29.2三视图(第2课时)PPT课件
合集下载
《三视图》PPT优质课堂课件2人教版
解:(1)圆锥
(2)表面积 S=S 扇形+S 圆 =πrl+πr2=12π+4π=16π(cm2)
(3)如图将圆锥侧面展开,线段 BD 即为所求的最短路程.由 4π=
nπ×6 180°
,可得 n=120°,即∠BAB′=120°.∵C 为弧 BB′的中点,∴∠ADB
=90°,∠BAD=60°,∴BD=AB·sin
39..(山数西中据考),某正求方体该的几每个何面上体都的有一表个汉面字积,如.图是它的一种展开图,那么在原正方体中,与”点”字所在面相对的面上的汉字
是(
)
1.(4分)(深圳中考)下列哪个图形是正方体的展开图( )
A.5 cm2 B解.8:cm由2 三C.视9 cm图2 可D.知10 c,m2几何体是由圆柱体和圆锥体构成,故该几何体的表
11.(河北中考)图②是图①中长方体的三视图,若用S表示面积,且S主=x2+2x,S左=x2+x,S俯=(
)
3.(4分)(济宁中考)如图,一个几何体上半部为正四棱锥,下半部为 立方体,且有一个面涂有颜色,该几何体的表面展开图是( B )
4.(4分)(菏泽中考)一个几何体的三视图如图所示,则这个几何体的表
14×20×20+2×(25×30+30×40+25×40)=7156 (mm2)
面积为 11.(河北中考)图②是图①中长方体的三视图,若用S表示面积,且S主=x2+2x,S左=x2+x,S俯=(
)
21π m3 B.30π m3 C.45π m3 D.63π m3
113.3. .(4(分16)分(深)(圳教2中材0×考P1)0下31习列0题π哪T个1+0图变形π式是)如×正图方5是体2一+的个展12几开何图×体( 的10主)π视图×与俯视5图2+,根5据2 图=中数(2据2(5单+位:2m5m),2求)该π物体的体积和表面积(π取值
《三视图》PPT优秀教学课件1
在正面内得到的由前向后观察物体的视图,叫做
;
(1)画一个几何体的三视图前要观察几何体,在观察时一定要使视线与观察面垂直;
支架可以看作是由两个大小不相等的长方体构成的组合体.
画视图的外轮廓线时一定要将边缘、棱、顶点都体现出来.
17.用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中的小正方形中的数字和字母表示该位置小立方块的个数,试回答下列问题:
)
解:(1)→B,(2)→C,(3)→A
16.(练习变式)如图,请你根据三视图画出该物体的立体图并说明
该物体的具体名称.
17.用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中的小正方形中的数字和字母表示该位置小立方块的个数,试回答下列问题:
A.长方体 B.四棱锥 C.三棱锥 D.圆锥
解:(1)x=3,z=1 (2)y=1或2;
画三视图时,看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.
5.(襄阳中考)一个几何体的三视图如图所示,则这个几何体是(
)
主视图与俯视图最左侧在一条竖直线上,最右侧在一条竖直线上;
解:(1)x=3,z=1 (2)y=1或2;
2.如图是某几何体的俯视图,该几何体可能是(
A
B
C
D
看不到,用虚线
2.画出如图所示的几何体的三视图.
4.(2019·贺州)如图是某几何体的三视图,则该几何体是 ( )
(1)确定主视图的位置,画出主视图;
画组合体的三视图时,可采用图形分解法,即先将组合体分解成若干个简单的几何体,再分别画出这些简单几何体的三视图,最后按照原组合体将各视图组合在一起.
14.如图由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是____________.
人教版数学九下【教学课件】29.2《三视图(2)》示范教学课件(共18张ppt)
正面是正五边形;由俯视图可知, 由上向下看到物体有两个面的视图 是矩形,它们的交线是一条棱(中 间的实线表示),可见到,另有两 条棱(虚线表示)被遮挡;
例题解析
由左视图 可知,物体左侧有 两个面的视图是矩形,它们 的交线是一条棱(中间的实 线表示),可见到.综合各视图 可知,物体的形状是正五棱柱.
课堂练习
5.由若干个相同的小立方体搭成的一个几何体的主视图和 俯视图如图所示,俯视图的方格中的字母和数字表示在 该位置上小立方体的个数,求x,y的值.
x=1或x=2,y=3.
