几何 群论 讲义
p144-173讲稿北师大的群论
p144-173讲稿北师大的群论第一篇:p144-173 讲稿北师大的群论第三章完全转动群复习:正当转动矩阵为⎛cosϕ+λ2(1-cosϕ)λμ(1-cosϕ)-νsinϕ2R=μλ(1-cosϕ)+νsinϕcos ϕ+μ(1-cosϕ) ⎝νλ(1-cosϕ)-μsinϕνμ(1-cosϕ)+λsinϕλν(1-cosϕ)+μsin ϕ⎫⎪μν(1-cosϕ)-λsinϕ⎪⎪2cosϕ+ν(1-cosϕ)⎭可以验证满足detR=1,χ(R)=1+2cosϕ用欧拉角表示的正当转动矩阵⎛cosαR(α,β,γ)=sinα0⎝-sinαcosα00⎫⎛cosβ⎪0⎪0 -sinβ1⎪⎭⎝0sin β⎫⎛cosγ⎪10⎪sinγ00cosβ⎪⎭⎝-sinγcosγ00⎫⎪0⎪⎪1⎭⎛cosαcosβcosγ-sinαsinγ=sinαcosβcosγ+cosαsinγcosγsinβ⎝cos αcosβ⎫⎪-sinγsinαcosβ+cosαcosγsinαsinβ⎪⎪sinβsinγcosβ⎭-sinγcosαcosβ-sinαcosγ可以验证 detR(α,β,γ)=1 三维空间中全部的正当转动,构成三维空间中的正当转动群,或称为三维完全转动群。
记作SO(3).三维空间中全部的正当转动与非正当转动,构成一个群,称为三维空间中的正交群,或称为三维转动反演群。
记作O(3).§3.2 完全转动群SO(3)的不可约表示函数变换算符PR Pz,θ=e-iηˆθLz(3.2-5)(3.2-18)Pωˆ,θ=e-iηϖˆθω⋅L下面构造SO(3)群的2l+1维的表示:l一定的2l+1个球谐函数Ylm(θ,ϕ),构成一个2l+1维的完备的表示空间Pωˆ,αYl(θ,ϕ)=mˆ,α)m'm∑Yl(θ,ϕ)D(ωm'm'l 表示的特征标:Pz,αYl(θ,ϕ)=Pl(cosθ)emmim(ϕ-α)=Yl(θ,ϕ)em-imα得到第m列的表示矩阵元D(z,α)m'm=el-imαδm'm(3.2-28)表示矩阵为⎛e-i(-l)α0 MlD(z,α)=0 M0 0⎝0e-i[-(l-1)]αΛΛO000M001O eΛ-i(l-1)α00⎫⎪0⎪⎪M⎪0⎪⎪M⎪0⎪⎪-ilα⎪e⎭则第l个表示中,转角为α类的特征标为lsin(l+e-imα122)αχ(α)=l∑=sinm=-lα特征标表(示意)α0601212010-11180Λl=01l=13l=25l=37M1Λ局限性:只有奇数维的不可约表示。
群论第8章
能级简并(时间反演的结果). 实表示:Cn 的特征标为+1( A 表示),-1( B 表示)。 反演对称操作i 的特征标为 1(偶宇称,下标用 g ),-1(奇宇称,下标用u ).
除Ci ,有 10 个点群具有反演操作i 对称,它们均可以表示为Ci 群与另一正 则转动群的直积:
对 n = 2,4,6 ,它包含一个反演操作 I (≡ C2σ h )。
Sn 群:有一个 n 度转动反演轴( n = 4,6 ); 对 n = 2,3的 S2 和 S3 ,一般用 Ci 和 C3h 符号;
Dn 群:有一个 n 度转动轴及 n 个与之垂直的二度轴( n = 2,3,4,6 ); Dnd 群: Dn 群加 4 n 个垂直对交镜面( n = 2,3)镜面将二度轴角度平分。 Dnh 群: Dn 群加一个水平镜面( n = 2,3,4,6 ). n = 2,4,6 时, Dnh 包含反演操作。 除以上 27 个群外,还有Oh , O ,Td ,Th 和T 群。
群 论 讲 稿----吴 长 勤
第八章 点群和空间群 (Point Groups and Space Groups)
§1 点群 (Point Groups)
点群:使系统(如分子)不变的对称操作的集合构成的群。(某点固定,空 间任何两点距离不变的有限群)
一般,几何对称操作有:
E : 恒等操作;
Cn :转角 2π / n 的操作,转动轴称 n 度轴;
{ } C3v : {E}, C3,C32 , {σ1,σ 2 ,σ 3}; 三个共轭类。 { } { } C'3v : {E},{E}, C3,C32 , EC3, EC32 ,{σ1,σ 2 ,σ 3},{Eσ1, Eσ 2 , Eσ 3};
几何问题的群论方法
几何问题的群论方法在数学的广袤领域中,几何问题一直以来都是备受关注和研究的重要课题。
而群论,作为现代数学的一个重要分支,为解决几何问题提供了强大而独特的工具和视角。
群论,简单来说,是研究对称的数学理论。
它关注的是元素之间的运算关系以及这些运算所遵循的规则。
当我们将群论应用于几何问题时,会发现原本复杂的几何图形和关系变得更加清晰和易于理解。
让我们从最基本的几何图形——三角形开始。
一个三角形具有多种对称性,比如绕其重心旋转 120 度或 240 度,或者沿其某条对称轴进行翻转。
这些对称操作可以构成一个群。
通过研究这个群的性质,我们能够获得关于三角形的许多重要信息。
再来看更复杂一些的正多面体。
正四面体、正六面体、正八面体、正十二面体和正二十面体,它们都具有高度的对称性。
以正六面体(即立方体)为例,我们可以通过旋转、翻转等操作使其重合。
这些操作的集合构成了一个群。
利用群论的方法,我们能够计算出正多面体的顶点数、边数和面数之间的关系,以及它们的对称性类别。
在平面几何中,群论也有着广泛的应用。
比如,研究平面图形的镶嵌问题。
什么样的图形可以无间隙地铺满整个平面?通过分析这些图形的对称群,我们可以得到答案。
在解决几何问题时,群论的优势不仅在于能够描述几何图形的对称性,还在于能够对几何变换进行系统的研究。
例如,平移、旋转、反射等几何变换都可以用群的元素来表示。
通过研究这些变换的组合和性质,我们可以深入了解几何对象在变换下的不变量。
不变量是群论在几何中应用的一个关键概念。
在几何变换下保持不变的性质或量,对于理解和解决几何问题具有重要意义。
比如,在相似变换下,图形的形状可能会改变,但某些比例关系(如三角形的相似比)是不变的。
通过寻找和利用这些不变量,我们可以简化问题,找到解决问题的关键。
群论还为研究几何的拓扑性质提供了有力的手段。
拓扑学关注的是几何对象在连续变形下不变的性质,比如连通性、亏格等。
通过研究几何对象的对称群的拓扑性质,我们能够获得关于其拓扑结构的重要信息。
群论-第5讲 群的定义
若
•
M
(F
)表示一切非零矩阵(n阶)组成的集合,那么
•
M
n
(F
),
•
和 M n (F), 都不是半群了(为什么?)
