人教版数学七下平面直角坐标系培优题

合集下载

(完整版)初中七年级下册平面坐标系数学附答案培优试卷

(完整版)初中七年级下册平面坐标系数学附答案培优试卷

一、选择题1.如图,在一单位为1的方格纸上,123345567,,...A A A A A A A A A ∆∆∆,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形,若123A A A ∆的顶点坐标分别为1A (2,0),2A (1,-1),3A (0,0),则依图中所示规律,2017A 的坐标为( )A .(1010,0)B .(1008,0)C .(2,1008)D .(2,2010) 2.如图,在一单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A 3(0,0),则依图中所示规律,A 2020的坐标为( )A .(1010,0)B .(1012,0)C .(2,1012)D .(2,1010) 3.如图所示,一个动点在第一象限内及x 轴、y 轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x 轴,y 轴平行的方向运动,且每秒移动一个单位长度,那么动点运动到点(7,7)的位置时,所用的时间为( )秒.A .30B .42C .56D .724.对平面上任意一点(a ,b),定义f ,g 两种变换:f(a ,b)=(﹣a ,b),如f(1,2)=(﹣1,2);g(a ,b)=(b ,a),如g(1,2)=(2,1),据此得g[f(5,﹣9)]=( )A .(5,﹣9)B .(﹣5,﹣9)C .(﹣9,﹣5)D .(﹣9,5) 5.如图,将1、2,3三个数按图中方式排列,若规定(,)a b 表示第a 排第b 列的数,则()8,2与(100,100)表示的两个数的积是( )A .1B .2C .3D .66.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .20207.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P 的坐标是( )A .(2017,0)B .(2017,1)C .(2017,2)D .(2018,0) 8.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A.(46,4)B.(46,3)C.(45,4)D.(45,5)9.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.1510.如图,在平面直角坐标系上有个点P(1,0),点P第一次向上跳运1个单位至P1(1,1),紧接着第二次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(-24,49) B.(-25,50) C.(26,50) D.(26,51)二、填空题11.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(132次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(53…按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是_____.12.如图,把图1中的圆A 经过平移得到圆O (如图2),如果图1⊙A 上一点P 的坐标为(m ,n ),那么平移后在图2中的对应点P′的坐标为____13.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.14.如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P 所在位置的坐标是_______________.15.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.16.教材在第七章复习题的“拓广探索”中,曾让同学们探索发现:在平面直角坐标系中,线段中点的横坐标(纵坐标)分别等于对应线段的两个端点的横坐标(纵坐标)和的一半.例如:点(1,1)A 、点(5,1)B ,则线段AB 的中点M 的坐标为(3,1).请利用以上结论解决问题:在平面直角坐标系中,点(3,)E a a +,(,1)F b a b ++,若线段EF 的中点G 恰好在x 轴上,且到y 轴的距离是2,则a b -=______17.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.18.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.19.如图,长方形ABCD 四个顶点的坐标分别为()2,1A ,()2,1B -,()2,1C --,()2,1D -.物体甲和物体乙分别由点()2,0P 同时出发,沿长方形ABCD 的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是______.20.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(-1,3),......根据这个规律探索可得,第40个点的坐标为_____________.三、解答题21.如图1,在直角坐标系中直线AB 与x 、y 轴的交点分别为(),0A a ,()0,B b ,且满足80a b a b ++-+=.(1)求a 、b 的值;(2)若点M 的坐标为()1,m 且2ABM AOM S S =,求m 的值;(3)如图2,点P 坐标是()1,2--,若ABO 以2个单位/秒的速度向下平移,同时点P 以1个单位/秒的速度向左平移,平移时间是t 秒,若点P 落在ABO 内部(不包含三角形的边),求t 的取值范围.22.在平面直角坐标系中,已知点(3,5)A ,(7,5)B ,连接AB ,将AB 向下平移6个单位得线段CD,其中点A的对应点为点C.(1)填空:点D的坐标为______,线段AB平移到CD扫过的面积为______.(2)若点P是y轴上的动点,连接PD.①如图,当点P在y轴正半轴时,线段PD与线段AC相交于点E,用等式表示三角形PEC的面积与三角形ECD的面积之间的关系,并说明理由.②当PD将四边形ACDB的面积分成1∶3两部分时,求点P的坐标.23.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0).(1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是;(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围.(3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥2S△PQN,求出点N纵坐标的取值范围.24.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD =2,则点D 的坐标为 .(拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E (2,0),若F (﹣1,﹣2),则d (E ,F ) ;(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,则t = .(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,则d (P ,Q )= .25.如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别为()03A ,,()10B -,,()40C ,,()53D ,,现将四边形ABCD 经过平移后得到四边形''''A B C D ,点B 的对应点'B 的坐标为()11,.(1)请直接写点'A 、'C 、'D 的坐标;(2)求四边形ABCD 与四边形''''A B C D 重叠部分的面积;(3)在y 轴上是否存在一点M ,连接MB 、MC ,使MBC ABCD S S ∆=四边形,若存在这样一点,求出点M 的坐标;若不存在,请说明理由.26.如图所示,A (1,0)、点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,且点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒1个单位长度,运动时间为t 秒,回答下列问题:①当t= 秒时,点P 的横坐标与纵坐标互为相反数;②求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);③当点P 运动到CD 上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x ,y ,z 之间的数量关系能否确定?若能,请用含x ,y 的式子表示z ,写出过程;若不能,说明理由.27.如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接. (1)写出点的坐标并求出四边形的面积.(2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系.28.如图,在平面直角坐标系中,已知(),0A a ,(),0B b ,()0,4C ,a ,b 满足()2240a b ++-=.平移线段AB 得到线段CD ,使点A 与点C 对应,点B 与点D 对应,连接AC ,BD .(1)求a ,b 的值,并直接写出点D 的坐标;(2)点P 在射线AB (不与点A ,B 重合)上,连接PC ,PD .①若三角形PCD 的面积是三角形PBD 的面积的2倍,求点P 的坐标;②设PCA α∠=,PDB β∠=,DPC θ∠=.求α,β,θ满足的关系式.29.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(),0a ,点C 的坐标为()0,b 且a 、b 满足8120a b -+-=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O 的线路移动.(1)点B 的坐标为___________;当点P 移动5秒时,点P 的坐标为___________; (2)在移动过程中,当点P 到x 轴的距离为4个单位长度时,求点P 移动的时间; (3)在O C B --的线路移动过程中,是否存在点P 使OBP 的面积是20,若存在直接写出点P 移动的时间;若不存在,请说明理由.30.如图所示,A (1,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点O 出发,沿OB →BC →CD 移动,若点P 的速度为每秒1个单位长度,运动时间为t 秒,请解决以下问题;①当t 为多少秒时,点P 的横坐标与纵坐标互为相反数;②当t 为多少秒时,三角形PEA 的面积为2,求此时P 的坐标【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】观察图形和三角形点的坐标可以发现规律,下角标为奇数时,点是在x 轴上,并以(1,0)为中点左右交替且间隔2个单位长度出现,由此得到2017A 的坐标.【详解】观察图形可发现:下角标为奇数时,点是在x 轴上,并以(1,0)为中点左右交替且间隔2个单位长度出现,故2017=1+4×504,在(1,0)右边,距离(1,0)是有2×505-1=1009个单位长度,所以2017A 的横坐标为1009+1=2020,即2017A 坐标为(1010,0).故答案为A .【点睛】考查观察图像探究规律的过程,学生要仔细观察图形以及坐标之间的关系,并发现其中规律,找到所求坐标,本题的关键探究规律的过程.2.D解析:D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D .【点睛】本题考查点坐标的变化规律,根据所要求的点坐标确定类似点的变化规律是解题关键. 3.C解析:C【分析】归纳走到(n ,n )处时,移动的长度单位及方向,再求当n=7时所用的时间即可.【详解】质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n ,n )处,走过的长度单位是2+4+6+…+2n =n (n +1),当n=7时,可得n (n +1)=7×8=56,∴走过的时间为56s.故选:C.【点睛】本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.4.C解析:C【分析】根据f,g两种变换的定义自内而外进行解答即可.【详解】解:由题意得,f(5,﹣9)]=(﹣5,﹣9),∴g[f(5,﹣9)]=g(﹣5,﹣9)=(﹣9,﹣5),故选:C.【点睛】本题考查了新定义坐标变换,根据题意、弄懂两种变换的方法是解答本题的关键.5.C解析:C【分析】观察数列得出每三个数一个循环,再根据有序数对的表示的方法得出每个有序数对表示的数,最后计算积即得.【详解】解:∵前7排共有123456728++++++=个数∴()82,在排列中是第28+2=30个数又∵根据题意可知:每三个数一个循环:1303=10÷∴()82,∵前100排共有()10011001+2+3++100=50502+⋅⋅⋅=个数且5050316831÷=⋅⋅⋅∴(100100),是第1684次循环的第一个数:1.∵1故选:C.【点睛】本题考查关于有序数对的规律题,解题关键是根据特殊情况找出数据变化的周期,得出一般规律.6.C解析:C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2017与点A2018的坐标,进而可求出点A2017与点A2018之间的距离.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2018次跳动至点的坐标是(1010,1009),第2017次跳动至点A2017的坐标是(-1009,1009).∵点A2017与点A2018的纵坐标相等,∴点A2017与点A2018之间的距离=1010-(-1009)=2019,故选C.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.7.B解析:B【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2017除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2017次运动后点P的横坐标为2017,纵坐标以1、0、2、0每4次为一个循环组循环,∵2017÷4=504…1,∴第2017次运动后动点P的纵坐标是1,∴点P(2017,1),故选B.【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.8.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴∵452=2025∴第2025个点在x 轴上坐标为(45,0)则第2020个点在(45,5)故选:D .【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.9.C解析:C【分析】设横坐标为n 的点的个数为a n ,横坐标≤n 的点的个数为S n (n 为正整数),结合图形找出部分a n 的值,根据数值的变化找出变化规律“a n =n ”,再罗列出部分S n 的值,根据数值的变化找出变化规律()12n n n S +=,依次变化规律解不等式()11002n n +≥即可得出结论. 【详解】设横坐标为n 的点的个数为a n ,横坐标≤n 的点的个数为S n (n 为正整数),观察,发现规律:a 1=1,a 2=2,a 3=3,…,∴a n =n .S 1=a 1=1,S 2=a 1+a 2=3,S 3=a 1+a 2+a 3=6,…,∴S n =1+2+…+n =()12n n +. 当100≤S n ,即100≤()12n n +,解得:n ≤(舍去),或n ≥∵1413, 故选:C .【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12n n n S +=”.10.C解析:C【详解】经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100÷2=50;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,依此类推可得到:n P 的横坐标为n÷4+1(n 是4的倍数). 故点100P 的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P 第100次跳动至点100P 的坐标是(26,50).故答案为(26,50).二、填空题11.(1616,﹣2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为,0,﹣解析:(1616,﹣2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多40,﹣2,﹣2,00,﹣2,﹣2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,0,﹣2,﹣2,0,第6到100,﹣2,﹣2,0,…第5n+1到5n+50,﹣2,﹣2,0,∵2019÷5=403…4,∴经过2019次运动横坐标为=4×403+4=1616,经过2019次运动纵坐标为﹣2,∴经过2019次运动后,电子蚂蚁运动到的位置的坐标是(1616,﹣2).故答案为:(1616,﹣2)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.12.(m+2,n-1)【分析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P的对应点P’的坐标.【详解】解:∵⊙A的圆心坐标为(-2,1),平移后到达O(解析:(m+2,n-1)【分析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P的对应点P’的坐标.【详解】解:∵⊙A的圆心坐标为(-2,1),平移后到达O(0,0),∴图形向右平移了2个单位,有向下平移1个单位,又∵P的坐标为(m,n),∴对应点P’的坐标为(m+2,n-1),故答案为(m+2,n-1).【点睛】本题主要考查了坐标与图形的变化——平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,解析:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,0),P6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P2017与P1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.14.【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运解析:(45,43)【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运动到(6,0)以此类推,动点P第2n(2n+2)秒运动到(2n,0)∴动点P第2024=44×46秒运动到(44,0)2068-2024=44∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位∴第2068秒点P所在位置的坐标是(45,43)故答案为:(45,43)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.15.(﹣5,13)【解析】【分析】设纵坐标为n的点有个(n为正整数),观察图形每行点的个数即可得出=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐解析:(﹣5,13)【解析】【分析】设纵坐标为n的点有n a个(n为正整数),观察图形每行点的个数即可得出n a=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐标是偶数的从左至右计数,即可求解.【详解】解:设纵坐标为n的点有n a个(n为正整数),观察图形可得,1a=1,2a=2,3a=3,…,∴n a=n,∵1+2+3+…+13=91,∴第90个点的纵坐标为13,又13为奇数,(13-1)÷2=6,∴第91个点的坐标为(-6,13),则第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点睛】本题考查了规律探索问题,观察图形得到点的坐标的变化规律是解题关键.16.或19【分析】根据线段的中点坐标公式即可得求出、的值,从而可得到答案.【详解】解:点,,中点,,中点恰好位于轴上,且到轴的距离是2,,解得:或,或19;故答案为:或19.【点睛解析:5-或19【分析】根据线段的中点坐标公式即可得求出a 、b 的值,从而可得到答案.【详解】 解:点(3,)E a a +,(,1)F b a b ++,∴中点3(2a b G ++,1)2a ab +++, 中点G 恰好位于x 轴上,且到y 轴的距离是2, ∴1023||22a ab a b +++⎧=⎪⎪⎨++⎪=⎪⎩, 解得:23a b =-⎧⎨=⎩或613a b =⎧⎨=-⎩, 5a b ∴-=-或19;故答案为:5-或19.【点睛】本题考查坐标与图形性质,中点坐标公式,解题的关键是根据线段的中点坐标公式求出a 、b 的值.17.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果.【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1即2021(1010,1)A故答案为:()1010,1【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.18.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A -(3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n =500,∴1000A (1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.19.【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=C解析:()1,1--【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=CD =4,BC=AD =2,AP=PD =1,由物体乙的速度是物体甲的2倍,时间相同,则物体甲与物体乙的路程比为1:2,根据题意:当第一次相遇时,物体甲和物体乙的路程和为12,物体甲的路程为12×13=4,物体乙的路程为12×23=8,在AB 边上的点(﹣1,1)处相遇; 当第二次相遇时,物体甲和物体乙的路程和为12×2,物体甲的路程为12×2×13=8,物体乙的路程为12×2×23=16,在CD 边上的点(﹣1,﹣1)处相遇; 当第三次相遇时,物体甲和物体乙的路程和为12×3,物体甲的路程为12×3×13=12,物体乙的路程为12×3×23=24,在点P (2,0)处相遇,此时物体甲乙回到原来出发点, ∴物体甲乙每相遇三次,则回到原出发点P 处,∵2021÷3=673……2,∴两个物体运动后的第2021次相遇地点是第二次相遇地点,故两个物体运动后的第2021次相遇地点的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).【点睛】本题考查点坐标变化规律以及行程问题、坐标与图形,熟练掌握行程问题中的相遇以及按比例分配的运用,通过计算找到变化规律是解答的关键.20.(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解析:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(-1,3),共3个,…,依此类推,纵坐标是n 的共有n 个坐标,1+2+3+…+n =()12n n +, 当n =9时,()9912+=45,所以,第40个点的纵坐标为9,45-40-(9-1)÷2=1,∴第40个点的坐标为(1,9).故答案为:(1,9).【点睛】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.三、解答题21.(1)4a =-,4b =;(2)5m =-或53m =;(3)513t << 【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a ,b 的值;(2)设直线AB 与直线x =1交于点N ,可得N (1,5),根据S △ABM =S △AMN −S △BMN ,即可表示出S △ABM ,从而列出m 的方程.(3)根据题意知,临界状态是点P 落在OA 和AB 上,分别求出此时t 的值,即可得出范围.【详解】(1)∵80a b -+=0,80a b -+≥∴0a b +=,80a b -+=解得:4a =-,4b =(2)设直线AB 与直线1x =交于N ,设()1,N n∵a =−4,b =4,∴A (−4,0),B (0,4),设直线AB 的函数解析式为:y =kx +b ,代入得044k b b =-+⎧⎨=⎩,解得14k b =⎧⎨=⎩∴直线AB 的函数解析式为:y =x +4,代入x =1得()1,5N∵()1,M m∴ABM AMN BMN S S S =-△△△=12×5×|5−m |−12×1×|5−m |=2|5−m |,1422AOM S m m =⨯⨯=△ ∵2ABM AOM S S =∴2522m m -=⨯∴52m m -=或52m m -=-解得:5m =-或53m =,(3)当点P 在OA 边上时,则2t =2,∴t =1,当点P 在AB 边上时,如图,过点P 作PK //x 轴,AK ⊥x 轴交于K ,则KP '=3−t ,KA '=2t −2,∴3−t =2t −2,∴53t = 综上所述:513t <<.【点睛】本题主要考查了平移的性质、一般三角形面积的和差表示、以及非负数的性质等知识点,第(2)问中用绝对值来表示动点构成的线段长度是正确解题的关键.22.(1)(7,1)-;24;(2)①34PEC ECD SS =;见解析;②170,4P ⎛⎫ ⎪⎝⎭或(0,20)P 【分析】(1)由平移的性质得出点C 坐标,AC =6,再求出AB ,即可得出结论;(2)①过P 点作PF AC ⊥交AC 于F ,分别用CE 表示出两个三角形的面积,即可得到答案;②根据题意,可分为两种情况进行讨论分析:(i )当PD 交线段AC 于E ,且PD 将四边形ACDB 分成面积为1:3两部分时;当PD 交AB 于点G ,PD 将四边形ACDB 分成面积为1:3两部分时;分别求出点P 的坐标即可.【详解】解:(1)∵点A (3,5),将AB 向下平移6个单位得线段CD ,∴C (3,5-6),即:C (3,-1),由平移得,AC =6,四边形ABDC 是矩形,∵A (3,5),B (7,5),∴AB =7-3=4,∴CD =4,∴点D 的坐标为:(7,1)-;∴S 四边形ABDC =AB •AC =4×6=24,即:线段AB 平移到CD 扫过的面积为24;故答案为:(7,1)-;24;(2)①过P 点作PF AC ⊥交AC 于F ,则3PF =,如图:。

