发电机氢气冷却系统报告

合集下载

发电机氢气系统(水氢氢)

发电机氢气系统(水氢氢)
2、氢气系统投入时,应先用二氧化碳置换空气,再 用氢气置换二氧化碳。
3、氢气系统停运时,应先用二氧化碳置换氢气,再 用空气置换二氧化碳。
4、气体置换过程中,应始终维持机内气体压力在 0.01~0.03MPa。只有在发电机气体置换结束后,再 提高风压或泄压。
5、供氢母管、氢气干燥装置及其联接管路、密封油 回油扩大槽、油水检测装置应与发电机一起同时进 行气体置换。
纯度分析仪
气体纯度分析仪是用以测量机内氢气 和二氧化碳纯度的分析器,使用前还须进 行2h(小时)通电预热,其反馈的数据和 信号才准确。
氢气湿度仪
在发电机氢气干燥装置的入口和出口各装 有一台氢气温湿度仪,以便在线监测发电机内 氢气的湿度状况。
氢气的湿度用氢气露点表示,在0.3MPa的 压力工况下,氢气露点要控制在-5~-25℃。
二氧化碳控制站
CO2控制站在发电机需要进行气体置换时投入使用,以 控制CO2气体进入发电机内的压力在所需值(通常情况下, 在整个置换过程中发电机内气压保持在0.01~0.03MPa之 间)。CO2控制排设置有一套减压器,还有安全阀、气体 阀门等,这些部套件的结构、型式与氢气控制排上的相应 部套件相同。
氢气系统
主要内容
一、氢气系统概述 二、系统设备介绍 三、氢气置换 四、氢气系统的运行维护和注意事项 五、系统异常和事故处理
一、氢气系统概述
发电机氢气系统的功能是用于冷却发电 机的定子铁芯和转子。氢气置换采用二氧 化碳作为中间置换介质。发电机氢冷系统 采用闭式氢气循环系统,热氢通过发电机 的氢气冷却器由冷却水冷却。
氢气控制站可以控制向发电机内供给氢气,设置两套自动补氢装置。一是 电磁阀,它和压力控制器中的常闭开关串联在一个电气回路中,当发电机内 氢压降至低限整定值时,压力控制器中的开关闭合,电磁阀带电开启,氢气 通过电磁阀进入发电机内。当机内氢压升至高限整定值,压力控制器开关断 开,电磁阀断电关闭,补氢停止。二是减压器,减压器的输出压力值整定为 发电机的额定氢气压力,只要机内氢压降低,减压器的输出端就会有氢气输 出,直至机内氢气压力恢复到额定值为止。

电厂发电机氢气冷却系统

电厂发电机氢气冷却系统

氢气作为冷却介质,在循环过程中不会产生有害物质,对环境无污染。
氢气冷却系统具有较高的冷却效率,可降低发电机的能耗,提高电厂的经济效益。
高效节能
环保无污染
与水冷却系统相比
氢气冷却系统无需担心冻结和腐蚀问题,且冷却效果优于水冷却系统。
与空气冷却系统相比
氢气具有更高的热传导性,使得氢气冷却系统的冷却效果远优于空气冷却系统。同时,氢气冷却系统噪音低,运行更平稳。
05
CHAPTER
氢气冷却系统的应用与实例
某电厂原有发电机冷却系统存在效率低下、故障率高等问题,严重影响发电机的安全运行和发电效率。
改造背景
对原有冷却系统进行全面升级改造,采用先进的氢气冷却技术,包括氢气循环泵、冷却器、过滤器等关键设备的选型和配置。
改造方案
改造后,发电机冷却效率显著提高,故障率大幅降低,发电量明显增加,取得了显著的经济效益和社会效益。
高效冷却器设计
采用先进的冷却器设计,提高氢气的降温效率,保证发电机的稳定运行。
精密过滤器
采用高精度过滤器,去除氢气中的微小颗粒和水分,保证氢气的纯净度和系统的安全性。
自动化控制系统
采用先进的自动化控制系统,实时监测和调整系统内的氢气压力、温度和流量等参数,确保系统的稳定运行和发电机的安全。
04
CHAPTER
氢气冷却系统的性能与特点
氢气具有极高的热传导性,能够快速将发电机产生的热量带走,确保发电机在适宜的工作温度下运行。
高效冷却
氢气在发电机内部循环,使得各部件的温度分布更加均匀,减少局部过热现象。
温度均匀
可靠性高
氢气冷却系统经过精心设计,部件选用高品质材料制造,具有较高的可靠性和稳定性。
维护简便

600MW机组氢气系统解析

600MW机组氢气系统解析

600MW机组氢气系统施晶我厂600MW机组采用水氢氢冷却方式,所谓水氢氢冷却方式是指定子绕组水冷、转子绕组氢冷和定子铁芯氢冷。

我们知道发电机在运行时,由于强大的转子电流(额定磁场电流5080A)和高速旋转,将在转子绕组上产生大量的热量,使发电机温度升高而影响绝缘。

为了使发电机能得到冷却,要求建立一套专门的供氢气冷却系统。

目前大容量机组多采用氢气为冷却介质对转子绕组进行冷却。

这主要是因为氢气热传导性能好,对设备无腐蚀,制氢技术已很成熟。

但由于氢气是易燃易爆气体,当氢气与空气混合达一定浓度时会发生爆炸。

实验测定,空气里氢气的体积若达到混合气总体积的4.0%—74.2%时,点燃就会发生爆炸,这个范围叫氢气在空气中的爆炸极限。

另外,氢气在发电机内循环过程中会漏入冷却水或溶于密封油中,造成氢气损失,使机内氢气的压力、纯度下降,从而降低冷却效果。

因此,氢气系统应能保证给发电机充氢和补氢,自动监视和保持发电机内氢气的压力、纯度以及氢冷却器出口氢温在规定的范围内。

当氢气系统运行时,一定要特别注意防火、防爆、防漏。

一、氢气的特性1、在标准状态下,氢气的密度是89.87g/m3,比空气轻14.3倍,(空气的密度是1293 g/m3),故发电机采用氢冷能使通风损耗大为降低;2、氢气的传热系数比空气大1.51倍。

汽轮发电机的损耗形成的热量可由氢气很快地、大量地带走,这样就提高了发电机的容量和效率;3、氢气不会产生电晕,不会使发电机绝缘老化;4、氢气的渗透能力很强,它能很容易地从轴承、法兰盘、发电机引出线的青铜座板和磁套管、机壳的焊缝处扩散出来,造成氢压和纯度的降低;5、氢气是无色、无味、无毒的可燃性气体,氢气的着火点能量很小,化学纤维织物摩擦所产生的静电能量,都能使氢气着火燃烧。

氢气和空气的混合气体存在发生爆炸的可能性。

电解制氢实际上是一个水的电解过程,将直流电加于电解槽中的二个电极上,就可在阳极上得到O2,在阴极上得H2:阴极反应:4H2O+4e=2H2+4OH阳极反应:4OH=H2+2H2O+4e总反应: 2H2O=2H2+O2《电业安全作业规程》规定:发电机氢冷系统中的氢气纯度按容积计不应低于96%;制氢设备氢气系统中,气体含氢量不应低于99.5%。