即 a a1,故 a 的逆元是唯一的.
注意:如果将群的定义中的“左”换成 “右”,显然又得到“群的等价定义” 。
定义 4(等价定义) G 对“ ”来说是一个群应满足下列四条:
(1) “ ”在 G 中是封闭的(即 “ ”是代数运算); (2) “ ”满足结合律 (即 G, 是半群);
证明 设 e 与 e 都是 G 的左单位元,则根据左单位元的
定义,有 e ee ee e.
其次,设 a1 及 a 都是 a 的左逆元,即有
a1a aa1 e, aa aa e ,
进一步得
a ae a(aa1) (aa)a1 ea1 a1 ,
(3) {G,}中有右单位元 e ,(即 G, 是 monoid);
(4) {G,} 中每个元都有右逆元(即 G, 是群)。
课堂训练:由群的定义,判断下列代数体系中哪些是
群?为什么?
1、 Z,
2、 Z,
3、 Q,
4、 Q,
•
5、 Q,
一个群的代数运算叫什么名称或用什么符号表示,这是 非本质的.因此,在不致发生混淆时,有时为了方便,也常
把群的代数运算叫做“乘法”,并且往往还把 aob 简记为 a b 或 ab .
群的基本性质
初中几何讲义PPT精选文档
(2)线是有长度而没有宽度的; (3)线的界限是点; (4)直线是这样的线,它对于在它上面的所有各个点都有同样的位置; (5)面有长度和宽度; (6)面的界限是线; (7)平面是这样的面,它对于其上的所有直线有同样的位置;
同位角
1
1
22
(2)
(3)
同位角
同位角
ba
12 c
(6)
同位角
1 2 (7)
1
2 (8)
内错角
12
(4)
同位角
2 1 (5)
1
1
2
2
(9)
(10)
同旁内角
25
下列各图中 1与 2 哪些是同位角?哪些不是?
1
2 ()
1 2
(
)
1
1
2 ()
2 ()
26
练习:
1、如图,(1)1 和4 是直线__A_B__与直线_C__D_被直线
1
54
求:∠1+ ∠2+ ∠3+ ∠4+ ∠5之和
3
2
12
6、对顶角、邻补角总结
角的 名称
特征
性 相同点 不同点 质
对 顶 角
邻 补
①两条直线相 交形成的角;
对顶
②有公共顶点; 角相
③没有公共边 等
①两条直线相
交而成;
邻补
①都是两条 直线相交而 成的角;
②都有一个 公共顶点;
①有无公共 边
②两直线相 交时,
群论第5章
第五章 完全转动群§1 转动和欧拉角三维实空间中的任一转动均可由转动轴(n :单位向量)和转动角θ来描写,即()θn R ,由于显然有关系()()θπθ−=−2n n R R ,故我们可取转动角θ的范围为πθ≤≤0。
现在考虑相继的两次转动,关于轴1转α角:()α1R 和关于轴2转β角:()β2R ,若有关系:()()()αβγ123R R R =,我们来看如何确定轴3和转动角γ。
首先我们作一个单位球面,球心O 点。
于是轴1对应球面上的A 点,轴2对应球面上的B 点。
(如右图所示)球面上的C 点和D 点使得CAB ∠(平面OAC 与平面OAB 的夹角)与DAB ∠(平面OAB 与平面OAD 的夹角)均为2/α和CBA ∠(平面OAB 与平面OBC 的夹角)与DBA ∠(平面OAB 与平面OBD 的夹角)均为2/β,于是很明显,()α1R 的作用将C 点变到D 点,而()β2R 的作用将D 点变到C点,于是,相继的()β2R ()α1R 作用使得C 点不动。
这样,OC 轴就是我们要找的Bα/2β/2图七、转动的乘积.轴3。
进一步,我们知道,()α1R 作用后,A 点是不动的,而()β2R 的作用将A 点变到'A 点,因此()γ3R 的作用也应该将A 点变到'A 点,于是转角γ即为平面OCA 与平面'OCA 的夹角。
上述事实确实表明,转动操作()θn R 构成一个群:完全转动群。
对任何两个转动相同角度θ的转动操作()θ1n R 和()θ2n R ,总是存在另一个转动Q ,使得()θ2n R =Q ()θ1n R 1−Q ,Q 转动将转动轴1n 变为2n ,转动操作()θ1n R 和()θ2n R 彼此共轭。
现在,我们用三个欧拉角来表述转动:任一三维的转动()θn R 均可表为下述三个相继转动:(1) 关于z 轴转α角()πα20≤≤:()αz R 。
此转动将使坐标轴z y x ,,变为z z y x =111,,;(2) 关于1y 轴转β角()πβ≤≤0:()β1y R 。
群论课件ppt
元素数量是有限的集合。
03
02
置换
将一个有限集合的元素重新排列。
乘法
置换之间的运算。
04
循环群
01
02
03
循环群
由一个元素生成的群,即 置换群中所有元素都是该 元素的循环。
循环
将一个元素替换为另一个 元素,其它元素保持不变 。
元素生成
由一个元素开始,通过重 复应用某种变换得到的所 有元素。
群论课件
目录
• 群论基础 • 置换群 • 群论的应用 • 群表示论 • 群论中的问题与挑战 • 群论与其他数学领域的联系
01
CATALOGUE
群论基础
群的定义
群是由一个集合和定义在这个集合上 的一个二元运算所组成的一个代数结 构。这个二元运算被称为群中的“乘 法”。
群中的元素可以是有理数、整数、矩 阵、变换等,具体取决于实际应用和 研究领域。
群论与几何学的联系
对称性
群论在几何学中广泛应用于描述对称性。例 如,晶体学中的晶格结构可以用群论来描述 其对称性。此外,在几何图形中,我们也可 以用群论来描述图形的对称变换。
几何形状的分类
通过群论的方法,我们可以对几何形状进行 分类。例如,根据其对称性,我们可以将几 何形状分为不同的类型。这种分类方法有助 于我们更好地理解和研究几何形状的性质和
群表示是群论中一个重要的概念,它有助于将群的结构和性质转化为线性 代数的语言,从而更好地理解和研究群。
特征标与维数
01
特征标是群表示的一个重要概念 ,它描述了群在某个向量空间上 的作用方式。
02
特征标是一个函数,将群中的每 元素映射到复数域上,它反映
了群元素的性质和作用方式。
左维老师群论讲义4
满足条件 uu t == E,
det(u) == 1
SU(2) 的群元可写为
(_b'
COSrJ
Ia 1 2 + Ib 1 2= 1
Slll f/
•
或写为
e
迈
-e
- is
其中~'如,n为实参量.