【3套试卷】人教版七年级数学下册第7章平面直角坐标系培优卷

【3套试卷】人教版七年级数学下册第7章平面直角坐标系培优卷

人教版七年级数学下册第7章平面直角坐标系培优卷一.选择题(共10小题)1.下列各点中,位于第四象限的点是()A.(3,-4) B.(3,4) C.(-3,4) D.(-3,-4)2.在平面直角坐标系中,点(P-所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案4.已知点P(-4,3),则点P到y轴的距离为()A.4 B.-4 C.3 D.-35.如图,已知在△AOB中A(0,4),B(-2,0),点M从点(4,1)出发向左平移,当点M平移到AB 边上时,平移距离为()A.4.5 B.5 C.5.5 D.5.756.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)7.已知点M向左平移3个单位长度后的坐标为(-1,2),则点M原来的坐标是()A.(-4,2) B.(2,2) C.(-1,3) D.(-1,-2)8.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)9.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.310.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点1(1,1),P紧接着第2次向左跳动2个单位至点2(1,1),P 第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至2017P的坐标是()A.(504,1007) B.(505,1009)C.(1008,1007) D.(1009,1009)二.填空题(共7小题)11.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.12.如图是轰炸机机群的一个飞行队形,若最后两架轰炸机的平面坐标分别为A(-2,3)和B(-2,-1),则第一架轰炸机C的平面坐标是.13.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.14.在平面直角坐标系中,将点A(-1,3)向左平移a个单位后,得到点A′(-3,3),则a的值是.15.点Q(x,y)在第四象限,且|x|=3,|y|=2,则点Q的坐标是.16.若点A(a,b)在第四象限,则点C(-a-1,b-2)在第象限.17.已知平面内有一点A的横坐标为-6,且到原点的距离等于10,则A点的坐标为.三.解答题(共7小题)18.已知平面直角坐标系中有一点M(m-1,2m+3),且点M到x轴的距离为1,求M的坐标.19.若点P(1-a,2a+7)到两坐标轴的距离相等,求a的值.20.如图,点A(1,0),点B点P(x,y),OC=AB,OD=OB.(1)则点C的坐标为;(2)求x-y+xy的值.21.请你在图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明儿童公园、医院、李明家、水果店、宠物店和学校的位置.22.在平面直角坐标系中,已知点P(2m+4,m-1),试分别根据下列条件,求出点P 的坐标. 求:(1)点P 在y 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 在过A(2,-5)点,且与x 轴平行的直线上.23.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M 到y 轴的距离为l 时,M 的坐标?(2)点N(5,-1)且MN ∥x 轴时,M 的坐标?24.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点(2,4),A B --的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.参考答案:1-5 ABAAC6-10 DBCDB11. (-10,5)12. (2,1)13. (2,5)14.215. (3,-2)16.三17. (-6,8)或(-6,-8)18. 解:由题意可得:|2m+3|=1,解得:m=-1或m=-2,当m=-1时,点M的坐标为(-2,1);当m=-2时,点M的坐标为(-3,-1);综上,M的坐标为(-2,1)或(-3,-1).19. 解:∵点P(1-a,2a+7)到两坐标轴的距离相等,∴|1-a|=|2a+7|,∴1-a=2a+7或1-a=-(2a+7),解得a=-2或a=-8.20. 解:(1)∵点A(1,0),点B(,0),∴OA=1、OB=,则AB=-1,∵OC=AB,OD=OB,∴OC=-1,OD=,则点C坐标为(-1,0),故答案为:(-1,0).(2)由(1)知点P坐标为(-1,),则x=-1、y=,∴原式=-1-+(-1)=-1+2-=1-.21. 解:如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),李明家(-2,2),水果店(0,3),宠物店(0,-2),学校(2,5).22. 解:(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,-9);(3)令m-1=-5,解得m=-4.所以P点的坐标为(-4,-5).23. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点M的坐标为(-7,-1).24. 解:(1)∵点A(-2,4),B(+,-),∴[A]=|-2|+|4|=2+4=6,[B]=|+|+|−|=++−=2;(2)∵点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,∴x=±1时,y=2或x=±2,y=1或x=0时,y=3,∴点M的坐标为(-1,2)、(1,2)、(-2,1)、(2,1)、(0,3).人教版七年级下册第七课平面直角坐标系单元综合测试卷一.选择题(共10小题)1.在直角坐标系中,点A(-6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,点A(-1,2),则点B的坐标为()A..(-2,2) B..(-2,-3) C..(-3,-2) D.(-2,-2)3.已知点A(-3,0),则A点在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上4.在平面直角坐标系的第四象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,-4) B.(-4,3) C.(4,-3) D.(-3,4)5.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)6.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0) B.(1,2) C.(2,1) D.(1,1)7.钓鱼岛历来就是中国不可分割的领土,中国对钓鱼岛及其附近海域拥有无可争辩的主权,能够准确表示钓鱼岛位置的是()A.北纬25°40′~26°B .东经123°~124°34′C .福建的正东方向D .东经123°~124°34′,北纬25°40′~26°8.已知点M(a,1),N(3,1),且MN=2,则a 的值为( )A .1B .5C .1或5D .不能确定9.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是( )A .(0,-2)B .(1,-2)C .(2,-1)D .(1,2)10.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为( )A .(60,0)B .(72,0)C .⎝⎛⎭⎫67 15, 95D .⎝⎛⎭⎫79 15, 95二.填空题(共6小题)11.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为 .12.在平面直角坐标系中,已知点A(2,3),点B 与点A 关于x 轴对称,则点B 坐标是 .13.若点P(m+5,m-2)在x 轴上,则m= ;若点P(m+5,m-2)在y 轴上,则m= .14.如图所示是轰炸机机群的一个飞行队形,如果其中两架轰炸机的平面坐标分别表示为A(-2,3)和B(2,1),那么轰炸机C 的平面坐标是 .15.将点P(x,4)向右平移3个单位得到点(5,4),则P点的坐标是.16.把自然数按如图的次序在直角坐标系中,每个点坐标就对应着一个自然数,例如点(0,0)对应的自然数是1,点(1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n)对应的自然数是三.解答题(共6小题)17.在平面直角坐标系中,点A(2m-7,n-6)在第四象限,到x轴和y轴的距离分别为3,1,试求m+n的值.18.已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,-4)且与y轴平行的直线上.19.小王到公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示,可是她忘记了在图中标出原点和x轴、y轴,只知道游乐园D的坐标为(2,-2),且一格表示一个单位长度.(1)在原图中建立直角坐标系,求出其它各景点的坐标;(2)在(1)的基础上,记原点为0,分别表示出线段AO和线段DO上任意一点的坐标.20.已知A(1,0)、B(4,1)、C(2,4),△ABC经过平移得到△A′B′C′,若A′的坐标为(-5,-2).(1)求B′、C′的坐标;(2)求△A′B′C′的面积.21.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为,B4的坐标为.(2)按以上规律将△OAB进行n次变换得到△OA n B n,则A n的坐标为,B n的坐标为;(3)△OA n B n的面积为.22.(1)在如图直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(9,15)(7,10)(2,8)(7,6)(9,1),并将各点用线段顺次连接起来.(2)给图形起一个好听的名字,求所得图形的面积.(3)如果将原图形上各点的横坐标加2、纵坐标减5,猜一猜,图形会发生怎样的变化?(4)如果想让变化后的图形与原图形关于原点对称,原图形各点的坐标应该如何变化?答案:1-10 BDBCD DDCAA11. (2,5)12. (2,-3)13.-514. (-2,-1)15. (2,4)16.60 4n2-2n+117.解:∵点A(2m-7,n-6)在第四象限,到x轴和y轴的距离分别为3,1, ∴2m-7=1,n-6=-3,解得m=4,n=3,所以,m+n=4+3=7.18.解:(1)∵点P(2m+4,m-1)在x轴上,∴m-1=0,解得m=1,∴2m+4=2×1+4=6,m-1=0,所以,点P的坐标为(6,0);(2)∵点P(2m+4,m-1)的纵坐标比横坐标大3,∴m-1-(2m+4)=3,解得m=-8,∴2m+4=2×(-8)+4=-12,m-1=-8-1=-9,∴点P的坐标为(-12,-9);(3)∵点P(2m+4,m-1)在过点A(2,-4)且与y轴平行的直线上,∴2m+4=2,解得m=-1,∴m-1=-1-1=-2,∴点P 的坐标为(2,-2).19.解:(1)如图画出平面直角坐标系:其各景点的坐标分别为:A(0,4),B(-3,2),C(-2,-1),E(3,3);(2)线段AO 上一点:(0,1),线段DO 上任意一点:(1,-1).20.解:∵A(1,0)、A ′(-5,-2).∴平移规律为向左6个单位,向下2个单位,∵B(4,1)、C(2,4),∴B ′(-2,-1),C'(-4,2);(2)△A ′B ′C ′的面积=△ABC 的面积=3×4- 12×3×1- 12×2×3- 12×1×4=5.5.21.解:(1)∵A 1(2,3)、A 2(4,3)、A 3(8,3).∴A 4的横坐标为:24=16,纵坐标为:3.故点A 4的坐标为:(16,3).又∵B 1(4,0)、B 2(8,0)、B 3(16,0).∴B 4的横坐标为:25=32,纵坐标为:0.故点B 4的坐标为:(32,0).故答案为:(16,3),(32,0).(2)由A 1(2,3)、A 2(4,3)、A 3(8,3),可以发现它们各点坐标的关系为横坐标是2n ,纵坐标都是3.故A n 的坐标为:()2n ,3.由B 1(4,0)、B 2(8,0)、B 3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n 的坐标为:()2n+1,0;故答案为:()2n ,3,()2n+1,0;(3)∵A n 的坐标为:()2n ,3,B n 的坐标为:()2n+1,0,∴△OA n B n 的面积为12×2n+1×3=3×2n .22.解:(1)如图所示:(2)图形可以叫做“四角的星星”.面积为:14×14-4×⎝⎛⎭⎫5×5+2× 12×5×2=56; 或者是:4× 12×4×5+4×4=56;(3)如果将原图形上各点的横坐标加2、纵坐标减5,图形的形状、大小都不改变,只是位置发生变化;(4)如果想让变化后的图形与原图形关于原点对称,那么原图形各点的横、纵坐标都分别变为原来横、纵坐标的相反数.人教版七年级数学下册第七章平面直角坐标系培优测试试卷一、单选题(共10题;共30分)1.在平面直角坐标系中,将点(-2,-3)向上平移3个单位长度,则平移后的点的坐标为( )A. (-2,0)B. (-2,1)C. (0,-2)D. (1,-1)2.点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为()A. (2,0)B. (0,-2)C. (4,0)D. (0,-4)3.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A. (﹣2,3)B. (3,﹣1)C. (﹣3,1)D. (﹣5,2)4.已知点A在x轴上,且点A到y轴的距离为4,则点A的坐标为( )A. (4,0)B. (0,4)C. (4,0)或(-4,0)D. (0,4)或(0,-4)5.将点A(﹣1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A. (3,1)B. (﹣3,﹣1)C. (3,﹣1)D. (﹣3,1)6.点A1(5,–7)关于x轴对称的点A2的坐标为( ).A.(–5, –7)B.(–7 , –5)C.(5, 7)D.(7, –5)7.如图,在正方形ABCD 中,A,B,C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD 向右平移3 个单位,则平移后点 D 的坐标是()A. (﹣6,2)B. (0,2)C. (2,0)D. (2,2)8.A(-3,4)和B(4,-1)是平面直角坐标系中的两点,则由A点移到B点的路线可能是()A. 先向上平移5个单位长度,再向右平移7个单位长度B. 先向上平移5个单位长度,再向左平移7个单位长度C. 先向左平移7个单位长度,再向上平移5个单位长度D. 先向右平移7个单位长度,再向下平移5个单位长度9.小张和小陈都在电影院看电影,小张的位置用(a,b)表示,小陈的位置用(x,y)表示,我们约定“排数在前,列数在后”,若小张恰在小陈的正前方,则()A. a=xB. b=yC. a=yD. b=x10.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A. (2,﹣1)B. (4,﹣2)C. (4,2)D. (2,0)二、填空题(共6题;共24分)11.线段AB两端点A(-1,2),B(4,2),则线段AB上任意一点可表示为________.12.将点P(x,4)向右平移3个单位得到点(5,4),则P点的坐标是________.13.点A(1-x,5)、B(3,y)关于y轴对称,那么x+y = .14.在平面直角坐标系中,若点M(﹣1,4)与点N(x,4)之间的距离是5,则x 的值是________.15.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(2,2),(4,2),(5,1),请你把这个英文单词写出来(或者翻译成中文)为________。

人教版数学七年级下册第七章平面直角坐标系单元提优测试题

人教版数学七年级下册第七章平面直角坐标系单元提优测试题

y
M N
1
O1
x
LP
解:( 1) M( 2,3), N(— 3, 2),L( 0,— 2), O( 0, 0), P(2,— 2.5 ); ( 2) A、 B、 C、D的位置如图所示.
y
A
M
N
B
1
C
O1
x
LP D

18. 如图,甲处表示两条路的交叉口,乙处也是两条路的交叉口,如果用(
1, 3)表示甲处
为( 1,3 ),则表示棋子“馬”的点的坐标为(
D

A. (﹣ 4,3 ) B. ( 3,4 ) C. (﹣ 3,4 )
D. ( 4,3 )
8.在平面直角坐标系中,将点 长度后,所达位置的坐标为(
P(— 1, 3)先向下平移 1 个单位长度,再向右平移 D)
2 个单位
A.( 1,— 2)
B .(— 1,2)
D .y 轴的负半轴
3.如图,如果☆的位置为( 1, 2),则※的位置是( C )
A.( 1, 1)
B
.( 1,3)
C .( 3, 1)
D
.( 3, 3)
3
2
1
1
2
3
4.如图,将点 A 先向右平移 3 个单位长度,在向下平移 5 个单位长度,得到 ;将点 B 先向 下平移 5 个单位长度,再向右平移 4 个单位长度,得到 ,则 与 相距( B )
A)
A.向右平移 3 个单位
B
.向右平移 1 个单位
C.向上平移 3 个单位
D
.向上平移 1 个单位
y
4 3 2 1
A
-2 -1 O x
( 1)
y

