顾沛数学文化的答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

顾沛数学文化的答案
【篇一:2014秋学期南开大学《数学文化(尔雅)》在线
作业及答案】
18世纪,数学的三大学科不包括a
a. 算术
b. 代数
c. 几何
d. 分析
2.通常被用于证明某个给定命题在整个或者局部自然数范围内成立的数学方法是a
a. 数学归纳法
b. 化归法
c. 逐步逼近法
d. 类比法
3.面积相等的图形中下列图形周长最短的是 d
a. 正方形
b. 三角形
c. 长方形
d. 圆
4.提出“数学式研究现实世界中数与形直接各种形式模型结构的一门科学”的人是:
a. 徐利治
b. 恩格斯
c. 方延明
d. 顾沛
5.4个平面最多把空间分为几部分c
a. 12
b. 13
c. 15
d. 16
6.中心对称用到的运动是 c
a. 反射
b. 平移
c. 旋转
d. 折射
7.黄金分割点是: d
a. 0.616
b. 0.614
c. 0.615
d. 0.618
8.以下关于素数正确的是: c
a. 素数是大于1的自然数
b. 素数是只能被1整除的数
c. 3是素数
d. 1是素数
9.近代数学时期是:a
a. 公元17世纪到19世纪初
b. 公元17世纪到18世纪 c
c. 公元16世纪到18世纪
d. 公元18世纪到19世纪
10.获得诺贝尔奖的学者中,数学出身的人占:c
a. 20%以上
b. 30%以上
c. 50%以上
d. 60%以上
11.“有物不知其数”问题的解答方法不包括 c
a. 筛法
b. 公倍数法
c. 数学归纳法
d. 单因子构件凑成法
12.g是带有运算的非空集合,该运算满足结合律,有幺元,任一元有逆元,则称g为
a. 群
b. 环
c. 域
d. 模
13.专业“数学素养”有几点: d
a. 两点
b. 三点
c. 四点
d. 五点
14.发现的第一个无理数是 a
a. 根号2
b. 根号3
c. 根号5
d. 根号7
15.引发第一次数学危机的数是 d
a. 自然数
b. 正整数
c. 有理数
d. 无理数
16.中国勾股定理的证明最先在哪部著作中出现 c
a. 《五经算术》
b. 《海岛算经》
c. 《周髀算经》
d. 《孙子算经》
17.《算盘书》作者是: c
a. 华罗庚
b. 哈密顿
d. 凯莱
18.数学的重要性体现在几个层面 c
a. 一 a
b. 二
c. 三
d. 四
19.在中国大力推广优选法的人是b
a. 陈景润
b. 华罗庚
c. 陈省身
d. 苏步青
20.把三堆谷粒数均表为二进制,写成三行,将位数对齐,各列模2相加,若和全为0,则: c
a. 不确定
b. 先抓者有必胜策略
c. 后抓者有必胜策略
d. 以上全不对
21.属于非对称关系的是
a. 足球
b. 夫妻
c. 父子
d. 照镜子
22.根据现代观点,数轴上的数是 c
a. 实数
b. 自然数
c. 正整数
d. 有理数
23.何时提出“无穷集合”这个数学概念的
a. 1871年
b. 1872年
c. 1873年
d. 1874年
24.代数基本定理是何时发现的c
a. 1797年
b. 1798年
c. 1799年
d. 1800年
25.平面运动不包括 d
a. 反射
b. 平移
c. 旋转
d. 折射
26.数学发展史可以分为几个阶段: d
a. 一个
b. 两个
c. 三个
d. 四个d
27.在古希腊数学家中,阿基米德的主要贡献是:c
a. 三角学
b. 圆锥曲线学
c. 面积和体积
d. 不定方程
28.三次方程的求根公式是在哪个国家的学者找到的:d
a. 古埃及
b. 印度
c. 阿拉伯
d. 意大利
29.人体中的黄金分割不包括 c
a. 肚脐
b. 膝盖
c. 鼻子
d. 印堂穴
30.《几何原本》的作者是 c
a. 毕达哥拉斯
b. 笛卡尔
c. 欧几里得
d. 阿基米德
31.数理逻辑先驱者是 c
a. 黎曼
b. 柯西
c. 弗雷格
d. 魏尔斯特拉斯
32.有限与无限的区别错误的是: d
a. 在无限集中部分可以等于全体
b. 在有限集中部分小于全体
c. 无限集合也有大小
d. 以上全部错误
33.提出了“无穷集合”这个数学概念的人是c
a. 牛顿
b. 柯西
c. 康托
d. 拉格朗日
34.“了解历史的变化,是了解这门科学的一个步骤”是谁说的
a. 苏步青
b. 陈景润
c. 陈省身
d. 华罗庚
35.数学公式中的对称不包括 c
a. 海伦公式
b. 正弦定理
c. 勾股定理 c
d. 对称多项式
三、判断题:
1.有限级数一定有“和”。

