平行线证明专题教案
初中平行线判定定理教案
初中平行线判定定理教案教学目标:知识与技能目标:学生能够理解平行线的定义,掌握平行线的判定定理,并能够运用判定定理判断两条直线是否平行。
过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。
情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
教学重点:平行线的判定定理。
教学难点:平行线的判定定理的理解和运用。
教学准备:三角板、直尺、铅笔、投影仪。
教学过程:一、导入新课1. 教师通过展示生活中的图片,如楼梯、铁轨等,引导学生观察并找出其中的平行线。
2. 学生分享观察到的平行线,教师总结并板书平行线的定义。
二、探究平行线的判定定理1. 教师提出问题:“如何判断两条直线是否平行?”引导学生进行思考和讨论。
2. 学生尝试用尺子和三角板画出两条直线,并判断它们是否平行。
3. 教师引导学生总结判断两条直线平行的方法,学生得出平行线的判定定理。
三、巩固练习1. 教师给出几组直线,要求学生判断它们是否平行,并说明判断的依据。
2. 学生独立完成练习,教师巡回指导。
四、课堂小结1. 教师引导学生总结本节课所学的平行线的判定定理。
2. 学生分享学习收获和感悟。
教学反思:本节课通过观察生活中的实例,引导学生发现平行线,激发学生的学习兴趣。
在探究平行线的判定定理时,教师引导学生通过操作和交流,培养学生的逻辑思维能力和空间想象能力。
练习环节,教师给予学生足够的自主空间,让学生在实践中巩固知识,提高运用能力。
总体来说,本节课达到了预期的教学目标,学生对平行线的判定定理有了较好的理解和掌握。
平行线的判定 教案
平行线的判定教案教案标题:平行线的判定教案目标:1. 理解平行线的定义和性质。
2. 学会使用不同方法判定平行线。
3. 运用所学知识解决与平行线相关的问题。
教学重点:1. 平行线的定义和性质。
2. 平行线的判定方法。
教学难点:1. 运用所学知识解决与平行线相关的问题。
教学准备:1. 平行线的定义和性质的课件或教材。
2. 平行线判定的示意图或实物。
教学过程:一、导入(5分钟)1. 引入平行线的概念,让学生回顾并复习平行线的定义。
2. 提问:如何判断两条线段是平行的?二、知识讲解(15分钟)1. 讲解平行线的性质:平行线在同一平面内,永不相交,且任意一条直线与平行线的交线与另一条平行线的交线平行。
2. 介绍平行线的判定方法:a. 判定法一:同位角相等法。
当两条直线被一条横截线所切割时,同位角相等,则这两条直线平行。
b. 判定法二:内错角相等法。
当两条直线被一条横截线所切割时,内错角相等,则这两条直线平行。
c. 判定法三:平行线定理。
若两条直线分别与第三条直线相交,且同侧内角或同侧外角相等,则这两条直线平行。
三、示例演练(20分钟)1. 通过示意图或实物展示不同判定方法的应用。
2. 以具体的例题进行练习,引导学生运用不同的判定方法判断线段是否平行。
四、巩固练习(15分钟)1. 分发练习题,让学生独立完成。
2. 针对练习题进行讲解和答疑。
五、拓展延伸(10分钟)1. 提出一些与平行线相关的拓展问题,让学生思考并解答。
2. 鼓励学生探索和发现更多关于平行线的性质和判定方法。
六、总结归纳(5分钟)1. 总结平行线的定义和性质。
2. 归纳不同的平行线判定方法。
教学反思:本节课通过引入平行线的概念,讲解平行线的性质和判定方法,以及示例演练和练习题的训练,使学生能够熟练运用不同的判定方法判断线段是否平行。
同时,通过拓展延伸和总结归纳,培养学生的思维能力和归纳总结能力。
在教学过程中,要注重引导学生思考和解决问题的能力,提高学生的学习兴趣和主动性。
平行线证明专题教案
教学主题:相交线与平行线证明专题教学重难点:使学生形成知识结构,并运用所学的知识进行简单的推理证明。
教学过程:1.导入复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和性质进行简单的推理或计算;能用直尺、三角板、量角器画垂线和平行线;提示两条易错概念,平行注意是过直线外一点,垂直注意是在同一平面内.2.呈现例1.已知:如图5,AB∥CD,求证:∠B+∠D=∠BED。
分析:可以考虑把∠BED变成两个角的和。
如图5,过E点引一条直线EF∥AB,则有∠B=∠1,再设法证明∠D=∠2,需证EF∥CD,这可通过已知AB∥CD和EF∥AB得到。
证明:过点E作EF∥AB,则∠B=∠1(两直线平行,内错角相等)。
∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于同一直线的两条直线互相平行)。
∴∠D=∠2(两直线平行,内错角相等)。
又∵∠BED=∠1+∠2,∴∠BED=∠B+∠D(等量代换)。
例2.已知:如图6,AB∥CD,求证:∠BED=360°-(∠B+∠D)。
分析:此题与例1的区别在于E点的位置及结论。
我们通常所说的∠BED都是指小于平角的角,如果把∠BED看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。
因此,我们模仿例1作辅助线,不难解决此题。
证明:过点E作EF∥AB,则∠B+∠1=180°(两直线平行,同旁内角互补)。
∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于同一直线的两条直线互相平行)。
∴∠D+∠2=180°(两直线平行,同旁内角互补)。
∴∠B+∠1+∠D+∠2=180°+180°(等式的性质)。
