安徽省江南十校2018届高三毕业班开学摸底考试数学文试题 (答案扫描解析)

合集下载

安徽省江南十校联考2018年高考数学一模试卷文科 含解析

安徽省江南十校联考2018年高考数学一模试卷文科 含解析

2018年安徽省江南十校联考高考数学一模试卷(文科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|0≤x≤4},B={0,1,2},则A∩B中的元素个数为()A.2 B.3 C.4 D.52.已知复数z满足z(1+i)=1(i为虚数单位),则z=()A.B. C.1﹣i D.1+i3.随机抛掷一枚质地均匀的骰子,记正面向上的点数为a,则函数f(x)=x2+2ax+2有两个不同零点的概率为()A.B.C.D.4.已知函数f(x)=,则f()=()A.﹣B.﹣C.D.5.已知双曲线C:﹣=1(a>0,b>0)的右焦点与抛物线y2=20x的焦点重合,且其渐近线方程为y=±x,则双曲线C的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=16.设f(x)=x+sinx(x∈R),则下列说法错误的是()A.f(x)是奇函数B.f(x)在R上单调递增C.f(x)的值域为R D.f(x)是周期函数7.设x,y满足约束条件,则z=2x﹣y的最小值为()A.﹣3 B.﹣2 C.﹣1 D.28.在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为;类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y ≥0,z≥0的点P(x,y,z)的集合对应的空间几何体的体积为()A.B.C.D.9.已知各项均为正数的等比数列{a n}中,a5•a6=4,则数列{log2a n}的前10项和为()A.5 B.6 C.10 D.1210.执行如图所示的程序框图,如果输入的t=50,则输出的n=()A.5 B.6 C.7 D.811.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为4π,且f()=1,则f(x)的一个对称中心坐标是()A.(﹣,0) B.(﹣,0)C.(,0)D.(,0)12.已知函数f(x)=x3﹣ax2+4,若f(x)的图象与x轴正半轴有两个不同的交点,则实数a的取值范围为()A.(1,+∞)B.(,+∞)C.(2,+∞)D.(3,+∞)二.填空题:本大题共4小题,每小题5分.13.已知向量=(1,2),=(3,x),若∥,则实数x=.14.在数列{a n}中,a n+1﹣a n=2,S n为{a n}的前n项和.若S9=90,则a1=.15.椭圆C: +=1(a>b>0)的右顶点为A,P是椭圆C上一点,O为坐标原点.已知∠POA=60°,且OP⊥AP,则椭圆C的离心率为.16.某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为.三.解答题:解答应写出文字说明,证明过程和演算步骤.17.如图,平面四边形ABCD中,CD=,∠CBD=30°,∠BCD=120°,AB=,AD=2,求(Ⅰ)BD;(Ⅱ)∠ADB.18.第31届夏季奥林匹克运动会将于2018年8月5日﹣21日在巴西里约热内卢举行.下(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(Ⅱ)下表是近五届奥运会中国代表团获得的金牌数之和y(从第26届算起,不包括之前x(i)由图可以看出,金牌数之和y与时间x之间存在线性相关关系,请求出y关于x的线性回归方程;(ii)利用(i)中的回归方程,预测今年中国代表团获得的金牌数.参考数据:=28,=85.6,(x i﹣)(y i﹣)=381,(x i﹣)2=10附:对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线y=bx+a的斜率和截距的最小二乘估计分别为:=,=﹣.19.如图,多面体ABCDEF中,四边形ABCD是边长为2的正方形,四边形EFBD为等腰梯形,EF∥BD,EF=BD,平面EFBD⊥平面ABCD.(Ⅰ)证明:AC⊥平面EFBD;(Ⅱ)若BF=,求多面体ABCDEF的体积.20.已知过原点O的动直线l与圆C:(x+1)2+y2=4交于A、B两点.(Ⅰ)若|AB|=,求直线l的方程;(Ⅱ)x轴上是否存在定点M(x0,0),使得当l变动时,总有直线MA、MB的斜率之和为0?若存在,求出x0的值;若不存在,说明理由.21.设函数f(x)=e x﹣(x>﹣1).(Ⅰ)当a=1时,讨论f(x)的单调性;(Ⅱ)当a>0时,设f(x)在x=x0处取得最小值,求证:f(x0)≤1.四.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.如图,过⊙O外一点E作⊙O的两条切线EA、EB,其中A、B为切点,BC为⊙O的一条直径,连CA并延长交BE的延长线于D点.(Ⅰ)证明:BE=DE;(Ⅱ)若AD=3AC,求AE:AC的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3,),B(3,),圆C的方程为ρ=2cosθ.(1)求在平面直角坐标系xOy中圆C的标准方程;(2)已知P为圆C上的任意一点,求△ABP面积的最大值.[选修4-5:不等式选讲]24.已知函数f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(Ⅰ)求M;(Ⅱ)已知a∈M,比较a2﹣a+1与的大小.2018年安徽省江南十校联考高考数学一模试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|0≤x≤4},B={0,1,2},则A∩B中的元素个数为()A.2 B.3 C.4 D.5【考点】交集及其运算.【分析】由A与B,找出两集合的交集,确定出交集中元素个数即可.【解答】解:集合A={x|0≤x≤4},B={0,1,2},则A∩B={0,1,2},元素个数为3.故选:B.2.已知复数z满足z(1+i)=1(i为虚数单位),则z=()A.B. C.1﹣i D.1+i【考点】复数代数形式的混合运算.【分析】直接利用复数的除法的运算法则化简求解即可.【解答】解:由z(1+i)=1,得z===,故选:A.3.随机抛掷一枚质地均匀的骰子,记正面向上的点数为a,则函数f(x)=x2+2ax+2有两个不同零点的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】抛掷一枚质地均匀的骰子包含6个基本事件,由函数f(x)=x2+2ax+2有两个不同零点,得a的取值有2,3,4,5,6,共5种结果,由此能求出函数f(x)=x2+2ax+2有两个不同零点的概率.【解答】解:抛掷一枚质地均匀的骰子包含6个基本事件,由函数f(x)=x2+2ax+2有两个不同零点,得△=4a2﹣8>0,解得a<﹣或a>.又a为正整数,故a的取值有2,3,4,5,6,共5种结果,所以函数f(x)=x2+2ax+2有两个不同零点的概率为.故选:D.4.已知函数f(x)=,则f()=()A.﹣B.﹣C.D.【考点】运用诱导公式化简求值.【分析】由已知先求f(2),根据复合函数的解析式再求f(),利用特殊角的三角函数值即可求值得解.【解答】解:∵f(x)=,∴f(2)=2,∴f()=f()=tan=,故选:C.5.已知双曲线C:﹣=1(a>0,b>0)的右焦点与抛物线y2=20x的焦点重合,且其渐近线方程为y=±x,则双曲线C的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的简单性质.【分析】求出抛物线的焦点坐标,根据双曲线的焦点坐标和抛物线的焦点关系,得到c=5,根据双曲线的渐近线方程得到=,联立方程组求出a,b即可.【解答】解:抛物线的焦点坐标为(5,0),双曲线焦点在x轴上,且c=5,∵又渐近线方程为y=±x,可得=,即b=a,则b2=a2=c2﹣a2=25﹣a2,则a2=9,b2=16,则双曲线C的方程为﹣=1,故选A6.设f(x)=x+sinx(x∈R),则下列说法错误的是()A.f(x)是奇函数B.f(x)在R上单调递增C.f(x)的值域为R D.f(x)是周期函数【考点】三角函数的周期性及其求法.【分析】由题意可得f(﹣x)=﹣f(x),即可判断f(x)为奇函数,从而A正确;利用f′(x)=1﹣cosx≥0,可得函数f(x)在R上单调递增,B正确;根据f(x)在R上单调递增,可得f(x)的值域为R,故C正确;由f(x)不是周期函数,可得D错误.即可得解.【解答】解:因为f(﹣x)=﹣x+sin(﹣x)=﹣(x+sinx)=﹣f(x),所以f(x)为奇函数,故A正确;因为f′(x)=1﹣cosx≥0,所以函数f(x)在R上单调递增,故B正确;因为f(x)在R上单调递增,所以f(x)的值域为R,故C正确;f(x)不是周期函数,故选:D.7.设x,y满足约束条件,则z=2x﹣y的最小值为()A.﹣3 B.﹣2 C.﹣1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由作出可行域如图所示,化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过(﹣1,0)时,直线在y轴上的截距最大,z有最小值为﹣2.故选:B.8.在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为;类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y ≥0,z≥0的点P(x,y,z)的集合对应的空间几何体的体积为()A.B.C.D.【考点】类比推理.【分析】类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y≥0,z≥0的点P(x,y)的集合对应的空间几何体的体积为球的体积的,即可得出结论.【解答】解:类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y≥0,z≥0的点P(x,y)的集合对应的空间几何体的体积为球的体积的,即=,故选:B.9.已知各项均为正数的等比数列{a n}中,a5•a6=4,则数列{log2a n}的前10项和为()A.5 B.6 C.10 D.12【考点】等比数列的前n项和.【分析】由等比数列的性质可得:a1a10=a2a9=…=a5a6=4,再利用指数与对数的运算性质即可得出.【解答】解:由等比数列的性质可得:a1a10=a2a9=…=a5a6=4,∴数列{log2a n}的前10项和=log2a1+log2a2+…+log2a10=log2(a1a2…a10)==10,故选:C.10.执行如图所示的程序框图,如果输入的t=50,则输出的n=()A.5 B.6 C.7 D.8【考点】循环结构.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次运行后s=2,a=3,n=1;第二次运行后s=5,a=5,n=2;第三次运行后s=10,a=9,n=3;第四次运行后s=19,a=17,n=4;第五次运行后s=36,a=33,n=5;第六次运行后s=69,a=65,n=6;此时不满足s<t,输出n=6,故选:B.11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为4π,且f()=1,则f(x)的一个对称中心坐标是()A.(﹣,0) B.(﹣,0)C.(,0)D.(,0)【考点】正弦函数的图象.【分析】由函数的周期性可得ω,代入点的坐标可得φ值,可得函数的对称中心,结合选项可得.【解答】解:∵函数f(x)=sin(ωx+φ)的最小正周期为4π,∴=4π,解得ω=,故f(x)=sin(x+φ),再由f()=1可得×+φ=2kπ+,k∈Z,由|φ|<可得φ=,故f(x)=sin(x+),由x+=kπ可得x=2kπ﹣,k∈Z∴f(x)的对称中心为(2kπ﹣,0),k∈Z,结合选项可知当k=0时,f(x)的一个对称中心为(﹣,0),故选:A.12.已知函数f(x)=x3﹣ax2+4,若f(x)的图象与x轴正半轴有两个不同的交点,则实数a的取值范围为()A.(1,+∞)B.(,+∞)C.(2,+∞)D.(3,+∞)【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】利用参数分离法,进行转化,构造函数,求函数的导数,研究函数的极值即可得到结论.