发电机氢气冷却系统

发电机氢气冷却系统

毕业设计(论文) `题目发电机氢气冷却系统报告院系自动化系专业班级自动化专业1302班学生姓名杨晓丹指导教师马进发电机氢气冷却系统报告摘要发电机在运行的过程中由于能量转换、电磁作用和机械摩擦会产生一定的热量。

为了使发电机温度不超过与绝缘耐热等级相应的极限温度,应采取冷却措施使这些部件有效地散热。

氢气比重小、比热大、导热系数较大、化学性质较稳定,是冷却发电机转子常用的介质。

氢气在发电机的腔室内循环,依次穿过冷热风室,由冷却器冷却。

发电机中的氢气容易发生泄漏,需要在轴与静密封瓦之间形成油膜封住气体。

在发电机检修后,发电机内充满空气,为防止氢气与空气混合产生安全隐患,充入氢气时应先做气密实验,再从下至上向发电机内充满二氧化碳,最后从上至下向发电机内充满氢气。

关键词:发电机;氢气冷却;气体置换;密封油系统Report of hydrogen cooling system forgeneratorAbstractGenerator in the process of running due to energy conversion, electromagnetic and mechanical friction generates heat.Hydrogen cooling system is used to limited the generator temperature exceed the limiting temperature of thermal class for electric machine insulation.Because of Hydrogen gas has small specific gravity,large specific heat,large coefficient of thermal conductivity and relatively stable chemical properties,it is the commonly used medium cooling generator rotor.Hydrogen is circulated in the generator hydrogen and cooled by corner cooler.In order to limite hydrogen leakage,oil seals the space between the shaft and static seal tile.After the generator maintenance, air is full of inside the generators.There was a safe hidden trouble if hydrogen is mixed into the oxygen.Carbon is blowed from the from the bottom to the full of generator to replace air after Sealing experiment was passed.And hydrogen is blowed from the from the full to the bottom of generator to replace carbon. Keywords:Generator;Hydrogen cooling;Gas replacement;Seal oil system目录1 引言 (5)1.1发电机冷却系统的重要性 (5)1.2氢气冷却的优势 (6)2 发电机氢气系统组成、功能及原理 (7)2.1氢气系统的组成 (7)2.2氢气系统部件的功能及原理 (8)2.3氢气的循环冷却 (8)3 密封油系统 (9)3.1密封原理 (9)3.2密封油系统的组成 (9)4发电机的气体置换 (10)4.1气密试验 (10)4.2二氧化碳和氢气用量估计 (11)4.3二氧化碳置换空气 (12)4.4氢气置换二氧化碳 (12)4.5二氧化碳置换氢气 (12)参考文献 (13)1 引言1.1发电机冷却系统的重要性发电机在工作的过程中由于能量转换、电磁作用和机械摩擦会产生一定的热量,要使发电机的温度保持在材料限定温度范围内,就要配备发电机冷却系统。

汽机调试方案之十三--发电机氢气冷却系统

汽机调试方案之十三--发电机氢气冷却系统

BT-QJ02-13XXXXXXXX扩建工程#3机组发电机氢气冷却系统调试方案XXXXXXXX科学研究院二〇〇六年九月签字页批准:审核:编写:目录1 编制依据 (1)2 调试目的 (1)3 主要技术参数和调试对象及范围 (1)4 调试前应具备的条件及准备工作 (2)5 系统工艺流程 (2)6 调试步骤、作业程序 (2)7 调试验评标准 (5)8 调试所用仪器设备 (5)9 环境、职业健康、安全、风险因素控制措施 (5)10 联锁保护及热工信号试验项目 (7)11 组织分工 (7)1 编制依据1.1《电力建设施工及验收技术规范汽轮机组篇》。

1.2氢气及信号系统说明书。

1.3氢系统及设备连接图。

2 调试目的对氢系统及其辅助设备和相关管道系统进行调整并考核动态运行性能,确认其性能符合制造、设计及生产要求,能满足机组的运行需要。

3 主要技术参数和调试对象及范围3.1设备参数额定氢气工作压力:0.25MPa氢气纯度:≥96%氢气露点: -5~ -25℃补氢压力: 0.23 MPa氢气湿度:≤4g/m3(0.25MPa压力工况下)3.2 发电机及氢气管路充氢容积:71m33.3 发电机及氢气管路系统(不包括制氢站储氢设备及氢母管)漏氢量≤充氢容积5%3.43.5试转系统和范围氢系统4 调试前应具备的条件及准备工作4.1试转系统和范围内的设备、管道与阀门已按设计图纸要求安装完毕,并经检验合格,安装技术记录齐全,并办理签证,现场环境符合要求。

4.2密封油系统已具备投运条件。

4.3氢、油、水工况监测柜投入。

4.4各有关的手动、电动及气动阀门经逐个检查、调整、试验,动作灵活、方向正确,并已命名挂牌,处于备用状态。

4.5发电机风压试验结束并签证验收完毕。

4.6试运系统中监视和控制仪表均安装完毕、校验合格,工作正常。

4.7二氧化碳汇流排有必要的防结霜措施。

4.8氢系统联锁保护试验合格。

5 系统工艺流程流程见《氢系统及设备连接图》6 调试步骤、作业程序6.1气体置换本机组采用中间介质置换法充氢。

发电机氢气冷却系统报告

发电机氢气冷却系统报告

毕业设计(论文) `题目发电机氢气冷却系统院系专业班级学生姓名指导教师二○15年六月发电机氢气冷却系统摘要随着电厂装机容量的提升,发电设备的冷却环节越来越重要,所用到冷却介质也是多种多样。

在对发电机进行冷却技术当中,氢冷技术是最为成熟、应用最为广泛的几种技术之一。

由于氢气本身的特点以及工作环境的要求,氢冷系统当中有几项十分重要的环节,如氢气的置换、冷却、干燥、密封。

这几个环节直接决定着整个系统的冷却效果,也是发电机安全工作的重要影响因素。

关键词:发电机;氢冷技术;置换;冷却;干燥;密封Generator Hydrogen Cooling SystemAbstractWith the increase of installed capacity, the process of generator-cooling is more and more important . The kind of coolant medium is also miscellaneous. Among the methods about cooling generators, hydrogen-cooling is one of the most mature and widely technology.Because of the characteristics of hydrogen and the demand of operational environment, Hydrogen Cooling System has some important parts, such as replacing, cooling, drying and leaking proof hydrogen. These links directly determine the cooling effect of the whole system, which essential to the safety of generators.Keywords:Hydrogen-cooling; replacing; cooling; drying; leaking proof;目录目录发电机氢气冷却系统 (2)Generator Hydrogen Cooling System (3)Abstract (3)目录 (4)1、绪论 (5)1.1发电机冷却技术背景 (5)1.2发电机常见的冷却方式 (5)1.3发电机氢冷方式普及原因 (5)1.4论文的主要内容 (6)2、氢气置换的实现方式 (7)2.1氢气置换总则 (7)2.2氢气置换的实现方法——中间介质置换法 (7)2.3采用中间介质置换法应注意的事项: (8)3、氢气冷却系统 (9)3.1氢气冷却器简介 (9)3.2氢冷器的构造 (9)4、氢气干燥系统 (10)4.1未经处理的氢气湿度大的原因 (10)4.2湿氢气的危害 (10)4.3氢气干燥器的工作原理及运行方式(以冷凝式干燥器为例) (10)5、密封油系统 (11)5.1密封油系统简介及其功能 (11)5.2密封油系统工作流程及运行方式 (11)5.3密封油的运行时的注意事项 (12)参考文献 (13)1、绪论1.1发电机冷却技术背景在电力生产过程中,当发电机运转将机械能转化成电能时,不可避免的会产生能量损耗。

