机设计:将受试对象随机分配到各处理组或对照组中,或分别从不同总体中随机抽样进行研究。

可为两样本或多样本得比较,但样本含量不宜相差太大。

随机区组设计:也称配伍设计,是配对设计的扩展。

配对设计的每一“对子”中的受试对象分别随机分到两个处理组中,而配伍组设计中的每个“配伍组”,包含多个受试对象,要将它们分别随机分到各处理组中。

误差:泛指观测值与真实值之差,以及样本统计量与总体参数之差⑴系统误差:在收集资料过程中,由于仪器调整、试剂校验、医生对疗效的掌握等因素,造成观察结果倾向性的偏大活偏小。

要尽量查明原因,必须克服。

⑵随机测量误差:在收集资料过程中,即使系统误差已经避免,由于各种偶然因素的影响造成对同一对象多次测定的结果不完全一致。

譬如操作员技术、电压、环境温度的差异。

没有固定的倾向,时高时低;应采取措施加以控制。

⑶抽样误差:由抽样不同引起的样本均数与总体均数之间的差异。

原因是个体之间存在变异,抽样时只能抽取总体的一部分作为样本。

医学统计学知识点

医学统计学知识点

医学统计学知识点医学统计学是一门应用统计学方法和原理,研究医学领域中数据的收集、整理、分析和解释的科学。

它为医学研究、临床实践和公共卫生决策提供了重要的工具和方法。

下面让我们来了解一些关键的医学统计学知识点。

一、数据类型在医学研究中,我们会遇到不同类型的数据。

主要包括:1、定量数据:也称为数值数据,是可以用数字进行测量和记录的数据,如身高、体重、血压等。

定量数据又可分为连续型数据(可以在一定区间内取任意值,如身高)和离散型数据(只能取整数,如白细胞计数)。

2、定性数据:也称分类数据,是按照某种属性或类别进行划分的数据,如性别(男、女)、疾病的诊断(是、否)等。

定性数据又分为无序分类数据(各类别之间没有顺序关系,如血型)和有序分类数据(各类别之间有顺序关系,如疾病的严重程度分为轻、中、重)。

二、数据的收集为了获得准确和有用的数据,我们需要遵循科学的方法进行收集。

1、抽样方法:包括简单随机抽样、系统抽样、分层抽样和整群抽样等。

简单随机抽样是从总体中随机抽取个体;系统抽样是按照一定的间隔抽取样本;分层抽样是将总体按照某些特征分层,然后从各层中抽样;整群抽样则是以群体为单位进行抽样。

2、样本量的确定:样本量的大小取决于研究的目的、总体的变异程度、研究的精度和检验效能等因素。

一般来说,样本量越大,结果的准确性越高,但研究成本也会增加。

三、数据的整理收集到数据后,需要对其进行整理,以便后续的分析。

1、频数分布:将数据按照不同的类别或区间进行分组,计算每组的频数(出现的次数)和频率(频数与总例数的比值),可以了解数据的分布特征。

2、统计图表:常用的图表有直方图、折线图、饼图等,用于直观地展示数据的分布和趋势。

四、描述性统计描述性统计是对数据的基本特征进行概括和描述。

1、集中趋势的描述:包括算术均数、中位数和众数。

算术均数适用于正态分布的数据;中位数适用于偏态分布或分布不明的数据;众数是出现次数最多的数据值。

2、离散程度的描述:常用的指标有标准差、方差和极差。

医学统计学重点终极笔记

医学统计学重点终极笔记

Medical Statistics【Introduction】医学统计工作的内容⒈实验设计:最关键、最重要⒉收集资料:最基础[原始资料] 实验数据,现场调查资料,医疗卫生工作记录、报告、报表质量控制:精度和偏倚⒊整理资料:资料的逻辑、一致性检查,原始数据的加工(频数分布表)⒋分析资料:统计描述(表、图、离散趋势、集中趋势)和统计推断资料的类型⑴计量资料:定量方法测定数值大小所得的资料⑵计数资料:按性质或类别分组,然后计数⑶等级分组资料:具有计数资料的特性,又有半定量的性质(“+ , -”表示)变异:不同个体在相同环境下,对外界环境因素发生的不同反应,即个体差异总体:同质的个体所构成的全体。

[同质性,大量性,差异性]样本:从总体中抽取部分个体的过程称为抽样,所抽得的部分是样本。

样本包含的个体数目称为样本含量样本的特征:⑴代表性⑵随机性⑶可靠性*抽样的要求:代表性,随机性,可靠性,可比性完全随机设计:将受试对象随机分配到各处理组或对照组中,或分别从不同总体中随机抽样进行研究。