课堂小结
1.一个视图不能确定物体的空间形状,根据三视图要描述 几何体或实物原型时,必须将各视图对照起来看. 2.一个摆好的几何体的视图是唯一的,但从视图反过来考虑 几何体时,它有多种可能性.例如,正方体的主视图是正方形, 但主视图是正方形的几何体有直三棱柱、长方体、圆柱等. 3.对于较复杂的物体,由三视图想象出物体的原型, 应搞清三个视图之间的前后、左右、上下的对应关系 .
(1)
例题解析
(1)从三个方向看立体图形, 视图都是矩形,可以想象这个立 体图形是长方体,如图所示;
(1)
(2)
例题解析
(2)从正面、侧面看立体图形, 视图都是等腰三角形;从上面看,视 图是圆;可以想象这个立体图形是圆 锥,如图所示.
(2)
例题解析
例2. 根据物体的三视图,描述物体的形状. 分析:由主视图可知,物体
探究新知
前面我们讨论了由立体图形(实物)画出三视图,那么 由三视图能否想象出立体图形(实物)呢?
例题解析
例1.如图,分别根据三视图(1)(2)说出立体图形的名称.
(1)
(2)
例题解析
分析:由三视图想象立体图形时,首先分别根据主视 图、俯视图和左视图想象立体图形的前面、上面和左侧面, 然后再综合起来考虑整体图形.
例题解析
由左视图 可知,物体左侧有 两个面的视图是矩形,它们 的交线是一条棱(中间的实 线表示),可见到.综合各视图 可知,物体的形状是正五棱柱.
课堂练习
5.由若干个相同的小立方体搭成的一个几何体的主视图和 俯视图如图所示,俯视图的方格中的字母和数字表示在 该位置上小立方体的个数,求x,y的值.
x=1或x=2,y=3.
课堂小结
1.一个视图不能确定物体的空间形状,根据三视图要描述 几何体或实物原型时,必须将各视图对照起来看. 2.一个摆好的几何体的视图是唯一的,但从视图反过来考虑 几何体时,它有多种可能性.例如,正方体的主视图是正方形, 但主视图是正方形的几何体有直三棱柱、长方体、圆柱等. 3.对于较复杂的物体,由三视图想象出物体的原型, 应搞清三个视图之间的前后、左右、上下的对应关系 .
(1)
例题解析
(1)从三个方向看立体图形, 视图都是矩形,可以想象这个立 体图形是长方体,如图所示;
(1)
(2)
例题解析
(2)从正面、侧面看立体图形, 视图都是等腰三角形;从上面看,视 图是圆;可以想象这个立体图形是圆 锥,如图所示.
(2)
例题解析
例2. 根据物体的三视图,描述物体的形状. 分析:由主视图可知,物体
探究新知
前面我们讨论了由立体图形(实物)画出三视图,那么 由三视图能否想象出立体图形(实物)呢?
例题解析
例1.如图,分别根据三视图(1)(2)说出立体图形的名称.
(1)
(2)
例题解析
分析:由三视图想象立体图形时,首先分别根据主视 图、俯视图和左视图想象立体图形的前面、上面和左侧面, 然后再综合起来考虑整体图形.
三视图(2) 大赛获奖精美课件 公开课一等奖课件
2 面积为________ cm . 3
4
五、课堂小结 相似三角形的性质: 性质2.相似三角形周长的比等于相似比.
性质3.相似三角形面积的比等于相似比的平方.
相似多边形的性质1:相似多边形周长的比等于相似比.
相似多边形的性质2:相似多边形面积的比等于相似比的平方.
本节课主要是让学生理解并掌握相似三角形周长的比等于相似 比、面积比等于相似比的平方,通过探索相似多边形周长的比 等于相似比、面积的比等于相似比的平方让学生体验化归思想, 学会应用相似三角形周长的比等于相似比、面积的比等于相似 比的平方来解决简单的问题.因此本课的教学设计突出了“相 似比⇒相似三角形周长的比⇒相似多边形周长的比”,“相似 比⇒相似三角形面积的比⇒相似多边形面积的比”等一系列从 特殊到一般的过程,让学生深刻体验到有限数学归纳法的魅 力.
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
本节课的教学,以课程标准为指南,结合学生的已有知识和 经验而设计.重点讲解由三视图判断几何体的结构特征,也 就是画三视图时尺寸不作严格要求.教学设计时使用了大量 的图片,建议在实际应用时尽量使用信息技术,如画法几何, 让学生从动态过程中获得三视图的感性认识,以便从整体上 把握三视图的画法.