发电机氢冷系统介绍

发电机氢冷系统介绍

引言概述:发电机氢冷系统是一种常见的发电机冷却技术,通过使用氢气来冷却发电机内部的线圈,以提高发电机的效率和可靠性。

本文将介绍发电机氢冷系统的工作原理、组成结构以及优势。

正文内容:一、工作原理1.1氢气冷却的原理氢气具有很高的热导率和低的密度,使其成为一种理想的冷却介质。

当氢气进入发电机内部的线圈时,它会带走线圈产生的热量,使线圈保持在合适的温度范围内,避免过热导致断电和损坏。

1.2冷却系统的工作原理发电机氢冷系统主要由氢气供应系统、冷却系统和循环系统组成。

氢气在供应系统中被压缩和过滤,然后通过冷却系统进入发电机内部。

冷却系统通过散热器将热量排出,然后再将冷却过的氢气重新循环到发电机内部,形成一个闭环循环。

二、组成结构2.1氢气供应系统氢气供应系统包括氢气储气罐、压缩机和过滤系统。

储气罐用于储存氢气,压缩机将氢气压缩到适当的压力,过滤系统则用于除去杂质和水分。

2.2冷却系统冷却系统包括冷却器和散热器。

冷却器是用于将氢气冷却的装置,通常采用氢气与液体或气体之间的热交换原理。

散热器是用于将冷却后的氢气中的热量转移到周围环境中的设备。

2.3循环系统循环系统主要是用于将冷却过的氢气重新循环到发电机内部。

它包括循环管道、泵和阀门等设备,以确保氢气能够顺畅地流动,并且氢气的压力和温度保持在合适的范围内。

三、优势3.1高热导率和低密度氢气具有比空气更高的热导率和更低的密度,能够更有效地带走发电机产生的热量,并且减少发电机的整体重量。

3.2良好的散热性能由于发电机氢冷系统中的氢气能够快速冷却发电机内部的线圈,因此可以显著提高发电机的散热性能,降低温升。

3.3高可靠性和安全性氢气是一种非常稳定和可靠的冷却介质,它不会产生腐蚀和污染问题,并且能够有效地防止发电机内部的线圈过热和烧毁。

3.4节能环保相对于传统的水冷或风冷系统,发电机氢冷系统能够更好地节约能源和资源,同时还能减少对环境的影响。

3.5适用于高功率发电机由于氢气具有优良的散热性能和热导率,因此适用于高功率发电机的冷却需求,能够保持发电机的高效运行。

电厂发电机氢气冷却系统

电厂发电机氢气冷却系统
l 端部线圈为轴向氢内冷;由二根冷拉成型的П形铜线上下 对叠而成;中间形成冷风风道;迎风侧开有进风孔;为了降低 端部绕组的最高温度采用缩短风路的办法;将冷氢从迎风侧 吸入风道后分成两路;其中一路沿轴向流向槽部的斜向出 风道;再从槽楔经过甩风风斗排入边端出风区气隙;另一路 沿端部横向弧形风道流向磁极中
进入容器的底部;加热过程在那里又重新开始
2 3 漏液检测仪

装在发电机机壳和出
线盒下面;有浮子控制开关;
指示出发电机里可能存在的
液体漏出液体 在机壳的底部
最可能积液的地方设有开口;
将积聚的液体排到漏液检测
仪 每一个探测器装有一根回
气管通到机壳;使得来自发电
机机壳的排液管能够气流畅
通 回气管和液管都装有截止
1 氢气系统的特点及功能

汽轮发电机是采用水氢氢冷却方式;定子绕组为水冷;
转子绕组为氢气内冷;铁心为氢气外部冷却;发电机转子采
用气隙取气冷却方式

发电机内的气体容量约为110m3 我厂发电机氢
气系统充气体积 68 8m3 当发电机在额定氢压0 5MPa下运
行;保证漏氢量每天不大于11立方米常压下的体积 我厂
运行中;其部件绝缘有局部过热时;过热的 绝缘材料热分解后;产生冷凝核;
冷凝核随气流进入装置 内 由于冷凝核远比气体介质分子的体积大而重;
负离子附 着在冷凝核上;负离子运行速受阻;从而使电离电流大幅 度 下 降
电离电流下降率与发电机绝缘过热程度有关 经试验确 定;当电流下降到
某一整定值时;代表着绝缘早期故障隐 患的发生和存在;装置及时发出报警
声较小;绝缘材料不易受氧化和电晕的损坏

缺点:1氢气的渗透性很强;容易扩散泄露 因此

发电机氢冷系统介绍(一)

发电机氢冷系统介绍(一)

