归纳二重积分的计算方法
二重积分的计算法[精编文档]
一、利用直角坐标计算二重积分
X-型积分区域 Y-型积分区域
二、利用极坐标计算二重积分
将二重积分化为二次积分 与直系下二次积分互化
一、利用直角坐标计算二重积分
直角坐标系下化二重积分为二次积分
由曲顶柱体体积的计算可知,
当被积函数 f (x, y) 0
且在D上连续时, 若D为 X – 型区域
f x, y 关于x奇,D关于y轴对称
0,
f
x, y
关于y奇,D关于x轴对称
D
f
x,
y
dxdy
2
f
x,
y
dxdy
f x, y 关于x偶,
D关于y轴对称
D`1
f x, y 关于y偶,
D关于x轴对称
f x, y f (x, y), 称f(x,y)关于x为奇, f x, y f (x, y), 称f(x,y)关于x为偶,
例1. 计算
其中D : x2 y2 a2.
解:
在极坐标系下D
:
0ra
0 2
,
故
原式 D
r d r d
2
d
0
a rer2 d r
0
(1 ea 2 )
由于 ex2 的原函数不是初等函数 , 故本题无法用直角
坐标计算.
例2:求I= y2 3x 6 y 9 dxdy,其中: x2 y2 a2.
例5. 计算 D xyd , 其中D 是抛物线
及直线
所围成的闭区域.
解: 为计算简便, 先对 x 后对 y 积分,
则
D
:
y
1
2
y x
2 y
2
归纳二重积分的计算方法
归纳二重积分的计算方法摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限.关键词 :函数极限;计算方法;洛必达法则; 四则运算前言二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧.1. 预备知识1.1二重积分的定义]1[设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有()1,niii i f J ξησε=∆-<∑,则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),DJ f x y d σ=⎰⎰,其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域.1.2二重积分的若干性质1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),Dkf x y d σ⎰⎰(),Dk f x y d σ=⎰⎰.1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且()()[,,]Df x yg x y d σ±⎰⎰()(),,DDf x y dg x y d σσ=±⎰⎰⎰⎰.1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且1.3在矩形区域上二重积分的计算定理设(),f x y 在矩形区域D [][],,a b c d =⨯上可积,且对每个[],x a b ∈,积分(),dcf x y dy ⎰存在,则累次积分(),b dacdx f x y dy ⎰⎰也存在,且(),Df x y d σ⎰⎰(),bdacdx f x y dy =⎰⎰.同理若对每个[],y c d ∈,积分(),baf x y dx ⎰存在,在上述条件上可得2.求的二重积分的几类理论依据二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算X -型区域: ()()(){}12,,D x y y x y y x a x b =≤≤≤≤Y -型区域: ()()(){}12,,D x y x y x x y c y d =≤≤≤≤定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有例1求两个底面半径相同的直交圆柱所围立体的体积V . 解:设圆柱底面半径为a ,两个圆柱方程为 222x y a +=与222x z a +=.只要求出第一卦限部分的体积,然后再乘以8即得所求的体积. 第一卦限部分的立体式以z =,以四分之一圆域D : 为底的曲顶柱体,所以于是3163V a =. 另外,一般常见的区域可分解为有限个X -型或Y -型区域,用上述方法求得各个小区域上的二重积分,再根据性质1.23求得即可.2.2 二重积分的变量变换公式定理: 设(),f x y 在有界闭域D 上可积,变换T : (),x x u v =, (,)y y u v =将平面uv 由按段光滑封闭曲线所围成的闭区域∆一对一地映成xy 平面上的闭区域D ,函数(),x x u v =,(,)y y u v =在∆内分别具有一阶连续偏导数且它们的函数行列式 ()()(),,0,x y J u v u v ∂=≠∂, (),u v ∈∆,则()()()()(),,,,,Df x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰.用这个定理一般有两个目的,即被积函数化简单和积分区域简单化. 例1 求x y x yDedxdy -+⎰⎰,其中D 是由0x =,0y =,1x y +=所围区域.解 为了简化被积函数,令u x y =-,v x y =+.为此作变换T :1()2x u v =+,1()2y u v =-,则()11122,011222J u v ==>-. 即111100111()2224x y u u v x yvv v De e edxdy e dudv dv e du v e e dv ---+-∆-==-=⎰⎰⎰⎰⎰⎰⎰ 例2 求抛物线2y mx =,2y nx =和直线y x β=,y x α=所围区域D 的面积()D μ(0,0)m n αβ<<<<.解D 的面积()DD dxdy μ=⎰⎰.为了简化积分区域,作变换T : 2u x v =,uy v=.它把xy 平面上的区域D 对应到uv 平面上的矩形区域[][],,m n αβ∆=⨯.由于()234212,01uu v v J u v u v vv-==>-,(),u v ∈∆, 所以2.3 用极坐标计算二重积分定理: 设(),f x y 在有界闭域D 上可积,且在极坐标变换T :cos sin x r y r θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立()(),cos ,sin (,)Df x y dxdy f r r J r drd θθθθ∆=⎰⎰⎰⎰.其中cos sin (,)sin cos r J r r r θθθθθ-==.当积分区域是源于或圆域的一部分,或者被积函数的形式为()22,f x y 时,采用该极坐标变换.二重积分在极坐标下化累次积分的计算方法:(i )若原点O D ∉,且xy 平面上射线θ=常数与D 边界至多交与两点,则∆必可表示成12()()r r r θθ≤≤,αθβ≤≤,于是有类似地,若xy 平面上的圆r =常数与D 的边界多交于两点,则∆必可表示成12()()r r θθθ≤≤,12r r r ≤≤,所以2211()()(,)(cos ,sin )r r r r Df x y dxdy rdr f r r d θθθθθ=⎰⎰⎰⎰.(ii )若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆可表示成0()r r θ≤≤,02θπ≤≤.所以2()(,)(cos ,sin )r Df x y dxdy d f r r rdrπθθθθ=⎰⎰⎰⎰.(iii)若原点O 在D 的边界上,则∆为0()r r θ≤≤,αθβ≤≤, 于是例1 计算22()xy DI e d σ-+=⎰⎰,其中D 为圆域: 222x y R +≤.解 利用极坐标变换,由公式得2220(1)Rr R I re dr e ππ--==-⎰⎰.与极坐标类似,在某些时候我们可以作广义极坐标变换:T :cos sin x ar y br θθ=⎧⎨=⎩ 0r ≤<+∞,02θπ≤≤, cos sin (,)sin cos a ar J r abr b br θθθθθ-==.如求椭球体2222221x y z a b c++≤的体积时,就需此种变换.2.4利用二重积分的几何意义求其积分当(,)0f x y ≥时,二重积分(,)Df x y dxdy ⎰⎰在几何上就表示以(,)z f x y =为曲顶,D 为底的曲顶体积.当(,)1f x y =时,二重积分(,)Df x y dxdy ⎰⎰的值就等于积分区域的面积.例6计算:DI σ=,其中D :22221x y a b +≤.解因为被积函数z =0≥,所以I 表示D为底的z =由平行xoy 面的截面面积为()(1)A x ab z π=-,(01)z ≤≤,根据平行截面面积为已知的立体体积公式有2.5 积分区域的边界曲线是由参数方程表示的二重积分有关计算 2.51利用变量代换计算设D 为有界闭域,它的边界曲线,()t αβ≤≤且{}(,),()D x y a x b c y y x =≤≤≤≤,当x a =时,t α=;当x b =时,t β=。