b
a. 错误
b. 正确
2.中国剩余定理可称为“大衍求一术”。

b
a. 错误
b. 正确
3.“代数”一词源自于《几何原本》。

a
a. 错误
b. 正确
4.“明月松间照,清泉石上流。

”是对称的。

b
a. 错误
b. 正确
5.“哲学”这词是由苏格拉底所创。

a
a. 错误
b. 正确
6.第一次数学危机的实质是“根号2不是有理数,而是无理数”。

b
a. 错误
b. 正确
7.1既不是素数也不是合数。

b
a. 错误
b. 正确
8.函数在连续点上都可导。

a
a. 错误
b. 正确
9.不存在点点连续而点点不可导的函数 a
a. 错误
b. 正确
10.哲学与数学的研究对象相同。

a
a. 错误
11.数学文化课以教授数学思想为主,以提升学生的数学素养为主。

b
a. 错误
b. 正确
12.直角三角形两条直角边的平方和等于斜边的平方,这是勾股定理。

b
a. 错误
b. 正确
13.无限半群若满足消去律则一定是群。

a
a. 错误
b. 正确
14.数学不仅是一门科学,也是一种文化。

b
a. 错误
b. 正确
【篇二:南开15年春《数学文化(尔雅)》在线作业100
分答案】
> 南开15年春《数学文化(尔雅)》在线作业100分答案
1. 数学发展史可以分为几个阶段:
a. 一个
b. 两个
c. 三个
d. 四个
正确答案:d
2. 《几何原本》的作者是
a. 毕达哥拉斯
b. 笛卡尔
c. 欧几里得
尔雅国学智慧作业答案
d. 阿基米德
正确答案:c
3. 提出“数学式研究现实世界中数与形直接各种形式模型结构的一门科学”的人是:
a. 徐利治
b. 恩格斯
d. 顾沛
正确答案:c
4. 轴对称用到的运动是
a. 反射
b. 平移
c. 旋转
d. 折射
正确答案:a
5. 平面运动不包括
a. 反射
b. 平移
c. 旋转
d. 折射 ? 正确答案:d
6. 中国勾股定理的证明最先在哪部著作中出现 a. 《五经算术》 b. 《海岛算经》 c. 《周髀算经》 d. 《孙子算经》 ? 正确答案:c
7. 数学语言的特点不包括 a. 明晰 b. 严谨 c. 规范 d. 冗杂 ? 正确答案:d
8. “物不知数”的问题出自哪部著作a. 《九章算术》b. 《海岛算经》
c. 《孙子算经》
d. 《五经算术》 ? 正确答案:c
9. 证明不完全性定理的人是 a. 伽罗瓦 b. 伯奈斯 c. 哥德尔 d. 爱因
斯坦 ? 正确答案:c
10. 几时发现斐波那契数列 a. 1200 年 b. 1201 年 c. 1202 年 d.
1203 年 ? 正确答案:c
11. 平面图形中对称性最强的是 a. 圆 b. 三角形 c. 长方形
d. 正方形 ? 正确答案:a
12. 《数学:确定性的丧失》作者是 a. 伽罗瓦 b. 笛卡尔 c. 克莱因
d. 哥德尔 ? 正确答案:c
13. 第一个提出了集合“势”的概念的人是 a. 康托 b. 笛卡尔 c. 克莱
因 d. 哥德尔 ? 正确答案:a
14. 康托最重要的著作是 a. 《几何学》 b. 《代数论》 c. 《集合论》
d. 《超越数理论基础》 ? 正确答案:d
15. 在中国大力推广优选法的人是 a. 陈景润 b. 华罗庚 c. 陈省身 d.
苏步
青 ? 正确答案:b
16. g 是带有运算的非空集合,该运算满足结合律,有幺元,任一元
有逆元,则称 g 为 a. 群
b. 环
c. 域
d. 模 ? 正确答案:a