SU(2) 是一个三阶紧致简单李群
4) 三维实正交群 O(S,: 所有三维实正交矩阵构成的连续群.
群元由 3个实参数标记.群元满足正交条件
可将本征值取为
exp(ia I 2),
入,2
= exp(-ia /2)
本征值只 与Re(a)有关 Re(a)相同的所有元素本征值相同, 通过相似变换联系,相 互等价, 互 为共辄元素
则SU(2) 中任意一个元素都对应于S0(3) 中一个元素Ru 3) 上述映射关系保持乘法规律不变
uv(石) v-1u-1 = u(Rvr[b-)u-l = (RUR方币
-'
= (Ruvr)[b4) 上述映射关系是 SU(2) 到 S0(3) 的同态映射,即对千 S0(3) 中任何一个元素,都能在SU(2冲找到一个元素与之对应
5厅=f(a,p) 是a,p 的解析函数(连续可微),石是a 的解析函数.
则连续群 G称为李群.
r = f(a,/3)
称为李群的结合函数
连通性如果从连续群的任意一个元素出发,经过r个参量的 连续变化,可以到达单位元素,或者说如果连续群中的任意两 个元素可以通过r个参量的连续变化连结起来,则称此连续群 是连通的.这样的李群称为简单李群,否则称为混合李群. 紧致李群:如果李群的参数空间由有限个有界的区域组成, 则称该李群为紧致李群,否则称为非紧致李群. 例:
群论讲义
第一章 抽象群基础§1.1 群【定义1.1】 G 是一个非空集合,G ={…,g ,…},“· ” 为定义在任意两个元素之间的二元代数运算(乘法运算),若G 及其运算满足以下四个条件: (1)封闭性:∀f, g ∈G , f ·g=h , 则h ∈G ; (2)结合律:∀f, g, h ∈G ,(f ·g )·h =f ·(g ·h ); (3)有单位元:∃e ∈ G , ∀f ∈ G , f ·e =e ·f =f;(4)有逆元素:∀f ∈G ,∃f -1 ∈G , 使f ·f -1= f -1·f = e; 则称G 为一个群,e 为群G 的单位元,f --1为f 的逆元。
·系1. e 是唯一的。
若e 、e ´ 皆为G 的单位元,则e ·e ´= e ´,e ·e ´= e ,故e ´= e 。
·系2. 逆元是唯一的。
若存在f 的两个逆元f ´=f",则f''f''e f''f)(f'f'')(f f'e f'f'=⋅=⋅⋅=⋅⋅=⋅=, 即''f f'= ·系3 e –1 = ee –1 = e -1·e = e , 即:e –1 = e 。
·系4 若群G 的运算还满足交换律,∀f ,g ∈G , 有f ·g=g ·f , 则称G 为交换群,或阿贝尔群。
群是我们定义的一种抽象结构,具有一般性,它象一个空筐子,可以装入各种具有相同抽象结构的实际对象。
通过研究抽象结构的一般性质,就可以掌握各种实际对象的性质。
例1.1 整数集{z }及其上的加法+单位元为0, 逆元z -1 = -z ,构成整数加法群。
第2部分第3章 空间群(1) 群论讲义PPT
第三章 空间群 (1)
(一) 广义空间群
2
一, 转动平移算符 { | t } ( 由此构成广义空间群 )
坐标变换: x’ = R11 x + R12 y + R13 z + t1
y’ = R21 x + R22 y + R23 z + t2 z’ = R31 x + R32 y + R33 z + t3
r’ = r + t
令 { | t } r = r + t = r ’ -------------------- (1)
二, { | t } r 的性质
(1) 不变操作 { | 0 }
{ | 0 } ( 纯转动操作 ) , { | t } ( 纯平移操作 )
(2) 乘积关系 ( 和封闭性 )
一, 狭义空间群的定义 ( 此为群论的定义, 它符合晶体对称性)
如{ | t } 群的不变子群{ | t }为{ | R n },
则该 { | t } 群为狭义空间群, 简称空间群. 其中, R n 为晶体的格矢, R n = n1 a 1 + n2 a 2 + n3 a 3
a 1, a 2 , a 3 为晶格的元胞基矢, 是彼此线性独立的. n1, n2 , n3 为正整数 二, ( 狭义) 空间群的性质 ( 符合晶体对称性的要求 ) (1) 如 R n 是晶体格矢, 则 R n 也是晶体格矢.