二重积分的计算法
二重积分的计算法二重积分(Double integral)是微积分中的一种重要计算方法,用于计算平面区域上一些函数在该区域上的积分值。
在二维平面上,我们可以将区域划分为无数个小矩形,然后计算每个小矩形内函数的函数值乘以其面积,再将所有小矩形的积分值求和,即可得到二重积分的近似值。
为了更好地理解和计算二重积分,我们将其分为三个部分进行讨论:积分区域的确定、积分函数的选择和积分计算方法。
一、积分区域的确定:确定二重积分的积分区域是计算的第一步。
在平面上,积分区域可以是一个有界闭区域、一个有界开区域或者无穷区域。
积分区域的确定需要根据具体问题进行分析、绘图和建立坐标系。
对于有界闭区域,通常可以直接利用给定的区域边界方程建立坐标系,进而确定积分区域。
对于有界开区域,可以通过给定的边界方程建立坐标系,然后再引入限制条件来确定积分区域。
例如,给定条件是$x>0$,$y>0$,则可以建立第一象限坐标系,并按照给定的边界方程绘制积分区域。
对于无穷区域,可以通过适当的变量替换将其转化为有界区域,然后再进行积分计算。
例如,将积分区域$x>0$,$y>0$转换为极坐标系下的∞半径的极坐标区域。
二、积分函数的选择:选择正确的积分函数是二重积分计算的关键。
积分函数的选择需要根据具体问题中函数的性质和所要计算的目的进行合理选择。
常见的积分函数包括多项式函数、三角函数、指数函数和对数函数等。
对于具体问题,可以根据函数的性质选择合适的积分函数。
在选择积分函数时,还需要考虑积分区域的特点。
如果积分区域对称,可以考虑选择合适的奇偶函数进行积分计算,减少计算量。
三、积分计算方法:根据实际情况,二重积分可以采用不同的计算方法。
1.直角坐标系下的二重积分:在直角坐标系下,可以通过定积分的计算方法进行二重积分的计算。
其中,积分区域可以用水平边界和垂直边界的方程表示,从而确定积分的上下限。
如果积分区域为有界区域,可以采用上下限函数的自变量依次固定的方法进行计算。
二重积分的计算方法
二重积分的计算方法二重积分是微积分中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。
在实际问题中,我们经常需要对二元函数在某个区域上的积分进行计算,而二重积分就是用来描述这样的问题的数学工具。
本文将介绍二重积分的计算方法,希望能够帮助读者更好地理解和掌握这一知识点。
首先,我们来了解一下二重积分的定义。
对于平面上的有界闭区域D和在D 上有定义的连续函数f(x, y),我们可以将D分成许多小的面积ΔS,然后在每个小面积ΔS上取点(xi, yi),计算函数值f(xi, yi)与ΔS的乘积,然后将所有这些乘积相加,得到的极限值就是二重积分的值,即:∬D f(x, y) dxdy = lim Σ f(xi, yi)ΔS。
其中,ΔS是小面积ΔS的面积,Σ表示对所有小面积求和,极限值即为二重积分的值。
接下来,我们将介绍二重积分的计算方法。
在实际应用中,我们通常会遇到以下几种情况:1. 矩形区域上的二重积分计算。
当积分区域为矩形区域时,我们可以利用定积分的性质,将二重积分转化为两次定积分的形式进行计算。
具体而言,对于矩形区域D=[a, b]×[c, d]上的函数f(x, y),其二重积分可以表示为:∬D f(x, y) dxdy = ∫c^d ∫a^b f(x, y) dxdy。
这样,我们就可以将二重积分的计算转化为两次定积分的计算,从而简化了计算的过程。
2. 极坐标系下的二重积分计算。
在极坐标系下,二重积分的计算通常更加简便。
对于极坐标系下的二元函数f(r, θ),其二重积分可以表示为:∬D f(r, θ) drdθ。
在极坐标系下,积分区域D的描述通常更加简单,而且在计算过程中也更加方便,因此在一些问题中,我们可以通过将坐标系转化为极坐标系来简化计算过程。
3. 用换元法进行二重积分计算。
在一些复杂的情况下,我们可以利用换元法来简化二重积分的计算。
通过适当的变量替换,我们可以将原来的积分区域转化为一个更加简单的积分区域,从而简化计算过程。
二重积分的计算方法
二重积分的计算方法二重积分是微积分中的重要概念,它在数学和物理学中有着广泛的应用。
在本文中,我们将探讨二重积分的计算方法,包括定积分、极限方法和变换法。
首先,我们来回顾一下定积分的概念。
定积分是在一个区间上对函数进行积分的方法,可以看作是对函数在该区间上面积的测量。
对于一维的函数,如f(x),定积分的计算方法可以通过求解反导函数F(x)的值来实现。
具体而言,定积分是将函数f(x)在区间[a,b]上的每个小矩形的面积累加起来,得到的结果就是函数在该区间上的定积分。
对于二重积分,它的计算稍微复杂一些。
二重积分可以看作是在一个二维的区域上对函数进行积分的方法。
通常情况下,二重积分的计算可以分为两个步骤:首先,将二重积分转化为定积分的形式;然后,利用定积分的计算方法进行求解。
对于二重积分的转化,常用的方法有直角坐标转换和极坐标转换。
直角坐标转换适用于矩形区域,它将二重积分转化为两个一维的定积分。
具体而言,设二重积分的变量为x和y,区域为D,函数为f(x,y),则二重积分的计算可以表示为:∬f(x,y)dA = ∫(∫f(x,y)dy)dx其中,第一个定积分在区域D上对y进行积分,第二个定积分在整个区域D上对x进行积分。
极坐标转换适用于圆形或者具有旋转对称性的区域,它将二重积分转化为极坐标系下的定积分。
具体而言,设二重积分的变量为r和θ,区域为D,函数为g(r,θ),则二重积分的计算可以表示为:∬g(r,θ)rdrdθ其中,第一个定积分在区域D上对r进行积分,第二个定积分在整个区域D上对θ进行积分。
除了定积分的方法,还可以使用极限方法来计算二重积分。
极限方法是通过将计算区域划分成无穷多个小矩形或者小三角形,然后将其面积累加起来得到积分的值。
具体而言,对于二重积分的计算,可以将区域D划分成很多个小矩形或者小三角形,然后根据这些小区域的面积和函数值进行累加,最后取极限即可得到二重积分的值。
最后,我们来介绍一种常用的变换法,即换元法。
二重积分的算法
二重积分的算法1. 引言在微积分中,二重积分是一种对平面上的函数进行求和的方法。
它可以用来计算平面上某个区域内函数值的总和。
在本文中,我们将介绍二重积分的算法,并详细说明如何进行计算。
2. 二重积分的定义设函数f(x,y)在闭区域D上有界,将闭区域D分成许多小区域ΔA i,其中i=1,2,…,n。
选择一个点(x i∗,y i∗)属于第i个小区域ΔA i,则二重积分可以定义为:∬f D (x,y)dA=limmaxi∥ΔA i∥→0∑fni=1(x i∗,y i∗)ΔA i其中∥ΔA i∥表示小区域ΔA i的面积。
3. 计算二重积分的基本步骤计算二重积分的基本步骤如下:步骤1:确定积分区域首先需要确定要进行积分的区域D。
这个区域可以是矩形、三角形、圆形等等。
根据实际情况选择适当的坐标系,并确定区域的边界方程或者坐标范围。
步骤2:确定积分顺序根据实际情况,选择适当的积分顺序。
二重积分可以按照x先积分再积分y,也可以按照y先积分再积分x。
选择合适的积分顺序可以简化计算过程。
步骤3:确定积分限根据积分区域和所选的积分顺序,确定每个变量的取值范围。
这些取值范围将成为二重积分的限制条件。
步骤4:进行二重积分计算根据所选的积分顺序和限制条件,将二重积分转换为一重积分或多个一重积分的组合。
使用数值方法或解析方法进行计算,得出最终结果。
4. 二重积分的常用算法在实际计算中,有几种常用的算法可用于求解二重积分。
矩形法矩形法是最简单直观的方法之一。
它将区域D划为若干个小矩形,并在每个小矩形的中心点处取样。
然后将每个样本值乘以对应小矩形的面积,再求和得到最终结果。
梯形法梯形法是一种改进的方法,它将区域D划分为若干个梯形,并在每个梯形的两个底边中点处取样。
然后将每个样本值乘以对应梯形的面积,再求和得到最终结果。