4
五、课堂小结 相似三角形的性质: 性质2.相似三角形周长的比等于相似比.
性质3.相似三角形面积的比等于相似比的平方.
相似多边形的性质1:相似多边形周长的比等于相似比.
相似多边形的性质2:相似多边形面积的比等于相似比的平方.
本节课主要是让学生理解并掌握相似三角形周长的比等于相似 比、面积比等于相似比的平方,通过探索相似多边形周长的比 等于相似比、面积的比等于相似比的平方让学生体验化归思想, 学会应用相似三角形周长的比等于相似比、面积的比等于相似 比的平方来解决简单的问题.因此本课的教学设计突出了“相 似比⇒相似三角形周长的比⇒相似多边形周长的比”,“相似 比⇒相似三角形面积的比⇒相似多边形面积的比”等一系列从 特殊到一般的过程,让学生深刻体验到有限数学归纳法的魅 力.
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
本节课的教学,以课程标准为指南,结合学生的已有知识和 经验而设计.重点讲解由三视图判断几何体的结构特征,也 就是画三视图时尺寸不作严格要求.教学设计时使用了大量 的图片,建议在实际应用时尽量使用信息技术,如画法几何, 让学生从动态过程中获得三视图的感性认识,以便从整体上 把握三视图的画法.
《三视图》课件PPT2
由图想物——利用正方体组合提升空间想象力
如右图是由几个小立方体所搭 几何体的俯视图,小正方形中 的数字表示在该位置小正方体 的个数。
你能摆出这个几何体吗?
21 12
试画出这个几何体的正视图与 左视图,并它的求出全表面积。
主视图:
左视图:
由图想物——正方体组合
不用摆出这个几何体,你能画出这 个几何体的正视图与左视图吗?
正确三视图
正
左
视
视
图
图
正
左
视
视
图
图
俯
俯
视 图
视
图
主
左
视
视
图
图
俯
视
主
左
图
视
视
图
图
俯 视 图
练一练
1、画出下列立体图形的三视图.
2、指出左面三个平面图形是右面这个物体的三视图中 的哪个视图.
( 主视图) ( 俯视图) ( 左视图)
画出下列几何体的三种视图:
主
左
视
视
图
图
俯 视 图
(1)先画正视图;
(2)在主视图正下方画出俯视图,注意与 主视图“长对正”;
(3)在正视图正右方画出左视图,注意 与正视图“高平齐”,与俯视图“宽相等”;
(4)看得见部分的轮廓线画成实线,而 看不见部分的轮廓线画成虚线.
主视图
左视图
俯视图
例1 画出图所示一些基本几何体的三视图.
分析:画这些基本几何体的三视图时,要注意从 三个方面观察它们,具体画法为:
问题:什么是三视图?
正视图:光线从几何体的前面向后面正投 影,得到的投影图. 左视图:光线从几何体的左面向右面正投 影,得到的投影图. 俯视图:光线从几何体的上面向下面正投 影,得到的投影图.
机械制图-三视图(PPT44页)精选全文
投影方向
(1)
(2)
(3)
(4)
已知一立体的轴测图,按箭头所指方向的视图是
(1)
(2)
(3)
(4)
正确的俯视图是
(1)
(2)
(3)
(4)
正确的俯视图是
(1)
(2)
(3)
(4)
正确的俯视图是:
(1)
(2)
(3)
(4)
正确的主视图是讲完毕,谢谢
三个视图 三个视图可以唯一确定物体的形状
三个视图
三个视图
二.画三视图的步骤
第三个视图的 尺寸应由其它 两个视图根据 三等关系来定
看不见的线 用虚线表示
选择主视图 的投影方向 先画反映形体 特征的视图
逐个画其 它视图
检查、加深
最能反映形体 的特征形状
虚线少
沿X轴方向 尺寸大
画物体的三视图
画物体的三视图
上
左
右后 前
下 后
下
左
左 H 俯视图 前
右
45 0
前右 下
2.三视图的投影规律
视图与视图的关系
V 主视图
左视图 W
主俯长对正 主左高平齐 俯左宽相等
高平齐
长对正
H
俯视图
宽相等
45 0
2.三视图的投影规律 每个视图中的线框关系
封闭的线框可表 示一个平面、曲 面,或者平面和 曲面的结合。 注意各个视图上 线框之间的对应 关系。
三视图
三视图的形成
视图的形成 用正投影法, 将物体投影到 某一投影面上, 称为视图。
一个视图 不能唯一确定物体的形状
两个视图
V
H
两投影面体系V/H: 两个投影面相互垂 直,物体在两投影 面体系中可得到物 体的两个投影。
《三视图及其画法》课件PPT
主
左
视
视
图
图
圆台
俯 视
图
返回
三、 中 考 链 接
返回
提升题
我 相 信 你 一 定 行 !