人教版七年级数学下册第7章平面直角坐标系培优卷

人教版七年级数学下册第7章平面直角坐标系培优卷

人教版七年级数学下册第7章平面直角坐标系培优卷一.选择题(共10小题)1.下列各点中,位于第四象限的点是()A.(3,-4) B.(3,4) C.(-3,4) D.(-3,-4)2.在平面直角坐标系中,点(P-所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案4.已知点P(-4,3),则点P到y轴的距离为()A.4 B.-4 C.3 D.-35.如图,已知在△AOB中A(0,4),B(-2,0),点M从点(4,1)出发向左平移,当点M平移到AB 边上时,平移距离为()A.4.5 B.5 C.5.5 D.5.756.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)7.已知点M向左平移3个单位长度后的坐标为(-1,2),则点M原来的坐标是()A.(-4,2) B.(2,2) C.(-1,3) D.(-1,-2)8.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)9.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.310.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点1(1,1),P紧接着第2次向左跳动2个单位至点2(1,1),P 第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至2017P的坐标是()A.(504,1007) B.(505,1009)C.(1008,1007) D.(1009,1009)二.填空题(共7小题)11.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.12.如图是轰炸机机群的一个飞行队形,若最后两架轰炸机的平面坐标分别为A(-2,3)和B(-2,-1),则第一架轰炸机C的平面坐标是.13.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.14.在平面直角坐标系中,将点A(-1,3)向左平移a个单位后,得到点A′(-3,3),则a的值是.15.点Q(x,y)在第四象限,且|x|=3,|y|=2,则点Q的坐标是.16.若点A(a,b)在第四象限,则点C(-a-1,b-2)在第象限.17.已知平面内有一点A的横坐标为-6,且到原点的距离等于10,则A点的坐标为.三.解答题(共7小题)18.已知平面直角坐标系中有一点M(m-1,2m+3),且点M到x轴的距离为1,求M的坐标.19.若点P(1-a,2a+7)到两坐标轴的距离相等,求a的值.20.如图,点A(1,0),点B点P(x,y),OC=AB,OD=OB.(1)则点C的坐标为;(2)求x-y+xy的值.21.请你在图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明儿童公园、医院、李明家、水果店、宠物店和学校的位置.22.在平面直角坐标系中,已知点P(2m+4,m-1),试分别根据下列条件,求出点P 的坐标. 求:(1)点P 在y 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 在过A(2,-5)点,且与x 轴平行的直线上.23.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M 到y 轴的距离为l 时,M 的坐标?(2)点N(5,-1)且MN ∥x 轴时,M 的坐标?24.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点(2,4),A B --的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.参考答案:1-5 ABAAC6-10 DBCDB11. (-10,5)12. (2,1)13. (2,5)14.215. (3,-2)16.三17. (-6,8)或(-6,-8)18. 解:由题意可得:|2m+3|=1,解得:m=-1或m=-2,当m=-1时,点M的坐标为(-2,1);当m=-2时,点M的坐标为(-3,-1);综上,M的坐标为(-2,1)或(-3,-1).19. 解:∵点P(1-a,2a+7)到两坐标轴的距离相等,∴|1-a|=|2a+7|,∴1-a=2a+7或1-a=-(2a+7),解得a=-2或a=-8.20. 解:(1)∵点A(1,0),点B(,0),∴OA=1、OB=,则AB=-1,∵OC=AB,OD=OB,∴OC=-1,OD=,则点C坐标为(-1,0),故答案为:(-1,0).(2)由(1)知点P坐标为(-1,),则x=-1、y=,∴原式=-1-+(-1)=-1+2-=1-.21. 解:如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),李明家(-2,2),水果店(0,3),宠物店(0,-2),学校(2,5).22. 解:(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,-9);(3)令m-1=-5,解得m=-4.所以P点的坐标为(-4,-5).23. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点M的坐标为(-7,-1).24. 解:(1)∵点A(-2,4),B(+,-),∴[A]=|-2|+|4|=2+4=6,[B]=|+|+|−|=++−=2;(2)∵点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,∴x=±1时,y=2或x=±2,y=1或x=0时,y=3,∴点M的坐标为(-1,2)、(1,2)、(-2,1)、(2,1)、(0,3).人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。

人教版七年级数学下册第七章平面直角坐标系培优测试试卷

人教版七年级数学下册第七章平面直角坐标系培优测试试卷

人教版七年级数学下册第七章平面直角坐标系培优测试试卷一、单选题(共10题;共30分)1.在平面直角坐标系中,将点(-2,-3)向上平移3个单位长度,则平移后的点的坐标为( )A. (-2,0)B. (-2,1)C. (0,-2)D. (1,-1)2.点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为()A. (2,0)B. (0,-2)C. (4,0)D. (0,-4)3.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A. (﹣2,3)B. (3,﹣1)C. (﹣3,1)D. (﹣5,2)4.已知点A在x轴上,且点A到y轴的距离为4,则点A的坐标为( )A. (4,0)B. (0,4)C. (4,0)或(-4,0)D. (0,4)或(0,-4)5.将点A(﹣1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A. (3,1)B. (﹣3,﹣1)C. (3,﹣1)D. (﹣3,1)6.点A1(5,–7)关于x轴对称的点A2的坐标为( ).A.(–5, –7)B.(–7 , –5)C.(5, 7)D.(7, –5)7.如图,在正方形ABCD 中,A,B,C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD 向右平移3 个单位,则平移后点 D 的坐标是()A. (﹣6,2)B. (0,2)C. (2,0)D. (2,2)8.A(-3,4)和B(4,-1)是平面直角坐标系中的两点,则由A点移到B点的路线可能是()A. 先向上平移5个单位长度,再向右平移7个单位长度B. 先向上平移5个单位长度,再向左平移7个单位长度C. 先向左平移7个单位长度,再向上平移5个单位长度D. 先向右平移7个单位长度,再向下平移5个单位长度9.小张和小陈都在电影院看电影,小张的位置用(a,b)表示,小陈的位置用(x,y)表示,我们约定“排数在前,列数在后”,若小张恰在小陈的正前方,则()A. a=xB. b=yC. a=yD. b=x10.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A. (2,﹣1)B. (4,﹣2)C. (4,2)D. (2,0)二、填空题(共6题;共24分)11.线段AB两端点A(-1,2),B(4,2),则线段AB上任意一点可表示为________.12.将点P(x,4)向右平移3个单位得到点(5,4),则P点的坐标是________.13.点A(1-x,5)、B(3,y)关于y轴对称,那么x+y = .14.在平面直角坐标系中,若点M(﹣1,4)与点N(x,4)之间的距离是5,则x 的值是________.15.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(2,2),(4,2),(5,1),请你把这个英文单词写出来(或者翻译成中文)为________。

七(下)培优训练(三)平面直角坐标系综合问题(压轴题)

七(下)培优训练(三)平面直角坐标系综合问题(压轴题)

培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△AB C的面积;(2)如果在第二象限内有一点P(a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△AB C的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yxPOCBA【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .图1y xDO CB A图2y xDOCB AyxOBAyxOBA(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标;(3)若点C 在y 轴的正半轴上,点D在第一象限内,且S△ACD =5,求C、D 的坐标;(4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△AB C向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A、C的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C的位置不变,当点Q在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B.(1)求三角形ABC 的面积;(2)若过B作BD ∥AC 交y 轴于D,且AE ,D E分别平分∠CA B,∠ODB ,如图2,求∠AE D的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形A CP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形AB CD 各顶点的坐标分别是A(0,0),B(7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO沿x轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C点, 过O点作O G⊥C E, 垂足为G ;(2) 在(1)的条件下, 求证: ∠C OG =∠E DF ; (3)求运动过程中线段A B扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C(-5,4),点A 是x轴负半轴上一点,S四边形A OBC =24.图1yxHOFEDAC B(1)线段B C的长为 ,点A的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CA H,CF ⊥A E点F,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线C B与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON平分AOP ∠,BN 交ON 于N,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由. 【例8】在平面直角坐标系中,OA=4,O C=8,四边形ABC O是平行四边形.A(-2,0)B(0,-3)y x 0(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQ B与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形Q BPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B的坐标分别为(-1,0),(3,0),现同时将点A,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D 连结AC ,B D. (1)求点C ,D 的坐标及四边形ABD C的面积S 四边形ABDC ;(2)在y轴上是否存在一点P ,连结P A ,PB ,使S △PAB =S △明理由;(3)若点Q自O 点以0.5个单位/s 的速度在线段AB上移动,运动到B点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△AB C的顶点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A (0,a),B (0,b),C (m ,b)且(a -4)2+|b+3|=0,S △ABC =14. (1)求C点坐标(2)作DE ⊥DC,交y 轴于E点,EF 为∠AED 的平分线,且∠DF E=900.求证:FD 平分∠ADO;(3)E 在y 轴负半轴上运动时,连E C,点P为A C延长线上一点,EM 平分∠AEC,且PM ⊥EM,PN ⊥x 轴于N点,PQ 平分∠APN,交x轴于Q点,则E 在运动过程中,错误!的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A(-5,0),B(5.0),D(2,7), (1)求C点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q从C 点出发也以每秒1位的速度沿y轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

人教版七年级数学下册 第七章 平面直角坐标系 培优专题测试训练(含答案)

人教版七年级数学下册 第七章 平面直角坐标系 培优专题测试训练(含答案)

人教版七年级数学下册第七章平面直角坐标系培优专题测试训练一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)3.图是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y轴正方向建立平面直角坐标系,则熊猫馆所在的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为( )A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A. (-2,-3)B. (2,-3)C. (-3,2)D. (3,-2)7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )A.(21,-1)B.(21,0)C.(21,1)D.(22,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 点P(-6,-7)到x轴的距离为 ,到y轴的距离为 .10. 已知点P(3-m,m)在第二象限,则m的取值范围是________.11.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为 .12.五子棋是一种两人对弈的棋类游戏,起源于中国古代的传统黑白棋种,规则是在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个同学的对弈图.若白子A的坐标为(0,-2),白子B的坐标为(-2,0),为了不让白方马上获胜,此时黑方应该下在坐标为 的位置.(写出一处即可)13.如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为 .14. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为 .15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是 .16.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 在如图所示的平面直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1),(0,4).依次连接各点,观察得到的图形,你觉得它像什么?18.常用的确定物体位置的方法有两种.如图,在4×4的边长为1的小正方形组成的网格中,标有A ,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.19. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.20. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.21.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为 ;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.22.如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.23. 如图,若三角形A 1B 1C 1是由三角形ABC 平移后得到的,且三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2).(1)求点A 1,B 1,C 1的坐标;(2)求三角形A 1B 1C 1的面积.24. 【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭.【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.答案一、选择题1.B 2.D 3.B 4.D5.C [解析] 如图,过点C作CD⊥y轴于点D,∴CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10).故选C.6.A 【解析】本题考查了直角坐标平面内的点关于x轴的对称点,点如果关于x轴对称,则它的横坐标不变,纵坐标互为相反数,于是点(-2,3)关于x轴对称的点的坐标为(-2,-3),故选A .7.C [解析] 半径为1的半圆的弧长是×2π×1=π,由此可列下表:故选C.8.A [解析]点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P 的坐标是(2021,1).故选A .二、填空题9.7 6 10.m >3 【解析】∵点P 在第二象限,∴其横坐标是负数,纵坐标是正数,则根据题意得出不等式组,解得m >3. {3-m <0m >0)11.(a-2,b+3) [解析]由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.(2,0)或(-2,4)13.(-2,0) [解析] S 三角形ABC =BC ·4=10,解得BC=5,∴OB=5-3=2,∴点B 的坐标为(-2,0).14.(45,5) [解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).15.(20,0) [解析] 因为P 3(1,0),P 6(2,0),P 9(3,0),…,所以P 3n (n ,0).当n=20时,P 60(20,0).16.(16,1+) 3解析:可以求得点A (-2,-1-),则第一次变换后点A 的坐标为A 1(0,1+),第二次变换33后点A 的坐标为A 2(2,-1-),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次3变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+).3三、解答题17.解:描点连线如图所示,它像五角星.18.解:方法一:用有序数对(a ,b )表示.比如:以点A为原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则点B相对于点A的位置是(3,3).方法二:用方向和距离表示.比如:点B位于点A的东北方向(或北偏东45°方向),距离点A m处.19.解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).20.[解析]三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB=S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.21.解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22.解:(1)若将点A平移到原点O处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B,C的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).23.解:(1)∵三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5),点B 1的坐标为(-2,3),点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.24.解:(1)∵四边形ONEF 是矩形,∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为.(2,32)(2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴Error!,解得,Error!.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴Error!,解得,Error!.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴Error!,解得,Error!.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).。

【数学】人教版七年级数学下册第7章《平面直角坐标系》培优试题(2)

【数学】人教版七年级数学下册第7章《平面直角坐标系》培优试题(2)