又∵∠BED=∠1+∠2,∴∠B+∠D+∠BED=360°(等量代换)。
∴∠BED==360°-(∠B+∠D)(等式的性质)。
例3.已知:如图7,AB∥CD,求证:∠BED=∠D-∠B。
数学教案-平行线的判定
数学教案-平行线的判定一、教学目标1.知识目标:掌握平行线的概念和判定方法。
2.能力目标:能够通过定理和性质判定两条直线是否平行。
3.情感目标:培养学生的逻辑思维能力和解决问题的能力。
二、教学重点与难点1.教学重点:平行线的判定方法。
2.教学难点:通过性质和定理判定两条直线是否平行的方法。
三、教学准备1.教材:数学教科书、教学PPT。
2.工具:黑板、彩色粉笔、直尺。
四、教学过程步骤一:导入新知(5分钟)1.教师提出问题:“什么是平行线?如何判断两条直线是否平行?”2.通过让学生讨论来回答这个问题,并引导学生了解平行线的概念。
步骤二:引入判定平行线的定理和性质(10分钟)1.教师通过演示和讲解,引入平行线的判定定理和性质。
2.第一种判断方法是“同位角相等定理”,通过同位角相等来判定直线是否平行。
3.第二种判断方法是“内错角相等定理”,通过内错角相等来判定直线是否平行。
4.第三种判断方法是“平行线的性质”,通过直线和平行线之间的性质来判定直线是否平行。
步骤三:举例演练(30分钟)1.教师通过示意图和具体例子,演示和讲解判定平行线的方法。
2.学生根据教师的引导,进行课堂练习。
步骤四:学习体会(10分钟)1.教师引导学生进行总结:通过本节课学习,你们学到了什么?你们能够独立解决什么问题?2.学生积极发言,分享自己的学习体会和解决问题的思路。
五、课堂作业1.预习下一节课的内容。
2.完成课堂练习题。
六、板书设计- 平行线的判定方法- 同位角相等定理- 内错角相等定理- 平行线的性质七、教学反思通过本节课的教学,学生对平行线的判定方法有了初步的了解,能够通过定理和性质判定两条直线是否平行。
在教学过程中,学生参与度较高,积极思考问题并提出自己的解决方法。
然而,我也注意到部分学生在练习过程中还存在一些困难,应该在下节课中给予更多的帮助和指导。
教案平行线的性质与判定
经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。
2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及如何在实际问题中运用。
2. 教学难点:平行线的判定方法,以及如何灵活运用平行线的性质解决复杂问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。
2. 运用案例分析法,让学生通过实际问题理解平行线在生活中的应用。
3. 采用小组讨论法,培养学生的团队协作能力和沟通能力。
4. 利用多媒体辅助教学,增强课堂趣味性,提高学生的学习兴趣。
五、教学安排1. 课时:2课时(90分钟)2. 教学过程:第一课时:1. 导入:通过生活实例引入平行线的概念,让学生感知平行线。
2. 探究:引导学生发现平行线的性质,总结平行线的判定方法。
3. 应用:运用平行线的性质和判定方法解决实际问题。
4. 总结:对本节课的内容进行总结,布置课后作业。
第二课时:1. 复习:回顾上节课的内容,检查学生的掌握情况。
2. 拓展:引导学生进一步探究平行线的应用,解决更复杂的问题。
3. 练习:进行课堂练习,巩固所学知识。
4. 总结:对本节课的内容进行总结,布置课后作业。
六、教学活动1. 导入:通过复习上节课的内容,引入本节课的学习主题——平行线的性质和判定。
2. 探究:引导学生通过实际操作,发现并证明平行线的性质。
3. 判定:讲解并演示平行线的判定方法,让学生理解并掌握。
4. 应用:运用平行线的性质和判定方法解决实际问题,巩固所学知识。
5. 总结:对本节课的内容进行总结,布置课后作业。
七、教学策略1. 采用问题驱动法,引导学生主动探究平行线的性质和判定。
5.2.1平行线数学教案
5.2.1平行线数学教案
标题:平行线数学教案
一、教案目标
1. 理解并掌握平行线的基本概念
2. 学会如何识别和判断平行线
3. 掌握平行线的相关性质和定理
4. 能够运用所学知识解决实际问题
二、教学内容与教学步骤
1. 引入新课:
通过实例引入,让学生观察生活中的平行线现象,引导学生思考什么是平行线。
2. 新课讲解:
(1) 定义平行线:在同一平面内,永不相交的两条直线叫做平行线。
(2) 平行线的表示法:用符号“∥”表示,例如:“AB∥CD”表示直线AB与直线CD平行。
(3) 平行线的性质:平行线间的距离处处相等;过直线外一点有且只有一条直线与已知直线平行。
(4) 平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
3. 实例解析:
选取一些具体的例子,让学生理解和应用平行线的概念和性质。
4. 练习与讨论:
设计一些题目,让学生自己尝试解答,然后进行集体讨论,教师给予必要的指导。
三、教学方法与策略
1. 激发兴趣:以生活中的实例引入,激发学生的探索兴趣。
2. 启发式教学:引导学生主动思考,培养他们的逻辑思维能力。
3. 实践操作:通过动手操作,加深对理论知识的理解。
四、教学评估
1. 过程评价:观察学生在课堂上的表现,如参与程度、回答问题的质量等。
2. 结果评价:通过练习题的完成情况,评估学生对知识点的掌握程度。
五、教学反思与改进
1. 反思教学过程,找出存在的问题。
2. 根据反馈调整教学方法和策略。
平行线教案5篇