返回
返回
自己制作的立体图形任意组 合,探讨它们的三视图。
返回
左视图
高
长
宽
宽
俯视图
返回
总结:
主视图
正面
俯视图
投影面 左视图
侧面 水平面
主视图与左视图的高平齐
主
视
图主
左
与
视 图
高高
视 图
俯
长
视
长
图
宽相等
的
俯视图
长
对
正 左视图与俯视图的宽相等
返回
例1 画出图所示一些基本几何体的三视图.
1.确定主视图的位置,画出主视图; 2. 在主视图正下方画出俯视图,注意与主视图“长对正”; 3. 在主视图正右方画出左视图,注意与主视图“高平齐”,与 俯视图“宽相等”.
返回
观看正投影
视图 返回
如图,我们用三个互相垂直的平面(例如墙角处的三面墙壁)作为投影面.
一个物体(例如一个长方体)在三个投影面内同时进行正投影, 在正面内得到的由前向后观察物体的视图,叫做主视图; 在水平面内得到的由上向下观察物体的视图,叫做俯视图
在侧面内得到由左向右观察物体的视图,叫做左视图.
主视图
投影面
左视图
正面
俯视图
侧面 水平面
返回
长方体的三视图
返回
圆柱的三视图
投影 返回
圆锥的三视图
正四棱锥的三视图
小正方体组合体的三视图:
人教版数学九年级下册 29.2《三视图》课件(共55张PPT)
三视图的投影系
V
V正立投影面 W侧立投影面 H水平投影面
三视图的形成(一)
V
V正立投影面 H水平投影面 W侧立投影面
三视图的形成(二)
W V
v主视图 H俯视图 W左视图
H
三视图的形成(三)
主 视 图1 文本2 文本3
三视图形成(四)
形 成 视 图
★接下一张幻灯片
重现过程
从前面正对着物体观察,画出 主视图,主视图反映了物体的长 和高及前后两个面的实形。
从上向下正对着物体观察,画 出俯视图,布置在主视图的正下 方,俯视图反映了物体的长和宽 及上下两个面的实形。
三视图表达的意义
从左向右正对着物体观察, 画出左视图,布置在主视图的 正右方,左视图反映了物体的 宽和高及左右两个面的实形。
在主视图、俯视 图中都体现形体的长 度,且长度在竖直方 向上是对正的,我们 称之为长对正。
返回
在主视图、左视 图上都体现形体的高 度,且高度在水平方 向上是平齐的,我们 称之为高平齐。
返回
在左视图、俯视 图上都体现形体的宽 度,且是同一形体的 宽度,是相等的,我 们称之为宽相等。
返回
三视图表达的意义
三视图能反映物体真实 的形状和长、宽、高。
错误的三视图
—长未对正1
错误的三视图
—长未对正2
错误的三视图
—高不平齐1
错误的三视图
—高不平齐2
错误的三视图 —宽不相等1
错误的三视图 —宽不相等1
错误的三视图
错误的三视图
体验三视 图的作法
三视图的作图步骤
1.确定视图方向
俯视图方向
2.先画出能反映物体
真实形状的一个视图 左视图方向
(三视图)课件
主视图
俯视图
左视图
四、巩固练习
画出物体的三视图及实物图
主
俯
左Hale Waihona Puke 主俯左独立 作业
P107习题4.2 1,2题;
祝你成功!
下课了!
结束寄语
• 画三视图是培养空间想象力的 一个重要途径,相信自己!你
是最棒的!
它们分别表示的实际几何体吗?