人教版七年级数学下册第7章《平面直角坐标系》培优试题(2) 一.选择题(共10小题)1.如图所示,横坐标是正数,纵坐标是负数的点是( )A .A 点B .B 点C .C 点D .D 点2.若x 轴上的点P 到y 轴的距离为3,则点P 为( ) A .(3,0) B .(3,0)或(3,0)- C .(0,3)D .(0,3)或(0,3)-3.若0ab >,则(,)P a b 在( ) A .第一象限 B .第一或第三象限 C .第二或第四象限D .以上都不对 4.点(1,3)M m m ++在x 轴上,则M 点坐标为( ) A .(0,4)-B .(4,0)C .(2,0)-D .(0,2)-5.在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保特不变,则所得图形在原图形基础上( ) A .向左平移了3个单位 B .向下平移了3个单位 C .向上平移了3个单位D .向右平移了3个单位6.如图,是象棋盘的一部分.若“帅”位于点(1,2)-上,“相”位于点(3,2)-上,则“炮”位于点( )上.A.(1,1)-D.(2,2)--C.(2,1)-B.(1,2)7.将以A(-2,7),B(-2,2)为端点的线段AB向右平移2个单位得线段A B,11以下点在线段A B上的是()11A.(0,3)B.(-2,1)C.(0,8)D.(-2,0)8.点(0,2)A在()A.第二象限B.x轴的正半轴上C.y轴的正半轴上D.第四象限9.将点(3,2)B-A-先向右平移3个单位,再向下平移5个单位,得到A'、将点(3,6)先向下平移5个单位,再向右平移3个单位,得到B',则A'与B'相距() A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度10.已知点(,)A m n在第二象限,则点(||,)B m n-在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共8小题)11.已知2|2|(1)0-++=,则点(,)x yP x y在第个象限,坐标为.12.点(3,5)P--到x轴距离为,到y轴距离为.13.在平面直角坐标系中,将点(1,4)P-向右平移2个单位长度后,再向下平移3个单位长度,得到点P,则点1P的坐标为.114.李明的座位在第5 排第4 列,简记为(5,4),张扬的座位在第3 排第2 列,简记为(3,2),若周伟的座位在李明的前面相距 2 排,同时在他的右边相距2 列,则周伟的座位可简记为.15.如图,在三角形ABC中,(0,4)C,且三角形ABC面积为10,则B点A,(3,0)坐标为.16.点(21,3)-+在第一、三象限角平分线上,则x的值为,P点坐标P x x为.17.在平面直角坐标系中,点A的坐标为(1,3)-,线段//AB=,则点AB x轴,且4 B的坐标为.18.在平面直角坐标系中,若点(1,)M x人教版七年级下册数学第七章平面直角坐标系单元试题一、选择题(共10小题,每小题3分,共30分)1.在平面直角坐标系中,点P(-3,-8)的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限2.如图是象棋盘的一部分,若位于点(1,-2)上,位于点(3,-2)上,则位于点 ( )A.(-1,1) B.(-1,2)C.(-2,1) D.(-2,2)3.已知x轴上的点P到y轴的距离为3,则点P的坐标为( )A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为( )A.(0,-2) B.(2,0) C.(0,2) D.(0,-4)5.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A.东南方向B.东北方向C.西南方向D.西北方向6.平面直角坐标系中,一个三角形的三个顶点的坐标,横坐标保持不变,纵坐标增加3个单位,则所得的图形与原图形相比( )A.形状不变,大小扩大为原来的3倍B.形状不变,向右平移了3个单位C.形状不变,向上平移了3个单位D.三角形被纵向拉伸为原来的3倍7.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )A.(2,3) B.(-2,-3)C.(-3,2) D.(3,-2)8.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0 B.y>0 C.y≤0D.y≥09.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2) B.(3,2) C.(3,3) D.(2,3)10.线段AB两端点坐标分别为A(-1,4),B(-4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1,B1的坐标分别为( )A.A1(-5,0),B1(-8,-3) B.A1(3,7), B1(0,5)C.A1(-5,4),B1(-8,1) D.A1(3,4), B1(0,1)二、填空题(共5小题,每小题4分,共20分)11.点P(a,b)在第四象限,则点Q(b,-a)在第象限.12.把点A(-4,6)先向左平移2个单位,再向下平移4个单位,此时的位置是.13.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是.14.在坐标平面内,已知点M(1,2)和点N(1,-4),那么线段MN的长为个单位长度,MN中点的坐标为.15.观察图象,与图1中的鱼相比,图2中的鱼发生了一些变化.若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标为(图中的方格是1×1).三、解答题(共5小题,每小题10分,共50分)16.如图,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?17.在平面直角坐标系中,标出下列各点:(1)点A在x轴的正半轴上,距离原点1个单位长度;(2)点B在y轴的负半轴上,距离原点2个单位长度;(3)点C在第四象限,距离x轴1个单位长度,距离y轴3个单位长度;(4)点D在第一象限,距离x轴1个单位长度,距离y轴4个单位长度.请用线段依次连接这些点,你能得到什么图形?18.如图,梯形A′B′C′D′可以由梯形ABCD经过怎样的平移得到?对应点的坐标有什么变化?19.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A 4点,再向正东方向走15米到达A 5点,按如此规律走下去,建立适当的坐标系,当机器人走到A 6点时,求A 6点的坐标.人教版七年级数学下册第8章《二元一次方程组》培优试题(2) 一.填空题(共8小题,每小题3分,共24分)1.已知二元一次方程2350x y --=的一组解为x ay b =⎧⎨=⎩,则643b a -+= .2.已知39x y -=,请用含x 的代数式表示y ,则y = .3.若实数x ,y 满足条件23x y +=,试写出一个x 和一个y 使它们满足这个条件,此时x = ;y = . 4.若12x y =⎧⎨=-⎩是二元一次方程组2022ax y bx ay -=⎧⎨+=⎩的解,则a b -= . 5.甲、乙两人同时解关于x 、y 的方程组321,ax y x by -=⎧⎨+=⎩但是甲看错了a ,求得解为11x y =⎧⎨=-⎩,乙看错了b ,求得解为14x y =-⎧⎨=-⎩,则a b += . 6.若54413,27319,3218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩则51x y z ---的立方根是 .7.若37a x y -与2a b x y +是同类项,则b = . 8.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,⋯,若21010b b a a+=⨯符合前面式子的规律,则a b += .二.选择题(共10小题,每小题3分,共30分)9.若||2017||3(2018)(4)2018m n m x n y ---++=是关于x ,y 的二元一次方程,则( ) A .2018m =±,4n =± B .2018m =-,4n =± C .2018m =±,4n =-D .2018m =-,4n =10.下列4组数值,哪个是二元一次方程235x y +=的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩11.下列方程组中不是二元一次方程组的是( ) A .23x y =⎧⎨=⎩B .12x y x y +=⎧⎨-=⎩C .51x y xy +=⎧⎨=⎩D .21y xx y =⎧⎨-=⎩12.以方程组23327x y x y +=-⎧⎨-=⎩的解为坐标的点在( )A .第一象限B .第二象限C .第三象限D .第四象限13.已知222,44,x y a x y a +=⎧⎨-=-⎩且320x y -=,则a 的值为( )A .2B .0C .4-D .514.已知实数x ,y ,z 满足7422x y z x y z ++=⎧⎨+-=⎩,则代数式3()1x z -+的值是( )A .2-B .4-C .5-D .6-15.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( ) A .15 B .15-人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

七下培优训练三平面直角坐标系综合问题压轴题

七下培优训练三平面直角坐标系综合问题压轴题

培优训练三:平面直角坐标系(压轴题)一、坐标及面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积;(2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积及△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标;(3)若点C 在y 轴的正半轴上,点D 在第一象限内,且S △ACD =5,求C 、D 的坐标; (4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P 、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q 的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C ''';(3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACPABCSS=; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCSS=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B . (1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50,若能,求出P 点坐标,若不能,说明理由. 【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ;(3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC =24.(1)线段BC 的长为 ,点A 的坐标为 ;A(-2,0)B(0,-3)yx(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF⊥AE 点F ,试给出∠ECF 及∠DAH之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 及直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠及BNO ∠之间满足的数量关系式,并说明理由.【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形. (1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 及△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2B 的对应点C ,D 连结AC ,BD .(1)求点C ,D 的坐标及四边形ABDC (2)在y 轴上是否存在一点P ,连结PA ,点,求出点P (3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△ABC 的顶点A (—2,0(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,若存在,请求出点D (3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标及几何:【例1】如图,已知A(0,a),B (0,b ),C (m ,S △ABC =14.(1)求C 点坐标(2)作DE⊥DC,交y 轴于E 点,EF 为∠AED FD 平分∠ADO;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC,且PM⊥EM,PN⊥x 轴于N 点,PQ 平分∠APN,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