平行线教案5篇平行线教案篇1一、教学目标1.了解推理、证明的格式,理解判定定理的证法.2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:积极参与、主动发现、发展思维.三、重点·难点及解决办法(一)重点判定定理的推导和例题的解答.(二)难点使用符号语言进行推理.(三)解决办法1.通过教师正确引导,学生积极思维,发现定理,解决重点.2.通过教师指导,学生自行完成推理过程,解决难点及疑点.四、课时安排1课时五、教具学具准备三角板、投影仪、自制胶片.六、师生互动活动设计1.通过设计练习,复习基础,创造情境,引入新课.2.通过教师指导,学生探索新知,练习巩固,完成新授.3.通过学生自己总结完成小结.七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).学生活动:学生口答第1、2题.师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.教师将第3题图形画在黑板上.学生活动:学生口答理由,同角的补角相等.师:要求学生写出符号推理过程,并板书.【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?学生活动:同分内角.师:它们有什么关系.学生活动:互补.师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.平行线教案篇2平行线的判定(1)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.2.掌握直线平行的条件,领悟归纳和转化的数学思想学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.一、探索直线平行的条件平行线的判定方法1:二、练一练1、判断题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∠b,理由是__________.(2)(3)2.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠∠ef,cd∠ef b.∠5=∠a; c.∠abc+∠bcd=180° d.∠2=∠32.右图,由图和已知条件,下列判断中正确的是( )a.由∠1=∠6,得ab∠fg;b.由∠1+∠2=∠6+∠7,得ce∠eic.由∠1+∠2+∠3+∠5=180°,得ce∠fi;d.由∠5=∠4,得ab∠fg四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b 的位置关系,并说明理由.五、作业课本15页-16页练习的1、2、3、5.2.2平行线的判定(2)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.学习重点:直线平行的条件的应用.学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.一、学习过程平行线的判定方法有几种?分别是什么?二.巩固练习:1.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠cd.(第1题) (第2题)2.如图,一个合格的变形管道abcd需要ab边与cd边平行,若一个拐角∠abc=72°,则另一个拐角∠bcd=_______时,这个管道符合要求.二、选择题.1.如图,下列判断不正确的是( )a.因为∠1=∠4,所以de∠abb.因为∠2=∠3,所以ab∠ecc.因为∠5=∠a,所以ab∠ded.因为∠ade+∠bed=180°,所以ad∠be2.如图,直线ab、cd被直线ef所截,使∠1=∠2≠90°,则( )a.∠2=∠4b.∠1=∠4c.∠2=∠3d.∠3=∠4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点b在ac上,bd∠be,∠1+∠c=90°,问射线cf与bd平行吗?试用两种方法说明理由.平行线教案篇3一、教学目标1.知识与技能(1)让学生在丰富的现实情境中进一步了解两条直线的平行关系,掌握有关的符号表示;(2)让学生经历用三角板、量角器画平行线的方法,积累操作经验;(3)在实践操作中,探索并了解平行线的有关性质;2、数学思考能在观察和想象两直线存在平行关系,并在实践、探索中获取平行线的有关性质。
北师大版八年级数学上册第七章平行线的证明单元教学设计
(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在探索、发现、总结平行线性质的过程中,培养观察、分析、归纳的能力。
2.引导学生运用演绎推理方法,从特殊到一般,逐步掌握平行线的判定方法,提高学生的逻辑思维能力。
二、学情分析
八年级学生在经过之前的学习,已经具备了一定的几何基础,对几何图形有一定的认识和理解。在此基础上,学生对平行线的概念及性质已有初步的了解,但在判定方法、性质应用等方面仍需加强。此外,学生在演绎推理、问题解决等方面的能力有待提高。因此,在教学过程中,应关注以下学情:
1.学生对平行线性质的理解程度,注重引导学生从直观到抽象,逐步提高对平行线性质的认识。
c.解决实际问题,运用平行线性质求解。
2.学生独立完成练习题,教师巡回指导,对学生的解答进行点评,及时纠正错误,巩固所学知识。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,让学生用自己的话总结平行线的性质、判定方法及其在实际问题中的应用。
2.教师强调本节课的重点知识,提醒学生注意平行线性质及判定方法的灵活运用。