【解答】解:由题意可知f(x)=x3﹣ax2+4=0,即a=x+有两个不等的正根,设h(x)=x+,x>0,则h′(x)=1﹣=,令h′(x)=0,得x=2,由h′(x)>0得x>2,此时函数单调递增,由h′(x)<0得,0<x<2,此时函数单调递减,即在x=2处取得极小值h(2)=2+=2+1=3,结合h(x)的图象可得a>3,故选D二.填空题:本大题共4小题,每小题5分.13.已知向量=(1,2),=(3,x),若∥,则实数x=6.【考点】平面向量共线(平行)的坐标表示.【分析】直接利用向量的共线的充要条件求解即可.【解答】解:由向量=(1,2),=(3,x),若∥,可得x=2×3=6.故答案为:6.14.在数列{a n}中,a n+1﹣a n=2,S n为{a n}的前n项和.若S9=90,则a1=2.【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:由a n+1﹣a n=2,S n可知数列{a n}是公差为2的等差数列,由S9=9a1+×2=90,解得a1=2.故答案为:2.15.椭圆C: +=1(a>b>0)的右顶点为A,P是椭圆C上一点,O为坐标原点.已知∠POA=60°,且OP⊥AP,则椭圆C的离心率为.【考点】椭圆的简单性质.【分析】由题意得|OP|=|OA|cos60°=,从而P(),代入椭圆方程得a=,由此能求出离心率.【解答】解:∵椭圆C: +=1(a>b>0)的右顶点为A,P是椭圆C上一点,O为坐标原点.∠POA=60°,且OP⊥AP,∴由题意得|OP|=|OA|cos60°=,∴由题意得P(),代入椭圆方程得:,∴a2=5b2=5(a2﹣c2),∴a=,∴离心率e=.故答案为:.16.某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为.【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个正三棱柱和一个半圆柱的组合体,由三视图求出几何元素的长度,由条件和面积公式求出各个面的面积,加起来求出几何体的表面积.【解答】解:由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为=2;半圆柱的侧面积为π×1×4=4π,两个底面面积之和为,所以几何体的表面积为,故答案为:.三.解答题:解答应写出文字说明,证明过程和演算步骤.17.如图,平面四边形ABCD中,CD=,∠CBD=30°,∠BCD=120°,AB=,AD=2,求(Ⅰ)BD;(Ⅱ)∠ADB.【考点】余弦定理;正弦定理.【分析】(Ⅰ)在△BCD中,由已知及正弦定理即可计算求得BD=的值.(Ⅱ)由已知及余弦定理可求cos∠ADB=的值,即可得解∠ADB=45°.【解答】(本题满分为12分)解:(Ⅰ)在△BCD中,由正弦定理得:=,…故BD===3,…(Ⅱ)在△ABD中,由余弦定理得:cos∠ADB=…==,…所以∠ADB=45°.…18.第31届夏季奥林匹克运动会将于2018年8月5日﹣21日在巴西里约热内卢举行.下叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(Ⅱ)下表是近五届奥运会中国代表团获得的金牌数之和y(从第26届算起,不包括之前x(i)由图可以看出,金牌数之和y与时间x之间存在线性相关关系,请求出y关于x的线性回归方程;(ii)利用(i)中的回归方程,预测今年中国代表团获得的金牌数.参考数据:=28,=85.6,(x i﹣)(y i﹣)=381,(x i﹣)2=10附:对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线y=bx+a的斜率和截距的最小二乘估计分别为:=,=﹣.【考点】线性回归方程.【分析】(Ⅰ)根据题意,画出茎叶图,通过茎叶图得出概率结论;(Ⅱ)(i)计算线性回归方程的系数、,写出线性回归方程,(ii)利用回归方程计算x=31时的值即可.【解答】解:(Ⅰ)两国代表团获得的金牌数的茎叶图如下,…通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值;俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散;…(Ⅱ)(i)计算===38.1,所以=﹣=85.6﹣38.1×28=﹣981.2;所以金牌数之和y关于时间x的线性回归方程为=38.1x﹣981.2;…(ii)由(i)知,当x=31时,中国代表团获得的金牌数之和的预报值=38.1×31﹣981.2=199.9,故预测今年中国代表团获得的金牌数为199﹣165=34.9≈35枚.…19.如图,多面体ABCDEF中,四边形ABCD是边长为2的正方形,四边形EFBD为等腰梯形,EF∥BD,EF=BD,平面EFBD⊥平面ABCD.(Ⅰ)证明:AC⊥平面EFBD;(Ⅱ)若BF=,求多面体ABCDEF的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(I)由正方形的性质得AC⊥BD,由面面垂直的性质即可得到AC⊥平面EFBD;(II )求出等腰梯形的上下底,利用勾股定理求出梯形的高,将多面体分解成四棱锥A ﹣BDEF 和四棱锥C ﹣BDEF 计算体积. 【解答】证明:(Ⅰ)∵四边形ABCD 为正方形, ∴AC ⊥BD .又平面EFBD ⊥平面ABCD ,平面EFBD ∩平面ABCD=BD ,AC ⊂平面ABCD , ∴AC ⊥平面EFBD .(Ⅱ)∵正方形ABCD 的边长为2,∴BD=AC=2,∴EF=,过F 作FM ⊥BD 于M ,∵四边形EFBD 为等腰梯形,∴MB=(BD ﹣EF )=.∴FM==.设AC ∩BD=O ,则AO=.∴V C ﹣BDEF =V A ﹣BDEF =S 梯形BDEF •AO==.∴多面体ABCDEF 的体积V=2V A ﹣BDEF =2.20.已知过原点O 的动直线l 与圆C :(x +1)2+y 2=4交于A 、B 两点. (Ⅰ)若|AB |=,求直线l 的方程; (Ⅱ)x 轴上是否存在定点M (x 0,0),使得当l 变动时,总有直线MA 、MB 的斜率之和为0?若存在,求出x 0的值;若不存在,说明理由. 【考点】直线与圆的位置关系.【分析】(Ⅰ)先求出圆心C (﹣1,0)到直线l 的距离为,利用点到直线距离公式能求出直线l 的方程. (Ⅱ)设A (x 1,y 1),B (x 2,y 2),直线MA 、MB 的斜率分别为k 1,k 2.设l 的方程为y=kx ,代入圆C 的方程得(k 2+1)x 2+2x ﹣3=0,由此利用韦达定理,结果已知条件能求出存在定点M (3,0),使得当l 变动时,总有直线MA 、MB 的斜率之和为0. 【解答】解:(Ⅰ)设圆心C (﹣1,0)到直线l 的距离为d ,则d===,…当l 的斜率不存在时,d=1,不合题意当l的斜率存在时,设l的方程为y=kx,由点到直线距离公式得=,解得k=±,故直线l的方程为y=.…(Ⅱ)存在定点M,且x0=3,证明如下:设A(x1,y1),B(x2,y2),直线MA、MB的斜率分别为k1,k2.当l的斜率不存在时,由对称性可得∠AMC=∠BMC,k1+k2=0,符合题意当l的斜率存在时,设l的方程为y=kx,代入圆C的方程整理得(k2+1)x2+2x﹣3=0,∴,.…∴+==.当2x0﹣6=0,即x0=3时,有k1+k2=0,所以存在定点M(3,0)符合题意,x0=3.…21.设函数f(x)=e x﹣(x>﹣1).(Ⅰ)当a=1时,讨论f(x)的单调性;(Ⅱ)当a>0时,设f(x)在x=x0处取得最小值,求证:f(x0)≤1.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)当a=1时,求出函数f(x)的解析式和导函数,利用f′(x)>0,函数单调递增,f′(x)<0,函数单调递减;(Ⅱ)当a>0时,求导,利用导数求得函数的单调性,根据单调性求得函数的最小值,利用f′(x0)=0,求得a的值,构造辅助函数g(x)=e x(﹣x2﹣x+1),(x>﹣1),求导,求出函数的g(x)的极大值,由g(x)≤g(0)=0,即可证明f(x0)≤1.【解答】解:(I)当a=1时,f′(x)=e x﹣,…∵e x单调递增,﹣(x>﹣1)单调递增,∴f′(x)在(﹣1,+∞)单调递增,且f′(0)=0,∴当﹣1<x<0时,f′(x)<0;当x>0时,f′(x)>0,故f(x)在(﹣1,0)单调递减,在(0,+∞)单调递增…(II)证明:当a>0时,f′(x)=e x﹣,∵e x单调递增,﹣(x>﹣1)单调递增,∴f′(x)在(﹣1,+∞)单调递增.又f′(2﹣1)=﹣>﹣,当b满足﹣1<b<且b<0时,f′(b)<0,故f′(x)存在唯一零点,设零点为x1,当x∈(﹣1,x1)时,f′(x)<0;当x∈(x1,+∞)时,f′(x)>0.∴f(x)在(﹣1,x1)单调递减,在(x1,+∞)单调递增,∴当x=x1时,f(x)取得最小值,由条件可得x1=x0,f(x)的最小值为f(x0).…由于f′(x0)=﹣=0,∴a=•,f(x0)=﹣=﹣•x0•(x0+1)=(﹣﹣x0+1),…设g(x)=e x(﹣x2﹣x+1),(x>﹣1),则g′(x)=e x(﹣x2﹣3x)=﹣x(x+3)e x,令g′(x)>0,得﹣1<x<0;令g′(x)<0,得x>0,故g(x)在(﹣1,0)单调递增,(0,+∞)单调递减,g(x)≤g(0)=0,故f(x0)=g(x0)≤1.…四.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.如图,过⊙O外一点E作⊙O的两条切线EA、EB,其中A、B为切点,BC为⊙O的一条直径,连CA并延长交BE的延长线于D点.(Ⅰ)证明:BE=DE;(Ⅱ)若AD=3AC,求AE:AC的值.【考点】与圆有关的比例线段.【分析】(Ⅰ)作出辅助线,根据AB⊥OE,AB⊥CD,可得OE∥CD,又O为BC的中点,得E为BD的中点,即可证得结论;(Ⅱ)设AC=t(t>0),由射影定理,根据三角形中的知识,即可求得比值.【解答】证明:(Ⅰ)连接AB、OE,∵EA、EB为圆O的切线,∴OE垂直平分AB,又∵BC为圆O的直径,∴AB⊥CD,∴OE∥CD,又O为BC的中点,故E为BD的中点,∴BE=ED …解:(Ⅱ)设AC=t(t>0),则AD=3t,CD=4t,在Rt△BCD中,由射影定理可得:BD2=DA•DC=12t2,∴BD=2t,在Rt△ABD中,AE=BD=t.∴AE:AC=.…[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3,),B(3,),圆C的方程为ρ=2cosθ.(1)求在平面直角坐标系xOy中圆C的标准方程;(2)已知P为圆C上的任意一点,求△ABP面积的最大值.【考点】简单曲线的极坐标方程.【分析】(1)由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得圆的直角坐标方程;(2)求得A,B的直角坐标,即可得到直线AB的方程;求得AB的距离和圆C和半径,求得圆C到直线AB的距离,由圆C上的点到直线AB的最大距离为d+r,运用三角形的面积公式,即可得到所求最大值.【解答】解:(1)由ρ=2cosθ,可得:ρ2=2ρcosθ,所以x2+y2=2x故在平面直角坐标系中圆的标准方程为:(x﹣1)2+y2=1 …(2)在直角坐标系中A(0,3),B(,)所以|AB|==3,直线AB的方程为:x+y=3所以圆心到直线AB的距离d==,又圆C的半径为1,所以圆C上的点到直线AB的最大距离为+1故△ABP面积的最大值为S==…[选修4-5:不等式选讲]24.已知函数f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(Ⅰ)求M;(Ⅱ)已知a∈M,比较a2﹣a+1与的大小.【考点】不等关系与不等式.【分析】(I)f(x)=|x|﹣|2x﹣1|=,由f(x,由f(x)>﹣1,可得:或或,解出即可得出.(Ⅱ)由(Ⅰ)知:0<a<2,可得:a2﹣a+1﹣==g(a).对a分类讨论:当0<a<1时,当a=1时,当1<a<2时,即可得出.【解答】解:(I)f(x)=|x|﹣|2x﹣1|=,由f(x)>﹣1,可得:或或,解得0<x<2,∴M=(0,2).(Ⅱ)由(Ⅰ)知:0<a<2,∵a2﹣a+1﹣==g(a).当0<a<1时,g(a)<0,∴a2﹣a+1<;当a=1时,g(a)=0,∴a2﹣a+1=;当1<a<2时,g(a)>0,∴a2﹣a+1>;综上所述:当0<a<1时,∴a2﹣a+1<;当a=1时,a2﹣a+1=;当1<a<2时,a2﹣a+1>.2018年8月23日。