发电机氢冷系统介绍(一)引言概述:发电机氢冷系统是一种采用氢气冷却的高效能发电技术。

它在大型发电厂的应用中展现了出色的性能和可靠性。

本文将介绍发电机氢冷系统的工作原理,组成部分,以及其在发电厂中的应用情况。

正文:1. 工作原理- 发电机氢冷系统的工作原理是利用氢气的高导热性能将热量从发电机的绕组和核心中散发出去。

这样可以有效地降低发电机的工作温度,提高发电效率。

- 氢气冷却系统采用密闭循环方式,通过氢气在高压和低压中的流动,将发电机产生的热量带走,然后通过冷却装置散热。

2. 组成部分- 发电机氢冷系统主要由氢气冷却器、氢气加压设备、氢气循环泵、氢气管路等组成。

- 氢气冷却器是发电机氢冷系统中最重要的组成部分,负责将发电机产生的热量传递给氢气,并通过冷却装置散热。

- 氢气加压设备用于将氢气加压至所需的工作压力,以确保氢气能够流动并带走发电机产生的热量。

- 氢气循环泵负责将氢气从冷却器中抽出,经过冷却后再重新注入到发电机中循环。

3. 应用情况- 发电机氢冷系统广泛应用于大型发电厂中,特别是核电厂和燃煤电厂。

其高效能和可靠性使其成为这些发电厂的首选技术之一。

- 发电机氢冷系统能够大大提高发电机的运行效率,减少能源的浪费,降低对环境的影响。

- 由于氢气的独特性质,发电机氢冷系统还具有良好的热响应性能,可以快速适应负载变化,保持发电机的稳定运行。

4. 小点1- 发电机氢冷系统的氢气需定期检测和更换,确保其质量和压力符合要求。

- 为了确保发电机氢冷系统的安全可靠运行,还需要安装氢气泄漏报警装置,并进行定期维护和检修。

5. 小点2- 发电机氢冷系统还需要与主控室的监控系统进行联动,以实时监测氢气的压力和温度等参数,确保系统运行的稳定性。

- 发电机氢冷系统在运行过程中还需要进行故障诊断和预防维护,及时发现并解决潜在问题,以保证发电机的正常运行。

总结:发电机氢冷系统是一种高效能的发电技术,通过利用氢气的高导热性能提高发电机的工作效率。

600MW机组氢气系统解析

600MW机组氢气系统解析

600MW机组氢气系统施晶我厂600MW机组采用水氢氢冷却方式,所谓水氢氢冷却方式是指定子绕组水冷、转子绕组氢冷和定子铁芯氢冷。

我们知道发电机在运行时,由于强大的转子电流(额定磁场电流5080A)和高速旋转,将在转子绕组上产生大量的热量,使发电机温度升高而影响绝缘。

为了使发电机能得到冷却,要求建立一套专门的供氢气冷却系统。

目前大容量机组多采用氢气为冷却介质对转子绕组进行冷却。

这主要是因为氢气热传导性能好,对设备无腐蚀,制氢技术已很成熟。

但由于氢气是易燃易爆气体,当氢气与空气混合达一定浓度时会发生爆炸。

实验测定,空气里氢气的体积若达到混合气总体积的4.0%—74.2%时,点燃就会发生爆炸,这个范围叫氢气在空气中的爆炸极限。

另外,氢气在发电机内循环过程中会漏入冷却水或溶于密封油中,造成氢气损失,使机内氢气的压力、纯度下降,从而降低冷却效果。

因此,氢气系统应能保证给发电机充氢和补氢,自动监视和保持发电机内氢气的压力、纯度以及氢冷却器出口氢温在规定的范围内。

当氢气系统运行时,一定要特别注意防火、防爆、防漏。

一、氢气的特性1、在标准状态下,氢气的密度是89.87g/m3,比空气轻14.3倍,(空气的密度是1293 g/m3),故发电机采用氢冷能使通风损耗大为降低;2、氢气的传热系数比空气大1.51倍。

汽轮发电机的损耗形成的热量可由氢气很快地、大量地带走,这样就提高了发电机的容量和效率;3、氢气不会产生电晕,不会使发电机绝缘老化;4、氢气的渗透能力很强,它能很容易地从轴承、法兰盘、发电机引出线的青铜座板和磁套管、机壳的焊缝处扩散出来,造成氢压和纯度的降低;5、氢气是无色、无味、无毒的可燃性气体,氢气的着火点能量很小,化学纤维织物摩擦所产生的静电能量,都能使氢气着火燃烧。

氢气和空气的混合气体存在发生爆炸的可能性。

电解制氢实际上是一个水的电解过程,将直流电加于电解槽中的二个电极上,就可在阳极上得到O2,在阴极上得H2:阴极反应:4H2O+4e=2H2+4OH阳极反应:4OH=H2+2H2O+4e总反应: 2H2O=2H2+O2《电业安全作业规程》规定:发电机氢冷系统中的氢气纯度按容积计不应低于96%;制氢设备氢气系统中,气体含氢量不应低于99.5%。

发电机氢气系统简介

发电机氢气系统简介
注:由于吹扫时较轻 的空气从发电机下方 3、在氢控制柜上:设置为“Purge(CO2 in AIR)”模式 进入,所以吹扫时CO2 4、按幻灯片20调整氢气控制屏隔离阀,系统状态如23页所示 将与空气混合,在吹扫 时空气用量较大 5、让取样气体通过传感器,面板上“H2 IN CO2”灯亮
9.停用密封油系统 置换完毕,可进行检 修或保养工作!
置换操作 准备工作:



熟悉用于气体纯度监控氢气控制柜的使用方法。 确保有足够的可用CO2来吹扫空气,危急时有足够 的CO2吹扫出氢气(PI2944>0.3MPa)。 确保二氧化碳进入管道上的气阀安装正确到位。 氢气控制柜相关表计已经进行较准,可投入使用。 确认氢气干燥系统已经投入运行 确认转子处于停止状态或盘车状态 检查Mark VI机组发电机H2和CO2系统无报警存在
流 量 及 阀 门 控 制 表
置换操作 CO2→空气:
1、打开吹扫取样管线隔离阀 HV2957、HV2983 5、确认供氢隔离阀HV-2936关闭 7、确认两三通阀在垂直位置
4、让取样气体通过传感器,面板上“AIRin CO2)” 2、在氢控制柜上:设置为“Purge(Air IN CO2”灯亮 3、按幻灯片20调整氢气控制屏隔离阀,系统状态如23页所示 模式
注:投入密封油系统防止CO2通过轴 6、缓慢打开主排气阀HV-2954 端大量流出,在密封油系统运行初期, 发电机内压力太少,难以保证充分排 10、开启CO2供气阀,进行置换 8、通过PI-2944确认CO2在供应正常 油,浮子阀应走旁路。直到压力足够 进再关闭旁路阀 注:置换期间,发电机的的气压应维 护在0.14-0.35kg/cm2(2-5psig),在 置换后期,发电机内气压会有较大变 注:这将阻止CO2进入过滤器干 9、密封油系统投入运行 化,需要调节HV-2954 的开度对气压 燥器,如果CO2进入过滤器干燥 进行控制, 器,在发电机充H2正常运行时的 第一天内CO2将缓缓流出,这将 导致首日气体分析仪读数不准确。

发电机氢冷系统常见问题分析及处理

发电机氢冷系统常见问题分析及处理

发电机氢冷系统常见问题分析及处理发电机是发电厂重要的生产设备,随着我国高参数大容量机组的不断涌现,使得发电机氢冷系统的结构更加趋于复杂化。

氢冷系统的运行质量直接影响着机组的安全稳定。

本文以某电厂采用的西门子350MW机组为例,介绍了发电机氢冷系统的构成,并结合现场实际,总结出日常出现的问题,并对此进行了具体分析,给出了检修注意事项和安全防范措施。