2.教师提出问题:我们已经学过直线、线段、射线等基本概念,那么如何判断两条直线是否平行?这节课我们就来探讨这个问题。
(二)讲授新知
1.教师引导学生回顾同位角、内错角、同旁内角等概念,为后续学习平行线的判定方法打下基础。
2.教师通过几何画板演示,引导学生观察并总结出平行线的性质,如同位角相等、内错角相等、同旁内角互补等。
(二)教学设想
1.创设情境,激发兴趣:
通过生活中的实例,如铁轨、教室墙壁等,引出平行线的概念,激发学生对平行线性质探究的兴趣。
第七章平行线的证明全章教案
第七章平行线的证明1.为什么要证明一、学生知识状况分析学生的技能基础:学生经历了很多验证结论合理性的过程,有了初步的逻辑推理思维。
学生活动经验基础:学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.二、教学任务分析学生的直观能力是仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时的教学目标是:1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.2.经历观察、验证、归纳等过程,使学生认识证明的必要性,培养学生的推理意识.3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.三、教学过程:1、验证活动(1)某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对于所有自然数n,n2-n+11的值都是质数.你认为呢?与同伴交流.注意事项:学生通过列表归纳,根据自己以往的经验判断,在n=10以前都一直认为n2-n+11是一个质数,但当n=10时,找到了一个反例,进而发现不能根据少数几个现象轻易肯定某个数学结论的正确性.2、验证活动(2)如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?参考答案:设赤道周长为c ,铁丝与地球赤道之间的间隙为 :)(16.021221m c c ≈=-+πππ 它们的间隙不仅能放进一个红枣,而且也能放进一个拳头. 注意事项:要充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生。
3、反馈练习1.如图中两条线段a 与b 的长度相等吗?请你先观察,再度量一下. 答案:a 与b 的长度相等.第1小题图 第2小题图2.如图中三条线段a 、b 、c ,哪一条线段与线段d 在同一直线上?请你先观察,再用三角尺验证一下.答案:线段b 与线段d 在同一直线上.3.当n 为正整数时,n 2+3n +1的值一定是质数吗?答案:经验证:当n 为正整数时,n 2+3n +1的值一定是质数. 4、课堂小结5、 巩固练习 课本第217页习题7.1 第2,3题.四、教学反思2.定义与命题(第1课时)一、学生知识状况分析学生技能基础:本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.活动经验基础:学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识,为今天的学习作了必要的铺垫.二、教学目标是:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.三、教学过程1、情景引入在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)(很多学生对黑客的概念是很熟悉的,而小品中出现的黑客的定义与自己所熟知的黑客的概念完全不同,由此产生了对定义的兴趣.)2、命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;②学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.归纳:在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.3、反馈练习.举出一些不是命题的语句.如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.4、课堂小结①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.5、课后练习搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.6、教学反思2.定义与命题(第2课时)一、知识状况学生技能基础:学生已经学习过一些公理和定理。
平行线的判定数学教案
平行线的判定数学教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的判定方法。
2. 培养学生观察、分析、推理的能力,提高解决问题的能力。
3. 激发学生学习数学的兴趣,培养合作意识。
二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。
三、教学重点与难点1. 教学重点:平行线的判定方法。
2. 教学难点:平行线的判定方法的运用。
四、教学方法1. 采用问题驱动法,引导学生探究平行线的判定方法。
2. 利用几何画板软件,动态展示平行线的判定过程,增强直观感受。
3. 组织小组讨论,培养学生的合作意识。
五、教学过程1. 导入新课:通过生活中的实例,引入平行线的概念。
2. 探究平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。