安徽省江南十校2018届高三冲刺联考(二模)文科数学试卷Word版含解析

安徽省江南十校2018届高三冲刺联考(二模)文科数学试卷Word版含解析

2018年“江南十校”高三学生冲刺联考(二模)文科数学第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则下列关系正确的是()A. B. C. D.【答案】C【解析】分析:由指数函数与对数函数的性质求出集合A、B,再验证各选择支结论是否成立.详解:由题意,,∴,只有C正确.故选C.点睛:集合问题中首要任务是确定集合的元素,对描述法表示的集合,其代表元的形式是什么很重要,这个代表元是实数,还是有序实数对(点)?是实数时,表示函数的定义域还是函数的值域?只有确定了代表元的意义,才能确定正确的求解方法,确定出集合.本题还考查的集合间的关系,掌握补集运算与包含关系是解题关键.2.若复数(是虚数单位),则的共轭复数是()A. B. C. D.【答案】D【解析】分析:由复数乘法求得,再由共轭复数定义得结论.详解:由题意,∴,故选D.点睛:本题考查复数的运算与复数的概念,只要乘法法则与共轭复数的概念就能正确求解,属于基础题.3.已知向量与为单位向量,若也是单位向量,则向量与的夹角为()A. B. C. D.【答案】A【解析】分析:把的长度为1用数量积表示,再结合向量的夹角公式可得.详解:由题意,∴,∴,故选A.点睛:本题考查平面向量数量积的定义,掌握相应的公式是解题基础.向量数量积的定义:;性质:,.4.已知,,,则,,的大小关系是()A. B. C. D.【答案】C【解析】分析:把化为同底数的幂,是对数化简后也可化为2的幂,这样由指数函数的性质可比较大小.详解:,,,∴,故选C.点睛:在幂和对数比较时,能化为同底数的,化为同底数的幂或对数,利用指数函数或对数函数性质比较,不能化为同底数的,或不同形式的数可与中间值比较,如与0或1比较,最后可得结论.5.下列命题中,真命题的个数是()①已知直线:,:,则“”是“”的充要条件;②“若,则”的逆否命题为真命题;③命题“若,则”的否命题是“若,则,至少有一个不等于”;④命题:,,则:,.A. B. C. D.。

2018 年安徽省江南十校综合素质检测文科数学答案1

2018 年安徽省江南十校综合素质检测文科数学答案1

2018年安徽省江南十校综合素质检测数学(文科)参考答案及评分标准一、选择题1.C ;},21|{},1|{<<-=>=x x B x x A }21|{<<=x x B A ;2.B;ii i i z -=-=+-=2)1(1123.B;由茎叶图知中位数1221311=+4.A;设圆半径为1,扇形OBDA 的面积613212ππ=⋅⋅=S ,弓形ABD 的面积436-=πS ,由几何概型得ππ3316436-=-=P 5.D;命题q p ,都为真命题,故选D 。

6.B;输入7=x ,x 依次为5,3,1,-1,21)1(2=+-=y ,输出2=y 。

7.D;作出可行域知3,4==y x 取最大值10。

8.B;()33x x f x =不为奇函数排除A,0)(,0>>x f x ,排除D,xx x x f 3)3ln 3()(2|-=知函数)(x f 只有唯一极大值点,排除C,故选B.9.B;由余弦定理和()224,4a b c A π=-+-=可得224)cos 1(2-=-A bc ,可得,2=bc 所以224sin 221sin 21=⨯⨯==πA bc S 10.C;设椭圆)0,0(12222>>=+b a b y a x ,由已知可得22,32==a b a bc 及222c b a +=知2,4==b a ,故选C。