可为两样本或多样本得比较,但样本含量不宜相差太大。

随机区组设计:也称配伍设计,是配对设计的扩展。

配对设计的每一“对子”中的受试对象分别随机分到两个处理组中,而配伍组设计中的每个“配伍组”,包含多个受试对象,要将它们分别随机分到各处理组中。

误差:泛指观测值与真实值之差,以及样本统计量与总体参数之差⑴系统误差:在收集资料过程中,由于仪器调整、试剂校验、医生对疗效的掌握等因素,造成观察结果倾向性的偏大活偏小。

要尽量查明原因,必须克服。

⑵随机测量误差:在收集资料过程中,即使系统误差已经避免,由于各种偶然因素的影响造成对同一对象多次测定的结果不完全一致。

譬如操作员技术、电压、环境温度的差异。

没有固定的倾向,时高时低;应采取措施加以控制。

⑶抽样误差:由抽样不同引起的样本均数与总体均数之间的差异。

原因是个体之间存在变异,抽样时只能抽取总体的一部分作为样本。

医学统计学知识点汇总

医学统计学知识点汇总

医学统计学知识点汇总医学统计学是指应用统计学原理和方法进行医学研究设计、数据分析和结果解释的学科。

医学统计学的知识点非常丰富,包括统计学基础知识、研究设计、样本量计算、控制方法、参数估计、假设检验和数据分析等方面。

以下是医学统计学知识点的一些精华汇总。

1.统计学基本概念:包括基本统计量(均值、中位数、众数)、数据类型(定量数据、定性数据)、数据的描述方法(频数分布表、直方图等)。

2.研究设计:包括随机对照试验、队列研究、病例对照研究等,了解不同研究设计的优缺点及适用场景。

3.样本量计算:确定研究样本量是保证研究结果可靠性的重要一环,需要根据研究目的、效应量和统计显著性水平确定样本量。

4.控制方法:包括随机分组、盲法、配对设计等,用于减少实验误差和避免偏倚。

5.参数估计:常用的参数估计方法有点估计和区间估计。

点估计是通过样本数据得到总体参数的一个点估计值,区间估计是对总体参数的一个区间估计。

6.假设检验:假设检验是用来判断样本数据与总体假设之间的差异是否显著的统计方法。

常用的假设检验方法有t检验、卡方检验、方差分析等。

7.数据分析:包括描述性统计分析和推断性统计分析。

描述性统计分析用来描述研究变量的基本情况,推断性统计分析用来推断样本数据与总体数据之间的关系。

8.相关分析:用来分析变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼等级相关系数等。

9. 回归分析:用来分析因变量与自变量之间的关系,包括线性回归分析和 logistic回归分析等。

10.生存分析:用来分析时间到达事件发生的概率,包括生存曲线的绘制、生存率的估计和影响因素的分析等。

11. 多变量分析:用来分析多个自变量对因变量的影响,包括多元方差分析、多元回归分析和多元Logistic回归分析等。

12. Meta分析:用于综合多个独立研究结果,对总体效应进行定量分析和综合评价。

以上是医学统计学的一些精华知识点的汇总。

医学统计学的应用非常广泛,不仅在医学研究中需要应用统计学的原理和方法,也在临床实践中需要对医学统计学知识有一定的了解和应用。

医学统计学重点整理汇总

医学统计学重点整理汇总

医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。

样本:从总体中随机抽取部分个体的某个变量值的集合。

总体参数:刻画总体特征的指标,简称参数。

是固定不变的常数,一般未知。

统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。

抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。

频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。

称m/n为事件A在n次试验中出现的频率或相对频率。

概率:频率所稳定的常数称为概率。

统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。

统计推断:包括参数估计和假设检验。

用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。

用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。

2.样本特点:足够的样本含量、可靠性、代表性。

3.资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料。

是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。

每个个体都能观察到一个观察指标的数值,有度量衡单位。

(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。

包括二分类资料和多分类资料。

二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。

多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。

4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析。

第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。

3.实验设计的三个基本原则:对照原则、随机化分组原则、重复原则。

医学统计学_总结_重点_笔记_复习资料

医学统计学_总结_重点_笔记_复习资料

第一章2选1总体:总体(population)是根据研究目的确定的同质观察单位(研究对象)的全体,实际上是某一变量值的集合。

可分为有限总体和无限总体。

总体中的所有单位都能够标识者为有限总体,反之为无限总体。

总体population根据研究目的而确定的同质观察单位的全体。

样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。

样本应具有代表性。

所谓有代表性的样本,是指用随机抽样方法获得的样本。

样本sample从总体中随机抽得的部分观察单位,其实测值的集合。

3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件。

P值:P 值即概率,反映某一事件发生的可能性大小。

统计学根据显著性检验方法所得到的P 值反应结果真实程度,一般以P ≤ 0.05 认为有统计学意义, P ≤0.01 认为有高度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。