3. 实例分析:运用平行线的判定方法,解决实际问题。
4. 巩固练习:设计相关练习题,让学生独立完成,检验学习效果。
6. 布置作业:设计课后作业,巩固所学知识。
六、教学评价1. 采用课堂问答、练习题和小组讨论等方式,评价学生对平行线判定方法的掌握程度。
2. 关注学生在解决问题时的思维过程,评价学生的观察、分析、推理能力。
3. 结合学生的课堂表现、作业完成情况和课后自主学习情况,全面评价学生的学习效果。
七、教学反思1. 针对本节课的教学内容,反思教学目标的设定是否符合学生的实际需求。
2. 反思教学方法的选择和运用,是否有利于学生的理解和掌握。
3. 分析学生在学习过程中遇到的问题,思考如何在教学中进行调整和改进。
八、教学拓展1. 探究平行线的其他判定方法,如利用向量、坐标等概念。
2. 介绍平行线在实际应用中的例子,如建筑设计、交通规划等。
3. 引导学生关注数学与现实生活的联系,提高学生运用数学知识解决实际问题的能力。
九、课后作业1. 完成练习册的相关题目,巩固平行线的判定方法。
七年级数学下册《平行线判定1》教案、教学设计
4.组织小组合作学习,让学生在合作中交流、探讨,提高学生的团队协作能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的求知欲,使其主动投入到数学学习中来。
2.培养学生严谨、细心的学习态度,让学生在解决问题的过程中,体会到数学的严谨性。
-利用多媒体展示动态的平行线图形,让学生直观感受平行线的性质,为后续学习打下基础。
2.互动探究学习:
-采用小组合作学习方式,让学生在组内讨论平行线的判定方法,并尝试用图形或实例验证。
-教师巡回指导,针对学生的疑问进行解答,引导学生发现和掌握平行线的关键性质。
3.实践操作巩固:
-安排学生使用直尺和圆规进行画图实践,通过动手操作加深对平行线性质的理解。
4.培养学生的逻辑思维能力和空间想象能力,为后续学习几何知识பைடு நூலகம்定基础。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.采用启发式教学,引导学生通过观察、思考、讨论等方式,发现平行线的判定方法。
2.通过实际操作,让学生动手画图,加深对平行线性质的理解,提高学生的动手操作能力。
2.提高题:
-设计一些综合性较强的题目,要求学生综合运用所学知识解决问题,如给出多个角度或线段,让学生判断是否存在平行线,并说明理由。
-安排一些几何图形的作图题,让学生运用直尺和圆规,根据平行线的判定方法画出特定条件的图形。
3.探究题:
-鼓励学生思考并探究平行线性质的证明过程,例如,如何证明同位角相等时,两条直线必定平行。
5.反思总结:
-要求学生撰写学习心得,反思自己在学习平行线判定方法过程中的收获和困难,以及如何克服这些困难。
平行线的判定定理教案
平行线的判定定理教案
一、教学目标:
1.了解平行线的定义;
2.掌握平行线的判定定理;
3.能够运用平行线的判定定理解决实际问题。
二、教学内容:
1.平行线的定义;
2.平行线的判定定理:①同位角相等定理;②平行线夹角定理;
③平行线垂直于同一直线定理;④平行线垂直于平行线定理。
三、教学方法
1.导入法:通过提问,让学生回忆平行线的定义,以引入本节
课的主要内容。
2.讲解法:通过简单的例子,讲解平行线的判定定理,并进行
详细的解析,让学生理解每个定理的条件和结论。
3.示范法:通过图片展示和板书的形式,给学生展示各种图形,并演示如何使用平行线的判定定理进行判断,让学生从中发现规律和特点。
4.练习法:通过练习题的形式,让学生独立完成各种难度的练习,巩固所学的知识点。
四、教学过程
1.导入(5分钟)
通过提问,让学生回忆平行线的定义和特点。
2.讲解(20分钟)
(1)同位角相等定理;
(2)平行线夹角定理;
(3)平行线垂直于同一直线定理;
(4)平行线垂直于平行线定理。
3.示范(15分钟)
通过板书和图片的形式,演示如何使用不同的定理判断平行线。
4.练习(20分钟)
让学生进行练习,并及时指导和纠正。
5.总结(5分钟)
通过回答问题和总结,巩固本节课所学的知识点。
五、教学评价
1.教学方法得当,能够引起学生的兴趣;
2.教学内容适合学生的认知水平;
3.教学效果良好,学生能够运用所学知识解决各种实际问题。
教案平行线的性质与判定
经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。
2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。
3. 提高学生对几何图形的认识和空间想象力。
二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线在实际问题中的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及其在实际问题中的应用。
2. 教学难点:平行线的判定方法,以及如何在实际问题中灵活运用平行线的性质。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。
2. 利用几何画板软件,直观展示平行线的性质和判定过程。
3. 结合实际例子,让学生学会用平行线的性质和判定方法解决问题。
4. 采用小组讨论法,培养学生的合作意识和团队精神。
五、教学步骤1. 导入新课:通过复习相关知识点,引入平行线的概念。
2. 探究平行线的性质:引导学生利用几何画板软件,自主探究平行线的性质。
3. 讲解平行线的判定方法:引导学生通过观察、分析、归纳,掌握平行线的判定方法。