11.C;由MN ∥BD 可得MN ∥l ,①正确;平面MNP 与平面D BC 1相交,②错误;MP 与MN 相交但不垂直,又MN ∥l 知③MP l ⊥错误;点A 到l 的距离等于点A 到MN 在平面ABCD 的投影的距离,等于233=AC 。

12.B;10112ln 1ln )(22<<=>⎪⎩⎪⎨⎧-+--+-=x x x ax x a ax x x f ,)(x f 有三个零点0≤a 时显然不成立1=a ,)(x f 在),1(+∞上无零点,在)1,0(只有一个零点,不符。

安徽省江南十校2018届高三冲刺联考(二模)文科数学试卷+Word版含解析

安徽省江南十校2018届高三冲刺联考(二模)文科数学试卷+Word版含解析

2018年“江南十校”高三学生冲刺联考(二模)文科数学第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则下列关系正确的是()A. B. C. D.【答案】C【解析】分析:由指数函数与对数函数的性质求出集合A、B,再验证各选择支结论是否成立.详解:由题意,,∴,只有C正确.故选C.点睛:集合问题中首要任务是确定集合的元素,对描述法表示的集合,其代表元的形式是什么很重要,这个代表元是实数,还是有序实数对(点)?是实数时,表示函数的定义域还是函数的值域?只有确定了代表元的意义,才能确定正确的求解方法,确定出集合.本题还考查的集合间的关系,掌握补集运算与包含关系是解题关键.2.若复数(是虚数单位),则的共轭复数是()A. B. C. D.【答案】D【解析】分析:由复数乘法求得,再由共轭复数定义得结论.详解:由题意,∴,故选D.点睛:本题考查复数的运算与复数的概念,只要乘法法则与共轭复数的概念就能正确求解,属于基础题.3.已知向量与为单位向量,若也是单位向量,则向量与的夹角为()A. B. C. D.【答案】A分析:把的长度为1用数量积表示,再结合向量的夹角公式可得.详解:由题意,∴,∴,故选A.点睛:本题考查平面向量数量积的定义,掌握相应的公式是解题基础.向量数量积的定义:;性质:,.4.已知,,,则,,的大小关系是()A. B. C. D.【答案】C【解析】分析:把化为同底数的幂,是对数化简后也可化为2的幂,这样由指数函数的性质可比较大小.详解:,,,∴,故选C.点睛:在幂和对数比较时,能化为同底数的,化为同底数的幂或对数,利用指数函数或对数函数性质比较,不能化为同底数的,或不同形式的数可与中间值比较,如与0或1比较,最后可得结论.5.下列命题中,真命题的个数是()①已知直线:,:,则“”是“”的充要条件;②“若,则”的逆否命题为真命题;③命题“若,则”的否命题是“若,则,至少有一个不等于”;④命题:,,则:,.A. B. C. D.【解析】分析:对四个命题分别研究其真假,才能选出正确选项.详解:①直线,即或,因此题中应是充分不必要条件,①错误;②若,则,所以,是真命题,因此其逆否命题也是真命题,②正确;③正确;④是:,④错误.所以有两个命题正确,故选C.点睛:本题考查命题的真假判断,解题时需对每一个命题进行判断,这就要求掌握相应的知识方法并能灵活运用.6.已知等差数列的公差为,前项和为,且,则()A. B. C. D.【答案】B【解析】分析:利用向量的线性运算把用表示出来后,由向量相等得出数列的递推关系.详解:∵,∴,即,又,∴,∴,∴.故选B.点睛:等差数列问题可用基本量法求解,即把已知条件用首项和公差表示并求出即可得通项公式和前项和公式.基本量法的两个公式:,.7.已知实数,满足,则的最大值是()A. B. C. D.【答案】B【解析】分析:作出可行域,由的几何意义求解.详解:作出可行域,如图阴影部分(含边界),,其中表示可行域内的点与定点连线的斜率,由得,设切点为,则切线,解得,,即切点为,这P 点的切线斜率为1,即的最大值为1,∴的最大值为1+1=2.故选B.点睛:线性规划问题中,关键是作出可行域,作出目标函数对应的直线,然后平移直线得出最优解,如果目标函数不是一次的,一般要确定其几何意义,如直线的斜率,两点间距离等,再利用几何意义求解.8.已知实数,则函数在定义域内单调递减的概率为()A. B. C. D.【答案】C【解析】分析:求出函数单调递减时的范围,由几何概型概率公式可得.详解:由题意,在时,恒成立,即,又,当且仅当,即时等号成立,即的最小值为3,∴,从而,∴所求概率为.故选.点睛:本题考查几何概型,考查导数与函数的单调性,解题关键是由不等式在恒成立求得参数的取值范围,求取值范围的方法是分离参数法转化为求函数的最值,这可由导数求得也可由基本不等式求得.9.已知某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】A【解析】分析:由三视图还原出原几何体,再计算体积.详解:由三视图.原几何体是四面体,如图,它是由长宽高分别为5,4,3的长方体截出的,其体积为.故选A.点睛:由三视图还原几何体时,首先要掌握基本几何体的三视图,其次对多面体来讲,可先画一个长方体(或正方体),然后在长方体(或正方体)上取点连线,想象其三视图,用这种方法可以很方便地得出原几何体.10.已知,是椭圆和双曲线的公共焦点,是它们的一个公共点,且,记椭圆和双曲线的离心率分别为,,则的最大值为()A. B. C. D.【答案】D【解析】分析:通过椭圆与双曲线的定义,建立的边长之间的关系,再转化为离心率之间的关系,然后由基本不等式求得最大值.详解:设,∵,∴,一方面,另一方面,∴,,,,∴,,当且仅当,即时等号成立,∴所求最大值为.故选D.点睛:对已知焦点三角形的椭圆(双曲线)一般可利用其定义建立离心率与边长之间的关系,从而求出离心率的范围或最值,而本题共焦点的椭圆与双曲线问题,可通过共顶点的焦点三角形利用它们的定义建立离心率之间的关系,再利用基本不等式求得最大值.11.执行如图所示的程序框图,则输出的结果为()A. B. C. D.【答案】B【解析】分析:模拟程序运行,观察运行中变量的值,可得结论.详解:由程序框图知.故选B.点睛:本题考查程序框图,由程序框图观察出程序的功能,从而得出结论,对这个式子可利用二倍角公式求值,看作分母为1的分式,然后分子分母同乘以,然后由正弦的二倍角化简求值.12.在中,角,,所对的边分别为,,,且是和的等差中项,,,则周长的取值范围是()A. B.C. D.【答案】B【解析】分析:由得B角是钝角,由等差中项定义得A为60°,再根据正弦定理把周长用三角函数表示后可求得范围.详解:∵是和的等差中项,∴,∴,又,则,从而,∴,∵,∴,所以的周长为,又,,,∴.故选B.点睛:本题考查解三角形的应用,解题时只要把三角形周长利用正弦定理用三角函数表示出来,结合三角函数的恒等变换可求得取值范围.解题易错的是向量的夹角是B角的外角,而不是B角,要特别注意向量夹角的定义.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.下表提供了某学生做题数量(道)与做题时间(分钟)的几组对应数据:(道)(分钟)根据上表提供的数据,求出关于的线性回归方程为,则表中的值等于__________.【答案】【解析】分析:求出,代入回归方程可得.详解:由题意,同理,∴,.故答案为6.点睛:本题考查回归直线方程,解题时掌握其性质即可:回归直线一定过点.本题属于基础题.14.已知双曲线:的左右焦点为、,过焦点且与渐近线平行的直线与双曲线相交于点,则的面积为__________.【答案】【解析】分析:先求出渐近线方程,然后求出过一个焦点且与渐近线平行的直线方程,代入双曲线方程求得交点M的坐标,从而可得三角形面积.详解:双曲线的焦点为,渐近线方程为,过与一条渐近线平行的直线方程为,由得,即,∴.故答案为.点睛:本题考查双曲线的几何性质,考查渐近线方程,解题方法是解析几何的最基本方法,依次求出平行直线方程,由直线与双曲线方程联立方程组求得交点坐标,最终得三角形面积.