辛普森法则辛普森法则是一种更高级的方法,它利用了二次多项式的性质。
它将区域D划分为若干个小矩形,并在每个小矩形的四个顶点处取样。
二重积分计算方式
二重积分计算方式二重积分是微积分中的重要概念之一,用来求解平面上某个区域上的某个量的总和。
在本文中,我们将介绍二重积分的计算方式和应用。
一、二重积分的定义及性质二重积分是通过将一个二元函数在一个区域上进行积分来求解该区域上的某个量的总和。
在二重积分中,被积函数的两个自变量分别为x和y,积分区域为D。
1. 定义:设函数f(x,y)在区域D上有定义,D是xy平面上的一个有界闭区域,将D分成许多小区域,记作ΔD。
选取ΔD中任意一点(xi,yi),作函数值f(xi,yi)与ΔDi的乘积f(xi,yi)ΔAi,其中ΔAi为ΔDi的面积。
如果极限$$\lim_{\lambda \rightarrow 0} \sum_{i=1}^{n} f(xi,yi) \Delta Ai$$存在且与D和ΔD的选取无关,那么称此极限为函数f(x,y)在D上的二重积分,记作$$\iint_D f(x,y) dxdy$$2. 性质:二重积分具有线性性质和可加性质,即对于任意常数a和b,函数f(x,y)和g(x,y),以及区域D和E,有以下性质:- 线性性质:$$\iint_D (af(x,y) + bg(x,y)) dxdy = a\iint_D f(x,y) dxdy + b\iint_D g(x,y) dxdy$$- 可加性质:$$\iint_{D \cup E} f(x,y) dxdy = \iint_D f(x,y) dxdy + \iint_E f(x,y) dxdy$$二、二重积分的计算方式在实际计算二重积分时,常常使用直角坐标系和极坐标系来简化计算。
1. 直角坐标系下的计算方式在直角坐标系下,二重积分的计算可以通过迭代积分来进行。
假设被积函数为f(x,y),积分区域为D,可以将二重积分表示为以下形式:$$\iint_D f(x,y) dxdy = \int_a^b \int_{c(x)}^{d(x)} f(x,y) dy dx$$其中a和b为x的范围,c(x)和d(x)为y的范围。
计算二重积分的几种方法
计算二重积分的几种方法摘要 二重积分的计算是数学分析中一个重要的内容,其计算方法多样、灵活,本文总结了二重积分的一般计算方法和特殊计算方法.其中,一般计算方法包括化二重积分为累次积分和换元法,特殊计算方法包括应用函数的对称性、奇偶性求二重积分以及分部积分法.关键词 二重积分 累次积分法 对称性 分部积分法1 引言本人在家里的职业教育高中实习,发现这里有些专业的的学生要计算很多面积或者体积问题,已经略微涉及到大学的积分问题,如曲顶柱体的体积,他们用最普遍的求面积/体积的方法求解,而用二重积分进行计算求解就会更容易理解,方法和步骤也带给学生一个新的认知领域。
职业教育的学生在大学知识中解决实际问题应用积分的方法更频繁。
在解决一些几何、物理等的实际问题时,我们常常需要各种不同的多元实值函数的积分,而二重积分又是基本的、常见的多元函数积分,我针对自己在《数学分析》这门课程中的学习,总结了累次积分、根据函数对称性积分、元素法、分部积分法、极坐标下的积分等内容,以下是我对二重积分方法的总结。
2 积分的计算方法2.1化二重积分为两次定积分或累次积分法定理 1 若函数(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],x a b ∀∈,定积分()(),dcI x f x y dy =⎰存在,则累次积分(),bd a c f x y dy dx ⎡⎤⎢⎥⎣⎦⎰⎰也存在,且(,)(,)b da c Rf x y dxdy f x y dy dx⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰证明 设区间[],a b 与[],c d 的分点分别是011011i i n k k m a x x x x x bc y y y y yd --=<<⋅⋅⋅<<<⋅⋅⋅<==<<⋅⋅⋅<<<⋅⋅⋅<=这个分法记为T .于是,分法将T 闭矩形域R 分成m n ⨯个小闭矩形,小闭矩形记为11(,),1,2,,;1,2,,.ik i i k k R x x x y y y i n k m --≤≤≤≤=⋅⋅⋅=⋅⋅⋅设(){}(){}[]1sup ,,inf ,.,ik ik i i i M f x y m f x y x x ξ-==∀∈,有()1,,ik i ik k k m f y M y y y ξ-≤≤≤<.已知一元函数(),i fy ξ在[]1,k k y y -可积,有()11,,kik k i ik k k k k k m y f y dy M y y y y ξ--∆≤≤∆∆=-⎰.将此不等式对1,2,k m =…相加,有()1111,k k mmmy ikk i ik k y k k k my f y dy M y ξ-===∆≤≤∆∑∑∑⎰,其中()()()11,,k k my di i i y ck f y dy f y dy I ξξξ-===∑⎰⎰,即()11mmik k i ik k k k m y I M y ξ==∆≤≤∆∑∑.再将此不等式乘以i x ∆,然后对1,2,i n =…相加,有()11111nmnnmik i k i i ik i k i k i i k m x y I x M x y ξ=====∆∆≤∆≤∆∆∑∑∑∑∑.此不等式的左右两端分别是分法T 的小和()s T 与大和()S T ,即 ()()()1niii s T I xS T ξ=≤∆≤∑. (1)已知函数(),f x y 在R 可积,根据定理有 ()()0lim lim (,),T T RS T s T f x y dxdy →→==⎰⎰又不等式(1),有()()01lim,niiT i RI x f x y dxdy ξ→=∆=∑⎰⎰,即()()(),,.b b da a c Rf x y dxdy I x dx f x y dy dx ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰⎰类似地,若(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],,y c d ∀∈定积分存在,则累次积分(),db ca f x y dx dy ⎡⎤⎢⎥⎣⎦⎰⎰,也存在,且()(),,db ca Rf x y dxdy f x y dx dy ⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰.也可将累次积分(),bda c f x y dy dx ⎡⎤⎢⎥⎣⎦⎰⎰与(),db ca f x y dx dy ⎡⎤⎢⎥⎣⎦⎰⎰分别记为(),bdacdx f x y dy ⎰⎰和(),dbcadx f x y dy ⎰⎰.定义 1 设函数()()12,x x ϕϕ在闭区间[],a b 连续;函数()()12,y y ψψ在闭区间[],c d 连续,则区域()()()[]{}12,,,x y x y x x a b ϕϕ≤≤∈和()()()[]{}12,,,x y y x y y c d ψψ≤≤∈分别称为x型区域和y 型区域.如下图(1)和(2)所示 .定理2 设有界闭区域R 是x 型区域,若函数(),f x y 在R 可积,且[],x a b ∀∈,定积分()()()21,x xf x y dy ϕϕ⎰存在,则累次积分()()()21,bx a xdx f x y dy ϕϕ⎰⎰也存在,且()()()()21,,bx ax Rf x y dxdy dx f x y dy ϕϕ=⎰⎰⎰⎰.利用极坐标计算二重积分公式:()(),cos ,sin RRf x y dxdy f r r rdrd ϕϕϕ=⎰⎰⎰⎰例1 计算二重积分()sin Rx y dxdy +⎰⎰,其中0,0.22R x y ππ⎛⎫≤≤≤≤ ⎪⎝⎭ 解 被积函数()cos x y +在R 连续,则有()cos Rx y dxdy +⎰⎰=()220cos dy x y dx ππ+⎰⎰=220(cos cos sin sin )dy x y x y dx ππ-⎰⎰=()20cos sin y y dy π+⎰= 1+01-例2 计算二重积分22Dx dxdy y⎰⎰,其中D 是由直线2,x y x ==和双曲线1xy =所围成,D 既是x 型区域又是y 型区域,如图(3)所示.解 先对y 积分,后对x 积分.