4. 应用练习:结合实际例子,让学生运用平行线的性质和判定方法解决问题。
5. 课堂小结:回顾本节课所学内容,总结平行线的性质和判定方法。
6. 作业布置:布置相关练习题,巩固所学知识。
7. 课后反思:对本节课的教学进行总结,查找不足,改进教学方法。
六、教学拓展1. 引导学生思考:平行线在现实生活中有哪些应用?2. 举例说明:平行线在建筑设计、道路规划、印刷排版等方面的应用。
3. 引导学生探讨:如何利用平行线的性质解决实际问题?七、课堂互动1. 提问环节:请学生回答平行线的性质和判定方法。
2. 小组讨论:让学生分组讨论如何运用平行线的性质解决实际问题。
3. 分享环节:每组选一名代表分享讨论成果。
八、课后作业1. 完成练习册相关习题。
2. 结合生活实际,寻找平行线的应用实例,下节课分享。
最新-初中数学平行线教案优秀6篇
初中数学平行线教案优秀6篇在日复一日的学习、工作或生活中,大家都写过作文吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题意义的记叙方法。
你知道作文怎样写才规范吗?学而不思则罔,思而不学则殆,下面是勤劳的小编帮助大家收集整理的初中数学平行线教案优秀6篇。
初中数学平行线教案篇一教学目标:1、学会平行线的识别的方法,能在实际生活和数学图形中识别平行线;能根据图形中的已知条件,通过简单的说理,得出欲求结果。
2、通过说理渗透合情推理的思想,培养学生逻辑推理能力。
3、通过探索平行线的三个识别方法,让学生在学习活动中获得成功的体验,锻炼克服困难的意志,培养科学的学习态度。
教学重难点:重点:学会平行线识别的。
方法,能在实际生活和数学图形中识别平行线。
难点:能根据图形中的已知条件,学会用数学语言简单的说理。
教学准备:三角板、直尺、硬纸片(角的形状)教学过程:一、创设问题情景1、组织学生进行如下活动:(1)用硬纸片制作一个角;(2)这个角放在白纸上,描出∠AOB;(如图)(3)再把角的两边反向延长得OD、OC,把角的一边靠在延长线OD上,再把这个角画出来得∠OPE;(4)探索这个过程,你能得到什么结论?为什么?2、在上述操作过程中,角的位置移到了另一个位置,这样的移动称为平移。
在平移前后的相同位置构成了一对同位角,其大小始终不变,因此,只要保持同位角相等,画出的直线就平行于已知直线。
请同学们根据这样的一个事实用一句话来叙述。
3、学生分组交流二、探索结论1、同位角相等,两直线平行。
2、如图,直线a、b被直线c所截,如果∠1=∠2,那么a∠b。
如果∠1=∠3,可得a∠b吗?同样,你能用语言来叙述吗?得出结论:内错角相等,两直线平行。
3、如果∠1+∠4=,能识别两直线a∠b吗?让学生分组交流得出结论:同旁内角互补,两直线平行。
4、组织学生分组讨论,归纳总结平行线的识别方法。
(略)三、识别方法的应用例1、按课本讲,但注意书写格式:∠∠1=∠2,根据“内错角相等,两直线平行”,∠a∠b。
八年级上册北师大版第七行平行线的证明学案道客巴巴
八年级上册北师大版第七行平行线的证明学案学案名称:八年级上册北师大版第七行平行线的证明学习目标:1.掌握平行线的证明方法。
2.能够运用平行线的性质解决实际问题。
3.培养逻辑推理能力和数学思维能力。
学习内容:一、平行线的定义及性质1.平行线的定义:在同一平面内,两条永不相交的直线称为平行线。
2.平行线的性质:(1)同位角相等:两直线平行,同位角相等。
(2)内错角相等:两直线平行,内错角相等。
(3)同旁内角互补:两直线平行,同旁内角互补。
二、平行线的证明方法1.证明两直线平行的方法:(1)同位角相等:如果两直线的同位角相等,则这两直线平行。
(2)内错角相等:如果两直线的内错角相等,则这两直线平行。
(3)同旁内角互补:如果两直线的同旁内角互补,则这两直线平行。
2.证明多条直线平行的条件:(1)如果一条直线与另外两条直线分别平行,那么这两条直线也平行。
(2)如果两条直线都与第三条直线平行,那么这两条直线也平行。
三、平行线在实际生活中的应用1.交通标志:道路上的斑马线、指示箭头等都是利用平行线的性质来设计的。
2.建筑学:在建筑设计时,利用平行线的性质可以保证建筑物的垂直和平行,提高建筑物的稳定性和安全性。
3.电子工程:在电路设计中,利用平行线的性质可以保证电流的稳定和导线的平行,提高电路的工作效率和稳定性。
学习活动:1.小组讨论:请同学们分组讨论,总结出证明两直线平行的三种方法,并举例说明如何应用。
2.实践操作:请同学们利用平行线的性质,设计一个简单的实际应用方案,例如如何利用平行线的性质来检查一个门是否垂直于地面。
3.练习与巩固:请同学们完成以下练习题,以巩固所学知识。
练习题:1.填空题:(1)如果同位角相等,则两直线____。
(2)如果内错角相等,则两直线____。
(3)如果同旁内角互补,则两直线____。
2.选择题:(1)下列说法中正确的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上说法都不对(2)下列条件中,不能判定两直线平行的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上条件都不能判定3.证明题:(1)已知:直线a与直线b平行,直线b与直线c平行。
教案平行线的性质与判定
经典教案平行线的性质与判定教案章节:一、平行线的定义及特征【教学目标】1. 理解平行线的定义。
2. 掌握平行线的特征。
【教学内容】1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的特征:a) 平行线在同一平面内。
b) 平行线永不相交。