17. 数学发展史可以分成几个阶段 a. 一 b. 二 c. 三 d. 四 ? 正确答案:d
18. 属于对称关系的是 a. 父子 b. 照哈哈镜 c. 比赛循环赛 d. 比赛淘
汰制 ? 正确答案:c
19. 4 个平面最多把空间分为几部分 a. 12 b. 13 c. 14 d. 15 ? 正确
答案:d
20. 引发第一次数学危机的数是 a. 自然数 b. 正整数 c. 有理数 d. 无
理数 ? 正确答案:d
21. 以下命题适应“无限”的是: a. 实数加法的结合律 b. 实数的分配
率 c. 无穷级数一定有和 d. 以上全部不是 ? 正确答案:d
22. 哪个时期的基本成果,构成现在中学数学的主要内容: a. 现代
数学时期 b. 近代数学时期 c. 初等数学时期
d. 以上都不是 ? 正确答案:c
23. 剩余定理最早是哪个国家发现的 a. 中国 b. 古希腊 c. 古罗马 d.
古巴比伦 ? 正确答案:a
24. 发现根号 2 的学派是 a. 米利都学派 b. 以弗所学派 c. 埃利亚学
派d. 毕达哥拉斯学派 ? 正确答案:d
25. 数学文化课中作为线索来组织材料的不包括 a. 数学问题 b. 数学
典故 c. 数学方法 d. 数学的知识系统 ? 正确答案:d
26. 下列不属于开设数学文化课,学生收获的是: a. 了解数学思想
b. 提高数学能力
c. 学会以数学的方式思维观察世界
d. 都不对 ? 正
确答案:b
27. 大多数植物的花瓣都属于: a. 黄金分割点 b. 斐波那契数列 c.
等比数列
d. 以上都不对 ? 正确答案:b
28. 把三堆谷粒数均表为二进制,写成三行,将位数对齐,各列模 2 相加,若和全为 0,则:
a. 不确定
b. 先抓者有必胜策略
c. 后抓者有必胜策略
d. 以上全不对 ? 正确答案:c
29. 建立了实数系的人是 a. 黎曼 b. 柯西 c. 拉格朗日 d. 魏尔斯特拉
斯 ? 正确答案:d
30. 何时提出“无穷集合”这个数学概念的 a. 1871 年 b. 1872 年 c. 1873 年 d. 1874 年 ? 正确答案:d
31. 黄金分割比例值是 a. 0.616 b. 0.617 c. 0.618 d. 0.619 ? 正确答案:c
32. 引发第三次数学危机爆发的悖论是 a. 芝诺悖论 b. 康托悖论 c.
罗素悖论 d. 说谎者悖论 ? 正确答案:c
33. 数学文化这个词最早出现于: a. 1986 b. 1990 c. 1974
d. 1996 ? 正确答案:b
34. 5 条直线分割平面,最多分为几个部分 a. 15 b. 16 c. 17 d. 18 ? 正确
答案:b
35. 数学公式中的对称不包括 a. 海伦公式 b. 正弦定理 c. 勾股定理
d. 对称多项式 ? 正确答案:c
二,判断题
1. 三角形三内角之和等于 180 度,这个命题不好。

a. 错误 b. 正确 ? 正确答案:b
2. 舞台报幕者最佳站位是正中央。

a. 错误 b. 正确 ? 正确答案:a
3. 解析几何是代数和几何相结合的产物。

a. 错误 b. 正确 ? 正确答案:b
4. 芝诺是巴门尼德的学生。

a. 错误 b. 正确 ?
正确答案:b
5. 自然数是整个数学最重要的元素。

a. 错误 b. 正确 ? 正确答案:
b
6. 不存在点点连续而点点不可导的函数 a. 错误 b. 正确 ? 正确答案:a
7. 数学文化课的用到的数学基础知识只有初等数学。