标签:氢冷系统;常见问题;分析处理某电厂一期装机容量6×350MW,发电机为德国西门子公司设计生产。

冷却形式为全氢冷,即转子绕组、定子绕组、三相出线和套管直接气体冷却。

发电机正常运行所产生的其它热量,如铁损、风阻损耗、杂散损耗等均通过氢气散失。

1 H2冷却的特点氢是原子质量最小的元素。

标态下,H2的密度只有空气的1/14,因此用H2冷却发电机,其通风损耗最小,提高了发电机效率,减少了发电机噪音。

其次,H2导热能力强,其导热系数是空气的8.4倍,在相同温差下所吸收的热量更多,换热效率更高,当单机容量一定时,缩小了发电机的体积,减少了材料使用。

另外,H2比较稳定,可保护发电机的绝缘。

但H2是一种易燃易爆气体,扩散性强,安全要求高。

2 氢冷系统的构成2.1 气体系统气体系统由H2供给装置、CO2供给装置、压缩空气供给装置、H2干燥器等组成。

H2正常由氢站供给,H2瓶作为气源备用。

CO2供给装置包括贮存液态CO2的钢瓶、CO2气化风机、换热器和风扇等。

压缩空气供给装置由压缩空气室、空气过滤器和气体干燥器等组成。

惰性气体CO2是作为发电机在充、排氢其间,防止H2爆炸的一个重要安全措施。

2.2 密封油系统密封油系统由密封油泵、密封油箱、中间油箱、贮油箱、真空泵、过滤器、冷油器、差压调节阀等组成。

密封油系统将油打入轴与密封环之的间隙形成轴封,防止了H2的泄漏。

密封油压高于氢压,经密闭回路供给密封环,保证了可靠的密封效果。

2.3 冷却系统冷却系统由氢冷器、多级轴流风机、冷却通道等组成。

发电机的发热与冷却及氢气系统简介

发电机的发热与冷却及氢气系统简介

氢气系统冷却器



发电机氢冷系统的冷却 为闭式氢气循环系统,热氢通过发电机的 氢气冷却器由冷却水冷却。 发电机氢气冷却器采用绕片式结构 。冷却 器按单边承受0.8MPa压力设计。 氢冷却器冷却水直接冷却的冷氢温度一般 不超过46℃。氢冷却器冷却水进水设计温 度38℃。
完毕,谢谢!
2014年08月
步是电机向大容量发展的保证。

电机的冷却方式分为气冷和液冷两大类 空气 气冷 氢气 水 液冷 油 蒸发冷却介质(氟里昂类、氟碳)
氢气和空气、水与油之间的冷却性能表
介质
空气 氢气(0.414MPa) 油 水
比热
1.0 14.35 2.09 4.16
密度
1.0 0.35 0.848 1.000
所需流量 冷却效果
定子通风系统

机壳和定子铁芯之间的空间是发电机通风 (氢气)系统的一部分。 发电机定子采用径向通风,将机壳和铁芯 背部之间的空间沿轴向分隔成若干段,每 段形成一个环形小风室,各小风室相互交 替分为进风区和出风区。这些小室用管子 相互连通,并能交替进行通风。氢气交替 地通过铁芯的外侧和内侧,再集中起来通 过冷却器,从而有效地防止热应力和局部 过热。
转子通风系统
转子槽内斜流通风 端部两路半通风

转子绕组槽部采用气隙取气斜流内冷方式。利用转 子自泵风作用,从进风区气隙吸入氢气。通过转子 槽楔后,进入两排斜流风道,以冷却转子铜线。氢 气到达底匝铜线后,转向进入另一排风道,冷却转 子铜线后再通过转子槽楔,从出风区排入气隙。在 转子线棒凿了两排不同方向的斜流孔至槽底,于是, 沿转子本体轴向就形成了若干个平行的斜流通道。 通过这些通道,冷却用氢气交替的进入和流出转子 绕组进风口的风斗,迫使冷却氢气以与转子转速相 匹配的速度通过斜流通道到达导体槽的底部,然后 拐向另一侧同样沿斜流通道流出导体。从每个进风 口鼓进的冷风是分成两条斜流通道向两个方向流进 导体,同样,有两条出风通道汇流在一起从出风口 流出进入气隙。

氢气冷却发电机的冷却原理

氢气冷却发电机的冷却原理

氢气冷却发电机的冷却原理
氢气冷却发电机是一种高效、可靠的发电设备,采用氢气作为冷
却介质的冷却原理使其性能更加出色。

下面我们来详细介绍这种发电
机的冷却原理。

首先,让我们了解一下氢气的特性。

氢气是一种非常轻的气体,
具有良好的导热性和高热传导率。

这使得氢气可以迅速将发电机内部
产生的热量传导到外部环境,实现有效的冷却。

在氢气冷却发电机中,氢气被输送到发电机的冷却室中。

冷却室
周围有一系列冷却板,它们与氢气接触,接收发电机产生的热量。


些冷却板通常使用高导热材料制造,例如铝或铜,以提高热传导效率。

当氢气通过冷却板时,它们吸收热量并迅速传导到板上的表面。

接下来,热量会通过辐射和对流的方式从冷却板表面传递到周围的空
气中。

这样就实现了热量的有效散发,保持发电机内部的温度在可控
范围内。

此外,氢气冷却发电机还采用了密封的设计。

通过在发电机内部
建立一个密封的环境,可以有效防止氢气泄漏和外界空气的进入。


不仅有助于提高氢气的冷却效果,还能减少发电机部件的氧化和腐蚀,延长设备的使用寿命。

需要注意的是,氢气冷却发电机的冷却效果与氢气的流速和压力有关。

适当调整氢气的流速和压力可以提高冷却效果,同时避免氢气的浪费和能源的消耗。

总之,氢气冷却发电机通过利用氢气的导热性和热传导率,使发电机内部的热量得到有效散发,保持设备的正常运行。

其密封的设计还能延长设备的使用寿命。

因此,在选择和使用发电设备时,我们可以考虑氢气冷却发电机,以满足各种需求,并提高能源利用效率。

发电机氢气系统..

发电机氢气系统..

5)发电机漏液检测装置

发电机漏液检测装置用以检测发电机水冷定子 线圈或氢气冷却器因泄漏而积累在发电机底部 的液体,同时也用以检测渗漏到发电机内的密 封油或轴承油
6)发电机绝缘过热监测装置


发电机绝缘过热监测装置用以监测发电机内部绝缘材料是 否有过热现象,以便在早期及时采取必要的措施,防止酿 成大事故。 工作原理: 在发电机正常工作时,流经装置的干净气体导致装置 产生一定的微电流,此电流经处理后,在装置上显示出来。 当发电机内绝缘有过热现象时,绝缘材料因过热而挥发出 过热粒子,这些粒子随氢气进入到监测装置后,将引起装 置的电流减少。当电流减少到一定程度时,装置经自检确 认装置本身无误后将发出报警信号,提示发电机内绝缘部 件有过热现象。
工作原理: 仪器由特殊设计的风机,压差交送器及压差计组成,实际则是风机产生的压差,但由 于此压差值与气体的密度有关,而气体密度又直接与气体的成分成比例,故只要测出风机 压差就等于测出了气体密度,实际上两只压差计是直接按密度和纯度标注的。