c) 平行线之间的距离相等。
【教学步骤】1. 导入新课:通过展示生活中的实例,引导学生思考平行线的定义及特征。
2. 讲解平行线的定义:解释平行线的概念,强调在同一平面内、永不相交的特点。
3. 讲解平行线的特征:分别讲解平行线在同一平面内、永不相交、距离相等的特点。
4. 互动提问:提问学生关于平行线的定义及特征,检查理解程度。
5. 课堂练习:布置练习题,让学生运用所学知识判断平行线。
教案章节:二、平行线的判定方法【教学目标】1. 掌握平行线的判定方法。
2. 能够运用判定方法判断平行线。
【教学内容】1. 平行线的判定方法:a) 同位角相等法:同位角相等的两条直线平行。
b) 内错角相等法:内错角相等的两条直线平行。
c) 同旁内角互补法:同旁内角互补的两条直线平行。
【教学步骤】1. 导入新课:通过展示生活中的实例,引导学生思考平行线的判定方法。
2. 讲解平行线的判定方法:分别讲解同位角相等法、内错角相等法、同旁内角互补法的原理及应用。
3. 互动提问:提问学生关于平行线的判定方法,检查理解程度。
4. 课堂练习:布置练习题,让学生运用所学知识判断平行线。
教案章节:三、平行线的性质与应用【教学目标】1. 掌握平行线的性质。
2. 能够运用平行线的性质解决实际问题。
【教学内容】1. 平行线的性质:a) 平行线之间的距离相等。
b) 平行线与横截线之间的夹角相等。
c) 平行线与平行线之间的夹角相等。
2. 平行线的应用:a) 计算平行线之间的距离。
b) 求解平行线与横截线之间的夹角。
c) 求解平行线与平行线之间的夹角。
【教学步骤】1. 导入新课:通过展示生活中的实例,引导学生思考平行线的性质及应用。
初中平行线的判定教案
教案初中平行线的判定教学目标:1. 学生能够理解平行线的定义及性质。
2. 学生能够运用平行线的判定方法解决实际问题。
3. 培养学生的观察、分析、推理能力。
教学重点:1. 平行线的定义及性质。
2. 平行线的判定方法。
教学难点:1. 理解平行线的判定方法。
2. 运用平行线判定方法解决实际问题。
教学准备:1. 教学课件或黑板。
2. 直尺、圆规等绘图工具。
3. 练习题。
教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的平行线。
2. 学生分享观察到的平行线,并简单描述其特点。
二、新课导入1. 教师引导学生回顾平行线的定义及性质。
2. 学生分享平行线的定义及性质。
三、探究活动1. 教师出示探究活动一:如何判定两条直线是否平行?2. 学生分组讨论,探究平行线的判定方法。
四、实际应用1. 教师出示实际应用题目,引导学生运用平行线的判定方法解决问题。
2. 学生独立完成题目,教师巡回指导。
五、课堂小结2. 学生分享学习心得。
六、课后作业(布置作业)1. 教师布置相关练习题,巩固平行线的判定方法。
2. 学生完成课后作业。
教学反思:本节课通过观察、探究、实际应用等环节,让学生深入理解平行线的判定方法。
在教学过程中,教师要注意引导学生的观察、分析、推理能力,鼓励学生积极参与讨论,培养学生的合作意识。
同时,教师要及时点评学生的表现,给予鼓励和指导,提高学生的学习兴趣和自信心。
教案探索分数的基本性质教学目标:1. 学生能够理解分数的基本性质。
2. 学生能够运用分数的基本性质解决实际问题。
3. 培养学生的观察、分析、推理能力。
教学重点:1. 分数的基本性质。
2. 分数的基本性质在实际问题中的应用。
教学难点:1. 理解分数的基本性质。
2. 运用分数的基本性质解决实际问题。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的分数。
2. 学生分享观察到的分数,并简单描述其特点。
第七章平行线的证明(教案)
-难点三:在作图过程中,教师应详细讲解如何使用三角板和直尺,以及如何避免作图误差。通过实际操作演示,让学生掌握作图技巧,提高作图的准确性。
四、教学流程
第七章平行线的证明(教案)
一、教学内容
本节选自七年级数学教材第七章《平行线的证明》。教学内容主要包括以下两部分:
1.掌握平行线的判定方法:同位角相等,内错角相等,同旁内角互补。
2.学会使用三角板、直尺等工具进行平行线的作图。
二、核心素养目标
本章节的核心素养目标旨在培养学生以下能力:
1.培养学生逻辑推理与证明能力,使其能够理解和运用平行线的判定方法,形成严谨的数学思维。
实践活动环节,学生们在分组讨论和实验操作中表现得相当积极,但我也注意到有些小组在操作过程中存在一些作图不准确的问题。这提醒我在今后的教学中,要加强对学生实际操作能力的培养,让他们在动手实践中不断提高。
此外,学生在小组讨论中分享的成果让我感到欣慰。他们能够将所学知识应用到实际问题中,并提出自己的观点。但在讨论过程中,我也发现部分学生表达不够清晰,逻辑思维能力有待提高。因此,在接下来的教学中,我会着重培养学生的表达能力和逻辑思维。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线看起来永远不会相交的情况?”(比如公路上的车道线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学主题:
相交线与平行线证明专题
教学重难点:
使学生形成知识结构,并运用所学的知识进行简单的推理证明。
教学过程:
1.导入
复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和性质进行简单的推理或计算;能用直尺、三角板、量角器画垂线和平行线;提示两条易错概念,平行注意是过直线外一点,垂直注意是在同一平面.