将D 投影在x 轴上,得闭区间[]1,2.[]1,2x ∀∈,关于y 积分,在D 内y 的积分限是1y x=到y x =,然后在投影区间[]1,2上关于x 积分,即 ()222231221194x x Dx x dxdy dx dy x x dx y y ==-=⎰⎰⎰⎰⎰. 先对x 积分,后对y 积分.因为D 的左侧边界不是由一个解析式给出,而是由两个解析式1xy =和y x =给出的,所以必须将图(3)所示的区域D 分成两个区域()1D PRS 与()2D PRQ ,分别在其上求二重积分,然后再相加,即2122222122211222221294y y DD D x x x x x dxdy dxdy dxdy dy dx dy dx y y y y y =+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰.例3 设函数()f x 在[]0,1上连续,并设()2,f x dx B =⎰求()()22.xI dx f x f y dy =⎰⎰解 因为()()()()2220yxI dx f x f y dy dy f x f y dx==⎰⎰⎰⎰()()()()22yxf y dy f x dx f x dx f y dy==⎰⎰⎰⎰所以()()()()()()2222222xxI f x dx f y dy f x dx f y dy f x dx f y dy B =+==⎰⎰⎰⎰⎰⎰所以22B I =.2.2 换元法求二重积分,由于某些积分区域的边界曲线比较复杂,仅仅将二重积分化为累次积分并不能得到计算结果.如果经过适当的换元或变换可将给定的积分区域变为简单的区域,从而简化了重积分的计算.定理3若函数(),f x y 在有界闭区域R 连续,函数组 ()(),,,x x u v y y u v == (2) 将uv 平面上区域'R 变换为xy 平面上区域R .且函数组(2)在'R 上对u 与对v 存在连续偏导数,(),'u v R ∀∈,有()(),0,,x y J u v ∂=≠∂则()()()()',,,,,R R f x y dxdy f x u v y u v J u v dudv =⎡⎤⎣⎦⎰⎰⎰⎰ (3) 证明 用任意分法T 将区域R 分成n 个小区域:12,,,n R R R ⋅⋅⋅.设其面积分别是12,,,n σσσ∆∆⋅⋅⋅∆.于是,在'R 上有对应的分法'T ,它将'R 对应地分成n 个小区域12',',,'n R R R ⋅⋅⋅.设其面积分别是12',',,'n σσσ∆∆⋅⋅⋅∆.根据定理可得(),'k u v R ∀∈,有 ()()(),','.,k k k x y J u v u v σσσ∂∆≈∆=∆∂(),k k k R ξη∀∈,在'k R 对应唯一一点(),k k αβ,而()(),,,k k k k k k x y ξαβηαβ==.于是,()()()()11,,,,,'.n nkkkkk k k k k k k k f f x y J ξησαβαβαβσ==∆≈∆⎡⎤⎣⎦∑∑ (4)因为函数组(2)在有界闭区域R 上存在反函数组()(),,,u u x y v v x y ==,并且此函数组在R 一致连续,所以当0T →时,也有'0T →.对(4)取极限()0T →,有()()()()',,,,,RR f x y dxdy f x u v y u v J u v dudv =⎡⎤⎣⎦⎰⎰⎰⎰.例 4 计算两条抛物线2y mx =与2y nx =和两条直线y x α=与y x β=所围成R 区域的面积()0,0R m n αβ<<<<,如图(4)所示.解 已知区域R 的面积RR dxdy =⎰⎰.设2,.y yu vx x==这个函数将xy平面上的区域R变换为uv平面上的区域'R,'R是由直线,u m u n==和,v vαβ==所围成的矩形域.()()()()43224222,11.,,2,1x y x y x uu vu v y x y vy yx y x xyx x∂⎛⎫=====⎪∂∂⎝⎭-∂-由定理3可知,()()4',,nmR Rx y uR dxdy dudv dv duu v vβα∂===∂⎰⎰⎰⎰⎰⎰()()223322433.26n mn m dvvβαβααβ---==⎰本题是典型的运用换元法解决二重积分求面积的问题。
二重积分的计算方法
x2
11 ( x y )dy dx 2 ( y x )dy . 1 x 15
1 0
x 1
e
t 2
1 dt , 求0 f ( x )dx.
1 解(一): f ( x )dx [ xf ( x )] 0 xf ( x )dx 1 0
f (1) xe
1 0
x2
dx [ 1 e x ]1 1 (e 1 1). 0 2 2
2
解(二) I ( e dt )dx
1 x 0 1
t 2
t
2 t t 0
( e dt )dx dt e dx
1 0 1 x
1 0
t 2
1 t 2 e tdt 0
1 1 (e 1). 2
练习设 f ( x ) 在[0,1] 上连续,并设 f ( x )dx A ,
1 0
求 dx f ( x ) f ( y )dy .
解
2a
y 2ax
y 2ax x 2 x a a 2 y 2
a
2a
a
原式 = dy 2 y 0
a
a a2 y2
f ( x , y )dx
2a 2a
0 dy a
a
2a
2a
a y
2 2
f ( x , y )dx a dyy 2 f ( x , y)dx.
x
f ( x )dx f ( y )dy,
0
故2 I
f ( x )dx
1 0
1
x
f ( y )dy f ( x )dx f ( y )dy
二重积分计算技巧总结
4 2 首先 O 在区域内,所以 r 0 ,然后过 O 作射线,射线与 y 1 相交,就将参数方程代入被
O 与区域内点的连线的张角范围为 : 交的曲线得到 r sin 1 r
1 1 ,于是 D : ;0 r sin 4 2 sin
y2 y u u ,v 则 x 2 , y . v v x x
1 v2 J 1 v
2u u v3 4 u v 2 v
于是原区域 D 变换成新区域 D m, n , ,这样原来不规则的区域变成了矩形区域, 方便积分。 面积 S
1dxdy 1 J dudv
1 1 1 (u v) , y (v u ) ,则 J= 2 2 2 D 的边界一一对应得到新区域 D : 1 x 0 u v 0 u v 2 1 y 0 v u 0 u v 2 x
x y 1
1 1 u v v u 1 v 1 2 2
D D
dv n (n 2 m 2 )( 3 3 ) u d u v 4 m 6 3 3
(2)极坐标下的二重积分 极坐标代换法基本格式为:
x r cos y r sin
被积函数 f x, y 化为 f r cos , r sin r , 接下来重要的是讨论 r , 的范围。 其中 r , 的 范围由于积分次序的不同而不同。 若积分次序为先 r 后 ,则对应方法为“张角 射线” ,其中确定张角的方法为,原点与区 域内点的连线的最小、最大夹角;作射线确定 r 的范围:过原点 O 作射线,把先后与所作 射线相交的边界线化成 r r 的形式,就确定出 r 的范围。 比如:求 f x, y dxdy ,其中 D 的范围如图:
二重积分的基本计算方法
二重积分的基本计算方法二重积分是微积分中的重要概念之一,用于计算平面上某个区域内的面积、质量、质心等物理量。
在本文中,我们将介绍二重积分的基本计算方法。
我们来看二重积分的定义。
对于二元函数f(x,y),在平面上的一个闭区域D上,可以定义二重积分为:∬D f(x,y) dA其中,dA表示平面上的面积元素,可以表示为dx dy或者dy dx。
二重积分的计算方法主要有两种:先对x进行积分,再对y进行积分;或者先对y进行积分,再对x进行积分。
第一种方法是先对x进行积分,再对y进行积分。
具体步骤如下:1. 将区域D在x轴上的投影为[a, b],在y轴上的投影为[c, d],则二重积分可以表示为:∬D f(x,y) dA = ∫[a,b]∫[c,d] f(x,y) dy dx2. 针对y进行积分时,将x看作常数,即将f(x,y)中的x替换为常数,然后对y进行积分。
积分的上限为d,下限为c。
3. 最后对x进行积分,将y看作常数,即将上一步得到的结果作为一个关于x的函数,然后对x进行积分。
积分的上限为b,下限为a。
第二种方法是先对y进行积分,再对x进行积分。