根据定义, 群{ | R n } 是群{ | t }的不变子群 ,
则 { | t}{ | R n} {| t }-1 = { | R n + t }{-1| - -1 t }
= { | - t + R n + t } = { | R n }, 为 { | R m },
几何形的群论了解群论在几何形中的应用
几何形的群论了解群论在几何形中的应用几何形的群论: 了解群论在几何形中的应用群论是数学中一门研究群结构及其性质的学科,而几何形是研究形状、结构和空间关系的分支。
在几何形中,群论的应用可用于研究形状的对称性、变换和分类等问题。
本文将介绍群论在几何形中的基本概念和应用。
一、群论的基本概念群是一个集合与其中的一种运算的代数结构,它满足封闭性、结合性、存在单位元和逆元等四个基本性质。
在几何形中,我们常常利用对称性来研究各种形状,而对称群是形状对称性研究的重要工具之一。
二、对称群与几何形对称群是指保持几何形状不变的所有变换所组成的集合。
对称变换包括平移、旋转、镜像等,通过将几何形状映射到自身来保持形状不变。
例如,正方形的对称群是由8个变换组成,包括四个旋转和四个镜像变换。
通过研究对称群,我们可以揭示形状的对称性质,理解形状的分类和变换规律。
三、群作用与轨道群作用是指群元素对几何形状的作用,即变换的作用。
利用群作用,我们可以将几何形状的点或者对象映射到其他位置或者形态,形成一系列的“轨道”。
轨道是群作用下,某个点或者对象经过所有可能变换得到的集合。
通过研究群作用与轨道,我们可以揭示形状的变换规律、对称性质以及不变量等重要性质。
四、变换群与立体几何变换群是指保持立体几何性质不变的所有变换组成的群。
在立体几何中,我们研究的是三维空间中的形状和性质,例如多面体、立体几何体等。
通过研究变换群,我们可以揭示立体几何的对称性质、标志性质以及对称多面体的分类等重要的几何性质。
五、离散群与晶格几何离散群是指群元素之间的距离是离散的群。
在晶体学中,我们研究的是晶体的结构和性质。
晶体结构可以通过晶胞和晶格来描述,而离散群则是晶格对称性研究的重要工具之一。
通过研究离散群,我们可以揭示晶体的对称性质、点群、空间群等重要的晶体学性质。
六、拓扑群与拓扑几何拓扑群是研究拓扑性质的群。
拓扑几何是研究由点集及其邻域关系所确定的基本性质的几何学分支。
高三解析几何讲义
高三解析几何讲义
高三解析几何讲义
解析几何套路系列讲座(一)
解析几何套路系列讲座(二)
解析几何套路系列讲座(三)
解析几何套路系列讲座(四)
解析几何套路系列讲座(五):彭色列闭形定理+蒙日圆解析几何套路系列讲座(六):中点点差法+对称点差法解析几何套路系列讲座(七)
解析几何套路系列讲座(八)
解析几何套路系列讲座(九)
解析几何套路系列讲座(十)
解析几何套路系列讲座(十一)
解析几何套路系列讲座(十二)
解析几何套路系列讲座(十三)
解析几何套路系列讲座(十四)
解析几何套路系列讲座(十五)
解析几何套路系列讲座(十六)更新完毕
极点极线讲义(一)
极点极线讲义(二)
极点极线讲义(三)
极点极线讲义(四)。
左维老师群论讲义5
5.1 n阶对称群 阶对称群
对称群
■ 定义: 以n个数字{1,2,…,n}间的所有置换操作为元素构成 的群, 称为n阶对称群, 也称为n阶置换群Sn. 其元素表示为
a1 a2 ... an b1 b2 ... bn
逆元:任一置换s∈Sn, 其逆元为 逆元
n阶对称群共有n!个元素
群的乘法: 群的乘法 两个置换的乘积rs为先进行s置换,再进行r置换.
b)对换满足递推关系.
(k , a + k ) = (a + 1, a + k )(a, a + 1)(a + 1, a + k )
c)任一轮换可表示为相邻数字对换的乘积.
(a1 , a2 , a3 ,..., am 1 , am ) = (a1 , am )(a1 , am 1 ) (a1 , a3 )(a1 , a2 )
b)对换满足递推关系.
(k , a + k ) = (a + 1, a + k )(a, a + 1)(a + 1, a + k )
c)任一轮换可表示为相邻数字对换的乘积.
a1 a2 ... an s= b1 b2 ... bn
b1 s = a1
1
ห้องสมุดไป่ตู้
b2 ... bn a2 ... an
轮换: 轮换 一个m阶轮换定义为
a1 (a1 , a2 , a3 ,..., am 1 , am ) = a2
a2 a3
a3 a4
a4 ... am 1 a5 ... am
am a1
a)如果两个轮换中没有公共数字,则称这两个轮换相互独立. b)任意置换可表示为相互独立的轮换的乘积.每个轮换称为一个 轮换因子.若两个置换具有相同个数的轮换因子,且相应轮换因 子的长度相等, 则称这两个置换具有相同的轮换结构. 对换: 对换 由两个数字组成的2阶轮换 a)任一轮换可表示为对换的乘积.
第1章群论基础
1.6.1 Abel群的分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.2 非Abel群的分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6.3 小阶群表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
参考文献
25
文件生成时间: 2013年9月28日 试用讲义. 请不要在网上传播.
第 1 章 群论基础
§1.1 基本概念
§1.1.1 群的定义
1.2.2 共轭类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 子群和陪集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
b = a−1 = a, ; b = e, ; a = e, .
• a2 = a a = e, .
• a2 = b, ab = e, ba = e, b2 = a.
所以三元群只有一种, 其乘法表列于表 1.2 中.
很明显, 以这种方式来确定乘法表非常不方便. 后面讲述的一系列定理将帮助我们有
1.2.4 Lagrange定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 不变子群和商群 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
左维老师群论讲义6讲诉
e e e [ ] [ ] rs
[] [ ][ ] rs r
er[] s0
[ ]r
er[ ]er[ ]
1
[]
2
e E e e E e [ ]1 [ ] [ ]1 []1 [] []1 r rr r rr
1 []
2
e E [ ]1 [ ] rr
1 []1
2
e E [ ]2 []1
e e E e r
[ ]n3
[ ]n2 r
[ ]n3 [ ]n2
r
r
..................
1 [ ]1
[ ]2 [ ]1 [ ]2
e e E e r
[ ]1 r
rr
1 [ ]
[ ]1 [ ] [ ]1
e e E e r
[] r
rr
[ ] n!/ f [ ]
er[] 为本原幂等元, 且满足
第五章 对称群
行置换算子集: 杨盘T的所有的行置换算子组成的集合.
R(T) p
列置换算子集: 杨盘T的所有的列置换算子组成的集合.
C(T) q
P(T ) p pR(T )
Q(T ) qq qC (T )
杨算子:
E(T) P(T)Q(T) q pq pR(T ) qC(T )
引理1: 设T和T是两个杨盘, 由置换r相联系, 即T=rT. 置换s作用于杨盘T上将T中任一位置(i,j)处的数字变 到sT中的(k,l)处, 则s=rsr–1作用在T上将T中位于(i,j) 处的数字变到sT中的(k,l)位置.