P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。

2) 拒绝原假设的最小显著性水平。

3) 观察到的(实例的) 显著性水平。

4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。

小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。

统计学中,一般认为等于或小于0.05或0.01的概率为小概率。

资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。

计量资料亦称定量资料、测量资料。

.其变量值是定量的,表现为数值大小,一般有度量衡单位。

如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。

计量资料measurement data定量资料quantitative data数值变量资料numerical variable为观测每个观察单位某项指标的大小,而获得的资料。

医学统计学-知识梳理

医学统计学-知识梳理

均数±2.58标准差: 表示集中位置、离散程度均数±2.58标准误: 表示平均水平、抽样误差大小P75一、标准差的主要作用是估计正常值的范围实际应用中, 估计观察值正常值范围应该用标准差(s), 表示为“Mean ±SD”。

此写法综合表达一组观察值的集中和离散特征的变异情况, 说明样本平均数对观察值的代表性。

s 的大或小说明数据取值的分散或集中。

s与样本均数合用, 主要是在大样本调查研究中, 对正态或近似正态分布的总体正常值范围进行估计。

如果不是为了正常值范围估计, 一般不用。

当数据与正态分布相差很大, 或者虽为正态分布, 但样本容量太小(小于30 或100), 也不宜用估计正常值范围。

二、标准差还可用来计算变异系数(CV)当两组观察值单位不同, 或两均数相差较大时, 不能直接用标准差比较其变异程度的大小, 须用变异系数系数来做比较。

:2.2 标准误的正确使用一、标准误用来衡量抽样误差的大小和了解用样本平均数来推论总体平均数的可靠程度。

在抽样调查中, 往往通过样本平均数来推论总体平均数, 样本标准误适用于正态或近似正态分布的数据, 是主要描述小样本试验中, 样本容量相同的同质的多个样本平均均数间的变异程度的统计量。

即如果多次重复同一个试验, 它们之间的变异程度用。

显然它越小, 样本平均数变异越小, 越稳定, 用样本平均数估计总体均数越可靠。

因此, 为说明它的稳定性、可靠性或通过几个对几组数据进行比较(这是科研论文中最常见的), 应当用描述数据。

实际应用中应该写成“平均数±标准误”或而英文表示为“Mean ±SE”的形式。

二、标准误还可以进行总体平均数的区间估计与点估计(置信区间)。

根据正态分布原理, 与合用还可以给出正态总体平均数的可信区间估计即推论总体平均数的可靠区间, 例如常用(其中t0.05 (n-1) 为样本容量是n的t界值)表示总体均值的95%可信区间, 意指总体平均数有95%的把握在所给范围内。

卫生统计学知识点(笔记)

卫生统计学知识点(笔记)

第一章绪论1.统计学(statistics)是一门处理数据中变异性的科学与艺术,内容包括收集、分析、解释和表达数据,目的是求得可靠的结果。

2.▲总体(population)用来表示大同小异的对象全体,例如一个国家的所有成年人;某地的所有小学生。

可分为目标总体和研究总体。

若试图对某个总体下结论,这个总体便称为目标总体(target population);资料常来源于目标总体中的一个部分,它称为研究总体(study population)。

需要谨慎的是,就研究总体所下的结论未必适用于目标总体。

3.▲样本(sample)是指从研究总体中抽取的一部分有代表性的个体。

获取样本的过程称为抽样(sampling)。

抽样研究的目的是用样本数据推断总体的特征。

需要注意的是,统计学的结论从来就不是完全肯定或完全否定的,能不能成功地达到从样本推断总体的目的,关键是抽样的方法、样本的代表性和推断的技术。

4.▲同质(homogeneity)是指同一总体中个体的主要性质相同。

5.▲变异(variation)是指同质的个体之间存在的差异。

6.▲变量的类型二分类变量分类变量或名义变量定性变量多分类变量变量有序变量或等级变量定量变量离散型变量连续型变量变量的转化:只能由“高级”向“低级”转化,即由信息量多的向信息量少的类型转化,如:定量有序分类二值7.▲参数(parameter)是反映总体特征的指标,参数的大小是客观存在的,是一个常数,不会发生变化,然而往往是未知的,需要通过样本资料来估计,如总体均数μ,总体标准差σ。