具体步骤如下:1. 将区域D在y轴上的投影为[c, d],在x轴上的投影为[a, b],则二重积分可以表示为:∬D f(x,y) dA = ∫[c,d]∫[a,b] f(x,y) dx dy2. 针对x进行积分时,将y看作常数,即将f(x,y)中的y替换为常数,然后对x进行积分。
积分的上限为b,下限为a。
3. 最后对y进行积分,将x看作常数,即将上一步得到的结果作为一个关于y的函数,然后对y进行积分。
积分的上限为d,下限为c。
无论采用哪种方法,最终的结果都是相同的。
在实际计算中,可以根据具体情况选择合适的积分顺序,以简化计算过程。
除了基本的计算方法之外,还可以利用二重积分来计算一些特殊区域的面积、质量、质心等物理量。
例如,对于平面上的一个闭区域D,可以使用二重积分来计算该区域的面积。
第二节_二重积分的计算法
第二节_二重积分的计算法二重积分:在平面上规定一个有界闭合区域D,对于D上的每一点P(x,y),都有一个标量函数f(x,y)与之对应。
则二重积分的数值就是由函数f(x,y)在区域D上所有点处的函数值决定的。
二重积分一般可以表示为∬Df(x,y)dA。
计算二重积分的方法主要有以下几种:直角坐标法、极坐标法、换元积分法和累次积分法。
1.直角坐标法:针对矩形、直角三角形、抛物线和折线边界的区域,可以直接使用直角坐标法来计算二重积分。
具体步骤如下:(1)写出二重积分的累加和形式:I=ΣΣf(x,y)ΔA。
(2)将区域D分成若干小矩形,计算每个小矩形的面积ΔA。
(3)在每个小矩形上选择代表点(x,y),计算f(x,y)的函数值。
(4)将函数值与相应小矩形的面积相乘,加和求和即可得到二重积分的数值。
2.极坐标法:当具有极坐标对称性的区域时,采用极坐标法可以简化计算。
具体步骤如下:(1) 确定极坐标变换:x=r*cosθ,y=r*sinθ。
(2) 根据变换的雅可比矩阵计算面积元素dA的极坐标形式:dA=rdrdθ。
(3) 将二重积分转化为极坐标下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Df(r*cosθ,r*sinθ)rdrdθ。
(4)将极坐标下的积分区域和积分限进行变换,然后按照累次积分进行计算。
3.换元积分法:当二重积分区域D的边界方程比较复杂时,可以使用换元积分法来简化计算。
具体步骤如下:(1)根据边界方程对二重积分区域D进行变换,将原来的二重积分区域映射到一个新的坐标系中的区域G。
(2)根据变换的雅可比矩阵,计算新坐标系下的面积元素dA'。
(3) 将二重积分转化为新坐标系下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Gf(x(u,v),y(u,v)),J(u,v),dudv,其中J(u,v)为雅可比行列式。
(4)对新坐标系下的累次积分按照直角坐标法或极坐标法进行计算。
4.累次积分法:当二重积分区域D可以通过垂直于坐标轴的直线进行划分时,可以使用累次积分法进行计算。
二重积分的概念和计算方法
二重积分的概念和计算方法在数学中,我们经常遇到需要对二维区域上的函数进行求和或求平均的情况。
为了解决这类问题,人们引入了二重积分的概念。
本文将探讨二重积分的概念以及常见的计算方法。
一、二重积分的概念二重积分是对二维平面上的函数进行求和的操作。
它可以看作是将一个二维区域分割成无穷多个小的矩形,然后对每个小矩形内的函数值进行求和的过程。
一般来说,我们通过累次积分的方法来计算二重积分。
对于函数f(x, y)在区域D上的二重积分,可以表示为:∬f(x, y)dA其中,D表示二维区域,dA表示微元面积。
二重积分的结果是一个数值,代表了函数f(x, y)在区域D上的总体特征。
二、二重积分的计算方法1. 直角坐标系下的二重积分在直角坐标系下,计算二重积分需要先确定积分范围。
一般情况下,我们将区域D分割成一个个小矩形或小三角形,根据积分的性质进行求和。
对于给定的函数f(x, y),其在区域D上的二重积分可以表示为:∬f(x, y)dA = ∫∫f(x, y)dxdy其中,积分区域D的边界可以表示为[a, b]和[c(x), d(x)],其中c(x)和d(x)是关于x的函数。
通过确定积分的次序和边界,我们可以将二重积分转化为一重积分的形式,然后按照一重积分的计算方法进行求解。
2. 极坐标系下的二重积分在某些情况下,使用极坐标系进行二重积分的计算更为方便。
特别是当积分区域具有简单的几何形状,如圆形、扇形或圆环等情况下,使用极坐标系可以简化计算过程。
对于给定的函数f(x, y),在极坐标系下的二重积分可以表示为:∬f(x, y)dA = ∫∫f(r, θ)rdrdθ其中,积分区域D的边界可以表示为[r1(θ), r2(θ)]和[a, b],其中r1(θ)和r2(θ)是关于θ的函数。
通过确定积分的次序和边界,我们可以将二重积分转化为一重积分的形式,然后按照一重积分的计算方法进行求解。
3. 格林公式的应用在某些情况下,利用格林公式可以简化二重积分的计算。
[全]高等数学之二重积分计算方法总结[下载全]
高等数学之二重积分计算方法总结
在考研中,对于二重积分重点要掌握二重积分的计算方法(直角坐标,极坐标),二重积分计算公式如下:
二重积分的计算主要在于把二重积分化为累次积分计算,而在化为累次积分计算时,坐标系的选择不仅要看积分域D的形状,而且还要看被积函数的形式。
(1)适合用极坐标计算的二重积分被积函数一般应具有以下形式:
f(y/x),f(x/y),f((x^2+y^2)^(1/2))
之所以适合极坐标是由于它们在极坐标下都可化为r或thetha的一元函数。
(2)适合用极坐标计算的二重积分的积分域一般应具有以下形状:
中心在原点的圆域,圆环域或它们的一部分(如扇形);中心在坐标轴上且边界圆过原点的圆域或者它们的一部分。
有时在计算二重积分时候需要利用被积函数的奇偶性和积分区域的对称性,常用的结论有以下两条:
(1)利用积分域的对称性和被积函数的奇偶性:
(2)利用变量的对称性:
题型一:在直角坐标下计算二重积分
例1:
解题思路:先画积分域D,不难看出该积分域关于两个坐标轴都对称,被积函数也有奇偶性,因此,应利用对称性和奇偶性。
解:
题型二:利用极坐标计算二重积分
例2:
解题思路:积分区域D关于y轴左右对称,被积函数(x+1)^2=x^2+2x+1,其中2x是x的奇函数,x^2+1是x的偶函数,先利用奇,偶性化简,然后再用极坐标计算。
解:。
二重积分的计算方法
二重积分的计算方法二重积分是微积分中的重要内容,用于计算平面上的曲线与坐标轴所围成的面积或求平面上的散布点的平均性质等。
在实际运用中,可以通过直接计算、换元法、极坐标法等多种方法来进行二重积分的计算。
一、直接计算法直接计算法是最常用也是最基础的计算二重积分的方法。
其基本步骤是将所给的二重积分转化为累次积分,先对一个变量进行积分,再对另一个变量进行积分。
1.内部积分内部积分即对于每个固定的y值,对x进行积分。
可以根据具体的题目决定如何进行内部积分,常用的有定积分、不定积分和积分换元等方法。
2.外部积分外部积分即对内部积分的结果再进行一次积分,这一步是对y进行积分。
同样的,可以根据具体题目决定如何进行外部积分,可以选择定积分、不定积分和积分换元等方法。
需要注意的是,直接计算法在面对比较复杂的函数或曲线时计算量较大,需要进行复杂的代数计算,常常需要对整个积分范围进行划分,或者使用边界定理简化计算。
二、换元法换元法是将二重积分变换到坐标系上的简单区域。
换元法分为直角坐标系的变换和极坐标系的变换两种情况。
1.直角坐标系的变换直角坐标系的变换是指将原先的积分变为关于新的变量的积分,使得积分计算更加简化。
常见的直角坐标系变换有平移变换、旋转变换和放缩变换等。
例如,当变量的变化范围较大或边界不规则时,使用平移变换可以将积分范围变为一个更加简单的区域,从而简化计算。
2.极坐标系的变换极坐标系的变换是将原先的直角坐标系变为极坐标系,使得计算过程更加简单明了。
极坐标系变换常用于对称图形或圆形区域进行积分计算。
极坐标系变换需要通过变量替换来实现,通常需要将原函数和积分上下限由直角坐标形式转换为极坐标形式,再进行计算。
换元法可以大大简化积分计算过程,但需要选择合适的坐标变换,有时会引入更多的计算量。
需要根据具体问题的特点来决定选择哪种变换。
三、几何意义根据题目所给的条件,可以确定积分范围和被积函数形式,将二重积分转化为面积或长度的几何问题。
二重积分的计算方法
二重积分的计算方法在高等数学中,二重积分是一个重要的概念,它在许多领域都有着广泛的应用,比如物理学、工程学、经济学等。