因此本题还考查了学生的运算求解能力,属于基础题.15.已知为坐标原点,动点满足,、,则的最小值为__________.【答案】【解析】分析:设P点坐标为,,求出模,再由三角函数知识可得最小值.详解:由题意设P点坐标为,则==,其中为锐角.易知的最小值为,,∴的最小值不.点睛:点P满足,则P点轨迹是以原点为圆心,3为半径的圆,圆的点可利用参数方程表示为,实际是椭圆上的点也可这样表示:椭圆方程为,则有.利用这种换元法可把问题转化为求三角函数的最值,题中只要结合辅助角公式易得最值.16.已知函数的定义域是,(为小于的常数),设且,若的最小值大于,则的取值范围是__________.【答案】【解析】分析:求出导函数,分析的取值,可得,,且知满足的关系,这可理解为上的点与曲线上的点,满足,然后要求的最小值,通过平行直线到与曲线相切可得最小值.详解:由题意得,∴.设,则,设斜率为-2的直线与的图象相切于,则,,当时,,,∴,解得.故答案为.点睛:求出导函数,分析的取值,可得,,且知满足的关系,从而再表示出为一元函数,再用导数求函数的最小值即可:由题中解法得,所以,设,则,由得,可以验证此是最小值点,从而,以下同题中解法.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内)17.已知等差数列前项和为,且满足.(1)求数列的通项公式;(2)设,数列的前项和为,求证:.【答案】(1)(2)【解析】分析:(1)由和代入已知求出,根据基本量法可求得的通项公式;(2)利用分组求和法与裂项相消法求得,知是递增的,从而易证得结论.详解:(1),当时,,当时,,又∵是等差数列,∴,∴;(2).∴.当且逐渐增大时,增大.∴.点睛:常用数列求和方法:(1)公式法:数列是等差数列或等比数列时,直接应用公式求和;(2)分组求和法:设数列是等差数列,是等比数列,则数列的前项和用分组求和法求和.(3)设数列是等差数列,是等比数列,则数列的前项和求法用错位相减法.(4)设数列是等差数列,则的前项和用裂项相消法求和.18.距离年全国普通高等学校统一招生考试已不足一个月,相信考生们都已经做了充分的准备,进行最后的冲刺.高考的成绩不仅需要平时的积累,还与考试时的状态有关系.为了了解考试时学生的紧张程度,对某校名学生进行了考前焦虑的调查,结果如下:(1)根据该校调查数据,能否在犯错误的概率不超过的前提下,认为“该学校学生的考前焦虑情况”与“性别”有关?(2)若从考前正常的学生中按性别用分层抽样的方法抽取人,再从被抽取的人中随机抽取人,求这两人中有女生的概率.附:,.【答案】(1)有关(2)【解析】分析:(1)根据所给公式计算出后可得结论;(2)把抽取的3男4 女编号,然后可用列举法写出所有基本事件,同时得出满足条件的基本事件个数,由概率公式计算出概率.详解:(1)假设该学校学生的考前焦虑与性别无关,∴在犯错误的概率不超过的前提下,该学校学生的考前焦虑情况与性别有关;(2)男生、女生分别抽取人,人.记为,,,,,,.基本事件为:,,,,,,,,,,,,,,,,,,,,.满足条件的有:,,,,,,,,,,,,,,,,,.∴.点睛:本题考查独立性检验和古典概型概率公式,独立性检验只要计算出根据公式计算出,比较后可得结论,考查的是计算能力,古典概型概率一般用列举法写出所有的基本事件,同时得出满足条件的基本事件,再根据概率公式计算,只是在写基本事件时要注意不重不漏.19.如图,三棱锥中,,,是等边三角形且以为轴转动.(1)求证:;(2)当三棱锥体积最大时,求它的表面积.【答案】(1)见解析(2)【解析】分析:(1)要证线线垂直,可先证线面垂直,为此取AB中点H,可证AB⊥平面CDH,从而得证线线垂直;(2)面积是确定的,因此要使体积最大,则要高最大,即D到平面ABC的距离最大,注意到是固定的,因此只要平面DAB⊥平面ABC,则体积最大.详解:(1)证明:取的中点,连接,,;(2)解:,∴若最大,则最大.∴平面平面.此时.点睛:本题考查线面垂直的判定与性质,证明时要确定定理需要的条件都满足,才能确定结论,这也是立体几何中证明题需要注意的.20.如图所示,已知抛物线的焦点为,是抛物线上第一象限的点,直线与抛物线相切于点.(1)过作垂直于抛物线的准线于点,连接,求证:直线平分;(2)若,过点且与垂直的直线交抛物线于另一点,分别交轴、轴于、两点,求的取值范围.【答案】(1)见解析(2).【解析】分析:(1)根据抛物线的性质,MH=MF,因此要证切线平分,只要证直线垂直于HF即可,为此可设,可由导数的几何意义求得切线斜率,由斜率乘积为-1可证两直线垂直;(2)设,由(1)可得直线AB的斜率,从而得直线方程,可求得A,B两点的坐标,由直线AB方程与抛物线方程联立可求得Q点坐标,由计算即得结论.详解:(1)证明:设则,直线的斜率,由得,,∴直线的斜率,∴,∴.又由抛物线定义,∴平分;(2)解:当时,,的方程:,∴,.∴,由,∴,∴,∴.点睛:在抛物线中涉及到抛物线上的点到焦点的距离及点到准线距离时,要利用抛物线的定义,由抛物线的定义本题证明直线平分转化为证明直线与垂直,这由直线斜率乘积可证.另外抛物线方程为时,可设抛物线上点的坐标为,抛物线问题就转化计算,可减少思维量与计算量.21.已知函数,.(1)求函数的单调区间;(2)当时,恒成立,求实数的取值范围;(3)当时,求证:当时,【答案】(1)在单调递增,在单调递减;(2)(3)见解析【解析】分析:(1)求出导函数,由可确定增区间,由可确定减区间;(2)即为,即,因此只要求得的最大值即可;(3)不等式可变形为,只要分别证明,,其中,即能证明题设不等式.详解:(1)的定义域为,且.由,∴在单调递增,在单调递减;(2)解:,,∴,令,∴,由,∴在单调递增,在单调递减,∴,∴;(3)证明:等价于.令,则,令则,∵,∴,∴在单调递增,,,∴在单调递增,∴,∴,令,则,∵,∴,∴,在单调递减,∴当时,,∴,即.点睛:(1)用导数研究函数的单调性方法是:求出导函数,解不等式得增区间,解不等式得减区间.(2)用导数证明不等式,一种方法是证明,为此只要求得的最小值,这个最小值大于0;另一种方法是求得的最小值,再求得的最大值,由得证.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22.选修4-4:坐标系与参数方程在极坐标系中,已知直线的极坐标方程为.以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为(为参数).(1)求直线的直角坐标方程和曲线的普通方程;(2)已知点,直线和曲线相交于,两点,求.【答案】(1),;(2)44【解析】分析:(1)由可把直线的极坐标方程化为直角坐标方程,用代入消元法可消去参数得曲线的普通方程.(2)由于P点在直线,因此可求得的标准参数方程(为参数),代入抛物线的普通方程,利用可得结论.详解:(1)由得,即,∴的直角坐标方程,由,得,代入得,即,所以的普通方程:;(2)在上,的参数方程为(为参数),将的参数方程代入得:,即,∴,∴.点睛:过,倾斜角为的直线的标准参数方程为(为参数),直线上点对应的参数为,则表示有向线段的数量,即,.23.选修4-5:不等式选讲设对于任意实数,不等式恒成立.(1)求的取值范围;(2)当取最大值时,解关于的不等式.【答案】(1)(2)【解析】分析:(1)设,可由绝对值的定义去掉绝对值符号,得分段函数,从而可得的最小值,从而得的取值范围;(2)不等式为,利用绝对值的定义分类去绝对值符号后,解不等式,最后求并集可得原不等式的解集.详解:(1)设,则有,根据函数的单调性有.即的取值范围;(2)当时,,∴,当时,原不等式,,∴;当时,原不等式,,∴,∴原不等式解集为.点睛:解含绝对值的不等式,一般是用绝对值的定义去掉绝对值符号,化含绝对值的不等式为为含绝对值的不等式,分类求解.本题也可利用绝对值的性质求解,如第(1)小题中,第(2)小题由得,解之可得.。