人教版七下数学平面直角坐标系专题培优

人教版七下数学平面直角坐标系专题培优

1 2 3 4 5 6 7 8 9 1010第2、3题图16. 有序数对基础训练01. 一个学生方队,B 的位位置是第8列第7行,记为(8, 7),则学生A 在第二列第三行的位置可以表示为( )A . (2, 1)B . (3, 3)C .(2, 3)D . (3, 2)【解答】:C02.如图所示,如果四角星的顶点A 的位置用(5, 8)表示,那么顶点B 的位置可以表示为( ) A .(2, 5) B .(5, 2) C .(3, 5) D .(5, 3) 【解答】:A 03.如图所示.如果用(5, 2)表示点C 的位置, 那么(3, 7)表示( )的位置. A .点H B .点I C .点F D .点G 【解答】:C 04. 确定一个地点的位置,下列说法正确的是( )A .偏东30°,距离1000mB . 西北方向C . 距离500mD . 距离正南600m 【解答】:A05. 如果对某小区参加晨练的人的楼号和门号用有序数对来表示.规定楼号在前,门号在后,在所调查的6个人中表示的有序数对如下:(9, 8), (8, 9), (9, 7),(7, 8),(10, 7),(9,10),则这6个人中,住在( )号楼的人最多.A .7B .8C .9D .10【解答】:C06. 下列关于有序数对的说法正确的是( )A . (3, 4)与(4, 3)表示的位置相同B . (a ,b )与(b , a )表示的位置肯定不同C .(3,5)与(5, 3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4, 4)表示两个不同的位置【解答】:C07. 在电影院内,如果将“12排8号”简记作(12, 8 ),那么“5排9号”应表示为______. (26,13)表示的含义是_______________. 【解答】:(5, 9) “26排13号”08. 如图,三角形ABC 中,顶点B 的位置表示为(l , 2),点A的位置表示为(2,4).则点C 表示位置为__________. 【解答】:(4, 2).09. 如果学校在医院北偏东65°方向且距医院800米,那么医院在学校__________方向且B AC距学校________米【解答】:南偏西65° 800 10. 如图,若点I 表示I (8,7),写出其余各点的有序数对 ( ); A ( ); B ( ); C ( ); D ( ); E ( ); F ( ); G ( ); H ( ); 【解答】:A (3, 3); B (7, 2); C (3, 1); D (12, 5); E (12, 9); F (8, 11); G (5, 11); H (4, 8); 11. 将正整数按如图所示的规律排列下去,若用有序实数对(n ,m )表示n 排,从左到右第m 个数,如(4, 3)表示实数9,则(7, 2)表示的实数是_________.【解答】:23能力训练12. 如图所示,A 的位置为(2, 6), 小明从A 出发,经(2, 5)→(3, 5)→(4,5)→(4, 4)→(5. 4)→(6, 4), 小刚也从A 出发,经(3, 6)→(4, 6)→(4, 7)→(5, 7)→(6, 7), 在图上画出相应的最短线路. 【解答】:略13.某教室中,学生座位的平面图如下图所示. 1 23 5 46 8 10 97 ……第一排 第二排 第三排 第四排…… 1 2 3 4 5 6 7 8 9 10101112 131234567⑴说明王明和张强的位置;⑵若用(3,2 )表示第3排第2列的位置,那么(4, 5)表示什么位置?王明和张强的位置可以怎样表示?⑶在⑵的条件下,请说出(3, 3)和(4, 8)表示哪位同学的位置;⑷在⑵的条件下,(3,4)和(4,3)表示的位里相同吗?一般地,若a ≠b , (a ,b )与(b , a ) (1≤a ≤5, 1≤b ≤8, a ,b 为整数)表示的位置相同吗?【解答】:⑴略;⑵4排5列 王明(2, 2) 张强(5, 5) ;⑶(3, 3)→张逸; (4, 8)→李爽⑷不同14.下列网格中的点可以表示一个分数(分母为1的分数记为整数),如点A 、B 、C 、D 分别表示1,32,12,2. 按照此规律,图中与点C 表示的分数相等的点为( ) A . 点E B . 点F C . 点G D . 点H【解答】:C综合训练15.如图,正方形网格中的交点,我们称之为格点,点A 用有序数对(2, 2)表示.其中第一 个数表示排数,第2个数表示列数,在图中有一个格点C ,使S △ABC =1,写出符合条件的点C 的有序数对.1 2 3 4第5排第4排第3排第2排 第1排列1 2 3 4 5 6 7 8【解答】:C (4, 2),C (2, 4),C (1, 3),C (3, 5),C (3, 1),C (5, 3),共6个点C 17.平面直角坐标系(一)基础训练01.如果P 点的坐标为(-1,2),那么P 点横坐标为_____,纵坐标为____.【解答】:-1,202.如果Q 点的坐标为(2,-3),那么Q 点的横坐标为______,纵坐标为_____.【解答】:2,-303.如果M 点横坐标-2,纵坐标为-1,那么M 点的坐标为(_____)【解答】:-2, -104.在平面直角坐标系中,点P (-2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】:C05.点P (0,-3)的位置是( )A .x 轴的正方向上B .x 轴的负方向上C .y 轴的正方向上D .y 轴的负方向上【解答】:D06.在平面直角坐标系中,点P (-5,a 2+l )在( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】:B07.如图所示,长方形AB CD 中,A (-4,1), B (0,1),C (0,3),则点D 的坐标是( )A .(-3,3)B .(-2,3)C .(-4,3)D .(4,3)【解答】:C08.已知P (3,-2),则P 点到x 轴的距离为____,到y 轴的距离为____.【解答】:2, 309.已知A 点在x 轴上,且OA =3,则A 点的坐标为_______.【解答】:(3,0)或(-3,0)10.已知A (-1,4),B (-4,4),则线段AB 的长为___.排 2 345 145列【解答】:311.在图中的直角坐标系中描出下列各点:A (2,3),B (-2,3),C (0,-4),D (-2,0),E (-3,-1),F (3,-2)【解答】:略12.在如图所示的平面直角坐标系中描出A (-1,0),B (5,0),C (2,3),D (0,3)四点,并用线段将A 、B 、C 、D 四点依次连接起来,得到一个什么图形?你能求出它的面积吗?【解答】:梯形,S 梯ABCD =12能力训练13.在平面直角坐标系中,点P (a ,4-a )在第二象限,则a 的范围是A .a <4B .a >4C .a <0D .0<a <4【解答】:14.在平面直角坐标系中,点P (3a -8,4-a )在第二象限,且该点到x 、y 轴的距离相等,则a 为____【解答】:15.如图,在所给的坐标系中描出下列各点的位置:A (-4,4)B (-2,2)C (3,-3)D (1,-1)E (-3,3)F (0,0)你发现这些点有什么关系?你能再找出一些类似的点吗?【解答】:这些点在同一直线上.16.已知:在如下二图中,已知点A 、B 、C 的坐标,分别求三角形ABC 的面积. ①A (-1,0) B (3,0) C (4,-3)②A (2,0) B (0,1) C (0,4)【解答】:①S △ABC =6;②S △ABC =3.17.①已知:M (1,-2),N (-3,-2),则直线MN 与x 轴的位置关系为____.②已知:P (-3,2),P A ∥x 轴,P A =4,则A 点坐标______________;PB ∥y 轴,PB =3,则B 点坐标___________.【解答】:①平行;②(-7,2)或(1,2);(-3,5)或(-3,-1).综合训练18.如图,在平面直角坐标系中,有若干个整数点,其顺序按图“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律,第100个点的坐标为______. 【解答】:(14,8)18.平面直角坐标系(二)基础训练【解答】:x轴;第四象限;第一象限;第三象限;y轴;y轴.02.若P(-5,4),则P到x轴的距离是____.到y轴的距离是_____【解答】:4,503.如果点P(m+1,m+3)在y轴上,则m=____.【解答】:-104.已知点P(a,b)在第四象限,则Q(b,a)在______【解答】:第二象限05.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)【解答】:C06.已知点P(a,b)在第三象限,且|a|=3,|b|=4,那么点P的坐标为( )A.(-4,-3) B.(-3,-4) C.(-3,4) D.(3,-4)【解答】:B07.到x轴的距离等于2的点组成的图形是( )A.过点(0,2)且与x轴平行的直线B.过点(2,0)且与y轴平行的直线C.过点(0,-2)且与x轴平行的直线D.分别过(0,2)和(0,-2)且与x轴平行的两条直线【解答】:D08.如图,在平面直角坐标系内,线段AB平行于y轴,且AB=5,点A的坐标为(-5,3),则点B的坐标为__________.【解答】:(-5,8)或(-5,-2)09.在平面直角坐标系内,描出A(-1,0), B(1,0)、C(1,2)、D(-1,2)四点,顺次连接ABCD 四点,请直接写出四边形的形状.【解答】:正方形.10.已知:点P(O,a)在y轴负半轴上,问M(-a2-1,-a+1)在第几象限?【解答】:∵a<0∴-a+1>0又∵-a2-1<0故点M在第二象限11.已知点P(2-a,3a+6)到两坐标轴距离相等,求P点坐标.【解答】:分两种情形:⑴2-a+3a+6=0∴a=-4∴P(6,-6)⑵2-a=3a+6∴a=-1∴P(3,3)能力训练12.已知:A(2,3),B(-4,3),C为AB的中点,画图并求C点坐标.【解答】:C (-1,3)13.在平面直角坐标系中,P (-1,1), PQ ∥y 轴,PQ 的长为3,并画图求点Q 的坐标.【解答】:分两种情形:⑴Q 1(-1,4);⑵Q 2(-1,-2).14.在平面直角坐标系中,A (-5,0),B (3,0),点C 在y 轴上,△ABC 的面积为12,求点C 的坐标.【解答】:分两种情形:⑴C 1(0,3);⑵C 2(0,-3).15.如图,已知直角梯形ABCD , AB =6cm , AD =5cm , BC =6cm ,建立适当坐标系,写出四个顶点的坐标.【解答】:略综合训练16.如图所示,在平面直角坐标系中,求三角形ABO 的面积.【解答】:过A 、B 分别向x 轴、y 轴作垂线AE 、NB 、EA 的延长线相交于M 点S △OAB =S 正方形OEMN -S △OAE -S △OBN -S △ABN=9-12 ×3×2-12 ×3×1 -12×2×1 A B C D=9-3-1.5-1=3.519.用坐标表示地理位置基础训练01.以学校所在的位置为原点,分别以向东、向北方向为x 轴、y 轴正方向.若出校门向东走100米,再向北走120米记作(100,120),小强家的位置是(-150,200)的含义是_______________________. 出校门向南走400米,再向东走150米是小明的家,则小明家的位置应记作_______.【解答】:小钱家在学校以西150米,再往北120米;(150,-400)02.如图,是A ,B ,C ,D 四位同学的家所在位置,若以A 同学家的位置为坐标原点建立平面直角坐标系,那么C 同学家的位置的坐标为(1,5),则B ,D 两同学家的坐标分别为( )A .(2,3),(3,2)B .(3,2),(2,3)C .(2,3),(-3,2)D . (3,2),(-2,3)【解答】:D03.如图,若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点_____.【解答】:(-2,1)04.如图,若点E 的坐标是(-2,1),点F 是坐标(1,-1),则点G 的坐标是( )A .(2,1)B .(1,2)C .(3,1) D .(0,2)【解答】:B05.某学校的平面示意图如图所示,如果实验楼所在位置的坐标为(-2,-3),教学楼所在位置的坐标为(-1,2),那么图书馆所在的位置的坐标为________.【解答】:(-4, 3)06.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-8,-4),白棋④的坐标为A BCD(-6,-8),那么黑棋①的坐标应该是________.【解答】:(-6,-6)07.如图所示,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用 (-40,-30)表示,那么(10,20)表示的位置是( )A.点A B.点B C.点C D.点D【解答】:B08.某人出火车站向南走300米到平价超市,再从平价超市向西走100米到汽车站,若将平价超市标记为(0,-300),则汽车站的坐标为( )A.(100,300) B.(-100,0)C.(-300,0) D.(-100,-300)【解答】:D09.如图,是小敏所在学校的平面图(图中每个小正方形的边长为1个单位长度),以学校大门为坐标原点,建立直角坐标系,请用坐标表示各处的位置.【解答】:实验楼(-3,7)生物园(-3,5) 图书馆(-3,3) 教工宿舍(3,7)学生宿舍(3, 5) 操场(3,3) 学校大门(0,0)科技楼(0,7)能力训练10.根据下列条件画出符合题意的示意图:标出学校、文具超市、科技馆、文化宫的位置. 文具超市:出校门口向东走300米,向北走200米.科技馆:出校门向西走400米,再向北走300米,最后向西走100米.文化宫:出校门向南走200米,再向东走200米,最后向南走100米.(请选择适当的比例尺).【解答】:略11.如图所示是一个直角坐标系.⑴请在图中标出下列各点的位置:A (2,3),B (-1,2),C (4,-3),D (-3,-3)⑵在图中作出点A 关于x 轴的对称点E ,并写出E 点的坐标,它与A 点的坐标有什么关系? ⑶在图中作出点B 关于y 轴的对称点F ,并写出F 点的坐标,它与B 点的坐标又有什么关系?【解答】:⑴略;⑵E (2,-3);横坐标相同,纵坐标互为相反数.⑶F (1,2).横坐标互为相反数,纵坐标相同.12.下图是某台阶的一部分,如果A 点的坐标为(0,0), B 点的坐标为(1,1),请建立适当的直角坐标系,并写出C 、D 、E 、F 的坐标,说明B 、C 、D 、E 、F 的坐标与点A 的坐标相比较有什么变化.如果该台阶有10级,你能得到该台阶的高度吗?【解答】:C (2,2),D (3,3),E (4,4),F (5,5)13.如图,已知A 1(1,0)、A 2(l ,1)、A 3(-1,1)、A 4(-l ,-1)、 A 5(2,-1)、…则点 A 2011的坐标是_____.AB CDEF【解答】:(-503,503)综合训练14.有甲、乙、丙三人所在位置不同,甲说:“以我为坐标原点,乙的位置是(2,3)."丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人建立坐标系时,x轴y轴方向相同)( )A.(-3,-2)、(2,-3) B.(-3,2)、(2,3)C.(-2,-3)、(3,2) D.(-3,-2)、(-2,-3)【解答】:C20.用坐标表示平移基础训练01.已知A点的坐标为(2,1).⑴将点A向左平移2个单位长度后得到点B,其坐标为____.⑵将点A向右平移2个单位长度后得到点C,其坐标为_____.⑶将点A向上平移2个单位长度后得到点D,其坐标为_____.⑷将点A向下平移2个单位长度后得到点E,其坐标为______.【解答】:(0,1);(4,1);(2,3);(2,-1)02.将点P(-3,2)沿x轴的负方向平移2个单位长度,得到点Q的坐标是_____,再将Q沿y轴正方向平移3个单位长度,得到点R的坐标是_____.【解答】:(-5,2);(-5,5)03.点P(3,2)向左平移3个单位得到对应点P',点P'的坐标是( )A.(0,2) B.(3,-1) C.(6,2) D.(3,5)【解答】:A04.点A'(3,-2)可以由点A(-3,2)通过两次平移得到,正确的移法是( )A.先向左平移6个单位长度,再向上平移4个单位长度B.先向右平移6个单位长度,再向上平移4个单位长度C.先向左平移6个单位长度,再向下平移4个单位长度D.先向右平移6个单位长度,再向下平移4个单位长度【解答】:D05.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)【解答】:A06.△ABC三个顶点的坐标分别是A(-4,-1),B(1,1), C(-1,4),将△ABC向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)【解答】:C07.观察下列图象,与图①中的鱼相比,图②中的鱼发生了一些变化,若图①中鱼上点P的坐标为(4,3.2), 则这个点在图②中的对应点P1的坐标为________.【解答】:(4,2.2)08.如图,A、B、C三辆汽车以相同的速度沿同一方向行驶半小时后,汽车A行驶到A'位置,则汽车B、C行驶到相应的位置B'、C'的坐标分别为B'(_____)、C'(______).【解答】:1,4;2,009.已知:三点坐标为A(5,-1),B(-2,3),C(3,1),△ABC内任意一点P(x,y)经过平移后,P点对应P'的坐标为(x+2,y-4)那么平移后所得的△A’B’C’的三个顶点坐标分别为多少?【解答】:∵P(x,y)→P'(x+2,y-4), ∴右移2个单位,下移4个单位,则A’(7,-5),B’(0,-1),C’(5,-3)能力训练10.在坐标平面内,有一点P由点A(-2,3)出发,向下运动1单位,再向右运动5单位到达点B,求:⑴B点坐标:⑵B点到x轴的距离;⑶B点到y轴的距离.【解答】:⑴B (3,2); ⑵2; ⑶311.如图所示,△ABC 三个顶点的坐标分别是A (4,3),B (3,1),C (1,2).⑴将△ABC 三个顶点的横坐标都减去5,纵坐标不变,分别得到点A 1、B 1, C 1,依次连接A 1、B 1、C 1各点,所得△A 1B 1C 1与△ABC 的大小、形状和位置上有什么关系?【解答】:略⑵将△ABC 三个顶点的纵坐标都减去4,横坐标不变,分别得到点A 2、B 2、C 2,依次连接A 2、B 2、C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系?【解答】:略⑶将△ABC 三个顶点的横坐标都减去5,纵坐标都减去4,分别得到点A 3、B 3、 C 3,依次连接A 3、B 3、 C 3各点,所得△A 3B 3C 3与△ABC 的大小、形状和位置上有什么关系?【解答】:略⑷求三角形△A 3B 3C 3的面积.【解答】:S △ABC =S △A 3B 3C 3= (1+2)×32 -12 ×2×1-12×1×2=4.5-1-1=2.512.己知:△ABC 平移后得△A 1B 1C 1,点A (-1,3)平移后得A 1(-4,2), 又已知B 1(-2,3), C 1(1,-1),求B 、C 坐标,画图并说明经过了怎样的平移.【解答】:A →A 1,∴左移3个单位,下移1个单位,∴B (1,4), C (4,0)综合训练13.在平面直角坐标系中,A (1,3)、B (2,1), OA ∥BC , OC ∥AB ,试用平移的知识求C 点坐标.【解答】:∵A(1,3)→B(2,1),横坐标增加1,纵坐标减少2, ∴C(1,-2).专题数形结合(一)利用点的坐标求面积01.如图,△ABC的顶点坐标分别是A(-1,2),B(-3,0),C(2,0),求△ABC的面积.【解答】:502.在平面直角坐标系中,A(-6,5),B(-4,0),C(0,3),画出△ABC,并计算其面积.【解答】:过A点作AE⊥x轴,垂足为E点,S△ABC=S梯OEAC-S△AEB-S△OBC=5+3 2×6-12×5×2-12×4×3=24-5-6=1303.如图所示的直角坐标系中,四边形ABCD各个顶点的坐标分别为A(-1,3),B(-3,2),C(-4,0),D (0,0),求四边形ABCD的面积.【解答】:7.504.在平面直角坐标系中,A(1,-1),B(-1,4),C(-3,1).求S△AB C.【解答】:方法一:同上,S△ABC=16-5-3=8;方法二:将点A平移至坐标原点,则C1(-4,2),B1(-2,5),则S△ABC=S△OB1C1=20-4-5-3=805.如图,在△AOB中,A、B两点的坐标分别为(2,4)和(6,2),求△AOB的面积.【解答】:S△AOB=S四ABNO-S△BON=12×2×4+12×(2+4)×4-12×6×2=4+12-6=1006.如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0),试求这个四边形的面积.【解答】:S =12 ×3×6+12 ×2×8+12×14×9=9+8+63=80专题数形结合(二)利用面积求点的坐标1.在平面直角坐标系中,A (1,0),B (5,0),点C 在y 轴上,且S △ABC =4,则C 点坐标为________.【解答】:(0,2)或(0,-2)2.如图,在平面直角坐标系中,△ABC 的边AB 在x 轴上,A (-2,0),C (2,4),S △ABC =6,画出符合条件的三角形ABC ,并直接写出B 点坐标.【解答】:B (1,0)或(-5,0)3.己知A (-2,0),B (4,0),C (2,4),⑴求△ABC 的面积:⑵设P 为x 轴上一点,若S △APC =12 S △PBC ,求P 点的坐标.【解答】:⑴12. ⑵P 1(0,0), P 2(-8,0)4.在平面直角坐标系中,P (1,4),点A 在坐标轴上,S △P AO =4,则P 点坐标为__________________.【解答】:(2,0)或(-2,0)或(0,8)或(0,-8)5.在平面直角坐标系中,A (1,2),B (3,1),点P 在x 轴负半轴,S △P AB =3,求P 点坐标.【解答】:作AM ⊥x 轴于M , BN ⊥x 轴于N ,S △P AM +S 梯AMNB -S △PBN =3, 设P (m ,0),列方程得m =-l , ∴P (-1,0).6.已知A (-3,0),B (3,0),C (-2,2),若点D 在y 轴上,且A 、B 、C 、D 所组成的四边形面积为15,求D 点的坐标.【解答】:D (0,245)或(0,-3)7.如图,已知平面直角坐标系中,A (-1,3), B (2,1),线段AB 交y 轴于C 点,求C 点坐标.【解答】:连OA ,OB ,先求S △AOB ,再利用S △AOB =S △AOC +S △BOC 求C 点坐标, ∴C (0,73).。

人教版七年级下《第七章平面直角坐标系》单元测试培优卷有答案

人教版七年级下《第七章平面直角坐标系》单元测试培优卷有答案

| y | = 2 , 则点 Q 的坐标是
16、若点 A(3,x+1),B(2y-1,-1)分别在 x 轴、y 轴上,则 x2+y2=____. 17、如图,长方形 OABC 的边 OA,OC 分别在 x 轴、y 轴上,点 B 的坐标 为(3,2).点 D,E 分别在 AB,BC 边上,BD=BE=1.沿直线 DE 将三角形 BDE 翻折,点 B 落在点 B′处,则点 B′的坐标为________. 18、如图,在平面直角坐标系中,一动点从原点 O 出发,按向上、向右、向 下、向右的方向不断地移动,每移动一个单位长度,得到点 A1(0,1),A2(1,1),A3(1,0), A4(2,0),…,那么点 A4n+1(n 为自然数)的坐标为______(用 n 表示).
10、如图,一只跳蚤在第一象限及 x 轴、y 轴上跳动,第一秒钟,它从原
13、如图,正方形 ABCD 的边长为 4,点 A 的坐标为(-1,1), AB 平行于 X 轴,则点 C 的坐标为___. 14、△ABC 中,A(-4,-2),B(-1,-3),C(-2,-1),将△ABC 先向右平移 4 个单位长度,再向 上平移 3 个单位长度,则对应点 A′、B′、C′的坐标分别为 15、点 Q(x, y)在第四象限,且| x | = 3, 、 、 . 。
26.如图①,在平面直角坐标系中,点 A,B 的坐标分别为(-1,0),(3,0),现同时将点 A,B 分别向上平移 2 个单位长度,再向右平移 1 个单位长度,分别得到点 A,B 的对应点 C,D,连接 AC,BD,CD. (1)求点 C,D 的坐标及 S 四边形 ABDC.
5、已知点 P(x,y)的坐标满足|x|=3, y =2,且 xy<0,则点 P 的坐标是( A.(3,-2) B.(-3,2) C.(3,-4) D.(-3,4)

24人教版七年级下《第七章平面直角坐标系》单元测试培优卷58

24人教版七年级下《第七章平面直角坐标系》单元测试培优卷58

人教版七年级下《第七章平面直角坐标系》单元测试培优卷一、选择题1. 已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是( )A、(-3,4)B、(3,4)C、(-4,3)D、(4,3)2. 点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为( )A.(0,-2)B.(2,0)C.(0,2)D.(0,-4)3. 在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为( ).(A)(-2,-5)(B)(-2,5)(C)(2,-5)(D)(2,5)4. 如图,与图1中的三角形相比,图2中的三角形发生的变化是( )A、向左平移3个单位长度B、向左平移1个单位长度C、向上平移3个单位长度D、向下平移1个单位长度5. 已知直角坐标系中,点P(x,y)满足42-x+(y+3)2=0,则点P坐标为( )A.(2,-3) B.(-2,3) C.(2,3) D.(2,-3)或(-2,-3)6. 点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)7. 点P(m+3,m+1)在直角坐标系的x轴上,则点P坐标为( )。

A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)8. 点M(1m+)在x轴上,则点M坐标为( ).m+,3(A)(0,-4)(B)(4,0)(C)(-2,0)(D)(0,-2)9. 根据下列表述,能确定位置的是( )A、红星电影院2排B、北京市四环路C、北偏东30°D、东经118°,北纬40°10. 如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后的三个顶点的坐标是( )A.(2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)11. 已知点A(-3,2),B(3,2),则A,B两点相距( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度二、填空题1. 如图,每个小正方体的边长为1个单位长度,对于A、B的位置,下列说法正确的有①如果A(0,0),那么B(-2,2);②如果A(0,0),那么B(-2,-2);③B在A的北偏东45º方向,且相距大约2个单位长度;④将点B先向左平移2个单位长度,再向下平移2个单位长度后与点A重合。

7.1平面直角坐标系 培优训练-2020-2021学年人教版七年级数学下册

7.1平面直角坐标系 培优训练-2020-2021学年人教版七年级数学下册

第7章 平面直角坐标系第1节 《平面直角坐标系》同步培优训练一、选择。

1.已知点()A m n ,,且有0mn ≥,则点A 一定不在A .第一象限B .第二象限C .第三象限D .坐标轴上 2.在平面直角坐标系中,x 轴的上方有一点P,它到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为( )A .(3,2)B .(-3,2)C .(3,2)或(-3,2)D .(2,3)3.象棋中有“马走日,象(相)走田”的规则,在如图所示的棋盘中,如果“相”的位置表示为(5,8),则“相”走一步之后所在位置不可能是( )A .(7,6)B .(7,10)C .(2,6)D .(3,10) 4.在平面直角坐标系中,如果mn >0,那么点(m ,|n|)一定在( ) A .第一象限或第二象限B .第一象限或第三象限C .第二象限或第四象限D .第三象限或第四象限5.已知平面内两点M 、N,如果它们平移的方式相同,那么平移后它们之间的相对位置是( )A .不能确定B .发生变化C .不发生变化D .需分情况说明6.已知ab <0,则点P (a ,b )在( )A.第一或第二象限内B.第二或第三象限内C.第一或第三象限内D.第二或第四象限内7.已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P 的坐标为()A.(3,﹣2)B.(2,﹣3)C.(2,3)D.(—2,3)8.在平面直角坐标系中,下面的点在第一象限的是A.(1,2)B.(-2,3)C.(0,0)D.(-3,-2)9.如图,直角坐标系中四边形的面积是()A.4B.5.5C.4.5D.510.把所有正偶数从小到大排列,并按如下规律分组:第一组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24第四组:26,28,30,32,34,36,38,40……则现有等式A m=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A10=(2,3),则A2018=()A.(31,63)B.(32,17)C.(33,16)D.(34,2)二、填空。