理解和掌握二重积分的计算方法对于解决相关的实际问题和理论研究都至关重要。
二重积分的定义是在平面区域上对函数进行积分。
直观地说,它可以用来计算平面区域上某个量的总和,比如平面薄片的质量、平面区域的面积等。
那么,如何计算二重积分呢?常见的计算方法主要有直角坐标法和极坐标法。
直角坐标法是我们最常接触的方法之一。
当积分区域是由直线边界围成的矩形、三角形或者其他简单形状时,直角坐标法往往比较适用。
我们先来看 X 型区域。
如果积分区域可以表示为\(a\leq x\leqb\),\(\varphi_1(x)\leq y\leq \varphi_2(x)\),那么二重积分可以写成:\\int\!\!\int_D f(x,y) d\sigma =\int_{a}^{b}dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy\这里要先对\(y\)积分,再对\(x\)积分。
再来看 Y 型区域。
如果积分区域可以表示为\(c\leq y\leq d\),\(\psi_1(y)\leq x\leq \psi_2(y)\),那么二重积分可以写成:\\int\!\!\int_D f(x,y) d\sigma =\int_{c}^{d}dy \int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx\在使用直角坐标法计算二重积分时,关键是要正确确定积分区域的类型,以及积分的上下限。
接下来我们说一说极坐标法。
当积分区域具有圆形、扇形或者是与圆相关的形状时,极坐标法通常会更加简便。
在极坐标系中,点用\((\rho,\theta)\)表示,其中\(\rho\)表示点到原点的距离,\(\theta\)表示极角。
如果积分区域可以表示为\(\alpha\leq\theta\leq\beta\),\(\varphi_1(\theta)\leq\rho\leq\varphi_2(\theta)\),那么二重积分可以写成:\\int\!\!\int_D f(x,y) d\sigma =\int_{\alpha}^{\beta}d\theta \int_{\varphi_1(\theta)}^{\varphi_2(\theta)} f(\rho\cos\theta,\rho\sin\theta)\rho d\rho\在极坐标法中,要注意\(\rho\)的积分上下限以及函数在极坐标下的表达式。
计算二重积分的几种简便方法
计算二重积分的几种简便方法计算二重积分是数学中的重要概念,它在多个领域有着广泛的应用。
对于一些复杂的函数,计算二重积分可能会变得非常繁琐。
人们寻求一些简便的方法来计算二重积分,以提高计算效率。
本文将介绍几种计算二重积分的简便方法,帮助读者更轻松地应对二重积分计算问题。
一、极坐标变换法极坐标变换法是计算二重积分的一种简便方法。
它适用于一些具有极坐标对称性的函数,能够将二重积分转化为单重积分,简化计算过程。
设要计算的二重积分为∬Rf(x,y)dxdy,其中R为xy平面上的一个区域,f(x,y)为被积函数。
如果区域R在极坐标下的描述为R={(r,θ)|α≤θ≤β,g(θ)≤r≤h(θ)},那么进行极坐标变换时,被积函数f(x,y)要转化为F(r,θ)。
然后利用极坐标的雅可比行列式进行计算,最终将二重积分转化为一个极坐标下的单重积分∫(α,β)∫(g(θ),h(θ))F(r,θ)rdrdθ。
极坐标变换法的优势在于能够简化一些对称性较强的函数的计算过程,减少了计算量,提高了计算效率。
二、直角坐标系下的累次积分法设要计算的二重积分为∬Rf(x,y)dxdy,其中R为xy平面上的矩形区域,f(x,y)为被积函数。
通过内层积分和外层积分的累次积分转化,将二重积分变为∫a∫bf(x,y)dxdy,其中a、b为区间端点。
累次积分法的优势在于适用范围广泛,能够简化一些矩形区域内的二重积分计算问题,提高了计算效率。
三、利用对称性简化计算在计算二重积分时,有时可以利用函数的对称性来简化计算。
如果被积函数具有轴对称性或中心对称性,可以利用这种特性来简化计算过程。
对于具有轴对称性的函数,可以只计算坐标轴的一侧,然后通过对称性得到整个区域的积分值。
对于具有中心对称性的函数,可以只计算某一部分区域,然后通过对称性得到整个区域的积分值。
在计算二重积分时,可以利用积分的线性性质、换元积分法等积分性质来简化计算。
如果被积函数可以拆分为两个函数的和,可以分别计算每个函数的积分,然后将结果相加。
二重积分的计算方法
二重积分的计算方法在数学的广袤领域中,二重积分是一个重要的概念,它在许多实际问题和理论研究中都有着广泛的应用。
理解和掌握二重积分的计算方法,对于我们解决诸如计算平面区域的面积、物体的质量、重心等问题具有关键意义。
首先,让我们来明确一下二重积分的定义。
二重积分是用来计算在一个平面区域上的函数的累积量。
简单来说,就是把这个区域划分成无数个小的部分,对每个小部分上的函数值乘以小部分的面积,然后把这些乘积加起来。
接下来,我们探讨几种常见的二重积分计算方法。
直角坐标系下的计算方法是基础且重要的。
当积分区域是一个矩形时,计算相对简单。
假设积分区域为$D =\{(x,y) | a \leq x \leq b, c \leq y \leq d\}$,被积函数为$f(x,y)$,则二重积分可以表示为:\\iint_D f(x,y) \,dx\,dy =\int_a^b \left(\int_c^d f(x,y) \,dy \right)dx\这意味着我们先对$y$ 进行积分,把$x$ 看作常数,得到一个关于$x$ 的函数,然后再对$x$ 进行积分。
如果积分区域不是矩形,而是由直线围成的一般区域,比如$D =\{(x,y) |\varphi_1(x) \leq y \leq \varphi_2(x), a \leq x \leq b\}$,那么二重积分可以表示为:\\iint_D f(x,y) \,dx\,dy =\int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \,dy \right)dx\这种情况下,我们先对$y$ 积分,然后对$x$ 积分。
极坐标系下的计算方法在处理具有圆形或扇形特征的积分区域时非常有用。
在极坐标系中,点的坐标表示为$(r,\theta)$,其中$r$ 表示点到原点的距离,$\theta$ 表示极角。
如果积分区域可以用极坐标表示为$D =\{(r,\theta) |\alpha \leq \theta \leq \beta, \varphi(\theta) \leq r \leq \psi(\theta)\}$,被积函数为$f(x,y) = f(r\cos\theta, r\sin\theta)$,那么二重积分可以表示为:\\iint_D f(x,y) \,dx\,dy =\int_{\alpha}^{\beta} \left(\int_{\varphi(\theta)}^{\psi(\theta)} f(r\cos\theta, r\sin\theta) r \,dr \right)d\theta\这里需要注意的是,多了一个$r$ ,这是因为在极坐标下,面积元素$dx\,dy$ 要换成$r\,dr\,d\theta$ 。
二重积分的计算法
rkrkk
d rd rd
2021/10/10
k
rk
rk
20
Df(x,y)dD f(rco ,srsin )rdrd
rd d
1. 极点在积分区域外
dr
d r
Dr2()
r2()
o
r1()o r1()
设 D: 1() r 2(),则 D f(rc o,rsi)n rdrd
d
1 2 ( ())f(rco,rs si)n rdr
(先对 x 积分,视 y 为常量, 对y 积分,视 x 为常量)
⑤、何时不得不将积分域D分块? 穿入穿出不唯一。
2021/10/10
9
例 1 改 变 积 分 1 dx 1xf(x,y)d的 y次 序 . 00
解 积分区域如图
0 x1 Dx :0 x1x
0 y1 Dy :0 x1 y
y1x
原 式
2(y) f(x,y)dx
D
c
1(y)
2021/10/10
4
当被积函数 f(x,y)在D上变号时, 由于
f(x,y)f(x,y)f(x,y)f(x,y)f(x,y)
2
2
f1(x,y)
f2(x,y)均非负
D f ( x ,y ) d x d y D f 1 ( x ,y ) d x d y
D f2(x,y)dxdy
0
0
0
2021/10/10
1 e y2 2
1 0
1 2
1
1 e
.