a. 错误 b. 正
确 ? 正确答案:a
8. 周长和直径之比是一个常数。

a. 错误 b. 正确 ? 正确答案:b
9. 夫妻是对称关系。

a. 错误 b. 正确 ? 正确答案:b
10. 函数在连续点上都可导。

a. 错误 b. 正确 ? 正确答案:a
11. 父子是对称关系 a. 错误 b. 正确 ? 正确答案:a
12. 在无限集合中,部分可以等于全体。

a. 错误 b. 正确 ? 正确答案:b
14. 数学不仅是一门科学,也是一种文化。

a. 错误 b. 正确 ? 正确答案:b
15. 卢卡斯数列是斐波那契数列的推广。

a. 错误 b. 正确 ? 正确答案:b
【篇三:有感于顾沛教授主讲“数学文化”】
p class=txt>2015年10月15——16日,我有幸在重庆市大渡口区
实验小学参加了“2015年全国数学文化在小学素质教育中的时间探索研讨会”在会上顾沛教授虽然已年过六旬,但依然精神抖擞,谈笑风生;他是一名学者,潜心治学数十载,勇于创新,开数学文化之先河,倡导数学式理性思维,使原本晦涩艰深的理论知识变得妙趣横生,耐人寻味;他是首届国家级教学名师,南开大学“数学文化”课
程的创始者和主讲人。

在会上,顾教授带着他惯有的谦和与从容走
上讲坛,与大家漫谈数学文化,分享数学之美。

第一讲到:走近“数学文化” 解密双层内涵
他说:可能对很多人而言,“数学文化”一词还是陌生的。

在2003
年教育部颁布的“数学课程标准”中,它首次作为官方用语出现,这
之后便广泛地流传开来,时至今日,已有越来越多的人们更愿意从
文化这一角度去关注数学,强调其文化价值。

不同于物理、化学这
些自然学科,数学是对事物高度抽象的结果,是人脑的产物,它为
人们提供的是灵活的思考方式和解决问题的方法。

而作为一种特殊
的文化形态,“数学文化”又包含着狭义和广义两层内涵,从狭义上说,它仅仅指的是数学的思想、精神、方法、观点、语言,以及它
们的形成和发展;而从更深层面上说,数学文化还涵盖着数学家、
数学史、数学美、数学教育、数学发展中的人文成分、数学与各种
文化的关系。

第二讲到:提高数学素养养成数学式思维
一位数学教育家曾说过,不管人们从事什么工作,深深铭刻在头脑
中的数学的思想精神、数学的思维方法和看问题的着眼点等,都会
随时随地发生作用,使人们终生受益。

这种从数学角度出发看问题
和解决问题的思维方式也正是顾教授所一直强调和提倡的“数学素养”。

通俗地说,也就是把所学的数学知识都排除或忘掉之后所剩下
的东西,这就要求我们要跳出公式和定理的本身,去探索更为本质
的东西。

而面对中国现行的教育模式,顾教授又不无担忧地指出,
由于教学方式和内容的局限,尽管一个人经历了至少长达十三年的
数学学习,但却往往只得皮毛,对数学的精髓毫无概念,在宏观上
把握数学的能力较差,也就是所谓的数学素养太差,甚至误以为学
数学就是为了解题、考试,而不了解数学在实际生活中的广泛的应用,这不得不说是教育的一大怪圈,为了解决这样的弊端,同时也
是本着教授数学的思想、精神和方法;提高学生的数学素质的初衷,由顾教授首创的南开大学“数学文化”公选课程便应运而生了。

那么,数学素养在我们的日常生活中又有哪些运用和体现呢?紧接着,顾教授便给大家看了一道关于“病狗”的题目,这道微软公司招
聘员工的考题,乍一看上去,似乎是简单的脑筋急转弯,仔细推敲,却是一道设计巧妙的数学应用题,正确的解
答需结合运用反证法和数学归纳法,当谜底揭晓时,在座的每一位
都为这其中所蕴涵的数学思维惊叹不已。