2.呈现
例1.已知:如图5,AB∥CD,求证:∠B+∠D=∠BED。
分析:可以考虑把∠BED变成两个角的和。
如图5,过E点引一条直线EF∥AB,则有∠B=∠1,再设法证明∠D=∠2,需证
EF∥CD,这可通过已知AB∥CD和EF∥AB得到。
证明:过点E作EF∥AB,则∠B=∠1(两直线平行,错角相等)。
∵AB∥CD(已知),
又∵EF∥AB(已作),
∴EF∥CD(平行于同一直线的两条直线互相平行)。
∴∠D=∠2(两直线平行,错角相等)。
又∵∠BED=∠1+∠2,
∴∠BED=∠B+∠D(等量代换)。
例2.已知:如图6,AB∥CD,求证:∠BED=360°-(∠B+∠D)。
分析:此题与例1的区别在于E点的位置及结论。
我们通常所说的∠BED都是指小于平角的角,如果把∠BED看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。
因此,我们模仿例1作辅助线,不难解决此题。
证明:过点E作EF∥AB,则∠B+∠1=180°(两直线平行,同旁角互补)。
∵AB∥CD(已知),
又∵EF∥AB(已作),
∴EF∥CD(平行于同一直线的两条直线互相平行)。
∴∠D+∠2=180°(两直线平行,同旁角互补)。
∴∠B+∠1+∠D+∠2=180°+180°(等式的性质)。
又∵∠BED=∠1+∠2,
∴∠B+∠D+∠BED=360°(等量代换)。
∴∠BED==360°-(∠B+∠D)(等式的性质)。
例3.已知:如图7,AB∥CD,求证:∠BED=∠D-∠B。
分析:此题与例1的区别在于E点的位置不同,从而结论也不同。
模仿例1与变式1作辅助线的方法,可以解决此题。
证明:过点E作EF∥AB,则∠FEB=∠B(两直线平行,错角相等)。
∵AB∥CD(已知),
又∵EF∥AB(已作),
∴EF∥CD(平行于同一直线的两条直线互相平行)。
∴∠FED=∠D(两直线平行,错角相等)。
∵∠BED=∠FED-∠FEB,
∴∠BED=∠D-∠B(等量代换)。
例4.已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。
分析:此题与变式2类似,只是∠B、∠D的大小发生了变化。
证明:过点E作EF∥AB,则∠1+∠B=180°(两直线平行,同旁角互补)。
∵AB∥CD(已知),
又∵EF∥AB(已作),
∴EF∥CD(平行于同一直线的两条直线互相平行)。
∴∠FED+∠D=180°(两直线平行,同旁角互补)。
∴∠1+∠2+∠D=180°。
∴∠1+∠2+∠D-(∠1+∠B)=180°-180°(等式的性质)。
∴∠2=∠B-∠D(等式的性质)。
即∠BED=∠B-∠D。
例5.已知:如图9,AB∥CD,∠ABF=∠DCE。
求证:∠BFE=∠FEC。
证法一:过F点作FG∥AB ,则∠ABF=∠1(两直线平行,错角相等)。
过E点作EH∥CD ,则∠DCE=∠4(两直线平行,错角相等)。
∵FG∥AB(已作),AB∥CD(已知),
∴FG∥CD(平行于同一直线的两条直线互相平行)。
又∵EH∥CD (已知),
∴FG∥EH(平行于同一直线的两条直线互相平行)。
∴∠2=∠3(两直线平行,错角相等)。
∴∠1+∠2=∠3+∠4(等式的性质)
即∠BFE=∠FEC。
证法二:如图10,延长BF、DC相交于G点。
∵AB∥CD(已知),
∴∠1=∠ABF(两直线平行,错角相等)。
又∵∠ABF=∠DCE(已知),
∴∠1=∠DCE(等量代换)。
∴BG∥EC(同位角相等,两直线平行)。
∴∠BFE=∠FEC(两直线平行,错角相等)。
如果延长CE、AB相交于H点(如图11),也可用同样的方法证明(过程略)。
证法三:(如图12)连结BC。
∵AB∥CD(已知),
∴∠ABC=∠BCD(两直线平行,错角相等)。
又∵∠ABF=∠DCE(已知),
∴∠ABC-∠ABF =∠BCD-∠DCE(等式的性质)。
即∠FBC=∠BCE。
∴BF∥EC(错角相等,两直线平行)。
∴∠BFE=∠FEC(两直线平行,错角相等)。
3.练习与检测
练习一
1.如图1,直线AB、CD、EF相交于O,∠AOE的对顶角
是,邻补角是,∠COF的对顶角是,
邻补角是。
2.如图2,∠BDE的同位角是,错角是,同旁角是;∠ADE与∠DGC是直线被所截
成的角。
3.如图3,三条直线a、b、c交于一点O,∠1=45°,
∠2=60°,∠3= 。
4.如图4,∠1=105°,∠2=95°,∠3=105°,
∠4= 。
5.当两条直线相交所成的四个角中有一个角是直角时,就说这两条直线,它们的交点叫做。
6.直线外一点到直线上各点连结的所有线段中,垂线
段,这条垂线段的长度叫做。
7.经过直线外一点,有且只有条直线与这条直线
平行;过一点有且只有条直线与已知直线垂直。
8.如果两条直线都和第三条直线平行,那么这两条直
线。
9.两条直线被第三条直线所截,如果同位角相等或相等,相等,互补,那么这两条直线平行。
10.两条平行直线被第三条直线所截,则相等,相等,互补。
练习二、已知三角形ABC,(1)过A点画BC边上的垂线;(2)过C点画AB边上的垂线。
1.如图13,已知OA⊥OC,OB⊥OD,∠3=26°,求∠1、∠2的度数。
2.如图14,已知AB∥ED,∠CAB=135°∠ACD=80°,求∠CDE的度数。
3.已知:如图15,AD⊥BC于D,EG⊥BC于G,∠E =∠3。
求证:AD平分
∠BAC。
4.小结
从多个角度去考虑解题方法,通过比较选择最优解法,可以开阔思维,提高分析问题、解决问题的能力.
5.作业
1.如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.
2.如图,AB∥CD,∠BEF=85°,求∠ABE+∠EFC+∠FCD的度数。
F
E
D
A B
C
3.已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。
4.如图所示,AB∥ED,∠B=48°,∠D=42°, 证明:BC⊥CD。
(选择一种辅助线)
5.如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α。
2
1
F
E D
C
B
A
6.已知AB ∥CD ,∠B=65°,CM 平分∠BCE ,∠MCN=90°,求∠DCN 的度数.
N
M E D
C B
A
7.如图:已知AB ∥DE ∥CF ,若∠ABC=70°,∠CDE=130°,求∠BCD 的度数。
F
E
D
C B
A。