17
例8.求I= x y1 x 2 y 2 d x d y ,D :y x ,x 1 ,y 1 围 成 ;
D
y
二重积分计算方法总结
二重积分计算方法总结二重积分是微积分中的重要概念,用于求解平面区域上的面积、质量、重心等物理量。
本文将总结二重积分的计算方法,并介绍其应用领域和注意事项。
一、二重积分的基本概念二重积分是将一个二元函数在一个有界的平面区域上进行积分运算。
具体地说,对于定义在平面区域D上的函数f(x,y),其二重积分可以表示为:∬D f(x,y) dA其中,dA表示平面区域D上的面积元素。
二重积分的计算方法有多种,下面将分别介绍。
二、二重积分的计算方法1. 基本方法:将平面区域D划分为若干个小矩形,计算每个小矩形上函数值与面积的乘积,再将所有小矩形的乘积求和即可得到二重积分的近似值。
当小矩形的数量无限增加时,近似值趋近于准确值。
2. 极坐标法:对于具有极坐标方程的平面区域D,可以通过转换成极坐标系来简化计算。
具体做法是将二重积分转化为极坐标下的二重积分,并利用极坐标的相关性质进行计算。
3. 变量代换法:对于某些具有特殊形式的平面区域D,可以通过变量代换来简化计算。
常见的变量代换方法有矩形坐标系到极坐标系、直角坐标系到柱坐标系等。
4. 先y后x法:当被积函数的表达式较为复杂时,可以通过先对y 进行积分,再对x进行积分的方法来简化计算。
这种方法常用于计算面积和质心等物理量。
三、二重积分的应用领域二重积分在物理学、工程学、经济学等领域具有广泛的应用。
以下列举几个常见的应用场景:1. 计算平面区域的面积:通过对二维平面区域上的函数进行二重积分,可以得到该区域的面积。
2. 计算平面区域的质量:假设平面区域上每个点的密度为ρ(x,y),则通过对ρ(x,y)与面积元素dA进行二重积分,可以计算出该区域的质量。
3. 计算平面区域的重心:通过对二维平面区域上的函数f(x,y)与x、y的乘积进行二重积分,可以求解出该区域的重心坐标。
4. 计算平面区域的矩:通过对二维平面区域上的函数f(x,y)与x的幂次进行二重积分,可以计算出该区域的各阶矩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳二重积分的计算方法摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限.关键词 :函数极限;计算方法;洛必达法则; 四则运算前言二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧.1. 预备知识1.1二重积分的定义]1[设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有()1,niiii f J ξησε=∆-<∑,则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),DJ f x y d σ=⎰⎰,其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域.1.2二重积分的若干性质1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),Dkf x y d σ⎰⎰(),Dk f x y d σ=⎰⎰.1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且()()[,,]Df x yg x y d σ±⎰⎰()(),,DDf x y dg x y d σσ=±⎰⎰⎰⎰.1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且()12,D D f x y d σ⎰⎰()()12,,D D f x y d f x y d σσ=±⎰⎰⎰⎰1.3在矩形区域上二重积分的计算定理设(),f x y 在矩形区域D [][],,a b c d =⨯上可积,且对每个[],x a b ∈,积分(),dcf x y dy ⎰存在,则累次积分(),bdacdx f x y dy ⎰⎰也存在,且(),Df x y d σ⎰⎰(),bdacdx f x y dy =⎰⎰.同理若对每个[],y c d ∈,积分(),baf x y dx ⎰存在,在上述条件上可得(),Df x y d σ⎰⎰(),d bcady f x y dx =⎰⎰2.求的二重积分的几类理论依据二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算X -型区域: ()()(){}12,,D x y y x y y x a x b =≤≤≤≤Y -型区域: ()()(){}12,,D x y x y x x y c y d =≤≤≤≤定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则(),Df x y d σ⎰⎰()()()21,by x ay x dx f x y dy =⎰⎰即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有(),Df x y d σ⎰⎰()()()21,dx y cx y dx f x y dy =⎰⎰例1求两个底面半径相同的直交圆柱所围立体的体积V . 解:设圆柱底面半径为a ,两个圆柱方程为 222x y a +=与222x z a +=.只要求出第一卦限部分的体积,然后再乘以8即得所求的体积.第一卦限部分的立体式以z =,以四分之一圆域D:00,y x a ⎧⎪≤≤⎨≤≤⎪⎩为底的曲顶柱体,所以2230012()83a a DV dx a x dx a σ===-=⎰⎰于是3163V a =. 另外,一般常见的区域可分解为有限个X -型或Y -型区域,用上述方法求得各个小区域上的二重积分,再根据性质1.23求得即可.2.2 二重积分的变量变换公式定理: 设(),f x y 在有界闭域D 上可积,变换T : (),x x u v =, (,)y y u v =将平面uv 由按段光滑封闭曲线所围成的闭区域∆一对一地映成xy 平面上的闭区域D,函数(),x x u v =,(,)y y u v =在∆内分别具有一阶连续偏导数且它们的函数行列式 ()()(),,0,x y J u v u v ∂=≠∂, (),u v ∈∆,则()()()()(),,,,,Df x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰.用这个定理一般有两个目的,即被积函数化简单和积分区域简单化. 例1 求x y x yDedxdy -+⎰⎰,其中D 是由0x =,0y =,1x y +=所围区域.解 为了简化被积函数,令u x y =-,v x y =+.为此作变换T :1()2x u v =+,1()2y u v =-,则()11122,011222J u v ==>-. 即111100111()2224x y u u v x yvvv De e edxdy e dudv dv e du v e e dv ---+-∆-==-=⎰⎰⎰⎰⎰⎰⎰ 例2 求抛物线2y mx =,2y nx =和直线y x β=,y x α=所围区域D 的面积()D μ(0,0)m n αβ<<<<.解D 的面积()DD dxdy μ=⎰⎰.为了简化积分区域,作变换T : 2u x v =,uy v=.它把xy 平面上的区域D 对应到uv 平面上的矩形区域[][],,m n αβ∆=⨯.由于()234212,01uu v v J u v u v vv-==>-,(),u v ∈∆, 所以()()22334433()6n m D n m udv D dxdy dudv udu v v βαβαμαβ∆--====⎰⎰⎰⎰⎰⎰ 2.3 用极坐标计算二重积分定理: 设(),f x y 在有界闭域D 上可积,且在极坐标变换T :cos sin x r y r θθ=⎧⎨=⎩ 0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立()(),cos ,sin (,)Df x y dxdy f r r J r drd θθθθ∆=⎰⎰⎰⎰.其中cos sin (,)sin cos r J r r r θθθθθ-==.当积分区域是源于或圆域的一部分,或者被积函数的形式为()22,f x y 时,采用该极坐标变换.