人教版数学七下平面直角坐标系培优题

人教版数学七下平面直角坐标系培优题

平面直角坐标系一、填空题1.已知点Mx;y与点N-2; 3关于x轴对称;则x+y= _______ ..2.若点Ba;b在第三象限;则点C-a+1;3b-5在第 _______ 象限..3.如果点Mx+3;2x-4在第四象限内;那么x的取值范围是 ________________ ..4.将点P-3;y向下平移3个单位;向左平移2个单位后得到点Qx;-1;则xy= ______ .. 5.在坐标系内;点P2;-2和点Q2;4之间的距离等于______ 个单位长度;线段PQ的中点的坐标是 ________ ..6.△ABC的三个顶点A1;2;B-1;-2;C-2;3;将其平移到点A’-1;-2处;使A与A′重合.则B、C两点坐标分别为 ________ ;________ ..7.平面直角坐标系中的一个图案的纵坐标不变;横坐标分别乘 -1;那么所得的图案与原图案会关于 ________ 对称.8.已知平面直角坐标系中有一点Mm-1;2m+3;点M到y轴的距离为1;则m值为________ ..‘9.点Pm+3;m+1在直角坐标系的x轴上;则P点坐标为 ________ ..10.已知点P3a-9;1-a是第三象限的点;且横坐标、纵坐标均为整数;若P、Q关于原点对称;点Q的坐标为________ ..11.若xy=0;则点P在 ________ ;若x2+y2=0;则点P在________ ..12.已知线段AB=3;AB∥x轴;若点A坐标为1;2;则B点坐标为 ________ ..二、选择题13.小红将直角坐标系中的点A的横坐标乘2再加2;纵坐标减2再除以2;点A恰好落在原点上;则点A的坐标是A.-1;2B.-5;5C.-2;8D.1;514.点Pa;b到x轴、y轴的距离和为A.a+b B.|a+b| C.|a|+|b| D.a-b15.下列说法正确的是A.平面内;两条互相垂直的直线构成数轴B.坐标为3;4与4;3表示同一个点C.x轴上的点必是纵坐标为0;横坐标不为0D.坐标原点不属于任何象限16.下列说法正确的是A.点P0;5在x轴上B.点A-3;4与点B3;-4在x轴的同一侧C.点M-a;a在第二象限D.坐标平面内的点与有序数对是一一对应的17.若点N到x轴的距离是1;到y轴的距离是2;则点N的坐标是A.1;2B.1;2;1;-2;-1;2;-1;-2C.2;1D.2;1;2;-1;-2;1;-2;-118.若Pm;n与Qn;m表示同一个点;那么这个点一定在A .第二、四象限B .第一、三象限C .平行于x 轴的直线上D .平行于y 轴的直线上 19.已知三角形的三个顶点坐标分别是-2;1;2;3;-3;-1;把△ABC 运动到一个确定位置;在下列各点坐标中; 是平移得到的. A .0;3;0;1;-1;-1 B .-3;2;3;2;-4;0 C .1;-2;3;2;-1;-3 D .-1;3;3;5;-2;1 20.已知点M2x-3;3-x 在第一象限的角平分线上;则M 坐标为 A .-1;-1 B .-1;1 C .1;1 D .1;-1三、解答题21、已知:三点A-2;-1、B4;-1、C2;3.在坐标平面内画出以这三个点为顶点的平行四边形;并写出第四个顶点的坐标.22.如图所示;C 、D 两点的横坐标分别为2、3;线段CD=1;B;D 两点的横坐标分别为 -2、3;线段BD=5;A 、B 两点的横坐标分别为-3、-2;线段AB=1.请探索: 1如果x 轴上有两点Mx 1;0;Nx 2;0x 1<x 2;那么线段MN 的长为多少 2如果y 轴上有两点P0;y 1;Q0;y 2y 1<y 2;那么线段PQ 的长为多少23.如图:在直角坐标系中;第一次将△AOB 变换成△OA 1B 1;第二次将三角形变换成△OA 2B 2;第三次将△OA 2B 2;变换成△OA 3B 3;已知A1;3;A 13;3;A 25;3;A 37;3;B2;0;B 14;0;B 28;0;B 316;0. 1观察每次变换前后的三角形有何变化;找出规律;按此变化规律再将△OA 3B 3变换成△OA 4B 4;则A 4的坐标是 ___________;B 4的坐标是 ____________.. .2若按1找到的规律将△OAB 进行了n 次变换;得到△OA n B n ;比较每次变换中三角形顶点有何变化;找出规律;推测A n 的坐标是 _____________;B n 的坐标是 ____________...24.在平面直角坐标系中;横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形实线四条边上的整点的个数;请你猜测由里向外第10个正方形实线四条边上的整点个数共有 个..25.已知点Aa-1;-2;B-3;b+1.根据以下要求确定a 、b 的值: 1直线AB ∥x 轴; 2直线AB ∥y 轴;3A 、B 两点在第二、四象限的角平分线上.。

第七章 平面直角坐标系 分专题培优单元复习综合练习人教版数学七年级下册

第七章 平面直角坐标系 分专题培优单元复习综合练习人教版数学七年级下册

《平面直角坐标系》分专题培优单元复习综合练习③七.作图—复杂作图33.(2021春•伊通县期末)已知在平面直角坐标系中,点A(3,4),点B(3,﹣1),点C(﹣3,﹣2),点D(﹣2,3).(1)在平面直角坐标系中,画出四边形ABCD,其面积为;(2)若P为四边形ABCD内一点,已知P点的坐标为(﹣1,1),将四边形ABCD平移后,点P的对应点P点的坐标为(2,﹣2),根据平移的规则,直接写出四边形ABCD平移后的四个顶点的对应点A′,B′,C′,D′的坐标.34.(2021春•江夏区期末)如图所示,在由边长为1的小正方形组成的网格所在的坐标平面里,有A、B两个格点,其中A点的坐标为(﹣2,4).(1)先画出网格所在的坐标平面里的平面直角坐标系,再直接写出格点B的坐标;(2)请在网格中找出格点D(0,1),并求出△ABD的面积;(3)平移线段AD到BC(使A点的对应点为B点,D点的对应点为C点),连接CD交x轴于一点P,直接写出点P的坐标:.35.在如图所示的直角坐标系中,△ABC的顶点坐标分别是A(﹣4,﹣1),B(1,1),C(﹣1,4);点P(x1,y1)是△ABC内一点,当点P(x1,y1)平移到点P1(x1+4,y1﹣2)时.①请画出平移后新△A1B1C1,并直接写出△A1B1C1三个顶点的坐标;②若三角形ABC外有一点M经过同样的平移后得到点M1(5,3),则M点的坐标是.若连接线段MM1,PP1,则这两条线段之间的关系是.③求△A1B1C1的面积.八.作图—应用与设计作图36.(2021秋•高新区期末)如图,方格纸中每个小正方形的边长为1cm,点A、B、C均为格点.(1)根据要求画图:①过C点画直线MN∥AB;②过点C画AB的垂线,垂足为D点.(2)图中线段的长度表示点A到直线CD的距离;(3)三角形ABC的面积=cm2.37.(2021秋•高邮市期末)如图,A、B、C为网格图中的三点,利用网格作图.(1)过点A画直线AD∥BC;(2)过点A画线段BC的垂线AH,垂足为H;(3)点A到直线BC的距离是线段的长;(4)三角形ABC的面积为.38.(2021秋•新吴区期末)如图,方格纸中每个小正方形的边长都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).(1)在图①中,过点P画出AB的平行线,过P点画出表示点P到直线AB距离的垂线段;(2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于.九.坐标与图形变化-平移39.(2013•金湾区一模)将点P(﹣4,3)先向左平移2个单位,再向下平移2个单位得点P′,则点P′的坐标为()A.(﹣2,5)B.(﹣6,1)C.(﹣6,5)D.(﹣2,1)40.(2021春•枣阳市期末)线段EF是由线段PQ平移得到的,点P(1,﹣4)的对应点为E(4,﹣2),则点Q(﹣3,1)的对应点F的坐标为()A.(﹣6,﹣3)B.(﹣1,﹣1)C.(0,3)D.(﹣6,3)41.(2021秋•肇源县期末)将点P(2m+3,m﹣2)向上平移2个单位得到P′,且P′在x轴上,那么点P 的坐标是()A.(3,﹣2)B.(3,0)C.(7,0)D.(9,1)42.(2021春•青山区期末)若点A(n﹣1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第三象限,则n的取值范围是()A.n<﹣2B.n<﹣4C.n>1D.﹣4<n<﹣243.(2021春•江夏区期末)已知△ABC内任意一点P(a,b)经过平移后对应点P1(a+2,b﹣6),如果点A 在经过此次平移后对应点A1(4,﹣3),则A点坐标为()A.(6,﹣1)B.(2,﹣6)C.(﹣9,6)D.(2,3)44.(2018春•柘城县期末)在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0)、B(5,0)、C (3,3),D(2,4).(1)求:四边形ABCD的面积.(2)如果把四边形ABCD先向左平移3个单位,再向下平移1个单位得四边形A′B′C′D',求A',B′,C',D′点坐标.45.(2021春•饶平县校级期末)在平面直角坐标系中,点P的坐标为(a﹣7,3﹣2a),将点P向上平移4个单位,再向右平移5个单位后得到点Q.(1)若点Q位于第一象限,求a的取值范围.(2)若a为整数,求出P、Q两点坐标.46.(2021春•江夏区期末)如图所示,在平面直角坐标系中,A(﹣3,0),B(1,4),BC∥y轴与x轴交于点C,BD∥x轴与y轴交于点D,平移四边形ABCD,使点D的对应点为DO的中点E,则图中阴影部分的面积为.47.(2019春•柳江区期中)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C 点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C ﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.48.(2009秋•南昌期中)如图所示,△ABC在平面直角坐标系中,△A1B1C1与△ABC关于y轴对称,将△ABC 向右平移m个单位得到△A2B2C2,已知A(﹣3,4),B(﹣6,0),C(﹣2,0).(1)在备用图1中画出△A1B1C1;(2)m为何值时,点A1与A2重合?并说明B2C1=B1C2;(3)m为何值时,△A1B1C1与△A2B2C2一边重合?若A1B1与A2B2并交于P点,请证明P A1=P A2;(4)m为何值时,B2、C2的横坐标是某正数的两个不同的平方根?【参考答案】七.作图—复杂作图33.解:(1)如图,四边形ABCD为所作;S四边形ABCD=6×6−12×6×1−12×1×6=30;故答案为30;(2)A ′(6,1),B ′(6,﹣4),C ′(0,﹣5),D ′(1,1). 34.解:(1)如图,平面直角坐标系如图所示,B (﹣5,0), 故答案为:(﹣5,0).(2)S △ABD =5×4−12×3×4−12×2×3−12×1×5=8.5. (3)设P (m ,0),则有12•(m +5)×4=8.5,∴m =−34, ∴P (−34,0).35.解:①如图,△A 1B 1C 1即为所求作,A 1(0,﹣3),B 1(5,﹣1),C 1(3,2).②由平移的性质可知,M(1,5),MM1=PP1,故答案为:(1,5),MM1=PP1.③S△A1B1C1=5×5−12×5×3−12×2×3−12×5×2=9.5.八.作图—应用与设计作图36.解:(1)如图,①直线MN即为所求作的图形;②AB的垂线CD即为所求;(2)图中线段AD的长度表示点A到直线CD的距离;故答案为AD;(3)三角形ABC的面积为:6−12×2×1−12×2×1−12×3×1=2.5cm2.故答案为2.5.37.解:(1)如图,直线AD即为所求;(2)如图,直线AH即为所求;(3)点A到直线BC的距离是线段AH的长;故答案为:AH;(4)三角形ABC的面积=2×3−12×1×2−12×1×2−12×1×3=2.5.故答案为:2.5.38.解:(1)如图,直线PT,线段PQ即为所求;(2)如图②中,以线段AB、CD、EF的长为边长的三角形的面积等于△ABR的面积=3×4−12×2×4−12×1×2−12×2×3=4.故答案为:4.九.坐标与图形变化-平移39.解:将点P(﹣4,3)先向左平移2个单位,再向下平移2个单位,即坐标变为(﹣4﹣2,3﹣2),即点P′的坐标为(﹣6,1).故选B.40.解:由点P(1,﹣4)的对应点为E(4,﹣2),知线段PQ向右平移3个单位、向上平移2个单位即可得到线段EF,∴点Q(﹣3,1)的对应点F的坐标为(﹣3+3,1+2),即(0,3),故选:C.41.解:∵将点P(2m+3,m﹣2)向上平移2个单位得到P′,∴P′的坐标为(2m+3,m),∵P′在x轴上,∴m=0,∴点P 的坐标是(3,﹣2). 故选:A .42.解:点A (n ﹣1,n +2)先向右平移3个单位,再向上平移2个单位得到点A ′(n +2,n +4), ∵点A ′位于第三象限, ∴{n +2<0n +4<0, 解得,n <﹣4, 故选:B .43.解:由题意,点A 向右平移2个单位,向下平移6个单位得到A 1(4,3), ∴点A 坐标(4﹣2,﹣3+6),即(2,3), 故选:D .44.解:(1)如图,过D 作DE ⊥x 轴,垂足为E ,过C 作CF ⊥x 轴,垂足为F ,∴S 四边形ABCD =S △ADE +S 四边形DEFC +S △CFB ∵S △ADE =12×1×4=2, S 四边形DEFC =12(3+4)×1=72, S △CFB =12×2×3=3, ∴S 四边形ABCD =2+72+3=172;(2)由题可得,四边形ABCD 先向左平移3个单位,再向下平移1个单位得四边形A ′B ′C ′D ', ∴平移后,各顶点的横坐标减小3,纵坐标减小1, ∵A (1,0)、B (5,0)、C (3,3),D (2,4),∴A ′(﹣2,﹣1),B ′(2,﹣1),C ′(0,2),D ′(﹣1,3). 45.解:(1)∵点P 的坐标为(a ﹣7,3﹣2a ),∴将点P 向上平移4个单位,再向右平移5个单位后得到点Q (a ﹣2,7﹣2a ),∵点Q 位于第一象限, ∴{a −2>07−2a >0, 解得2<a <3.5.(2)∵a 为整数,2<a <3.5, ∴a =3,∴P (﹣4,﹣3),Q (1,1).46.解:由题意,E (0,2),J (﹣1.5,0),C (1,0),T (﹣3,﹣2),Q (1,﹣2).∵四边形EPQT 是由四边形DBCA 平移得到, ∴S 四边形DBCA =S 四边形EPQT ,∴S 阴=S 四边形JCQT =12×(2.5+4)×2=6.5, 故答案为:6.5.47.解:(1)根据长方形的性质,可得AB 与y 轴平行,BC 与x 轴平行; 故B 的坐标为(4,6); 故答案为:(4,6);(2)根据题意,P 的运动速度为每秒2个单位长度, 当点P 移动了4秒时,则其运动了8个长度单位, 此时P 的坐标为(4,4),位于AB 上;(3)根据题意,点P 到x 轴距离为5个单位长度时,有两种情况: P 在AB 上时,P 运动了4+5=9个长度单位,此时P 运动了4.5秒; P 在OC 上时,P 运动了4+6+4+1=15个长度单位,此时P 运动了152=7.5秒.48.解:(1)画图如下图:(2)当点A 1与点A 2重合时,A 2(3,4)∵A 2(﹣3+m ,4)∴m =6(4分)由B 2C 2=B 1C 1∴B 2C 1=B 1C 2(5分)(3)如右图,当m =8时,△A 1B 1C 1与△A 2B 2C 2一边重合,则B 2C 2与B 1C 1重合;(6分)∵△A 1B 1C 1≌△A 2B 2C 2 在△A 1C 1P 和△A 2C 2P 中 {∠A1=∠A 2∠A 1PC 1=∠A 2PC 2A 1C 1=A 2C 2∴△A 1C 1P ≌△A 2C 2P ∴P A 1=P A 2;(9分)(4)当m =4时,B 2、C 2的横坐标是正数4的两个不同的平方根.(10分) ∵B 2(﹣6+m ),C 2(﹣2+m ) ∴(﹣6+m )+(﹣2+m )=0 ∴m =4(12分).。