2018届安徽省江淮十校高三第三次(4月)联考数学文试题(解析版)

2018届安徽省江淮十校高三第三次(4月)联考数学文试题(解析版)

江淮十校2018届高三第三次联考数学(文科)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】C【解析】,,则,故选C2. 若纯虚数满足,则实数等于()A. B. 或 C. D.【答案】C【解析】不妨设,所以,解得,选C.【点睛】在复数方程中,可以设复数,再由复数运算和复数相等列数方程(组),可求得复数。

3. 已知函数最小正周期为,为了得到函数的图象,只要将的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】A【解析】,所以,从而选A4. 下列命题中,真命题是()A. ,有B.C. 函数有两个零点D. ,是的充分不必要条件【答案】D【解析】x=0时lnx=0,A错误;当sinx=-1时,,B错误;有三个零点,x=2,4,还有一个小于0,C错误;当,时,一定有,但当,时,也成立,故D正确,选D.5. 若数列的通项公式是,则()A. B. C. D.【答案】A【解析】由题意得=,选A.【点睛】当数列通项形式为,且数列{}是周期数列时,则数列的前n项和,我们常采用并项求和,同期为n则n项并项求和。

6. 执行如图所示的程序框图,当输入的时,输出的结果不大于的概率为()A. B. C. D.【答案】D【解析】由程序框图可知,当输入x时,输出结果为,所以当,,所以输出的结果不大于75的概率,故选D.7. 已知,则()A. B. C. D.【答案】B【解析】由题意得=,解得,而=,选B.【点睛】已知tanα=m的条件下,求解关于sinα,cosα的齐次式问题,必须注意以下几点:①一定是关于sinα,cosα的齐次式(或能化为齐次式)的三角函数式.②因为cosα≠0,所以可以用cos nα(n∈)除之,这样可以将被求式化为关于tanα的表示式,可整体代入tanα=m的值,从而完成被求式的求值运算.③注意1=sin2α+cos2α的运用.8. 若双曲线:的离心率为,则双曲线的渐近线方程是()A. B. C. D.【答案】C【解析】,所以渐近线的方程为,故选C9. 《九章算术》是我国古代内容极为丰富的数学名著,书中提出如下问题:“今有刍童,下广两丈,袤三丈,上广三丈,袤四丈,高三丈,问积几何?”翻译成现代文是“今有上下底面皆为长方形的草垛,下底(指面积较小的长方形)宽丈,长丈;上底(指面积较大的长方形)宽丈,长丈;高丈.问它的体积是多少?”现将该几何体的三视图给出如图所示,则该几何体的体积为()立方丈.A. B. C. D.【答案】A【解析】将几何体上底面的4个顶点投影在下底面,连接垂足和下底的顶点,将几何体分割,中间为一个长方体(体积),每个侧面都可以分割为2个三菱锥和1个三菱柱,体积为,所以几何体体积为。

安徽省江南十校2018届高三3月联考数学(理)试题 (3)

安徽省江南十校2018届高三3月联考数学(理)试题 (3)

【题文】已知函数2()ln()f x ax x ax =--(0,)a a R ≠∈.(1)求函数f (x )的单调递增区间;(2)讨论函数f (x )零点的个数.【答案】解:(1)当0a >时,()f x 的定义域为(0,)+∞, 1'()21f x ax x=--221ax x x --=,令2210ax x --=得:1104x a =<,2104x a=>, ∴()f x 的单调递增区间为2(,)x +∞.当0a <时,()f x 的定义域为(,0)-∞,1'()21f x ax x=--221ax x x --=, 当180a ∆=+≤即18a ≤-时,()f x 的单调增区间为(,0)-∞,当0∆>,即108a -<<时,12'()()a f x x x x=-221()(0)x x x x -<<. ()f x 的单调递增区间为2(,)x -∞和1(,0)x .(2)由(1)知当18a ≤-时,()f x 在(,0)-∞内单调递增,1()0f a =, 故()f x 只有一个零点1x a =, 当108a -<<时,()f x 在2x x =处取极大值,1x x =处取极小值. 由12112x a x +=知11x <-,而211114x x a a <<<<-,则21()()0f x f a>=, 21111()ln()f x ax x ax =--11112ln()21x x x -=++, ∵11x <-,∴1111211011x x x x --=>++,∴1()0f x >,∴当0a <时,函数()f x 只有一个零点1x a=, 当0a >时,令()(1)1ln g a f a a ==--, 1'()a g a a-=,()g a 在(0,1)单调递减,在(1,)+∞单调递增, min ()(1)0g a g ==,∴()(1)0g a f =≥(当且仅当1a =时,等号成立), i )1a >时,1114a a >>,1()0f a=,(1)0f >,由(1)函数单调性知,1)04f a <,所以函数在1,1)4a 存在零点, ∴()f x 在(0,)+∞有两个零点.ii )01a <<时,11a <<,1()0f a=,(1)0f >,同理可得函数在存在零点, ∴()f x 在(0,)+∞有两个零点.iii )1a =时,1()(1)0f f a==,函数在(0,)+∞有一个零点. 综上所述:当0a <或1a =时,函数有一个零点,当0a >且1a ≠时,函数有两个零点.【解析】【标题】安徽省江南十校2018届高三3月联考数学(理)试题【结束】。

安徽省江南十校2018届高三3月联考数学(理)试题 (2)

安徽省江南十校2018届高三3月联考数学(理)试题 (2)

【题文】
[选修4-4:坐标系与参数方程]
在平面直角坐标系xOy 中,曲线C 1的参数方程是cos 2sin x y ϕϕ=⎧⎨=⎩
(ϕ为参数,0ϕπ≤≤),在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程是4ρ=,等边△ABC 的顶点都在C 2上,且点A ,B ,C 依逆时针次序排列,点A 的极坐标为(4,
)6π. (1)求点A ,B ,C 的直角坐标;
(2)设P 为C 1上任意一点,求点P 到直线BC 距离的取值范围.
【答案】
解:(1)由cos x ρθ=,sin y ρθ=可得点A
的直角坐标2)A , 由已知,B 点的极坐标为5(4,)6
π,可得B
两点的直角坐标为(2)B -, C 点的极坐标为3(4,)2
π,同理可得C 两点的直角坐标为(0,4)C -. (2)BC
40y ++=,
设点(cos ,2sin )P ϕϕ(0)ϕπ≤≤,则点P 到直线BC 距离
d
==
(其中cos θ=
,sin θ=), 因为0ϕπ≤≤,所以θϕθπθ≤+≤+
,所以sin()1ϕθ≤+≤,
所以d ∈. 【解析】
【标题】安徽省江南十校2018届高三3月联考数学(理)试题
【结束】。

2018年高三最新 安徽省“江南十校”2018学年度高三素质测试数学(文科) 精品

2018年高三最新 安徽省“江南十校”2018学年度高三素质测试数学(文科) 精品

安徽省“江南十校”2018-2018学年度高三素质测试数学(文科)本卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将答案填在答题卡相应的位置。

1.已知向量a 、b 满足1a =,2b =且1a b ⋅=,则a 与b 夹角为A .πB .4πC .3π D .2π 2.已知{(,)|1},{(,)|3}S x y x y T x y x y =-==+=集合,那么S T ⋂为A .2,1x y ==B .{(2,1)}C .{2,1}D.(2,1)3.点00(tan 2007,cos2007)P 位于A .第二象限B .第一象限C .第四象限D .第三象限4.已知()sin(2)sin(2)44f x x x ππ=+-,则()f x 的最小正周期是A .2πB.πC.πD.4π 5.点F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,l 为其右准线,l 被双曲线的渐近线截得得线段长等于点F 到直线l 的距离,则双曲线的离心率为A .2B .3C .2D .56. 在3()n x x -的展开式中,奇数项系数和为2188,则含x 的正整数次幂的项共有A .4项B .3项C .2项D .1项7. 将4个颜色互不相同的球全部放入编号1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放法有A .10种B .20种C .30种D .52种8.已知函数()log (31)1a f x x =-+(0a >且1a ≠)则()f x 的反函数的图像必过定点A .(13,1) B .(23,1) C .(1,23) D .(1,13)9.正方体1111ABCD A B C D -中,E 是棱1BB 中点,G 是1DD 中点,F 是BC 上一点且14FB BC =,则GB 与EF 所成的角为A .030 B .0120C .060D .09010.如图,在杨辉三角中,斜线的上方从1开始按箭头所示的数组成一个锯齿形数列1,3,3,4,6,5,10,……,记此数列为{}n a ,则21a 等于A .55B .65C .78D .6611.函数(4)2()22xf x x f x x -->-⎧=⎨≤-⎩在[2,)+∞上为增函数,(0)0,()f f x =且则的最小值为A .(2)fB .(0)fC .(2)f -D .(4)f12.已知点O 为ABC ∆所在平面内一点,且222222OA BC OB CA OC AB +=+=+,则O 一定为ABC ∆的A .外心B .内心C .垂心D .重心第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。

【高三数学试题精选】2018年安徽省“江南十校”高三联考数学试卷(文科)及答案

【高三数学试题精选】2018年安徽省“江南十校”高三联考数学试卷(文科)及答案

2018年安徽省“江南十校”高三联考数学试卷(文科)及
答案
5 c 2018年安徽省“江南十校”高三联考数学试卷(科)
本试卷分第Ⅰ卷和第Ⅱ卷两部分。

满分150分,考试用时120分钟。

注意事项
1.答题前,考生务必在试题卷、答题卷规定的地方填写自己的姓名、座位号。

2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0 5毫米黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

有关参考式
第Ⅰ卷(选择题满分50分)
一、选择题本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.是虚数单位,复数的虚部是()
A.0 B. c. D.
2.设集合,,若,则()
A. B. c. D.
3.设向量a,b均为单位向量,且(a+b) ,则a与b夹角为()A. B. c. D.
4.已知函数是R上的单调增函数且为奇函数,则的值()
A.恒为正数 B.恒为负数 c.恒为0 D.可正可负
5.若点P(1,1)为圆的弦N的中点,则弦N所在直线方程为()。

江南十校联考2018届高三数学文科冲刺试题卷及答案解析

江南十校联考2018届高三数学文科冲刺试题卷及答案解析

A. − 8
1
B.
1 8
C. − 16
1
D.
1 16
B, C 所对的边分别为 a, b, 12.在ΔABC 中, 角 A, c, 且 A 是 B 和 C 的等差中项, AB ⋅ BC > 0, a= A.
3 2 2
,则ΔABC 周长的取值范围是( ,
2
) ,
2
2+ 3 3+ 3
B.
3,
3+ 3 2
C.
D. 135∘
2
4.已知 a = 40.4,b = 2−0.6 ,c =− log1 4 2 ,则 a,b,c 的大小关系是( A. a < b < c B. c < a < b C. c < b < a ) D. b < c < a