纯度要求: 氢气是易燃易爆性气体。在密闭容器中,当氢气与空气混合,氢的含量为4%~ 75%,即形成易爆炸的混合气体。我国发电机运行规程规定:“一般要求发电机内氢 气纯度保持在96%以上。低于此值时,应进行排污” 大容量氢冷发电机内要求保持高纯度的氧气,其主要目的是提高发电的效率,从 经济方面考虑。因为氢气混入空气或纯度下降时,混合气体的密度随氢气纯度的下降 而增大,使发电机的通风摩擦损耗也随着氢气纯度的下降而上升。据美国GE公司介绍, 一台运行氢压为0.5MPa、容量为907MW的氢冷发电机,其氢气纯度从98%降到95% 时,摩擦相和通风损耗大约增加32%,即相当于损失685kW。一般情况下,当机壳内 的氢气压力不变时,氢气纯度每降低l%,其通风摩擦损耗约增加11%。

发电机氢冷系统介绍资料

发电机氢冷系统介绍资料

氢气系统正常运行注意事项(1)



机组启动过程中,不应过早地向氢气冷却器供冷却水, 应在进口温度超过40℃时,再投入氢气冷却器水侧。随 着负荷的增加,应注意监视氢气冷却器出水温度变化情 况。 机组正常运行时,发电机内氢压应维持在0.414MPa, 发现氢压下降时,应立即查明原因,并进行消除。 机组正常运行时,发电机氢气温度维持在45℃以下,最 低不低于18℃。机组停用后,随氢气温下降,及时关闭 氢气冷却器进、出水门,以防发电机过冷。 正常运行时,发电机内氢气纯度应在98%以上,含氧量 小于1%,否则开启排污门进行排污,并同时进行补氢。 如发现氢气纯度下降,应严密注意并寻找原因,纯度下 降至90%,检查发电机工况监视柜应发出报警信号并及 时向值长汇报。


6 发电机排氢
发电机的排氢,通过在机座底部汇流管充入二氧化碳, 使氢气从机座顶部汇流管排除出去,为了使机内混合气体 中的氢气含量底于5%应充入足够的二氧化碳。排氢应在 发电机静止或盘车时进行, 充二氧化碳时,纯度风机与发 电机机座顶部汇流管接通,在充入的二氧化碳达到要求的 浓度后,二氧化碳纯度读数应为95%。排氢结束。
发电机氢冷系统设备介绍(1)




1、供气装置(气体控制站): 氢气供气装置提供必须的阀门,压力表,调节器和其它 设备将氢气送进发电机,它还提供用以自动调节机内氢气 压力或手动调节的阀门,或者是借助于压力调节器手动调 节机内所需氢气压力值。 二氧化碳供气装置在气体置换期间将二氧化碳充入发电 机。 氢气是通过设置在发电机内顶部汇流管道进入发电机内, 并均匀地分布到各地方;二氧化碳是通过发电机底部管道 进入发电机并均匀分布到各地方。 2、发电机风扇差压监视设备: 差压变送器直接连到发电机机壳,并通过安装在发电机 转子上的风扇变送出变化压力。氢气监测系统输出发电机 风扇差压信号到氢控柜里的指示器。

发电机氢气系统介绍

发电机氢气系统介绍

采用氢气冷却优点: (1)运行经验表明,发电机通风损耗得大小取决于冷却介
质得质量,质量越轻,损耗越小,氢气在气体中密度最小,有利 于降低损耗;
(2)另外氢气得传热系数就是空气得5倍,换热能力好; (3)氢气得绝缘性能好,控制技术相对较为成熟。 采用氢气冷却缺点: 最大得缺点就是一旦于空气混合后在一定比例内(4%~ 74%)具有强烈得爆炸特性,所以发电机外壳都设计成防爆型, 气体置换采用CO2作为中间介质。
气体置换准备和要求:
1、 气密性试验合格(向发电机内充入0、45MPa得清洁干燥空气 ,24小时内气体泄漏量小于10Nm3/d为合格)。
2、 发电机本体上、下部应布置供灭火用得CO2灭火器,在发电 机本体上、下部周围挂“氢气运行,严禁烟火”标示牌,在发电机周 围10m内无烟火及电焊作业。
3、合格得CO2瓶不少于60瓶,以满足气体置换使用,CO2含量按容 积计不低于98%。
29)发电机氢压升至0、08~0、1 Mpa,投入密封油差压调 节阀,缓慢关闭差压调节阀旁路门,监视油氢差压在50Kpa左右。 (如交流密封油泵未投运,启动一台交流密封油泵,调整泵出口 压力0、8 Mpa。)
30)当发电机内部氢气压力达到0、45Mpa,充氢升压完毕。 31)解列氢气至发电机系统。关闭CO2至发电机系统截门22。 32)发电机内压力:MPa,发电机氢气纯度:%。置换完毕。
密封油系统 简图
定子冷却水控制系统概述
发电机定子冷却水系统得主要作用就是:向发电机定子线圈不间断得 供水,使定子线圈得到冷却,使定子线圈温度保持在允许范围内。 监视进出水温、水压、流量和水得导电率等参数。系统还设有自 动水温调节器,以调节定子线圈进水温度,使之保持基本稳定,另外 ,系统还设置了离子交换器,用以提高和保持冷却水得水质。

发电机氢冷系统介绍(二)

发电机氢冷系统介绍(二)