新版人教版数学7年级下册全册 同步培优作业 含答案 第7章 平面直角坐标系 同步试题及答案(17页)

新版人教版数学7年级下册全册 同步培优作业 含答案 第7章 平面直角坐标系 同步试题及答案(17页)

初中数学同步培优系列第七章平面直角坐标系测试1平面直角坐标系学习要求认识并能画出平面直角坐标系;在给定的平面直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.(一)课堂学习检测1.填空(1)平面内两条互相______并且原点______的______,组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.(2)有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.(3)建立了平面直角坐标系以后,坐标平面就被______分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______.注意______不属于任何象限.(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“02.如图,写出图中各点的坐标.A ( , );B ( , );C ( , );D ( , );E ( , );F ( , );G ( , );H ( , );L ( , );M ( , );N ( , );O ( , );3.分别在平面直角坐标系中描出下列各点,并将各组内的点用线段依次连结起来.(1)A (-6,-4)、B (-4,-3)、C (-2,-2)、D (0,-1)、E (2,0)、F (4,1)、G (6,2)、H (8,3).(2)A (-5,-2)、B (-4,-1)、C (-3,0)、 D (-2,1)、E (-1,2)、 F (0,3)、G (1,2)、H (2,1)、L (3,0)、M (4,-1)、N (5,-2).4.分别在平面直角坐标系中描出下列各点,并将各组内的点,用平滑的曲线依次连结起来.(1)A (1,4)、 B (2,2)、C (1,34)、 D (4,1)、 E (6,32)、 F (-1,-4)、 G (-2,-2)、 H (-3,-34)、 L (-4,-1)、 M (-6,-32)(2)A (0,-4)、 B (1,-3)、C (-1,-3)、D (2,0)、E (-2,0)、F (2.5,2.25)、G (-2.5,2.25)、 H (3,5)、L (-3,5).5.下列各点A (-6,-3),B (5,2),C (-4,3.5),)43,2(D ,E (0,-9),F (3,0)中,属于第一象限的有______;属于第三象限的有______;在坐标轴上的有______.6.设P (x ,y )是坐标平面上的任一点,根据下列条件填空:(1)若xy >0,则点P 在______象限;(2)若xy <0,则点P 在______象限;(3)若y >0,则点P 在______象限或在______上;(4)若x <0,则点P 在______象限或在______上;(5)若y =0,则点P 在______上;(6)若x =0,则点P 在______上.7.已知正方形ABCD 的边长为4,它在坐标系内的位置如图所示,请你求出下列情况下四个顶点的坐标.(二)综合运用诊断8.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图1中,过A (-2,3)、B (4,3)两点作直线AB ,则直线AB 上的任意一点P (a ,b)的横坐标可以取______,纵坐标是______.直线AB与y轴______,垂足的坐标是______;直线AB与x轴______,AB与x轴的距离是______.图1(2)在图1中,过A(-2,3)、C(-2,-3)两点作直线AC,则直线AC上的任意一点Q(c,d)的横坐标是______,纵坐标可以是______.直线AC与x轴______,垂足的坐标是______;直线AC与y轴______,AC与y轴的距离是______.(3)在图2中,过原点O和点E(4,4)两点作直线OE,我们发现,直线OE上的任意一点P(x,y)的横坐标与纵坐标______,并且直线OE______∠xOy.图29.选择题(1)已知点A(1,2),AC⊥x轴于C,则点C坐标为( ).A.(1,0)B.(2,0)C.(0,2)D.(0,1)(2)若点P位于y轴左侧,距y轴3个单位长,位于x轴上方,距x轴4个单位长,则点P的坐标是( ).A.(3,-4)B.(-4,3)C.(4,-3)D.(-3,4)(3)在平面直角坐标系中,点P(7,6)关于原点的对称点P′在( ).A.第一象限B.第二象限C.第三象限D.第四象限(4)如果点E(-a,-a)在第一象限,那么点F(-a2,-2a)在( ).A.第四象限B.第三象限C.第二象限D.第一象限(5)给出下列四个命题,其中真命题的个数为( ).①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m2,-m)在第四象限内.A.1 B.2 C.3 D.410.点P(-m,m-1)在第三象限,则m的取值范围是______.11.若点P(m,n)在第二象限,则点Q(|m|,-n)在第______象限.12.已知点A到x轴、y轴的距离分别为2和6,若A点在y轴左侧,则A点坐标是______.13.A(-3,4)和点B(3,-4)关于______对称.14.若A(m+4,n)和点B(n-1,2m+1)关于x轴对称,则m=______,n=______.(三)拓广、探究、思考15.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该为______.16.如图,已知长方形ABCD的边长AB=3,BC=6,建立适当的坐标系并求A、B、C、D 的坐标.17.求三角形ABC的面积.(1)已知:A(-4,-5)、B(-2,0)、C(4,0).(2)已知:A(-5,4)、B(-2,-2)、C(0,2).18.已知点A(a,-4),B(3,b),根据下列条件求a、b的值.(1)A、B关于x轴对称;(2)A、B关于y轴对称;(3)A、B关于原点对称.19.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3.(4)点P在过A(2,-3)点,且与x轴平行的直线上.20.x取不同的值时,点P(x-1,x+1)的位置不同,讨论当点P在不同象限或不同坐标轴上时,x的取值范围;并说明点P不可能在哪一个象限.测试2 坐标方法的简单应用学习要求能建立适当的平面直角坐标系描述物体的位置.在同一直角坐标系中,感受图形变换后点的坐标的变化.(一)课堂学习检测1.回答下面的问题.(1)如图表示赵明同学家所在社区的主要服务办公网点.点O表示赵明同学家,点A表示存车处,点B表示副食店.点C表示健身中心,点D表示商场,点E表示医院,点F表示邮电局,点H表示银行,点L表示派出所,点G表示幼儿园.请以赵明同学家为坐标原点,建立平面直角坐标系,并用坐标分别表示社区的主要服务网点的位置.(图中的1个单位表示50m)(2)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程是①建立______选择一个____________为原点,确定x轴、y轴的____________;②根据具体问题确定适当的______在坐标轴上标出____________;③在坐标平面内画出这些点,写出各点的______和各个地点的______.2.如图是某乡镇的示意图,试建立直角坐标系,取100米为一个单位长,用坐标表示各地的位置:后,△ABC的顶点均在格点上,点C的坐标为(4,-1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;③写出以AB、BC为两边的平行四边形ABCD的顶点D的坐标.(二)综合运用诊断一、填空4.在坐标平面内平移图形时,平移的方向一般是平行于______或平行于______.5.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______;将点(x,y)向上或向下平移b(b>0)个单位长度,得对应点的坐标为______或______.6.把一个图形上各点的横坐标都加上或减去一个正数a,则原图形向______或向______平移______.把一个图形上各点的纵坐标都加或减去一个正数b,则原图形向______或向______平移______.7.把点(-2,3)向上平移2个单位长度所到达位置的坐标为______,向左平移2个单位长度所到达位置的坐标为______.8.把点P(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达位置的坐标为______.9.点M(-2,5)向右平移______个单位长度,向下平移______个单位长度,变为M′(0,1).10.把点P1(2,-3)平移后得点P2(-2,3),则平移过程是__________________________ _______________________________________________________________________.二、选择题11.下列说法不正确的是( ).A.坐标平面内的点与有序数对是一一对应的B.在x轴上的点纵坐标为零C.在y轴上的点横坐标为零D.平面直角坐标系把平面上的点分为四部分12.下列说法不正确的是( ).A.把一个图形平移到一个确定位置,大小形状都不变B.在平移图形的过程中,图形上的各点坐标发生同样的变化C.在平移过程中图形上的个别点的坐标不变D.平移后的两个图形的对应角相等,对应边相等,对应边平行或共线13.把(0,-2)向上平移3个单位长度再向下平移1个单位长度所到达位置的坐标是( ).A.(3,-2)B.(-3,-2)C.(0,0)D.(0,-3) 14.已知三角形内一点P(-3,2),如果将该三角形向右平移2个单位长度,再向下平移1个单位长度,那么点P的对应点P′的坐标是( ).A.(-1,1)B.(-5,3)C.(-5,1)D.(-1,3) 15.将线段AB在坐标系中作平行移动,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A(-2,1),B(0,0),则它平移的情况是( ).A.向上平移了1个单位长度,向左平移了1个单位长度B.向下平移了1个单位长度,向左平移了1个单位长度C.向下平移了1个单位长度,向右平移了1个单位长度D.向上平移了1个单位长度,向右平移了1个单位长度16.如图在直角坐标系中,下边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.17.(1)如果动点P (x ,y )的坐标坐标满足关系式试121+=x y ,在表格中求出相对应(2)若将这五个点都先向右平移五个单位,再向上平移三个单位,至A 1、B 1、C 1、D 1、E 1,试画出这几个点,并分别写出它们的坐标.(三)拓广、探究、思考18.如图,网格中每一个小正方形的边长为1个单位长度.可以利用平面直角坐标系的知识回答以下问题:1)请在所给的网格内画出以线段AB、BC为边的平行四边形ABCD;2)填空:平行四边形ABCD的面积等于______.19.在A市北300km处有B市,以A市为原点,东西方向的直线为x轴,南北方向的直线为y轴,并以50km为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C(10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km,问经几小时后,B市将受到台风影响?并画出示意图.全章测试一、填空题:1.若点P(a,b)在第四象限,则(1)点P1(a,-b)在第______象限;(2)点P2(-a,b)在第______象限;(3)点P3(-a,-b)在第______象限.2.在x轴上,若点P与点Q(-2,0)的距离是5,则点P的坐标是______.3.在y轴上,若点M与点N(0,3)的距离是6,则点M的坐标是______.4.(1)点A(-5,-4)到x轴的距离是______;到y轴的距离是______.(2)点B(3m,-2n)到x轴的距离是______;到y轴的距离是______.5.已知:如图:试写出坐标平面内各点的坐标.A(______,______);B(______,______);C(______,______);D(______,______);E(______,______);F(______,______).6.若点P(m-3,m+1)在第二象限,则m的取值范围是______.7.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.8.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.9.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.10.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______.二、选择题:11.若点P(a,b)的坐标满足关系式ab>0,则点P在( ).(A)第一象限(B)第三象限(C)第一、三象限(D)第二、四象限12.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).(A)原点(B)x轴上(C)y轴上(D)x轴上或y轴上13.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).(A)(1,2)(B)(2,1)(C)(1,2),(1,-2),(-1,2),(-1,-2)(D)(2,1),(2,-1),(-2,1),(-2,-1)14.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).(A)第一象限(B)第二象限(C)第三象限(D)第四象限15.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于(3,-2),则“炮”位于点( ).(A)(1,3)(B)(-2,1)(C)(-1,2)(D)(-2,2)16.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.(A)(0,3),(0,1),(-1,-1)(B)(-3,2),(3,2),(-4,0)(C)(1,-2),(3,2),(-1,-3)(D)(-1,3),(3,5),(-2,1)三、解答题:17.一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.18.如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);(2)按(1)中的直角坐标系在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是______,△ABC的面积是______.19.已知:三点A(-2,-1)、B(4,-1)、C(2,3).在坐标平面内画出以这三个点为顶点的平行四边形,并写出第四个顶点的坐标.20.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.参考答案第七章平面直角坐标系测试11.(1)垂直、重合、数轴,x轴、横轴,向右方向;y轴、纵轴,向上方向;原点、平面(2)有序数对.A点的坐标,横坐标,纵坐标.(3)两条坐标轴,第一象限、第二象限、第三象限、第四象限、坐标轴上的点.(4)略2.A(2,5);B(-4,6);C(-7,2);D(-6,0);E(-5,-3);F(-4,-5);G(0,-6);H(2,-5);L(5,-2);M(5,0);N(6,3);O(0,0).3.(1) (2)4.(1) (2)5.B、D;A;E和F6.(1)一或三 (2)二或四(3)一或二象限或y轴正半轴上.(4)二或三象限或x轴的负半轴上.(5)x轴上.(6)y轴上.7.(1)A(4,0),B(4,4),C(0,4),D(0,0)(2)A(2,-2),B(2,2),C(-2,2),D(-2,-2)(3)A(2,-4),B(2,0),C(-2,0),D(-2,-4)(4)A(0,-4),B(0,0),C(-4,0),D(-4,-4)8.(1)任意实数,3;垂直,(0,3),平行,3.(2)-2,任意实数;垂直,(-2,0),平行,2.(3)相等,平分.9.(1)A;(2)D;(3)C;(4)C;(5)B.10.0<m<1.11.第四象限.12.(-6,2),(-6,-2).13.原点.14.m=-2,n=3.15.(-4,-6).16.以点B为原点,射线BC、射线BA分别为x轴、y轴正半轴建立直角坐标系.A(0,3),B(0,0),C(6,0),D(6,3).17.(1)提示:作AD⊥x轴于D点,S△ABC=15.(2)提示:作AD⊥y轴于D点,作BE⊥y轴于E点,S△ABC=S梯形ABED-S△ACD-S△BCE=12.18.(1)a=3,b=4;(2)a=-3,b=-4;(3)a=-3,b=4.19.(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1=0,解得m=1,所以P点的坐标为(6,0);(3)令m-1=(2m+4)+3,解得m=-8,所以P点的坐标为(-12,-9);(4)令m-1=-3,解得m=-2.所以P点的坐标为(0,-3).20.(1)当x=-1时,点P在x轴的负半轴上;(2)当x=1时,点P在y轴的正半轴上;(3)当x>1时,点P在第一象限;(4)当-1<x<1时,点P在第二象限;(5)当x<-1时,点P在第三象限;(6)点P不可能在第四象限.测试21.(1)A(-150,50),B(150,200),C(-250,300),D(450,-400),E(500,-100),F(350,400),G(-100,-300),H(300,-250),L(-150,-500).(2)略.2.略.3.(2)画图答案如图所示:①C1(4,4);②C2(-4,-4);③D(0,-1).4.x轴,y轴.5.(x+a,y),(x-a,y);(x,y+b),(x,y-b).6.右,左,a个单位长度,上,下,b个单位长度.7.(-2,5),(-4,3).8.(1,2).9.2,4.10.点P1(-2,-3)向左平移4个单位长度,再向上平移6个单位长度得到P2点.11.D12.C13.C14.A15.B16.(5,4).17.(1)图略.(2)A1(1,2),B1(3,3),C1(5,4),D1(7,5),E1(9,6),图略.18.解:(1)如图,平行四边形ABCD;(2)平行四边形ABCD的面积是15.(第18题答图)19.提示:50×6÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)(第19题答图)全章测试1.(1)一;(2)三;(3)二.2.(-7,0)或(3,0).3.(0,-3)或(0,9).4.(1)4,5;(2)2|n|,3|m|.5.A(-5,0),B(0,-3),C(5,-2),D(3,2),E(0,2),F(-3,3).6.-1<m<3.7.(-3,2).8.B'(-3,-6),(-4,-1).9.y轴.10.(2,-1).11.C;12.D;13.D;14.A;15.B;16.D.17.在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C18.(1)略;(2)(-2,2)或(-1,1);2或419.如图所示,可以画出三个平行四边形,即平行四边形ABD1C,平行四边形AD2BC,平行四边形ABCD3,其中D1(8,3),D2(0,-5),D3(-4,3).(2)P1(-6,0)、P2(10,0)、P3(0,5)、P4(0,-3).。