相应本原幂等元为
Er[] /
[],
E[ ]1 r
/
, E / []1 []2 r
妙趣横生的几何群论
妙趣横⽣的⼏何群论⼏何群论是⼀个综合性⽐较强的数学分⽀,主要思想是把有限⽣成的离散群转化为其Cayley图,再通过图度量视为度量空间,然后就可以⽤度量⼏何学的⽅法进⾏研究,双曲⼏何、⼤尺度⼏何等都有密切联系,还有⼀个叫做组合群论的兄弟分⽀。
假设读者已经了解最基本的群论与图论知识,下⽂中的群⼀般指有限⽣成的离散群。
我们先从群的Cayley图开始。
设S是群G的⽣成元,G关于S的Cayley图指这样的图Cay(G,S),其顶点集是G,边集是{(g,gs);g∈G,s∈S∪S^(-1)\{1}}. 也就是说,Cayley图中的两个顶点相连 iff 它们对应的群元素相差⼀个⽣成元。
给定群G,G的Cayley图并不是唯⼀的,它与⽣成元的选择有关。
⽐如⽆限循环群Z关于{1}与{2,3}为⽣成集的Cayley图不是同构的(请读者⾃⼰画图,再看{1}与{0}之间的图度量).设F是由S⾃由⽣成的⾃由群,则Cay(F,S)是树。
⾃由群F2的Cayley图是“⽆限⼗字树”,可以被选为⼏何群论封⾯代⾔,⽐如【2】的封⾯(见下图⿊板右侧)。
反之,若⽣成集S没有可逆元素,则由Cay(F,S)是树,可得S是G的⾃由⽣成集。
这⾥的条件“S没有可逆元”是不可省的,可以考虑F=Z,S={1,-1}.更进⼀步,群G是⾃由的 iff 它⾃由作⽤在某(⾮空)树上。
由此可以证明⾃由群的Nielsen-Schreier定理:⾃由群的任何⼦群都是⾃由的。
这个定理还有组合群论的证明,主要是考虑代数拓扑中的基本群(参见【1】或【6】)。
值得注意的是,秩2⾃由群F_2交换⼦群是⽆穷秩的!对⾃由群,我们有下⾯的乒乓引理:设群G由元素a与b⽣成,群G作⽤在集X上,若X有不交⾮空⼦集X_a与X_b,满⾜对任何k∈N,a^k(X_b)≤ X_a且b^k(X_a)≤ X_b,则G同构于秩2的⾃由群。
在【2】中对乒乓引理有⾮常精要的解释:G的任何元素都共轭于a^*b^*a^*…b^*a^*,其中*表⽰⾮零指数,但这样的元素映X_b到X_a,也就不能表⽰单位元1,所以G中不存在任何⽣成关系!由乒乓引理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Short course in geometric group theoryNotes for the ANU Workshop January/February1996Walter D.Neumann and Michael Shapiro2Geometric Group Theory2Elementary properties of hyperbolic groups1)Behaviour of geodesics and quasi-geodesics:progression in geodesic corridors.2)Hyperbolicity is a quasi-isometry invariant.3)Finite presentation,solubility of the word and conjugacy problems.4)Finitely many conjugacy classes of torsion elements.5)The Rips complex and.6)The boundary.3Isoperimetric inequalities1)Area of a word via products of conjugates of relators.2)Area of a word via V an Kampen diagrams.3)Dehn’s functions and isoperimetric functions.4)A group has soluble word problem if and only if it has a recursive Dehn’s function ifand only if it has a sub-recursive Dehn’s function.5)Equivalence relation and ordering for isoperimetric functions.6)Consequently solubility of the word problem is a geometric property.4The JSJ decomposition1)Splittings of hyperbolic groups.5Regular languages,automatic,bi-automatic and asynchronously automatic groups1)Definitions.2)The fellow traveler property.3)The seashell:finite presentation,quadratic isoperimetric inequality and quadratic timeword problem.4)Closure properties.i)Free products.ii)Direct products.iii)Free factors.iv)Finite index subgroups.v)Finite index supergroups.vi)HNN extensions and free products with amalgamation overfinite subgroups. vii)Bi-automatic groups are closed under central quotients and direct factors.5)Famous classes of automatic groups.Geometric Group Theory3i)Hyperbolic groups including:free groups,finite groups,most small cancella-tion groups,fundamental groups of closed negatively curved manifolds and other negatively curved spaces.ii)Small cancellation groups.iii)Fundamental groups of geometric three manifolds except for those containing a nil or solv manifold as a connected sum component.iv)Coxeter groups.v)Mapping class groups.vi)Braid groups and more generally,Artin groups offinite type.vii)Central extensions of hyperbolic groups.viii)Many amalgams of hyperbolic groups along rational subgroups.ix)Many groups that act on affine buildings.6)Regular languages,cone types and the falsification by fellow traveler property.7)Bi-automatic groupsi)Hyperbolic groups are geodesically bi-automatic.ii)Bi-automatic groups have soluble conjugacy problem.8)Asynchronous automaticity6Equivalence classes of automatic structures1)The asynchronous fellow traveller property,rationality and bi-automaticity.7Subgroups of automatic groups1)Let be a(synchronous or asynchronous)automatic structure for,and suppose.Then the following are equivalent:i)is-rational.ii)is-quasi-convex.iii)In the case where is hyperbolic and is synchronous,these are equivalent to: is quasi-geodesic in.2)A rational subgroup of an automatic(bi-automatic,asynchronously automatic,hyper-bolic)group is automatic(bi-automatic,asynchronously automatic,hyperbolic).3)Centers and centralizers of bi-automatic groups are rational,hence bi-automatic.i)Consequently a hyperbolic group does not contain a subgroup.8Almost convexity1)Definition.2)Building the Cayley graph.3)Almost convexity is not a group property.4Geometric Group Theory9Growth functions and growth rates1)Finite cone types implies rational growth function.2)Gromov’s theorem:polynomial growth implies virtually nilpotent.Geometric Group Theory5 0.IntroductionGeometric group theory is the study of groups from a geometric viewpoint.Much of the essence of modern geometric group theory can be motivated by a revisitation of Dehn’s three decision-theoretic questions,which we discuss below,in light of a modern viewpoint.This viewpoint is that groups may be profitably studied as geometric objects in their own right.This connection between algorithmic questions and geometry is atfirst surprising,and is part of what makes the subject attractive.As Milnor’s theorem(see below)teaches us,the geometry exists both in the group itself and in the spaces it acts on.This is another powerful motivation for the subject,and was historically one of the turning points.0.1–4Dehn’s problems.Early in this century Dehn proposed three seminal questions[D].Suppose we have a group given in some way,and a set of generators for the group.The word problem asks if there is a procedure to determine whether two words and in these generators represent the same element of.Since we may look at,it is equivalent to ask for a procedure to decide if a word represents the identity.Notice that if and are twofinite generating sets for then the word problem is soluble with respect to if and only if it is soluble with respect to.For suppose we are given a word in the letters of.Each letter has the same value in as some word in the letters of.Thus it requires only afinite look-up table to translate a word in the letters of into one in.However,there is less here than meets the eye.We have said nothing about how to find thefinite look-up table.Thus while we have demonstrated the existence of an algorithm for the word problem in from the existence of one in,we may have no way offinding that solution.The conjugacy problem asks if there is a procedure to determine whether the elements and of represented by two words and are conjugate in,that is,does there exist with.Note that if such a procedure exists,then,taking ,we solve the word problem also.The isomorphism problem asks for a procedure to determine whether two groups are isomorphic.The groups are usually assumed to be given by presentations(a“presentation" is a collection of generators for the group plus some sufficient collection of relations among these generators).Dehn’s three questions are remarkable in that they precede by many years the for-malization of“procedure"as“algorithm"by Church,Turing,et al.and by two more decades the resolution of the word problem by Boone and Novikov in the1950’s.They show that there is afinitely presented group with recursively unsolvable word problem. The unsolvability of the conjugacy problem is immediate,and that of the isomorphism problem also follows.For more details see ler’s notes for this Workshop.6Geometric Group Theory0.5Cayley graphsThere is a standard method for turning a group and a set of generators into a geometric object.Given the group and generating set we produce the directed labeled graph .The vertices of are the elements of and we draw a directed edge from to with label for each and.We will refer to this edge as.This