5.下列命题中,真命题的个数是(
mx + (m + 1)y + 2 = 0, l2 : (m + 1)x + (m + 4)y + 3 = 0, ①已知直线l1 : 则“m =− 2”是“l1 ⊥ l2 ” 的充要条件; ②“若 am2 < bm2 ,则 a < b”的逆否命题为真命题; ③命题“若a2 + b2 = 0,则 a = b = 0”的否命题是“若a2 + b2 ≠ 0,则 a,b 至少有一个不等于 0”; ④命题 p:∀x ∈ [1, + ∞),lnx > 0,则¬p:∃x0 ∈ [1, + ∞),lnx0 < 0. A. 0 B. 1 C. 2 D. 3
根据上表提供的数据,求出 y 关于 x 的线性回归方程为y = 0.7x + 0.7,则表中 t 的值等于 __________. 14.已知双曲线 C: −

安徽省江南十校2018届高三摸底联考文数试题 含解析

安徽省江南十校2018届高三摸底联考文数试题 含解析

江南十校2018届高三摸底联考文数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知错误!未找到引用源。

为虚数单位,复数错误!未找到引用源。

,则错误!未找到引用源。

的虚部为()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.-3 【答案】B考点:复数的运算及复数的概念.【方法点睛】本题考查复数的乘法除法运算,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理,对于复数错误!未找到引用源。

,它的模为错误!未找到引用源。

,实部为错误!未找到引用源。

,虚部为错误!未找到引用源。

;复数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的模,复数的运算,特别是复数的乘法与除法运算,运算时注意错误!未找到引用源。

,同时注意运算的准确性.2.已知集合错误!未找到引用源。

,则“错误!未找到引用源。

”是“错误!未找到引用源。

”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】A【解析】试题分析:集合错误!未找到引用源。

错误!未找到引用源。

所以集合A是集合B的真子集,所以“错误!未找到引用源。

”是“错误!未找到引用源。

”充分不必要条件.考点:集合的运算及充分必要条件的判定.【方法点睛】判断充分条件和必要条件的方法(1)命题判断法:设“若p,则q”为原命题,那么:①原命题为真,逆命题为假时,p是q的充分不必要条件;②原命题为假,逆命题为真时,p是q的必要不充分条件;③原命题与逆命题都为真时,p是q的充要条件;④原命题与逆命题都为假时,p是q的既不充分也不必要条件.(2)集合判断法:从集合的观点看,建立命题p,q相应的集合:p:A={x|p(x)成立},q:B={x|q(x)成立},那么:①若A⊆B,则p是q的充分条件;若A B时,则p是q的充分不必要条件;②若B⊆A,则p是q的必要条件;若B A时,则p是q的必要不充分条件;③若A⊆B且B⊆A,即A=B时,则p是q的充要条件.(3)等价转化法:p是q的什么条件等价于非q是非p的什么条件.3.将函数错误!未找到引用源。

安徽省江南十校2018届高三冲刺联考(二模)数学(文)试题+Word版含答案

安徽省江南十校2018届高三冲刺联考(二模)数学(文)试题+Word版含答案

、选择题(本大题共一项是符合题目要求的)1.设集合A{yly 2018年“江南十校”高三学生冲刺联考(二模)文科数学第I卷(选择题共60 分)12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有e x 4} , B {x|y lg[( x 2)(3 x)]} ,则下列关系正确的是A. A B C . C R A C R B D . C R B A2.若复数z i(2 3i)(i是虚数单位),则z的共轭复数是(A. 3 2i .3 2i 3 2i 3 2i3.已知向量a与b为单位向量,若,2a b也是单位向量,则向量a与b的夹角为(A. 45°.60°90°.135°4.已知a 40.4,0.62<2log 丄422,则a , c的大小关系是(A. a b5.下列命题中,真命题的个数是①已知直线11: mx (m 1)y l2: (m 1)x (m 4)y 2 ”是“h I2”的充要条件;②“若am 的逆否命题为真命题;③命题“若2 b2 b 0 ”的否命题是“若b20,则a , 至少有一个不④命题p : x [1, ),lnx 0,则p : x°[1, ),In x°0.A. 06.已知等差数列{a n}的公差为d , 前n项和为uuu S n,OAUJUa2OBuuuUULTUULTa2017OC 且AB dBC ,则S2018 ()A. 0 .1009 .2017 .2018X2y 407.已知实数X , y满足y 1 0,则z x y 1的最大值疋()xy In x 0A. 1B2C.3 D . 48.已知实数m [0,4], 则函数f(x)mln x2x2 1在定义域内单调递减的概率为x1135A.—B C D42489.已知某几何体的三视图如图所示,则该几何体的体积为()11.执行如图所示的程序框图,则输出的结果为(F~匸------------学A. 20 • 30 • 40 6010.已知F i , F2是椭圆和双曲线的公共焦点, P是它们的一个公共点,且F1PF23,记椭圆和双曲线的离心率分别为1© , e2,则一e2的最大值为(A.2.232.33B第n 卷(非选择题 共90分)二、填空题(本大题共 4小题,每小题5分,共20分.把答案填在答题卡的相应位置) 13. 下表提供了某学生做题数量 x (道)与做题时间 y (分钟)的几组对应数据:x (道)6 8 10 12 y (分钟)5t89根据上表提供的数据,求出 y 关于x 的线性回归方程为 $ 0.7x 0.7,则表中t 的值等于2 214. 已知双曲线C :自16 1的左右焦点为F 1、F 2,过焦点且与渐近线平行的直线与双曲 线相交于点M ,则 MF 1F 2的面积为uuu I L L uuuu LULT UUU 15. 已知O 为坐标原点,动点 P 满足OP 3 , M(0,J3)、N(J2,0),则OM ON OP的最小值为2x mx 1(x0) 16. 已知函数f(x)的定义域是 R , f(x)( m 为小于0的常数),设9ln(x 2),(x 0)x ] X 2且f '(xjf '(X 2),若X 2人的最小值大于6,则m 的取值范围是 ________________三、解答题(本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 .解答写在答题卡上的指定区域内)2 *17. 已知等差数列{a n }前n 项和为S n ,且满足a n S n n 3n(n N ).(1)求数列{a n }的通项公式;1A.B8 12.在ABC 中,角A ,B ,C 所对的边分别为1 1 D1616a ,b ,c ,且A 是B 和C 的等差中项,uuu uur AB BC 0, a ABC 周长的取值范围是(A. C.1 1 5齐忑'数列⑹的前°项和为T"'求证:6「18.距离2018年全国普通高等学校统一招生考试已不足一个月,相信考生们都已经做了充分的准备,进行最后的冲刺•高考的成绩不仅需要平时的积累,还与考试时的状态有关系•为了了解考试时学生的紧张程度,对某校500名学生进行了考前焦虑的调查,结果如下:男女总计正常304070焦虑270160430总计300200500(1)根据该校调查数据,能否在犯错误的概率不超过0.01的前提下,认为“该学校学生的考前焦虑情况”与“性别”有关?(2)若从考前正常的学生中按性别用分层抽样的方法抽取7人,再从被抽取的7人中随机抽取2人,求这两人中有女生的概率.附: A (a b)(;(a d)(J:)(b d),n a b c d.2P(K k。

【数学】安徽省江淮十校2018届高三第三次(4月)联考数学文试题含解析

【数学】安徽省江淮十校2018届高三第三次(4月)联考数学文试题含解析

江淮十校2018届高三第三次联考数学(文科)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】C【解析】,,则,故选C2. 若纯虚数满足,则实数等于()A. B. 或 C. D.【答案】C【解析】不妨设,所以,解得,选C.【点睛】在复数方程中,可以设复数,再由复数运算和复数相等列数方程(组),可求得复数。

3. 已知函数最小正周期为,为了得到函数的图象,只要将的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】A【解析】,所以,从而选A4. 下列命题中,真命题是()A. ,有B.C. 函数有两个零点D. ,是的充分不必要条件【答案】D【解析】x=0时lnx=0,A错误;当sinx=-1时,,B错误;有三个零点,x=2,4,还有一个小于0,C错误;当,时,一定有,但当,时,也成立,故D正确,选D......................5. 若数列的通项公式是,则()A. B. C. D.【答案】A【解析】由题意得=,选A.【点睛】当数列通项形式为,且数列{}是周期数列时,则数列的前n项和,我们常采用并项求和,同期为n则n项并项求和。