8.▲统计量(statistic)又称样本统计量,是反映样本特征的指标,是由观察资料计算出来的,如样本均数 X,样本标准差S。

统计学的任务就是依据样本统计量来推断总体参数。

9.▲概率与频率的区别:概率是参数,频率是统计量;频率总是围绕概率上下波动。

当某事件发生的概率≤0.05时,即P≤0.05,统计学习惯上称该事件为小概率事件。

医学统计学知识点

医学统计学知识点

医学统计学知识点医学统计学是医学中的重要分支,通过对医学数据的收集、整理、分析和解释,帮助医生和研究人员更好地理解疾病的发病规律和治疗效果。

下面将介绍一些医学统计学中常见的知识点。

一、数据类型在医学统计学中,数据通常分为定性数据和定量数据两种类型。

定性数据是指具有类别属性的数据,如性别、疾病类型等;定量数据是指可进行加减乘除等运算的数据,如血压、体重等。

二、描述统计学描述统计学是对收集到的数据进行整理、汇总和描述的过程,包括频数分布、中心趋势和离散程度等指标。

通过描述统计学可以更直观地了解疾病的流行病学特征。

三、推断统计学推断统计学是通过对小样本数据进行推断,得出对总体的推断结论。

常见的方法包括假设检验、置信区间估计和方差分析等。

推断统计学在临床研究和药物试验中有重要应用。

四、生存分析生存分析是研究事件发生时间和生存时间的统计方法,常用于临床预后评估和生存曲线绘制。

生存分析可以帮助医生评估疾病的进展速度和治疗效果。

五、因子分析因子分析是研究多个变量之间的关联性和内在结构的统计方法,常用于疾病危险因素的筛选和分类。

通过因子分析可以揭示疾病的复杂发病机制和影响因素。

六、线性回归线性回归是研究两个或多个变量之间线性关系的统计方法,可用于分析疾病风险因素和疗效预测。

线性回归可以帮助医生更好地控制干预措施,提高治疗效果。

综上所述,医学统计学是医学研究和临床实践中不可或缺的工具,掌握相关知识点可以更好地帮助医生理解和解释医学数据,促进疾病防控和治疗水平的提高。

希望本文介绍的医学统计学知识点能够为医学工作者提供参考和帮助。

感谢阅读!。

职称考试卫生统计学重点学习笔记.

职称考试卫生统计学重点学习笔记.

卫生统计学第一章统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。

2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。

3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。

第二节、统计学的几个重要概念一.资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。

一般有度量衡单位,每个对象之间有量的区别。

2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。

每个对象之间没有量的差异,只有质的不同。

3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。

注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。

二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。

2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。

从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。

四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。

亦称偶然事件。

五、概率描述随机事件发生可能性大小的数值,记作P,其取值范围0≤P≤1,一般用小数表示。

P=0,事件不可能发生必然事件(随机事件的特例);P=1,事件必然发生;P→0,事件发生的可能性愈小;P→1,事件发生的可能性愈大六、小概率事件习惯上将P≤0.05或P≤0.01 的随机事件称小概率事件。

表示某事件发生的可能性很小。

七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012 级临床五年五班 LCM勤医学统计学笔记——xxx 级临床x 年x 班整理一.绪论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。

2,医学统计学的主要内容:1)统计研究设计 调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。

A :资料的搜集与整理B :常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图C : 统计推断,如参数估计和假设检验。

3)医学多元统计方法 多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic 回归与Cox 回归分析。

3,统计工作步骤:1)设计 明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。

2)搜集材料A , 搜集材料的原则 及时、准确、完整B , 统计资料的来源医学领域的统计资料的来源主要有三个方面。

一是统计报表,二是经常性工作记录,三是专题调查或专题实验。

C , 资料贮存3)整理资料 a 检查核对b 设计分组c 拟定整理表d 归表4)分析资料 统计分析包括统计描述和统计推断4,同质(homogeneity ):指被研究指标的影响因素相同。