发电机氢冷系统介绍(二)引言:发电机氢冷系统是一种高效、可靠的发电机冷却技术,它通过运用氢气作为冷却介质,在发电过程中实现对发电机的高效冷却。

本文将介绍发电机氢冷系统的原理和工作方式,并详细讨论其在能源领域的应用。

正文1. 原理及工作方式a) 氢气的导热性能:氢气具有非常高的导热性能,远远超过空气和水。

这使得发电机氢冷系统能够高效地将热量从发电机传递到冷却系统中。

b) 氢气的化学稳定性:氢气不会引起腐蚀或氧化,这使得氢冷系统能够保持发电机内部的稳定和可靠性。

c) 工作方式:发电机氢冷系统包括氢气供应系统、冷却系统和排气系统。

氢气通过进气管道进入发电机,并通过冷却系统吸收热量,然后排出冷却剂。

2. 应用领域a) 火力发电站:发电机氢冷系统广泛应用于火力发电站中,可以有效降低发电机的温度,提高发电机的效率和寿命。

b) 核电站:在核电站中,发电机氢冷系统是必不可少的,它可以在核反应堆事故发生时起到冷却和保护的作用。

c) 风力发电站:氢冷系统也可以应用于风力发电站中,提高风力发电机组的效率和可靠性。

d) 水力发电站:通过发电机氢冷系统,水力发电站可以有效冷却发电机,提高发电效率。

e) 运输领域:发电机氢冷系统也逐渐应用于船舶、飞机等运输领域,以提高动力设备的冷却效果和性能。

3. 氢冷系统的优势a) 高效冷却:相较于传统的空气冷却和水冷却系统,发电机氢冷系统能够以更高的效率将热量带走,提高发电机的工作效率。

b) 低噪音:由于氢气的导热性能和化学性质,发电机氢冷系统能够保持发电机的低噪音运行。

c) 环保:使用氢气作为冷却介质时,不会产生温室气体和其他有害物质,符合环保要求。

d) 可靠性高:氢气的化学稳定性和导热性能使发电机氢冷系统具有高可靠性,能够长时间稳定运行。

4. 维护和安全性a) 维护工作:发电机氢冷系统需要定期维护,包括氢气供应系统的检查和冷却系统的清洗,以确保系统的正常运行。

b) 安全性:氢气是易燃易爆的,在使用发电机氢冷系统时需要严格按照安全操作规程,确保系统安全可靠。

发电机氢气系统

发电机氢气系统

发电机氢气运行监督技术






7氢气系统的运行维护 7.1发电机正常运行时机内氢压应保持在380~414kPa(就地控制盘指示) 之间,高于435kPa 或低于375kPa,将发出报警。氢压过高时可开启排 气阀来排去部分H2,降压到正常值。氢压低于380kPa,应向发电机内 补氢,最大补氢率10m3/天,超过此限值,应进行检漏。 7.2发电机运行中H2纯度大于98%,纯度降到95%,应及时补排,纯度 最低限值90%,湿度小于4g/Nm3,发电机正常运行中氢气干燥器应投 运。 7.3发电机正常运行时,要使氢冷系统良好运行,必须保持密封油系统正 常运行,应特别注意密封油压恒定地大于机内H2压力35~55kPa。 7.4发电机正常运行,四台氢冷却器投入运行。一台氢冷器退出运行,发 电机负荷限制为80%额定负荷。 7.5机组启动前,发电机内需充满纯度合格的氢气。并网后,及时投入各 氢冷器冷却水,保持冷氢温度35~46℃。机组解列后,停用氢冷器冷却 水及氢气干燥装置。



处理 1)如密封油中断,应紧急停机并排氢。2)发现氢压降低,应核对就地表 计,确认氢压下降,必须立即查明原因予以处理,并增加补氢量以维持 发电机内额定氢压,同时加强对氢气纯度及发电机铁芯、线圈温度的监 视。3)检查氢温自动调节是否正常,如失灵应切至手动调节。 4)若氢冷系统泄漏,应查出泄漏点。同时做好防火防爆的安全措施,查 漏时,应用检漏计或肥皂水。5)管子破裂、阀门法兰、发电机各测量引 线处泄漏等引起漏氢。在不影响机组正常运行的前提下设法处理,不能 处理时停机处理。6)发电机密封瓦或出线套管损坏,应迅速汇报值长, 停机处理。7)误操作或排氢阀未关严,立即纠正误操作,关严排氢阀, 同时补氢至正常氢压。8)怀疑发电机定子线圈或氢冷器泄漏时, 应立即 报告值长,必要时停机处理。9)氢气泄漏到厂房内,应立即开启有关区 域门窗,启动屋顶风机,加强通风换气,禁止一切动火工作。10)若氢压 下降无法维持额定值,应根据定子铁芯温度情况,联系值长相应降低机 组负荷直至停机。11)密封油压低,无法维持正常油氢差压。设法将其调 整至正常或增开备用泵,若密封油压无法提高,则降低氢压运行。氢压 下降时按氢压与负荷对应曲线控制负荷。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文) `题目发电机氢气冷却系统院系专业班级学生姓名指导教师二○15年六月发电机氢气冷却系统摘要随着电厂装机容量的提升,发电设备的冷却环节越来越重要,所用到冷却介质也是多种多样。

在对发电机进行冷却技术当中,氢冷技术是最为成熟、应用最为广泛的几种技术之一。

由于氢气本身的特点以及工作环境的要求,氢冷系统当中有几项十分重要的环节,如氢气的置换、冷却、干燥、密封。

这几个环节直接决定着整个系统的冷却效果,也是发电机安全工作的重要影响因素。

关键词:发电机;氢冷技术;置换;冷却;干燥;密封Generator Hydrogen Cooling SystemAbstractWith the increase of installed capacity, the process of generator-cooling is more and more important . The kind of coolant medium is also miscellaneous. Among the methods about cooling generators, hydrogen-cooling is one of the most mature and widely technology.Because of the characteristics of hydrogen and the demand of operational environment, Hydrogen Cooling System has some important parts, such as replacing, cooling, drying and leaking proof hydrogen. These links directly determine the cooling effect of the whole system, which essential to the safety of generators.Keywords:Hydrogen-cooling; replacing; cooling; drying; leaking proof;目录目录发电机氢气冷却系统 (2)Generator Hydrogen Cooling System (3)Abstract (3)目录 (4)1、绪论 (5)1.1发电机冷却技术背景 (5)1.2发电机常见的冷却方式 (5)1.3发电机氢冷方式普及原因 (5)1.4论文的主要内容 (6)2、氢气置换的实现方式 (7)2.1氢气置换总则 (7)2.2氢气置换的实现方法——中间介质置换法 (7)2.3采用中间介质置换法应注意的事项: (8)3、氢气冷却系统 (9)3.1氢气冷却器简介 (9)3.2氢冷器的构造 (9)4、氢气干燥系统 (10)4.1未经处理的氢气湿度大的原因 (10)4.2湿氢气的危害 (10)4.3氢气干燥器的工作原理及运行方式(以冷凝式干燥器为例) (10)5、密封油系统 (11)5.1密封油系统简介及其功能 (11)5.2密封油系统工作流程及运行方式 (11)5.3密封油的运行时的注意事项 (12)参考文献 (13)1、绪论1.1发电机冷却技术背景在电力生产过程中,当发电机运转将机械能转化成电能时,不可避免的会产生能量损耗。

这些损耗的能量最后都变成热能,使发电机的转子、定子等各部件温度升高加速线路老化、加剧金属疲劳,从而降低效率,缩短设备寿命。

因此必须采用合适的冷却方式带走损耗所产生的热能,将电机各部分的温升控制在允许范围内,保证电机安全可靠地运行。

此外,在提高机组的容量、增加线路负荷的同时,必然伴随着线棒磨损加剧,线圈温度上升。

因此提高发电机冷却系统的降温能力也是提升电机容量的重要前提。

1.2发电机常见的冷却方式大容量发电机的冷却方式按冷却介质的形态区分,常见的有气冷、气液冷和液冷三大类。

气体冷却介质包括空气和氢气等,液体冷却介质有水、油、氟里昂类介质及新型无污染化合物类氟碳介质。

在诸多冷却方式中空冷、氢冷、水冷技术均为早期从国外引进技术后优化设计,是很成熟技术,也是目前应用最为广泛的几种冷却技术。

实际工程当中同一台发电机往往采用多种冷却方式。

例如,水轮发电机所采用的冷却方式常见的有空冷、水冷和蒸发冷等;汽轮发电机所采用的冷却方式则较为丰富,包括空冷、氢冷、水冷、油冷及蒸发冷等。

1.3发电机氢冷方式普及原因液冷方式需要在发电机内部建设相应的管道,提高了设备成本和运行维护成本,导致这种冷却方式的普及程度稍逊色于气冷。

目前发电机转子通常利用氢气进行冷却,原因与氢气的特性密切相关。

在所有气体中氢气密度最小,分子运动速度最快,具有最大的扩散速度和很高的导热性。

氢气导热系数为空气的7倍,在同一温度和流速下,放热系数为空气的1.4一1.5倍。

由于散热效果增强了,相对同容量的空冷机而言,氢冷机体积小,消耗材料少。

相应地,发电机的线负荷比空冷显著高(1000—1300)A/cm。

由于密度小,流动阻力也小,因此。

在相同气压下,氢气冷却的通风损耗、风摩耗均为空气的1/10,而且风噪亦可减小,可以减弱因气流而产生的振动。

氢气不助燃,可以抑制内部电晕,不会产生对电气绝缘有害的气体,故延长了电机的寿命。

1.4论文的主要内容本论文主要研究了氢气冷却发电机转子的相关技术问题,涉及到的内容如下:(1)受热后的氢气如何冷却;(2)发电机运行时如何减少氢气的泄漏量;(3)在发电机充氢气过程中,如何操作以避免空气与氢气混合,防止发生氢气爆炸。