6. 执行如图所示的程序框图,当输入的时,输出的结果不大于的概率为()A. B. C. D.【答案】D【解析】由程序框图可知,当输入x时,输出结果为,所以当,,所以输出的结果不大于75的概率,故选D.7. 已知,则()A. B. C. D.【答案】B【解析】由题意得=,解得,而=,选B.【点睛】已知tanα=m的条件下,求解关于sinα,cosα的齐次式问题,必须注意以下几点:①一定是关于sinα,cosα的齐次式(或能化为齐次式)的三角函数式.②因为cosα≠0,所以可以用cos nα(n∈)除之,这样可以将被求式化为关于tanα的表示式,可整体代入tanα=m的值,从而完成被求式的求值运算.③注意1=sin2α+cos2α的运用.8. 若双曲线:的离心率为,则双曲线的渐近线方程是()A. B. C. D.【答案】C【解析】,所以渐近线的方程为,故选C9. 《九章算术》是我国古代内容极为丰富的数学名著,书中提出如下问题:“今有刍童,下广两丈,袤三丈,上广三丈,袤四丈,高三丈,问积几何?”翻译成现代文是“今有上下底面皆为长方形的草垛,下底(指面积较小的长方形)宽丈,长丈;上底(指面积较大的长方形)宽丈,长丈;高丈.问它的体积是多少?”现将该几何体的三视图给出如图所示,则该几何体的体积为()立方丈.A. B. C. D.【答案】A【解析】将几何体上底面的4个顶点投影在下底面,连接垂足和下底的顶点,将几何体分割,中间为一个长方体(体积),每个侧面都可以分割为2个三菱锥和1个三菱柱,体积为,所以几何体体积为。

精品解析:【全国校级联考】安徽省江南十校2018届高三冲刺联考(二模)文科数学试卷(原卷版)

精品解析:【全国校级联考】安徽省江南十校2018届高三冲刺联考(二模)文科数学试卷(原卷版)

2018年“江南十校”高三学生冲刺联考(二模)文科数学第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. )A. B. D.2. 是虚数单位),则的共轭复数是()A. D.3. )D.4. )A. B. C. D.5. 下列命题中,真命题的个数是()::”的逆否命题为真命题;③命题“若至少有一个不等于:,A. C. D.6. 的公差为)A. D.7. )A. C. D.8. ,则函数)A. C. D.9. 已知某几何体的三视图如图所示,则该几何体的体积为()学。

科。

网...学。

科。

网...A. C. D.10. ,是椭圆和双曲线的公共焦点,)A. B. C. D.11. 执行如图所示的程序框图,则输出的结果为()A. B. D.12. 在中,,,所对的边分别为,,的等差中项,,周长的取值范围是()B.D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.(道)(分钟)__________.14. 、__________.15. 已知为坐标原点,动点__________.16. 的定义域是的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内)17.(1(2,求证:18. 距离年全国普通高等学校统一招生考试已不足一个月,相信考生们都已经做了充分的准备,进行最后的冲刺.高考的成绩不仅需要平时的积累,还与考试时的状态有关系.为了了解考试时学生的紧张程度,(1与“性别”有关?(2人中有女生的概率.19. 是等边三角形且以.(1;(2.20. ,(1垂直于抛物线的准线于点(2)若垂直的直线交抛物线于另一点轴、、取值范围.21.(1(2(3请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22. 选修4-4:坐标系与参数方程(为参数).(1的直角坐标方程和曲线的普通方程;(223. 选修4-5:不等式选讲,不等式.(1(2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省
江南十校2018届高三摸底考试
文科数学
(考试时间:120分钟 试卷满分:150分)
第Ⅰ卷
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目
要求的)
1.已知集合2{|560}A x x x =-+≥,集合{|3}B x x =≤,则()A B =R ð A .{|3}x x <
B .{|3}x x ≤
C .{|23}x x <<
D .{|23}x x <≤
2.已知i 为虚数单位,复数z 满足(1i)1i z -=+,则复数z 的共轭复数为 A .1
B .1-
C .i
D .i -
3.某种商品广告投入x 万元与收益y 万元的关系如下表所示,已知y 与x 具有线性相关关系,且求得它们的回归直线的斜率为6.5,当投入9万元时,预测收益可达到
A .71万元 万元
4.在区间[2,2]-内任取两个不同的整数m ,n ,则0m n +≥的概率是 A .
15
B .
34
C .
35
D .
1225
5.下列命题正确的是 A .2, 10x x ∃∈+=R
B .(0,), sin 02
x x x π∀∈-> C ., sin cos 2x x x ∃∈+=R
D .2, 210x x x ∀∈-+>R
6.已知等差数列{}n a 中,0n a >,9101121a a a ++=,且812,,a T a 成等比数列,则T 的最大值为 A .5
B .6
C .7
D .49
7.已知函数11()sin()cos()(0,||)332f x x x ωϕωϕωϕπ
=+++><满足()()f x f x =-,且在[0,]2π上是减
函数,则ω的取值范围为 A .(0,6]
B .[6,)+∞
C .1
(,]6
-∞
D .1[,)6
+∞
8.当输入4n =时,执行如图所示的程序框图,则输出的S 的值为 A .6 B .14 C .30
D .62
9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为
A .90π
B .63π
C .42π
D .36π
10.过抛物线2
2(0)y px p =>的焦点F 的直线l 与双曲线2
2
18
y x -=的一条渐近线平行,
并交抛物线于A ,B 两点,若||||AF BF >,且||3AF =,则抛物线方程为
A .2y x =
B .22y x =
C .24y x =
D .28y x =
11.已知实数x ,y 满足2220x y x y y +≤+≥≥⎧⎪
⎨⎪⎩
,若z ax y =+的最小值为1,则实数a =
A .1
B .2
C .3
D .4
12.已知e 是自然对数的底数,若对任意的1[0,1]x ∈,总存在唯一的2[1,1]x ∈-,使得2
212
e 0x x x a +-=成立,则实数a 的取值范围为 A .[1,e]
B .(1,e)
C .1
(1]e
,e +
D .1[1]e
,e +
第Ⅱ卷
二、填空题(本题共4小题,每小题5分,共20分) 13.已知角
4
απ
+的终边上一点的坐标为(3,1)-,则tan()απ+=_______________. 14.已知向量(2,1)=a ,(4,3)=b ,若向量λμ+a b 与向量(1,1)=-c 垂直,则λμ+=_____________.
15.已知圆O :2210x y +=,过点(34)P --,
的直线l 与圆O 相交于A ,B 两点,若AOB △的面积为5,则直线l 的斜率为_______________.
16.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足()(sin sin )()sin a b A B c b C -+=-,
若a =22b c +的取值范围为_____________.
三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)
设数列{}n a 的前n 项和为n S ,11a =,*
11(n n a S n λ+=+∈N ,1)λ≠-,且1a ,22a ,33a +为等差数
列{}n b 的前三项.
(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T . 18.(本小题满分12分)
“累计净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累计净化量(单位:克).根据国家标准,对空气净化器的累计净化量(CCM)有如下等级划分:
为了解其质量,随机抽取了n 台净化器作为样本进行估计,按照(4,6],(6,8],(8,10],(10,12],(12,14]均匀分组,其中累计净化量在(4,6]的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了如下频率分布直方图. (1)求n 的值及频率分布直方图中x 的值;
(2)以样本估计总体,试估计这批空气净化器(共2000台)中
等级为P2的空气净化器有多少台?
(3)从累计净化量在(4,6]的样本中随机抽取2台,求恰好有1台等级为P2的概率. 19.(本小题满分12分)
如图
1,在等腰梯形ABCE 中,AB EC ∥,
1
42
AB BC EC ==
=,D 是EC 的中点.将ADE △沿AD 折起,构成四棱锥P ABCD -,如图2所示,其中M ,N 分别是BC ,PC 的中点. (1)求证:AD ⊥平面DMN ;
(2)当平面PAD ⊥平面ABCD 时,求点C 到平面PAB 的距离.
20.(本小题满分12分)
2x =处的切线经过点(4,2ln 2)-. (1)判断函数()f x 的单调性;
(2
m 的取值范围. 21.(本小题满分12分)
已知12F F ,
O
段2PF 与y 轴的交点为M ,且2PM F M +=0

(1)求椭圆的标准方程;
(2)圆O 是以12F F 为直径的圆,直线:l y kx m =+与圆O 相切,并与椭圆交于不同的两点A ,B ,当
OA OB λ⋅= ,且满足23
34
λ≤≤时,求OAB △的面积S 的取值范围.
请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
22.(本小题满分10分)选修4-4:坐标系与参数方程
以直角坐标系的原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为
2+cos 6sin 0m ρρθρθ-+=,直线l
的参数方程1(1x t y ⎧=⎪⎪⎨
⎪=+⎪⎩
为参数). (1)求曲线C 的直角坐标方程与直线l 的普通方程,并求当曲线C 表示圆时实数m 的取值范围; (2)若P 的坐标为(1,1),直线l 与曲线C 交于A ,B 两点,且AOB △
的面积为,求||||PA PB ⋅的值.
23.(本小题满分10分)选修4-5:不等式选讲
已知函数()|||3|f x a x x =-+-,且不等式2
()45
f x x ≤+的解集为{|05}x x ≤≤. (1)求实数a 的值;
(2)若对任意[1,4]x ∈-,不等式2()m x f m <-恒成立,求实数m 的取值范围.。

相关文档
最新文档