变异(variation):同质基础上的各观察单位间的差异。

变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。

变量类型变量值表现实例资料类型离散型产前检查次数计量资料数值变量连续型定量测量值,有计量单位身高二分类对立的两类属性性别(男女)无序多分类不相容的多类属性血型(A,B,O,AB )计数资料分类变量有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population )根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。

总体统计量(statistics)描述样本变量值特征的指标(样本率,样本均数,样本标准差)。

参数(parameter)描述总体变量值特征的指标(总体率,标准差,总体均数)。

抽样误差(samplingerror):由于个体差异的存在,即使在同一整体中随机抽取若干样本,各样本的统计量往往不等,统计量与参数也会有所不同。

这种因抽样研究引起的差异称抽样误差。

随机事件(random event)对随机试验的各种可能结果的集合。

概率(probability)描述随机事件发生的可能性大些哦的一个度量。

小概率事件若随机事件 A 的概率P(A)≤α,习惯上,α=0.05时,就称 A 为小概率事件。

其统计学意义是小概率事件在一次随机试验中认为不会发生。

抽样误差1,抽样误差(sampling error)由抽样而造成的样本统计量与总体参数之间的差异或各样本统计量之间的差异。

在医学统计学中,常把由抽样造成的样本均数与总体均数间的差异称为均数的抽样误差;由抽样造成的样本率与总体率之间的差异称为率的抽样误差。

2,样本均数的标准差(简称标准误,standard error)反映均数的抽样误差大小的指标。

大,抽样误差大;反之,小,抽样误差小。

(3.1)实际工作中往往未知的,可用样本标准差s 作的估计值,计算标准误的估计值。

(3.2)3,标准误的用途:a,衡量样本均数的可靠性;b,估计总体均数的置信区间;3,用于均数的假设检验。

4,标准误的估计值的用途:a,描述抽样误差的大小;b,总体参数的估计;c,用来进行假设检验。

5,率的抽样误差:由抽样造成的样本率与总体率的差异称为率的抽样误差。

衡量率的抽样误差大小的指标是率的标准误。

越小,率的抽样误差越小;越大,率的抽样误差越大。

(3.3)其中为总体率。

实际工作中,由于往往是未知的,可用样本率 p 作的估计值,计算率的标准误的估计值。

(3.4)。

标准差(s )标准误(1)表示观察值的变异程度(1)估计均数的抽样误差的大小(2)估计总体均数的可信区间计算公式s=(1)计算变异系数 CV=100%(,)(1)确定医学参考值范围(3)进行假设检验(2)计算标准误简述标准差、标准误的区别与联系?区别:(1)含义不同:标准差 S 表示观察值的变异程度,描述个体变量值(x)之间的变异度大小,S 越大,变量值(x)越分散;反之变量值越集中,均数的代表性越强。

标准误估计均数的抽样误差的大小,是描述样本均数之间的变异度大小,标准误越大,样本均数与总体均数间差异越大,抽样误差越大;反之,样本均数越接近总体均数,抽样误差越小。