题目是:村子里有50个人,每人有一条狗。

在这50条狗中有病狗(这种病不会传染)。

于是人们
就要找出病狗。

每个人可以观察其他的49条狗,以判断它们是否生病,只有自己的狗不能看。

观察后得到的结果不得交流,也不能通
知病狗的主人。

主人一旦推算出自己家的是病狗就要枪毙自己的狗,而且每个人只有权利枪毙自己的狗,没有权利打死其他人的狗。


一天,第二天都没有枪响。

一直到第十天传来一阵枪声,问有几条
病狗,如何推算得出?他给了我们两点:1、病狗肯定不止一条;2、数学归纳法。

第三讲到:从三次危机着手了解数学历史
历史告诉我们,科学的道路从不平坦,在数学的发展轨迹中,就曾
发生过三次重大的危机,讲座中,顾教授着重给为我们介绍了由牛
顿的“无穷小”而引发的第二次数学危机。

众所周知,牛顿是20世纪最伟大的科学家之一,他的微积分理论更堪称是一项划时代的科学成就,蕴含着巨大的智慧和创新,然而这
套运算方法却因为存在逻辑上的问题而被英国大主教贝克莱猛烈攻击,在接下来的两百多年里,尽管数学家们不懈探索,尝试各种各
样的方法,但都未能彻底反驳贝克莱的责难。

直至柯西创立极限理论,才较好地解决了这一难题,而魏尔斯特拉斯数学语言的问世更
是为这个困扰数学界长达两个多世纪的争论画上了圆满的句号。


们不得不感慨,知识的逻辑顺序与历史顺序有时是不同的,书本上
的知识往往是按部就班,从简到繁,然而这些公式、定理的确立都
是历经了无数次被怀疑,被否定,被考验的过程,这其中数学家们
付出的艰辛可想而知,站在前人的肩膀上的我们,要真正理解数学,学好数学,就应该懂得发掘历史,铭记这些背后的故事。

第四讲了十个例子多重角度展现数学之美这十个例子是:例一:
芝诺悖论与无限——从初等数学到高等数学
很多人都听过芝诺悖论中的“阿基里斯永远追不上乌龟”的问题,顾
沛在分析这个问题时,指出这一悖论的症结在于混淆了有限与无限
的问题。

芝诺认为阿基里斯在追赶乌龟的过程中,首先要到达乌龟
原先的位置a,而这时乌龟已经到了位置b,阿基里斯继续追赶则要
先到达b,这时乌龟又到达了位置c,以此类推,阿基里斯似乎永远
也追不上乌龟了,可是芝诺却忽视了一个问题,无限长度或时间的和,可能是有限的。

另一个与无限有关的是“有无限个房间的旅馆”问题,一个有无限个
房间的旅馆客满后来了一个客人,应该怎样安排他?答案很简单,
让原先住在1号房的客人搬进2号房,原先住在2号房的客人住进3号房,以此类推,让原先住在k号房的客人住进k+1号房,这样就
空出了1号房给新来的客人。

同理,来了一个团的无穷个旅客,一
万个团的无穷个旅客甚至无穷个团的无穷个旅客也应对自如了。


场的许多同学都有所领悟,给出了精彩的解答。

奇妙的数学,从有
限到无限,不可能的也成了可能。

例二:海岸线的长度问题——分形与混沌
首先是分形问题。

b.b.mandelbrot发现英国的海岸线永远也无
法测量,为什么呢?柯赫曲线的几何现象说明了这个问题。

(组图略)
这样的一组图具有自相似性,在测量海岸线时,如果尺子的长度精
确度不同,那么海岸线的形状就可以无限分形,当然无法准确测量了。

正是这样一个问题,发展成了数学界一个非常重要的分支。

混沌问题。

这个问题是e.n.lorenz在做天气预报中发现的。

大家
都知道的“蝴蝶效应”,也是一种混沌现象,由此可见,数学问题无
处不在。

例三:历史上的数学危机——数学的思想大解放
顾沛讲到,我们学习数学,却不知道数学背后的历史。

牛顿为了计算瞬时速度,创立了微积分学,可是贝克莱却对牛顿发难:无穷小作为一个量,究竟是否为0?
在算式s/ t=gt +1/2 g( t)中,贝克莱质疑道:如果无穷小量等于0,则等号左端无意义,若不等于0,则右边的后一项不能随意取掉,因此,反驳贝克莱成了一个棘手的问题。