四棱柱
五棱柱
长方体上搁一个球
三、探索提高,积木游戏 1、下列是一个物体的三视图,请摆出它的形状
主视图
左视图
俯视图
2、下列是一个物体的三视图,请摆出它的形状
主视图 左视图 俯视图
3、下列是一个物体的三视图,请摆出它的形状
主视图
左视图
俯视图
4、下列是一个物体的三视图,请摆出它的形状
主视图 左视图
俯视图
宽 俯视图
空间想象力
俯视图(1)
俯视图(2)
俯视图(3)
俯视图(4)
主视图
左视图
主视图
左视图
俯视图(1)
俯视图(2)
主视图
左视图
主视图 左视图
俯视图(3)
俯视图(4)
二、设问质疑,探究新知
主
左
视
视
图
图
俯 视 图
猜一猜,这个立体图形是什么?
圆柱
四棱锥
试一试:你能从下面所给的三视图中推断出
九年级数学(下)第二十九章
29.2 三视图
杜志学 2009.10
回顾 思考
• 三视图 • 主视图——从正面看到的图 • 左视图——从左面看到的图 • 俯视图——从上面看到的图
• 画物体的三视图时,要符合如下原则: 长对正,高平齐,宽相等.
第2课时 三视图(2) 公开课一等奖课件
例 2 根据物体的三视图(如图)描述物体的形状.
分析:由主视图可知,物体的正面是正五边形,由俯视图可知,由上向 下看物体是矩形的,且有一条棱(中间的实线)可见到,两条棱(虚线)被遮挡, 由左视图知,物体的侧面是矩形的,且有一条棱(中间的实线)可见到,综合各 视图可知,物体是五棱柱形状的. 解:物体是五棱柱形状的,如下图所示.
例 3 某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如下图), 请你按照三视图确定制作每个密封罐所需钢板的面积.
分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立 体图形的表面展开成一个平面图形,即展开图.在实际的生产中,三视图和展 开图往往结合在一起使用.解决本题的思路是,由视图想象出密封罐的立体形 状,再进一步画出展开图,从而计算面积. 解:由三视图可知,密封罐的形状是正六棱柱.(如图(左)).
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法
人教版九年级数学下册第二十九章《29.2 三视图》优质课课件
图 图时,构成组合体的各
个部分的视图也要注意
“长对正 ,高平齐 ,宽相等 .”
三、研读课文
知 (3)请你画出它的三视图. 识 点 一
主视图
左视图
俯视图
三、研读课文
例3 右图是一根钢管的直观图,画出
它的三视图.
知 识 点 一
(1)钢管有内外壁,从一定角度看它 时,看不见内壁.为全面地反映立体图 形的形状,画图时我们需要怎样的处理?
三、研读课文
认真阅读课本本节的内容, 完成下面练习并体验知识点 的形成过程.
三、研读课文
例2 画出如图所示的支架(一种小零件)
的三视图,支架的两个台阶的高度和宽
知 度都是同一长度.
识 点 一
组 合 体 的 三
(1)这个小零件支 架是由几个什么基 本几何体构成的? 两个大小不等的长方体构成
视 (2)画研读课文
画出图中的几何体的三视图.
四、归纳小结
1、三视图位置有规定,主视图要在左上边,它
下方应是 俯视图 ,左视图坐落在 右上边 .
2、画三视图时,三个视图要放在正确的位置,并
且使主视图与俯视图的 长对正 ,主视图与左
视图的 高平齐 ,左视图与俯视图
从正面看 从左面看 从上面看
三
视
图
的
知位
识 点
置 关 系
二和
大
小
关
系
三、研读课文
3、如图, 三视图中各视图的大小也有 关系.主视图与俯视图表示 同一物体的 长 ,主视图与 左视图表示同一的 高 , 左视图与俯视图表示同一物 体的 宽 .因此三视图的大 小是互相联系的.画三视图 时,三个视图要放在正确的 位置,并且使主视图与俯视 图的长对正,主视图与左视 图的高平齐,左视图与俯视 图的宽相等 .
《三视图》课件(共55张PPT)
四棱锥
圆台
体验三视 图的作法
俯
左
圆台
六棱柱
体验三视 图的作法
俯
左
六棱柱
练一练: 画出左图 的三视图 请同学 自己做
先布局定作图基准,从俯视图 开始画起,后画主、左视图。
请同学 自己做
先布局定作图基准,从俯视图 开始画起,后画主、左视图。
Φ
Φ
练习3
Φ
冰淇淋
Φ
三通水管
图1 图2 如果要做一个水管的三叉接头,工人事先 看到的不是图1,而是图2,然后根据这三 个图形制造出水管接头.