二重积分在极坐标下化累次积分的计算方法:(i )若原点O D ∉,且xy 平面上射线θ=常数与D 边界至多交与两点,则∆必可表示成12()()r r r θθ≤≤,αθβ≤≤,于是有21()()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰类似地,若xy 平面上的圆r =常数与D 的边界多交于两点,则∆必可表示成12()()r r θθθ≤≤,12r r r ≤≤,所以2211()()(,)(cos ,sin )r r r r Df x y dxdy rdr f r r d θθθθθ=⎰⎰⎰⎰.(ii )若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆可表示成0()r r θ≤≤,02θπ≤≤.所以2()(,)(cos ,sin )r Df x y dxdy d f r r rdrπθθθθ=⎰⎰⎰⎰.(iii)若原点O 在D 的边界上,则∆为0()r r θ≤≤,αθβ≤≤, 于是()(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰例1 计算22()xy DI e d σ-+=⎰⎰,其中D 为圆域: 222x y R +≤.解 利用极坐标变换,由公式得2220(1)Rr R I re dr e ππ--==-⎰⎰.与极坐标类似,在某些时候我们可以作广义极坐标变换:T :cos sin x ar y br θθ=⎧⎨=⎩ 0r ≤<+∞,02θπ≤≤,cos sin (,)sin cos a ar J r abr b br θθθθθ-==.如求椭球体2222221x y z a b c++≤的体积时,就需此种变换.2.4利用二重积分的几何意义求其积分当(,)0f x y ≥时,二重积分(,)Df x y dxdy ⎰⎰在几何上就表示以(,)z f x y =为曲顶,D 为底的曲顶体积.当(,)1f x y =时,二重积分(,)Df x y dxdy ⎰⎰的值就等于积分区域的面积.例6计算:DI σ=,其中D :22221x y a b +≤.解因为被积函数z =0≥,所以I 表示D为底的z =由平行xoy 面的截面面积为()(1)A x ab z π=-,(01)z ≤≤,根据平行截面面积为已知的立体体积公式有101(1)3I ab z dz ab ππ=-=⎰2.5 积分区域的边界曲线是由参数方程表示的二重积分有关计算 2.51利用变量代换计算设D 为有界闭域,它的边界曲线,()t αβ≤≤且{}(,),()D x y a x b c y y x =≤≤≤≤,当x a=时,t α=;当x b =时,t β=。
设(,)f x y 在D 上连续,且存在(,)P x y ,(,)x y D ∈使得(,)Pf x y y∂=∂,则 '(,){[(),()][(),]}()Df x y dxdy P t t P t c t dt βα=Φψ-ΦΦ⎰⎰⎰2.52利用格林公式计算定理 若函数(,)P x y ,(,)Q x y 在闭区域D 上连续,且有连续的一阶偏导数,则有()LDQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰这里L 为区域D 的边界线,并取正方向. 计算步骤: (1)构造函数(,)P x y ,(,)Q x y 使Q x ∂∂(,)Pf x y y∂-=∂,但(,)P x y ,(,)Q x y 在D 上应具有一阶连续偏导数;(2)利用格林公式化曲线积分求之.例7计算34Dx y dxdy ⎰⎰,D 是由椭圆cos x a θ=,sin y b θ=所围成.解法一(利用变量代换)设1D 为D 在第一象限,则135242425353520444cos ,sin cos sin (sin )5564D D a b x y dxdy x y dxdy x y dx x a y b a b d ππθθθθθθ====-=⎰⎰⎰⎰⎰⎰作变换 解法二(利用格林公式)令2515P x y =-,0Q =,则24P x y y ∂=-∂,0Qx ∂=∂. 352242525011(cos )(sin )(sin )5564L Da b x y dxdy x y dx a b a d ππθθθθ=-=--=⎰⎰⎰⎰ 2.7 积分区域具有对称性的二重积分的简便算法 2.71积分区域关于坐标轴对称性质1 若(,)f x y 在区域D 内可积,且区域D 关于y 轴(或x 轴)对称,则二重积分满足下列性质:10,(,)(,)2(,),(,)DD f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为关于(或)的奇函数为关于(或)的偶函数其中1D 为区域D 被y 轴(或x 轴)所分割的两个对称子域之一. 例 计算(23)Dh x y dxdy --⎰⎰,其中D 是由222x y R +=所围成的闭区域. 解析 由于积分区域D 关于x 轴\y 轴均对称性,只需考虑被积函数(,)23f x y h x y =--关于x 或y 的奇偶性.易见,(,)f x y 关于x 或y 既非奇函数,也非偶函数.若记()2f x x =-,()3f y y =-,则(,)()()f x y h f x f y =++且()f x 为x 的奇函数,()f y 为y 的奇函数.由此由性质1,有41122000cos()cos()0222cos()2cos()12yy D dxdy LDy y xx x y x y x y D D x y dxdy dy x y dx ππππππ-=====≤+=≤++≤=+=+=-⎰⎰⎰⎰,20Dhdxdy hR π=⎰⎰故有(,)Df x y dxdy =⎰⎰()Df x dxdy ⎰⎰+()Df y dxdy ⎰⎰+Dhdxdy ⎰⎰=Dhdxdy ⎰⎰=2hR π 2.72积分区域关于某直线L 对称性质2 若(,)f x y 在区域D 内可积,且区域D 关于L 对称,则二重积分满足下列性质:10,(,)(,)2(,),(,)DD f x y L f x y dxdy f x y dxdy f x y L ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为关于直线的奇函数为关于直线的偶函数其中1D 为区域D 被L 所分割的两个对称子域之一. 例 求,其中D 由直线0y =,y x =,2x π=围成.解析 对任意(,)x y D ∈,有0x y π≤+≤.而当02x y π≤+≤时,cos()0x y +≥.当2x y ππ≤+≤时,cos()0x y +≤.故作直线L :2x y π+=,把D 分成1D 和2D 两部分,而1D 和2D 关于直线L 对称.又cos()x y +关于直线L 偶对称.故}cos()Dx y dxdy +⎰⎰41202cos()2cos()12yyD x y dxdy dy x y dx πππ-=+=+=-⎰⎰⎰⎰2.8 运用导数的定义求极限例10 计算)0(ln )ln(lim0>-+→h xhx h x思路:对具有000)()(limx x x f x f x --→或hx f h x f h )()(lim 000-+→形式的极限,可由导数的定义来进行计算. 解:原式=hx h x 1|)'(ln == 2.9运用定积分的定义求极限]3[例11计算01lim 1cosn n →++ 思路:和式极限,利用定积分定义10011lim ()()n n i if fx n n →==∑⎰dx 求得极限.解:原式01001lim 2n n i n xdx ππ→=====⎰⎰2.10 运用微分中值定理求极限例12:计算sin 0lim sin x x x e e x x→--思路:对函数()f x 在区间[sin ,]x x 上运用拉格朗日中值定理,即可求得. 解:原式0lim 1e αα→== (其中α在[sin ,]x x 区间内)总上所述,在不同的类型下,所采用的技巧是各不相同的,求极限时,可能有多种求法,有难有易,也可能在求题的过程中,需要结合上述各种方法,才能简单有效的求出,因此学会判断极限的类型,另外对以上的解法能活学活用,是必要的.参考文献:[1]华东师范大学数学系. 数学分析(第五版)[M]. 高等教育出版社,2001. [2]钱志良. 谈极限的求法[J]. 常州信息职业技术学院学报,2003. [3] 李占光. 函数极限的计算方法[J]. 长沙民政职业技术学院学报,2004.。