graph is called the Cayley graph.It comes equipped with a natural left action of .acts on vertices by left-multiplication and carries the edge to .By forgetting directions on edges and making each edge have length,we can turn into a metric space.This induces the word metric on the vertex set:inThis metric depends of course on the chosen set of generators.But we will see below that up to“quasi-isometry”it does not depend on this choice(if the generating set isfinite) and that many geometric properties depend only on.We use to denote the set of all words on letters of,including the empty word and for we usefor.The path is a geodesic if.Evidently,a word represents the identity if and only if it is a closed loop.It follows that Theorem.has soluble word problem if and only if there is an algorithm capable of constructing anyfinite portion of.For suppose we are in possession of such an algorithm,and we are given the word. The path lies entirely inside the ball of radius around the identity.We use our algorithm to construct this ball and then follow to see if it returns to the identity.On the other hand,suppose we are given an algorithm to solve the word problem in .To construct the ball of radius around the identity,we enumerate the words of length less than or equal to in.We then use our algorithm for the word problem to determine which of these are equal in.Equality in is an equivalence relation on .Pick a representative(say a shortest representative)in each equivalence class.Now for each and each pair of representatives,use word problem algorithm to determine if is an edge.Geometric Group Theory7 0.7Dehn’s solution to the word problem for hyperbolic surfacegroups.The previous algorithms are wildly impractical in most situations.There is a beautiful and highly efficient solution to the word problem for hyperbolic surface groups.Let us start by describing an inefficient solution to the word problem in.If we take in the standard presentation,the Cayley graph embeds in the Euclidean plane as the edges of the tessellation by squares.We can see this embedding as an expression of the fact that acts by isometries on the Euclidean plane.The quotient of the Euclidean plane by this action is the torus.Now we are entitled to see the tessellation of the plane by squares as being the decomposition of the plane into copies of a fundamental domain for this action.However,there is a little piece of sleight-of-hand going on here.To see this,let’s start with the torus.If we cut the torus open along two curves,it becomes a disk,in fact,if we choose the two curves correctly,it is a square.That is,the torus is the square identified along its edges.If we look for the generators of the fundamental group,they are dual to the curves we have cut along.That is,if we take a base point in the middle of the square,is the curve which starts at the base point,heads towards the right edge of the square,reappears at the left edge and continues back to the base point.Likewise,is the vertical path which rises to the top edge and reappears at the bottom.Thus the fundamental group is generated by the act of crossing either of the cut curves.Thus,after choosing a base point,the natural relation between the tessellation of the plane and the embedding of the Cayley graph into the plane is that they are dual.That is,there is a vertex of the Cayley graph in the center of each copy of the fundamental domain,and there is an edge of the Cayley graph crossing each edge of the tessellation.The reason it was not immediately obvious that the tessellation and the Cayley graph are two different things is that the tessellation of the plane by squares is self-dual.That is,if we start with the tessellation of the planes by squares and replace each vertex by a2-cell and each2-cell by a vertex(thus getting new edges crossing our old edges)the result is another tessellation of the plane by squares.Contrast this with the tessellation of the plane by equilateral triangles which is dual to the tessellation of the plane by regular hexagons.Now as we have seen,finding the Cayley graph for solves the word problem for ,but it does not lead to a particularly efficient solution.This situation changes if we turn to the fundamental group of a hyperbolic surface, i.e.,a surface of genus2or more.If we wish to cut open a surface of genus2,we will need4curves,and when we have cut it open,we will have an octagon as our fundamental domain.Likewise,looking at the vertex where our cut curves meet shows that we will want to tessellate something with8octagons around each vertex.This suggests that we would like regular octagons with interior angles of.We can have this if we choose to work in the hyperbolic plane.In fact,the hyperbolic plane can be tessellated by regular octagons with interior angles of.Once again,the Cayley graph is dual to the tessellation,and this tessellation is also self-dual,so the Cayley graph embeds as the edges of this tessellation.In fact,reading8Geometric Group Theorythe labels on an octagon tells us that our fundamental group has the presentation Given a sub-complex of this tessellation,we define to be together with any fundamental domains which meet.Now suppose we start with a vertex of this tessellation(identified with the identity)and consider for successive values of.We can then observe that each fundamental domain that meets the boundary of meets it in at least of its edges.Suppose now that we are given a word which represents the identity.We consider as a path based at.There is a smallest so that lies entirely in.If then is the empty word.If,then there is some portion of which lies in,but not in.Suppose is a maximal such portion.Then one of2things happens.Either:1)returns to along the same vertex by which it left it,in which caseis not reduced or2)travels along the edges of some2-cell which meet the boundary of.Call this portion.In thefirst case,can be reduced in length by deleting a subword of the form, producing a new word with the same value in.In the second case,we take to be the path so that forms the boundary of. We now have evaluating to the identity,so and have the same value in. Further,.If we work with a surface of genus greater than,the numbers change,but the argument stays the same.Thus we have proven:Theorem(Dehn).Let be the fundamental group of a closed hyperbolic surface.Then there is afinite set of words with each evaluating to the identity, so that if is a word representing the identity,then there is some so that and.This gives a very efficient solution to the word problem.Given a word we look for an opportunity to shorten it and do so if we can.After at most such moves we either arrive at the empty word or we have no further opportunities to shorten our word. If thefirst happens,we have shown that represents the identity.If the second happens, we have shown that it does not.1.1HyperbolicityLet be afinitely generated group withfinite generating set and let be the corresponding Cayley graph.i).We say that has thin triangles if there exists a such that if,,and are sides of a geodesic triangle in then lies in a-neighbourhood of.ii).We can give a parameterized version of the above condition.Wefirst note the following.If is a geodesic triangle,then the sides of decompose(as paths parameterized by arclength)as,,so thatGeometric Group Theory9 ,,and.