(2)与n 的关系不同: n 增大时,S趋于σ(恒定),标准误减少并趋于 0(不存在抽样误差)。

(3)用途不同:标准差表示x的变异度大小、计算变异系数、确定医学参考值范围、计算标准误等,标准误用于估计总体均数可信区间和假设检验。

联系:二者均为变异度指标,样本均数的标准差即为标准误,标准差与标准误成正比。

标准差:标准误:二.分布正态分布1,正态分布的函数其中为总体均数,为总体标准差,为圆周率,为自然对数的底,且仅为变量。

以为横轴,以为纵轴,当均数和标准差已知时即可绘出正态分布曲线。

为应用方便,将式中进行变量变换,使原来的正态分布变为的标准正态分布,亦称分布。

被称为标准正态变量或标准正态离差,将代入上述公式即得标准正态分布的密度函数。

(2.17)(2.18)2,正态分布的特征(1)正态曲线(normal curve)在横轴上方均数处最高。

(2)正态分布以均数为中心,左右对称。

(3)正态分布有2 个参数(parameter),即均数(位置)和标准差(形状)。

当固定不变时,越大,曲线沿横轴越向右移动;反之,越小,则曲线沿横轴越向左移动。

当固定不变时,越大,曲线越平阔;越小,曲线越尖峭。

通常用N(,)表示均数为、方差为的正态分布。

用(0,1)表示标准正态分布。

(4)正态分布在1处各有一个拐点。

(5)正态曲线下面积的分布有一定规律。

3,常用的两个区间: 1.96及 2.58的区间面积分别占总面积的95%及99%。

4,正态分布的应用1),制定医学参考值范围a,正态分布法适用于正态或近似正态分布的资料双侧界值:;单侧上界:,或单侧下界:。

b,对数正态分布法适用于对数正态分布资料双侧界值:;单侧上界:,或单侧下界c,百分位数法常用于偏态分布资料及资料中一端或两端无确切数值的资料。

双侧界值:和;单侧上界:,或单侧下界:。

2)正态分布是多种统计方法的理论基础如t 分布,F 分布,分布都是在正态分布的基础上推导出来的,分布也是以正态分布为基础的。

另外t 分布,二项分布,poisson1,t 分布:(3.5)t 分布的特征为:1.以0 为中心,左右对称的单峰分布。

2.t 分布曲线形态变化与自由度的大小有关。

自由度越小,则t值越分散,曲线越低平;自由度逐渐增大时,则t分布逐渐逼近正态分布(标准正态分布)。

当= 时,t 分布为u 分布。

t界值表附图中非阴影部分面积的概率为:2,总体均数的估计:用样本指标估计总体参数称为参数估计,是统计推断的一个重要方面。

总体均数的估计有2 种方法。

一是直接用统计量估计总体参数,称为点值估计。

由于抽样误差的存在,此法很难估计准确。

二是区间估计(interval estimation)法。

区间估计是按一定的概率100(1- )%估计总体均数所在的范围,亦称可信区间(confidence interval,CI)。

常取的可信度为95%和99%,即95%可信区间和99%可信区间。

计算方法有3 种:(1)未知且n 小按t 分布原理用式(3.6)计算可信区间。

由于将代入,得则总体均数的100 (1- )% 可信区间的通式为:(3.6 )或写成(,)。

(2)未知,但n 足够大时(n>100)t 分布逼近u 分布,按正态分布原理,用式(3.7)估计可信区间。

()(3.7)(3)已知按正态分布原理,用式(3.8)估计可信区间。

()(3.8)标准正态分布(u 分布)与t 分布有何异同?答:相同点:t 分布和标准正态分布(u 分布)都是以0 为中心的正态分布。

标准正态分布是t 分布的特例(自由度是无限大时)。

不同点:t 分布为抽样分布,u 分布为理论分布;t 分布比标准正态分布的峰值低,且尾部翘得更高;t 分布受自由度大小的影响,随着自由度的增大,逐渐趋近于标准正态分布;t 分布有无数条曲线,而u 分布只有唯一一条曲线。

二项分布1,二项分布(binomial distribution)是对只具有 2种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

二项分布概率公式:(3.9)式中n 为独立的贝努力试验次数,为成功的概率,(1- )为失败的概率,X 为在n次贝努力试验中出现“成功”的次数,表示在n 次试验中出现X 的各种组合数,在此称为二项系数(binomial coefficient)。

2,二项分布的应用条件:(1)各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡。

(2)已知发生某一结果(阳性)的概率为,其对立结果的概率为1-,实际工作中要求是从大量观察中获得比较稳定的数值。

(3)n次试验在相同条件下进行,且各个观察单位的观察结果相互独立。

3,二项分布的性质:A,二项分布的均数和标准差在二项分布的资料中,当和n 已知时,它的均数及其标准差如下:=n(3.11)(3.12)若均数和标准差不用绝对数表示,而是用率表示时,即对式(3.11)(3.12)分别除以n,得:(3.13)(3.14)是样本率的标准误的理论值,当未知时,常用样本率p 作为的估计值,则:(3.15)B,二项分布的累计概率二项分布的累计概率(cumulative probability)常用的有左侧累计和右侧累计 2种方法。

从阳性率为的总体中随机抽取n 个个体,则(1)最多有k 例阳性的概率(3.16)(2)最少有k 例阳性的概率(3.17)D,二项分布的形状取决于和n 的大小:(1)当=0.5 时,分布对称;当<0.5 时,分布呈正偏态,且固定n 时,越小,分布越偏;当>0.5(2)对固定的,分布随n的增大趋于对称。

4,总体率的估计总体率的估计也有点估计和区间估计,点估计是简单地用样本率来估计总体率;区间估计是求出总体率的可能范围。

样本率的理论分布和样本含量n、阳性率p 的大小有关,所以需要根据n 和p 的大小不同,分别选用下列2 种方法。

(一)查表法当样本含量n 较小,如n≤50,特别是p 很接近于0 或 1 时,按二项分布的原理估计总体率的可信区间。

相关文档
最新文档