例四:周髀算经与勾股定理——中国和世界数学的骄傲
顾沛讲到,很多人都知道北京2008年举行奥运会,可是却很少有
人知道2002年在北京举行的“国际数学家大会”,这是我国许多世界
顶尖数学大师和政府争取来的荣誉。

这次大会的会徽就选择了周髀
算经中勾股定理证明的图形。

美国宇航局的一次寻找外星人的行动中,也带去了一个证明勾股图
形的黄金制品,可见勾股定理的证明是世界的骄傲。

至今勾股定理
的证明已经多达380种了,而很多人,仍在探寻新的方法。

例五:蒲丰投针问题——什么是创新
1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上
面画着一条条等距离的平行线,而他给每个客人发许多等质量的,
长度等于平行线距离的一半的针,让他们随意投放。

事后,蒲丰对
针落地的位置进行统计,共投针2212枚,与直线相交的704枚,两者相处,正好等于圆周率。

求圆周率是一个几何问题,而蒲丰却用
概率的方法解决了,完全不相同的两个领域被神奇地联系起来,这
就是某种意义上的创新。

例六:变换的方法——化繁为简
来看一道很常见的数学题“小王先快后慢,以不规则的速度用100秒沿直线从a点走到b点,有先慢后快以相反的方式从b返回a,问
什么情况下,在a,b间存在c使小王从a到b的时间等于从b到a
的时间。

为什么?”
当然答案非常简单,只需将第二次的小王换成大王。

两者同时出发,问题就变成了解决一个相遇问题了。

而题目中大部分条件都是起迷
惑作用的。

顾沛在讲完这道题后,告诫大家,现实的问题纷繁复杂,要学会用
这些数学素养简化条件,解决问题。

例七:类比的方法——举一反三
4个平面最多把空间分成多少个部分?答案是15个,但绝对不是由“4*4-1”得出的。

方法是这样的,四个平面的情况中最复杂的是这四
个平面组成了一个四面体,然后将四面体平展成一个平面,于是主
要问题就集中在四面体的棱把这个平面分成几份了。

将陌生的复杂的问题用熟悉的简单的问题来类比,同样也是生活中
的数学应用。

例八:哥尼斯堡七桥问题——抽象的观点
如何将哥尼斯堡的一条小河上的7座桥一次性走完呢?居民在多次
尝试无果后,来请教大数学家欧拉。

于是聪明的欧拉将居民的问题
抽象为一笔画问题,在他的图纸上,线条的交点被
分为奇界点和偶界点,并得出了一笔画问题能成功的充要条件:奇
界点≦2个。

这就是抽象的观点的精髓:抓住问题本质,突出问题本质。

例九:“变中有不变”的观点——数学的生命力
数学大师陈省身先生,曾指出“三角形内角和为108度”这个命题不好,而认为“n边形的外角和为360度”是个好命题,因为它的变中
有不变。

例十:数学中的审美的思想——数学的艺术
数学中有很多种类的美,简洁美、对称美、统一美、奇异美??顾教授给在座的展示了埃尔兰根纲领,欧拉公式,黄金比,斐波那契数
列等许多让人匪夷所思的数学现象,着实让在座的每一位倾倒于数
学的无限魅力。

最后一部分,顾教授由周髀算经和勾股定理入手,运用十个具体形象的例子从不同的角度讲述了数学文化和素养的魅力——
“蒲丰投针”告诉大家什么是创新;“变换的方法”教会同学们如何化
繁为简,利用数学素养简化条件,解决问题;“类比的应用”可以让
我们在生活中做到举一反三,从容应对;“七桥问题”揭示了抽象观
点的精髓,即透过表面现象,抓住问题的实质;“变中有不变的观点”更是一针见血地反映了事物的本质,同时也是数学的灵魂和生命……这一切,或简洁或对称,或统一或奇异,都在向我们全方面
地展示着数学的审美艺术和智慧结晶,着实让在座的每一位都深深
折服。

在观众的热烈掌声中,讲座走入尾声。

虽然时间是短暂的,但相信
通过这次与“数学文化”的对话,带给我们的会是更多的思考……。

相关文档
最新文档