(This is the triangle inequality.Exercise!)The parameterized version of the previous condition is that there exists such that for any such triangle each of the pairs,;,;,-fellow travel,that is for and so on.The reader may wish to check that suffices.iii).We say that has thin bigons if there is a such that for every pair of geodesics and with the same endpoints,for.(We call such a pair a geodesic bigon.)Warning:we are here treating as a bonafide geodesic metric space.Accordingly,we must allow the endpoints of geodesics to occur in the interior of edges.iv).We shall see that a group obeying any of these conditions isfinitely presented.That is to say,there is a presentationwhere consists of afinite set of words on the set of generators andis isomorphic to the quotient of the free group on by the normal closure of.Another way of saying this is that a word in the letters of represents the identity in if and only if it is freely equal to a product of conjugates of elements of.Thus a word in represents the identity if is equal(in the free group on to an expression of the formWe say that has a linear isoperimetric inequality if there is a constant so that for any trivial word we can satisfy this equation with.v).We say that has a sub-quadratic isoperimetric inequality if there is a sub-quadratic function so that for any word presenting the identity,can be freely expressed as the product of at most conjugates of defining relators.vi).We say that has a Dehn’s algorithm if there is afinite set of words with each evaluating to the identity,so that if is a word representing the identity,then there is some so that and.10Geometric Group TheoryWe have seen that this gives an algorithm.Given a word,we can replace it with the shorter word which evaluates to the same group element.If does in fact represent the identity,after at most such moves,we are left with the empty word. If does not represent the identity,after at most such moves,we are left with a word which we cannot shorten.vii).We will say that geodesics diverge exponentially in if there is a constant and an exponential function()with the following property:Suppose that and are geodesic rays based at a common point.Suppose that there is a value so that .Suppose now that is a path connecting toand that lies outside the ball of radius around.Then. viii).We will say that geodesics diverge uniformly in if there is a constant and a function,,with the following property:Suppose that and are geodesic rays based at a common point.Suppose that there is a value so that .Suppose now that is a path connecting toand that lies outside the ball of radius around.Then. Theorem.All the above conditions are equivalent and independent of generating set.A group satisfying them is called word hyperbolic.Conditions i),ii),and vii)are equivalent to each other for any geodesic metric space and are characterizations of a type of hyperbolicity in such spaces called Gromov-Rips hyperbolicity.In a class of spaces including complete simply connected riemannian manifolds they are also equivalent to linear isoperimetric inequality.In these spaces linear isoperimetric inequality means the existence of a constant such that a closed loop can always be spanned by a disk of area at most.The thin bigons condition is equivalent to Gromov-Rips hyperbolicity in any graph with edges of unit length(see[Pa2]),but certainly not in arbitrary geodesic metric spaces (think of euclidean space!).Conditions i),ii),iv),vi),and vii)can be found in general expositions such as[ABC], [B],[C3],[CDP],[GH].Conditions v)and viii)can be found in[Pa1].1.2Cayley graphs and group actionsWe say that a metric space is a geodesic metric space if distances in are realized by geodesics in That is,given,there is a path connecting and so that and is minimal among all paths connecting and.A map is a quasi-isometric map if for all,Suppose now that is a geodesic metric space.Suppose that is afinitely generated group which acts by isometries on.Suppose further that this action is discrete and co-compact.“Discrete”means that if is a sequence of distinct group elements then for the sequence does not converge(this isslightly weaker than“proper discontinuity”).“Co-compact"means that the orbit space is compact.Let usfix a generating set for and pick a basepoint,.The map which takes to takes to,is-equivariant,and isfinite-to-one since the action of is discrete.For each,we choose a path from to.We now have a mapdefined by taking each vertex of to,and each edge of to. (Strictly speaking,we must parameterize both the edge and the path by the unit interval and take to.)Theorem(Milnor)[M].The map is a quasi-isometry.This is not a particularly difficult theorem—indeed,the reader may wish to try to prove it as an exercise.However,as mentioned in the Introduction,it was one of the turning points in the development of modern geometric group theory.1.3Groups acting on hyperbolic spaces.In view of Milnor’s Theorem,we will want to see that any space which is quasi-isometric to a hyperbolic space is itself hyperbolic.This will show that co-compact discrete action of a group on a hyperbolic space“transfers"the hyperbolicity of to.It will also show that hyperbolicity is independent of generating set.2.1Quasi-geodesics in a hyperbolic spaceA geodesic is an isometric map of the interval.(Y ou may take this a definition of.)A-quasi-geodesic is a-quasi-isometry of the interval .Here are several characterizations of the relationship between geodesics and quasi-geodesics in a hyperbolic space.Given a path it is often convenient to extend it to a map defined on by setting for.We use this convention in the following theorem. Theorem.There are,,and so that ifis a-quasi-geodesic and is a geodesic in and is-hyperbolic,and and have the same endpoints,then each of the following hold:i).Each of and is contained in an-neighbourhood of the other.ii).and asynchronously-fellow travel.That is,there is a monotone surjective reparameterization of so that for all we have. iii).progresses at some minimum rate along.That is,the reparameterization of ii) can be chosen so that implies.This last is sometimes referred to as “progression in geodesic corridors."2.2Hyperbolicity is a quasi-isometry invariantWe now prove that hyperbolicity is a quasi-isometry invariant using the previous theorem and a picture.Theorem.Suppose thatand are quasi-isometric geodesic metric spaces.If ishyperbolic,so is.2.3Word and conjugacy problem for hyperbolic groupsIt follows immediately from the existence of a Dehn’s algorithm that a hyperbolic group has a highly efficient solution to its word problem.Most early solutions to the conjugacy problem used the boundary of a hyperbolic group,which will be described later.We will give a proof in 5.7due to Gersten and Short which works in the more general setting of biautomatic groups,and which does not use the boundary.2.4Torsion in hyperbolic groupsThere is a charming proof that hyperbolic groups have finitely many conjugacy classes of torsion elements based on the Dehn’s algorithm.See for example,[ABC ].2.5The Rips ComplexA fundamentally important property of a hyperbolic group is:Theorem (Rips).Let be a hyperbolic group.Then acts properly discontinuously on a finite dimensional contractible complex with compact quotient.Such a complex is easy to describe.We start with a Cayley graph for and take the geometric realization of the following abstract simplicial complexfor an appropriate bound.V ertex set of is and the simplices consist of subsets of of diameter