2、氢气置换的实现方式2.1氢气置换总则检修前将发电机内充斥的氢气排尽换成空气或检修后将发电机内的空气排进换为高纯度的氢气的过程称为氢气的置换。

由于氢气是相当活泼的气体,当其遇到一定浓度的氧气时极易发生爆炸,因此氢气的置换过程必须遵循一定的原则:(1)当发电机用空气冷却或中间介质气体运行时,不得带负荷。

(2)当发电机内部出现下列情况之一,会发生爆炸或者有着火危险。

○1在发电机壳内,当氢气纯度降至5%~76%时;○2在发电机壳内,当含氧量超过2%时;○3轴承回油管或在油箱中油的含氧量超过5%时;○4在距离漏氢地点5米以内遇有火源或电火花时;(3)必须用二氧化碳作为中间介质,严禁空气与氢气直接接触置换。

(4)开启二氧化碳瓶门时,应缓慢进行。

如发生冻结闭塞现象,可用热水烘暖。

为缩短气体置换时间,必要时可用数个二氧化碳瓶同时供给。

注意二氧化碳瓶表面的结霜情况,一般升到离瓶底0.5米以上时,应及时调换新瓶,瓶内压力不应全部放尽。

(5)气体置换过程应在低风压运行方式下,并尽可能在发电机静止或盘车时进行,若为条件所迫,亦可在发电机转速<100r/mm时进行,整个置换过程,应严密监视发电机风压、风温、密封油压、油温、油流。

(6)当氢气系统严密性不佳时,不可置换至氢气运行,严禁拆除密封瓦进行。

2.2氢气置换的实现方法——中间介质置换法利用二氧化碳驱赶发电机内空气(或氢气),然后又利用氢气(或空气)驱赶发电机内的二氧化碳,这样发电机内在气体置换过程中空气、氢气不直接接触,因而不会形成具有爆炸浓度的空气、氢气混合物,这种方法是中间介质置换方法。

氢气的输入管道位于发电机的上方,而二氧化碳的输入管道位于发电机的下方,这是利用了二氧化碳密度比空气大,而氢气密度比空气小的特点。

只有这样才可实现充氢或充二氧化碳等过程。

图一 氢气置换输气图在充氢前,必须用惰性气体排除空气,利用CO 2罐或CO 2瓶提供的高压气体,从发电机机壳下部引入,驱赶发电机内的空气,当从机壳顶部原供氢管和气体不易流动的死区取样检验CO 2的含量超过85%(均指容积比)后,停止充CO 2。

期间保持气体压力不变。

按此程序进行气体置换,发电机内将不存在爆炸性的混和气体,其前提气体是彻底混和的。

氢冷发电机在正常运行时,氢气纯度应在95%或以上。

在发电机静止或盘车情况下,从发电机的顶部汇流管充氢,氢气经供氢装置进入机壳内顶部的汇流管向下驱赶CO 2。

当从底部原CO 2母管和气体不易流动的死区取样检验,氢气纯度高于96%,氧含量低于2%时,停止排气,并升压到工作氢压。

升压速度不可太快,以免引起静电。

发电机的排氢,通过在机座底部汇流管充入二氧化碳,使氢气从机座顶部汇流管排除出去,为了使机内混合气体中的氢气含量底于5%应充入足够的二氧化碳。

排氢应在发电机静止或盘车时进行, 充二氧化碳时,纯度风机与发电机机座顶部汇流管接通,在充入的二氧化碳达到要求的浓度后,二氧化碳纯度读数应为95%。

排氢结束。

气体置换应在发电机静止或盘车时进行,投入密封油系统,同时应保持轴密封瓦处的密封油压力。

如出现紧急情况,可在发电机加速或减速时进行气体置换,但不允许发电机充入CO2气体在额定转速下运行。

推荐在发电机静止时置换机内气体。

2.3采用中间介质置换法应注意的事项:⑴氢气、压缩空气、中间气体均需从气体控制站上专设的入口引入,不允许弄错。

⑵适当控制气体的流动速度,以免因气流速度太快而使管路变径处出现高热点。

⑶整个置换过程中发电机内保持一定的压力(0.02~0.03Mpa 之间)。

⑷现场,特别是排空管口附近杜绝明火。

⑸取样地点正确。

全面置换过程中气体排出管路及气体不易流通的死区,特别是氢气干燥器,密封油箱和发电机下液体检漏器等处,应勤排放,最后均应取样化验,各处都要符合要求。

3、氢气冷却系统3.1氢气冷却器简介氢气冷却器是氢冷发电机的重要设备,它利用自身设备的特殊结构,通过冷却水对氢气降温,而降温后的氢气再次进入发电机对转子和定子进行降温。

可见氢气冷却器是实现氢气循环利用的重要设备之一。

设备外形如下图图二氢冷器外形3.2氢冷器的构造大多数氢冷系统都具有四个氢冷器,分别垂直安装于定子机壳的四个角上。

在回水管上设有温度计,出口母管装有自动温度调节阀,用于自动控制冷却水量,保持氢气的温度恒定。

因为冷却水平行流过四台氢冷器,如果空气滞留在冷却水系统中,会造成冷却水断流,所以每只冷却器都有一根排气管。

工作时,冷却水在氢冷器内进行倒U型流动,热氢气从冷却水排出侧进入氢冷器中,冷却后的氢气从冷却水进入侧离开氢冷器。

冷氢在其工作压力下对应的露点很低,一般稍低于其工作温度,如果定冷水温度比其低的话,会造成冷氢结露,影响其冷却效果,进而影响发电机正常工作。

所以氢冷器的介质为开式水,通过水量的调节可控制合适的冷氢气温度在40~46度之间。

4、氢气干燥系统4.1未经处理的氢气湿度大的原因冷氢系统中的氢气往往是通过电解水制得到,其中含有大量的水分。

此外因为密封油的特性,也会使氢气的湿度加大。

而湿氢气又会对设备运行造成极大的伤害。

相关文档
最新文档