练习: 根据三视图想 像物体的形状。
圆柱
圆台
手电筒
从左向右看
圆柱
正六棱柱
螺丝杆
从左向右看
圆锥
圆柱
圆台
冰淇淋 从左向右看
圆柱
四棱柱
螺丝杆
从左向右看
圆柱
半圆球
螺丝钉
从左向右看
圆柱
圆台
圆柱
热水瓶
从上向下看
N
S
前后看 从上向下看
左右看
马蹄形磁铁
从下向上看
环的形成
有关概念
物体向投影面投影所得 到的图形称为视图。
4.运用长对正、高平 齐、宽相等的原则画 出其它视图 5.检查,加深, 加粗。
主视图方向
练一练: 画出圆柱 的三视图
圆柱的形成
俯
左
圆柱
练一练: 画出球体 的三视图
球 体
球的形成
俯
左
球体
圆锥体
圆锥 的 形成
俯
左
圆锥
正六棱柱三视图
•正五棱柱
先布局定作图基准,从俯视图开 始画起,后画主、左视图。
932韦继乐-29.2 三视图(2)
广东省怀集县凤岗镇初级中学
韦继乐
二、新课引入
如图,是一个水管的三叉接头,它的左 视图是 ( B )
A
B
C
D
广东省怀集县凤岗镇初级中学
韦继乐
三、研学教材
认真阅读课本P98至99页内容, 完成以下练习,并体验知识点的形成 过程.
广东省怀集县凤岗镇初级中学
韦继乐
三、研学教材 知识点 一 根据三视图说出立体图形的名称
广东省怀集县凤岗镇初级中学 韦继乐
三、研学教材 知 识 点 二
正五棱柱 形状,如图所示: 解:物体是_______
广东省怀集县凤岗镇初级中学
韦继乐
三、研学教材
练 一 练 1.两个物体的主视图都是圆,则这两个 物体可能是( C )
A.圆柱体、圆锥体 B.圆柱体、正方体
C.圆柱体、球 D.圆锥体、球 2.下图中①表示的是组合在一起的模 块,那么这个模块的俯视图的是( A )
广东省怀集县凤岗镇初级中学
韦继乐
我相信,只要大家勤 于思考,勇于探索,一定 会获得很多的发现,增长 更多的见识,谢谢大家, 再见!
广东省怀集县凤岗镇初级中学
韦继乐
圆锥
韦继乐
长方体
广东省怀集县凤岗镇初级中学
三、研学教材 练一练 1.如图为一个几何体的三视图,那么 圆锥 这个几何体是____________ .
广东省怀集县凤岗镇初级中学
韦继乐
三、研学教材
练一练 2. 根据下列三视图,描述物体的形状.
圆柱
三棱柱
长方体 内有圆 柱孔
韦继乐
步梯
广东省怀集县凤岗镇初级中学
A.②
B.③
C.④
D.⑤
韦继乐
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
练习 由三视图想象实物现状:
倍 速实 课物 时 学 练
2020年10月2日
实 物
使用帮助
6
倍
速 课 时
实 物
学
练
2020年10月2日
实 物
7
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
分析:由主视图可知,物体正面是正五边形;由俯视图可知,由上向
下看物体是矩形的,且有饮棱(中间的实线)可见到,两条棱(虚线)
被遮挡;由左视图 可知,物体的侧面是矩形的,且有饮棱体是五棱柱现状的.
倍 速
解:物体是五棱柱现状的,如图所示.
课
时
学
练
2020年10月2日
倍
解: (1)从三个方向看立体图形,图象都是矩形,可以想象出:
速
整体是长方体,如图所示.
课
时
学
练
2020年10月2日
3
(2)从正面、侧面看立体图形,图象都是等腰三角形;从上面看, 图象是圆;可以想象出:整体是圆锥,如图所示
倍 速 课 时 学 练
2020年10月2日
4
例5 根据物体的三视图摸索物体的现状.
29.2 三视图(第2课时)
人民教育出版社
引 言
前面我们讨论了由立体图形(实物) 画出三视图,下面我们讨论由三视图 想象出立体图形(实物).
倍 速 课 时 学 练
2020年10月2日
2
例4 根据三视图说出立体图形的名称.
分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和 左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑 整体图形.
倍
汇报人:XXX 汇报日期:20XX年10月10日
速
课
时
学
练
2020年10月2日
8