数值分析试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二
1 求A的LU分解,并利用分解结果求
解由紧凑格式
故
从而
故
2求证:非奇异矩阵不一定有LU分解
"
证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则
故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A 非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式
时才能保证A一定有LU分解。
3用追赶法求解如下的三对角方程组
解设有分解
由公式
其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有
`
从而有
故,,,
故,,,
4设A是任一阶对称正定矩阵,证明是一种向量范数
证明(1)因A正定对称,故当时,,而当时,
(2)对任何实数,有
·
(3)因A正定,故有分解,则
故对任意向量和,总有
综上可知,是一种向量范数。
5 设,,已知方程组的精确解为
(1)计算条件数;
(2)若近似解,计算剩余;
(3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么
解(1)
~
(2)
(3)由事后误差估计式,右端为
而左端
这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。
6矩阵第一行乘以一数成为,证明当时,有最小值
证明设,则
又
;
故
从而当时,即时,有最小值,且
7 讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方
法收敛较快,其中
解对雅可比方法,迭代矩阵
,
故雅可比法收敛。
对高斯-赛德尔法,迭代矩阵
,故高斯-赛德尔法收敛。
(
因=故高斯-赛德尔法较雅可比法收敛快。
8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。
解雅可比法的迭代矩阵
,
故雅可比法收敛的充要条件是。
高斯-赛德尔法的迭代矩阵
,
故高斯-赛德尔法收敛的充要条件是。
@
9 设求解方程组的雅可比迭代格式为,其中,求证:若,则相应的高斯-赛德尔法收敛。
证明由于是雅可比法的迭代矩阵,故
又,故,
即,故故系数矩阵A按行严格对角占优,从而高斯-赛德尔法收敛。
10设A为对称正定矩阵,考虑迭代格式
求证:(1)对任意初始向量,收敛;
(2)收敛到的解。
证明(1)所给格式可化为
这里存在是因为,由A对称正定,,故也对称正定。
,
设迭代矩阵的特征值为,为相应的特征向量,则
与做内积,有
因正定,故,从而,格式收敛。
(2)设收敛到,则即,
即收敛到的解。
三
1 设且.求证:
证明以和为插值节点建立的不超过一次的插值多项式
!
应用插值余项公式有
2求一个次数不高于4次的多项式,使它满足
.
解法一(待定参数法)满足的Hermite插值多项式为
设,令得
于是
-
解法二(带重节点的Newton插值法)建立如下差商表
这样可以写出Newton插值公式
3设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处与的值,并估计误差.
解步长,.在区间上的线性插值函数
分段线性插值函数定义如下
,|
@
估计误差:在区间上
…
而
令得的驻点,于是
故有结论
,
右端与无关,于是有
,
,
四
1 确定参数和,使得积分取得最小值,并计算该最小值.
解本题实质上是求,关于权函数的二次最佳平方逼近多项式.
选切比雪夫多项式为基函数进行计算:
\
于是得的二次最佳平方逼近多项式
进而有参数.
最小值就是平方误差:
-
2 对彗星1968Tentax 的移动在某个极坐标系下有如表所示的观察数据.
假设忽略来自行星的干扰,坐标应满足
其中为参数,为离心率,试用最小二乘法拟合和,并给出平方误差.
解由于关于参数和是非线性的,变形为,这样有下表的数据.;
、
记,得拟合模型.
求解法方程组
得
进而有,拟合方程为
@
平方误差为
3 求函数在指定区间上关于的最佳平方逼近多项式.
解对做线性变换,即
利用勒让德正交多项式为基建立的一次最佳平方逼近多项式
的最佳平方逼近为
¥
五
1确定中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度。
解令,代入公式两端并令其相等,得
解得
令,得
令,得故求积公式具有3次代数精确度。
2 计算积分,若复化梯形公式,问区间应分多少等份才能使截断误差不超
过若改用复化辛普森公式,要达到同样精确度,区间应分多少等份
,
解由于,故对复化梯形公式,要求
即。取,即将区间分为213等份时,用复化梯形
公式计算,截断误差不超过。
用复化辛普森公式,要求
即。取,即将区间等分为8等份时,复化辛普森公式可达精度。