at most in the word metric.It turns out thatalways suffices.A very efficient proof of Rips’theorem is given in[ABC].This theorem has important homological implications for.For example,if is virtually torsion free(i.e.,has a torsion free subgroup offinite index)then it hasfinite virtual cohomological dimension and in any case its rational homology and cohomology isfinite dimensional.It is an important open problem whether a hyperbolic group is always virtually torsion free.Another interesting consequence is that non-vanishing homology implies a lower bound for the hyperbolicity constant for among allfinite generating sets for .2.6The boundary of a hyperbolic groupFor a hyperbolic group(in fact more generally for any Gromov/Rips hyperbolic metric space)there is a natural compactification of by adding a“boundary at infinity.”Roughly speaking the boundary consists of the set of all ways to travel off to infinity. One way of making this precise is to define a geodesic ray in a Cayley graph for as an isometry of into and to say two rays are equivalent if they fellow travel. The boundary(which in fact is a quasi-isometry invariant and thus does not depend on the choice of generating set)is the set of equivalence classes of geodesic rays.The topology on can be defined in a multitude of ways.Basicly two points are close if their rays fellow travel for a long time.One way to formalize this is to take the compact open topology on the set of rays and take the quotient topology on.There are also many ways of describing how to attach this boundary to or its Cayley graph.One obtains a compact Hausdorff space into which both and embed. We leave as an exercise how to attach the boundary:the construction is highly stable in the sense that any reasonable answer you give will be correct(see[NS1]).3.1Area of a word that represents the identityAs we have seen,a group with presentationis isomorphic to,where is the free group on and is the normal closure of in.It follows that a word represents the identity in if and only if it is freely equal(that is,equal in)to an expression of the formwhere each.Thus,solving the word problem in means determining the existence or non-existence of such an expression for each.A naive approach would be to start enumerating all such expressions in hopes of finding one freely equal to our given.If represents the identity,we must eventuallyfind the expression that proves this.The problem with this approach is knowing when to give up if does not represent the identity.Let us formalize this quandary.Suppose we take a word representing the identity in.We define the area,to be the minimum in any such expression for.3.2Van Kampen diagramsThe choice of the word area is motivated the notion of a V an Kampen diagram for. Such a diagram is a labeled,simply connected sub-complex of the plane.Each edge of is oriented and labeled by an element of.Reading the labels on the boundary of each2-cell of gives an element of.is a V an Kampen diagram for if.reading the labels around the boundary of givesTheorem.Each Van Kampen diagram with2-cells for gives a way of expressing as a product.Each product for gives a Van Kampen diagram for with at most2-cells.In particular,has a Van Kampen diagram if and only if represents the identity.Thus,we could have defined to be the minimum number of2-cells in a V anKampen diagram for.3.3Dehn’s function of a presentationWe define the Dehn’s function of the presentation to beThis maximum is taken over words presenting the identity.We say is an isoperimetricfunction for if.(As we shall see below,“isoperimetric function”is often used in a sense between these two.)3.4Isoperimetric functions and the word problemEither of these functions answers the question,“When should we give up?"Theorem.has a soluble word problem if and only if it has a recursive Dehn’s function if and only if it has a sub-recursive Dehn’s function(and the same for isoperimetric functions).A function is recursive if it can be computed by some computer program.It is sub-recursive if there is a recursive function so that for all. Proof.If a given word represents the identity,we can eventually exhibit a V an Kampen diagram for it by sheer perseverance.The Dehn’s function(if we can compute it or an upper bound for it)tells us the maximum number of2-cells in any V an Kampen diagram we must consider.Now,the number of possible V an Kampen diagrams with a given number of two cells is unbounded,because such diagrams may have long1-dimensional portions.However,the length of the boundary of such a diagram is at least twice the total length of the1-dimensional portions.Thus any possible diagram for has at most 2-cells and at most3.6The word problem is geometricTheorem.The property of having soluble word problem is a quasi-isometry invariant of finitely presented groups.This follows because the property of being sub-recursive is an equivalence class invariant of functions.Since groups with unsolvable word problem exist,isoperimetric functions can be of enormously rapid growth.In fact,by their definition,non-sub-recursive functions can be thought to have“inconceivably rapid growth.”It is not hard tofind groups with solvable word problem with very fast growing Dehn functions—for example,Gersten has pointed out[G]that for any the function (levels of exponent)is a lower bound for the isoperimetric function for the group(the notation is a shorthand for).Clearly,the algorithm proposed above for the word problem—enumerating all V an Kampen diagrams up to the size given by the Dehn function—is absurd when one has a Dehn function that grows this fast(or even exponentially fast).For specific groups much faster algorithms can often be found.4JSJ decomposition.The name JSJ refers to Johannson,and Jaco and Shalen,who developed a theory,building on earlier ideas of Waldhausen,for cutting irreducible three-dimensional manifolds into pieces along tori and ter Thurston explained these decompositions from a geometric point of view in his famous“Geometrization Conjecture"for3-manifolds.One can describe JSJ decomposition in terms of amalgamated product and HNN decomposition of the relevant fundamental group,and in fact a purely group theoretic version of the theory has been worked out by Kropholler and Roller.Around1992Zlil Sela pointed out that analogous decompositions appear to exist for groups in a much broader range of situations.First Sela did this for torsion free hyperbolic groups and then Sela and Rips extended it to general torsion freefinitely presented groups.This is currently a very active area of research,and we can only touch on some of its coarsest elements here.Since some of the major players are here at this workshop(Swarup,Bowditch),we can hope to learn more in seminars.In fact we are indebted to them for the information in this section,although any errors in it are our responsibility.The theory also has origins in work of Stallings on“ends of groups."The set of ends of a locally compact space is the limit over larger and larger compact subsets of of the set of components of.The set of ends of afinitely generated group is the set of ends of any connected space on which acts freely with compact quotient —for example one may take a Cayley graph of the group.The definition turns out to be independent of choices.For example,has two ends,has one end for,and a free group on two or more generators has infinitely many ends,since its Cayley graph。