(完整版)人教版七年级数学下册平面坐标系测试题和答案培优试题

(完整版)人教版七年级数学下册平面坐标系测试题和答案培优试题

一、选择题1.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033) 2.在平面直角坐标系中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为()2,4,点2021A 的坐标为( )A .()3,3-B .()2,2-C .()3,1-D .()2,4 3.如图所示,一个动点在第一象限内及x 轴、y 轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x 轴,y 轴平行的方向运动,且每秒移动一个单位长度,那么动点运动到点(7,7)的位置时,所用的时间为( )秒.A .30B .42C .56D .724.如图,长方形ABCD 中,AB=6,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位,得到长方形A 1B 1C 1D 1,第2次平移将长方形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到长方形A 2B 2C 2D 2…,第n 次平移将长方形A n ﹣1B n ﹣1C n ﹣1D n ﹣1沿A n ﹣1B n ﹣1的方向向右平移5个单位,得到长方形A n B n C n D n (n >2),若AB n 的长度为2016,则n 的值为( )A .400B .401C .402D .4035.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点()11,1P ,第二次运动到点()22,0P ,第三次运动到()33,2P -,…,按这样的运动规律,第2022次运动后,动点2022P 的坐标是( )A .()2022,1B .()2022,2C .()2022,2-D .()2022,06.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(00),运动到(0)1,,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .(8,0) 7.已知点P (x ,y )到x 轴的距离为2,到y 轴的距离为3,且x +y >0,xy <0,则点P 的坐标为( )A .(﹣2,3)B .(2,3)C .(3,﹣2)D .(3,2) 8.在平面直角坐标系中,一只蚂蚁从原点0出发,,按如图所示方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则蚂蚁从点2016A 到点2017A 的移动方向为( )A.向左B.向右C.向上D.向下9.如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90°移动2个单位长度到达点P2;然后逆时针转向90°,移动3个单位长度到达点P3;然后逆时针转向90°,移动4个单位长度到达点P4;…,如此继续转向移动下去.设点P n(x n,y n),n=1,2,3,…,则x1+x2+x3+…+x2021=()A.1 B.﹣1010 C.1011 D.202110.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC 的边时反弹,反弹时反射角等于入射角.当小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2,…,第n次碰到长方形的边时的点为P n,则点P2 018的坐标是()A.(7,4)B.(3,0)C.(1,4)D.(8,3)二、填空题11.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为____________,点A2014的坐标为__________.12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P'(y-1,-x+1)叫做点P 的伴随点;已知点A1的坐标为(3,2),点A1的伴随点记为A2,点A2的伴随点记为A3,点A3的伴随点记为A4,…,这样依次得到点A1,A2,A3,…,A n,…;则点A4的坐标为_____________,点A2020的坐标为_____________.13.在平面直角坐标系中,对于P(x,y)作变换得到P′(﹣y+1,x+1),例如:A1(3,1)作上述变换得到A2(0,4),再将A2做上述变换得到A3___________,这样依次得到A1,A2,A3,…A n;…,则A2018的坐标为___________.14.如图所示一个质点在第一象限内及x轴、y轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x 轴,y 轴平行的方向运动,且每秒移动一个单位长度,那么质点运动到点(n,n)(n 为正整数)的位置时,用代数式表示所用的时间为_________秒.15.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,2),A 6(0,2),A 7(0,3),A 8(3,3)……依此规律A 100坐标为________.16.如图,一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点()0,0运动到()0,1,然后接着按图中箭头所示方向运动,即()()()()0,00,11,11,0→→→,…,且每秒运动一个单位,到()1,1点用时2秒,到()2,2点用时6秒,到()3,3点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.17.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.18.如图,点()11,1A ,点1A 向上平移1个单位,再向右平移2个单位,得到点2A ;点2A 向上平移2个单位,再向右平移4个单位,得到点3A ;点3A 向上平移4个单位,再向右平移8个单位,得到4A ,…,按这个规律平移得到点2021A ;则点2021A 的横坐标为________.19.如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有________个.20.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.三、解答题21.在平面直角坐标系中,O 为坐标原点.已知两点(),0A a ,(), 0B b 且a 、b 满足430a b ++-=;若四边形ABCD 为平行四边形,//CD AB 且CD AB = ,点()0,4C 在y 轴上.(1)如图①,动点P 从C 点出发,以每秒2个单位长度沿y 轴向下运动,当时间t 为何值时,三角形ABP 的面积等于平行四边形ABCD 面积的四分之一;(2)如图②,当P 从O 点出发,沿y 轴向上运动,连接PD 、PA ,CDP ∠、APD ∠、PAB ∠存在什么样的数量关系,请说明理由(排除P 在O 和C 两点的特殊情况).22.对于平面直角坐标系xOy 中的图形G 和图形G 上的任意点P (x ,y ),给出如下定义:将点P (x ,y )平移到P '(x +t ,y ﹣t )称为将点P 进行“t 型平移”,点P '称为将点P 进行“t 型平移”的对应点;将图形G 上的所有点进行“t 型平移”称为将图形G 进行“t 型平移”.例如,将点P (x ,y )平移到P '(x +1,y ﹣1)称为将点P 进行“l 型平移”,将点P (x ,y )平移到P '(x ﹣1,y +1)称为将点P 进行“﹣l 型平移”.已知点A (2,1)和点B (4,1).(1)将点A (2,1)进行“l 型平移”后的对应点A '的坐标为 .(2)①将线段AB 进行“﹣l 型平移”后得到线段A 'B ',点P 1(1.5,2),P 2(2,3),P 3(3,0)中,在线段A ′B ′上的点是 .②若线段AB 进行“t 型平移”后与坐标轴有公共点,则t 的取值范围是 .(3)已知点C (6,1),D (8,﹣1),点M 是线段CD 上的一个动点,将点B 进行“t 型平移”后得到的对应点为B ',当t 的取值范围是 时,B 'M 的最小值保持不变.23.如图1,C 点是第二象限内一点, CB y ⊥轴于B ,且()0,B b 是y 轴正半轴上一点,(),0A a 是x 轴负半x 轴上一点,且()2230, 9AOBC a b S ++-==四边形.(1)A ( ),B ( )(2)如图2,设D 为线段OB 上一动点,当AD AC ⊥时,ODA ∠的角平分线与CAE ∠的角平分线的反向延长线交于点P ,求APD ∠的度数: (注: 三角形三个内角的和为180) (3)如图3,当D 点在线段OB 上运动时,作DM AD ⊥交CB 于,,M BMD DAO ∠∠的平分线交于N ,当D 点在运动的过程中,N ∠的大小是否变化?若不变,求出其值;若变化,请说明理由.24.在平面直角坐标系xOy 中,如图正方形ABCD 的顶点A ,B 坐标分别为()1,0A -,()3,0B ,点E ,F 坐标分别为(),0E m ,()3,0F m ,且12m -<≤,以EF 为边作正方形EFGH .设正方形EFGH 与正方形ABCD 重叠部分面积为S .(1)①当点F 与点B 重合时,m 的值为______;②当点F 与点A 重合时,m 的值为______.(2)请用含m 的式子表示S ,并直接写出m 的取值范围.25.如图,在平面直角坐标系中,同时将点A (﹣1,0)、B (3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A 、B 的对应点C 、D .连接AC ,BD(1)求点C 、D 的坐标,并描出A 、B 、C 、D 点,求四边形ABDC 面积;(2)在坐标轴上是否存在点P ,连接PA 、PC 使S △PAC =S 四边形ABCD ?若存在,求点P 坐标;若不存在,请说明理由.26.如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(a 2)b 20++-=,过C 作CB x ⊥轴于B ,(1)求a ,b 的值;(2)在y 轴上是否存在点P ,使得△ABC 和△OCP 的面积相等,若存在,求出点P 坐标,若不存在,试说明理由.(3)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,图3, ①求:∠CAB +∠ODB 的度数;②求:∠AED 的度数.27.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()0,C a ,(),D b a ,其中a 、b 满足关系式:24(1)0a b a ++--=.()1a =______,b =______,BCD 的面积为______;()2如图2,石AC BC ⊥于点C ,点P 是线段OC 上一点,连接BP ,延长BP 交AC 于点.Q 当CPQ CQP ∠=∠时,求证:BP 平分ABC ∠;(提示:三角形三个内角和等于180) ()3如图3,若AC BC ⊥,点E 是点A 与点B 之间上一点连接CE ,且CB 平分.ECF ∠问BEC ∠与BCO ∠有什么数量关系?请写出它们之间的数量关系并请说明理由.28.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.29.如图1在平面直角坐标系中,大正方形OABC的边长为m厘米,小正方形ODEF的边长为n厘米,且|m﹣4|+2n =0.(1)求点B、点D的坐标.(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x轴向右平移,如图2.设平移的时间为t秒,在平移过程中两个正方形重叠部分的面积为S平方厘米.①当t=1.5时,S=平方厘米;②在2≤t≤4这段时间内,小正方形的一条对角线扫过的图形的面积为平方厘米;③在小正方形平移过程中,若S =2,则小正方形平移的时间t 为 秒.(3)将大正方形固定不动,小正方形从图1中起始状态沿x 轴向右平移,在平移过程中,连接AD ,过D 点作DM ⊥AD 交直线BC 于M ,∠DAx 的角平分线所在直线和∠CMD 的角平分线所在直线交于N (不考虑N 点与A 点重合的情形),求∠ANM 的大小并说明理由. 30.已知A 、B 两点的坐标分别为()2,1A -,()4,1B --,将线段AB 水平向右平移到DC ,连接AD ,BC ,得四边形ABCD ,且12ABCD S =四边形.(1)点C 的坐标为______,点D 的坐标为______;(2)如图1,CG x ⊥轴于G ,CG 上有一动点Q ,连接BQ 、DQ ,求BQ DQ +最小时Q 点位置及其坐标,并说明理由;(3)如图2,E 为x 轴上一点,若DE 平分ADC ∠,且DE HC ⊥于E ,14ABH ABC ∠=∠.求BHC ∠与A ∠之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出A 1(3,0),A 5(9,-6),A 9(15,-12),A 13(21,-18),•••,探究规律可得A 2021(3033,-3030),从而求解.【详解】解:由题意A 1(3,0),A 5(9,-6),A 9(15,-12),A 13(21,-18),•••, 可以看出,9=1532+,15=2732+,21=3932+, 得到规律:点A 2n +1的横坐标为()32136622n n +++=,其中0n ≥的偶数, 点A 2n +1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n =,故A 2021的横坐标为61010630332⨯+=,A 2021的纵坐标为303333030-+=-, ∴A 2021(3033,-3030),故选:C .【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.2.D解析:D【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点2021A 的坐标即可.【详解】解:观察发现:1(2,4)A ,2(3,3)A -,3(2,2)A ,4(3,1)A ,5(2,4)A ,6(3,3)A∴依此类推,每4个点为一个循环组依次循环,20214505余1,∴点2021A 的坐标与1A 的坐标相同,为(2,4),故选:D .【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.3.C解析:C【分析】归纳走到(n ,n )处时,移动的长度单位及方向,再求当n=7时所用的时间即可.【详解】质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n ,n )处,走过的长度单位是2+4+6+…+2n =n (n +1),当n=7时,可得n (n +1)=7×8=56,∴走过的时间为56s.故选:C.【点睛】本题属于归纳推理,要归纳出质点运动到点(n,n )处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n )处的时间.4.C解析:C【解析】AB=6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形1111D C B A ∴11122155111AB AA A A A B =++=++= ,第2次平移将矩形1111D C B A 沿的方向向右平移5个单位,得到矩形2222A B C D …, ∴2AB 的长为:5+5+6=16;计算得出:n=402. ∴1122111125,5,651AA A A A B A B A A ===-=-= , ∵1AB =2×5+1, 2AB =3×5=1=16,所以C 选项是正确的.点睛:本题主要考查了平移的性质及一元一次方程的应用,根据平移的性质得出1125,5AA A A ==是解本题的关键.5.D解析:D【分析】观察图象,结合动点P 第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,结合运动后的点的坐标特点,分别得出点P 运动的纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合动点P 第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P 的纵坐标是0,故选:D .【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键. 6.C解析:C【解析】【分析】由题目可以知道,质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n ),用n 2+n 秒,这样可以先确定,第80秒钟时所在的点所在正方形,然后就可以进一步推得点的坐标.【详解】质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n ),用n 2+n 秒,∵当n=8时,n 2+n=82+8=72,∴当质点运动到第72秒时到达(8,8),∴质点接下来向左运动,运动时间为80-72=8秒,∴此时质点的横坐标为8-8=0,∴此时质点的坐标为(0,8),∴第80秒后质点所在位置的坐标是(0,8),故选C.【点睛】本题考查了规律题——点的坐标,解决本题的关键是读懂题意,并总结出一定的规律,难度较大.7.C解析:C【分析】由点P (x ,y )到X 轴距离为2,到Y 轴距离为3,可得x ,y 的可能的值,由x +y >0,xy <0,可得两数异号,且正数的绝对值较大;根据前面得到的结论即可判断点P 的坐标.【详解】解:∵点P (x ,y )到x 轴距离为2,到y 轴距离为3,∴|x |=3,|y |=2,∴x =±3,y =±2;∵x +y >0,xy <0,∴x =3,y =﹣2,∴P 的坐标为(3,﹣2),故选:C .【点睛】此题考查直角坐标系中点到坐标轴的距离与坐标的关系,有理数加法乘法法则,正确掌握有理数的加法乘法法则是解题的关键.8.C解析:C【解析】由图可知,A 1在y 轴上,A 3,A 12都在x 轴上.∵蚂蚁每次移动1个单位,∴OA 1=1,OA 3=1,OA 12=6,∴A 1(0,1),A 3(1,0),A 12(6,0);若n 是4的倍数,那么连续四个点的坐标是11,02n n A -⎛⎫- ⎪⎝⎭ ,,02n n A ⎛⎫ ⎪⎝⎭,1,12n n A +⎛⎫ ⎪⎝⎭,21,12n n A +⎛⎫+ ⎪⎝⎭; ∵2016÷4=504,∴2016是4的倍数,∴A 2016(1008,0).∵2017÷4=504…1,∴A 2017与A 2016横坐标相同,∴A 2017(1008,1),∴从点A 2016到点A 2017的移动方向与从点O 到A 1的方向一致,为从下向上.故选C.9.A【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-,567833442x x x x +++=+--=-,⋯,9798991002x x x x +++=-,⋯,1220202(20204)1010x x x ∴++⋯+=-⨯÷=-,20211011x =,12320211x x x x ∴+++⋯+=,故选:A .【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律. 10.A解析:A【解析】如图,经过6次反弹后动点回到出发点(0,3),周期是6,当点P 第3次碰到矩形的边时,点P 的坐标为:(8,3),∵2018=6⨯336+2,∴当点P 第2018次碰到矩形的边时为第337个循环组的第2次反弹,点P 2 018的坐标为(7,4).故答案为(7,4).点睛:周期性问题,要先找到最小周期,然后把目标数据写成周期形式,2018=6⨯336+2.二、填空题11.(-3,1); (0,4)【分析】根据伴随点的定义结合点A1的坐标,即可得出部分点An 的坐标,根据点的坐标的变化即可得出变化规律“A4n+1(3,1),A4n+2(0,4解析:(-3,1); (0,4)【解析】【分析】根据伴随点的定义结合点A 1的坐标,即可得出部分点A n 的坐标,根据点的坐标的变化即可得出变化规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”,依此规律即可得出结论.【详解】解:观察发现:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4),…, ∴A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数). ∵2014=503×4+2,∴点A 2014的坐标为(0,4).故答案为:(-3,1);(0,4).【点睛】本题考查了找规律.根据点的坐标的变化找出变化规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”是解题的关键.12.【分析】先根据伴随点的定义依次求出点的坐标,再归纳类推出一般规律,由此即可得.【详解】,即,即,即,即归纳类推得:点的坐标是以循环变化的点的坐标与点的坐标相同,解析:(1,4)- (1,4)-【分析】先根据伴随点的定义依次求出点4235,,,A A A A 的坐标,再归纳类推出一般规律,由此即可得.【详解】1(3,2)A2(21,31)A ∴--+,即2(1,2)A -3(21,11)A ---+,即3(3,0)A -4(01,31)A -+,即4(1,4)A -5(41,11)A -+,即5(3,2)A归纳类推得:点123,,,,,n A A A A ⋯⋯的坐标是以1234,,,A A A A 循环变化的20204505=⨯∴点2020A 的坐标与点4A 的坐标相同,即为(1,4)-故答案为:(1,4)-,(1,4)-.【点睛】本题考查了点坐标的规律探索,根据点4235,,,A A A A 的坐标,正确归纳类推出一般规律是解题关键.13.(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣解析:(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A 3坐标为(﹣3,1),A 4坐标(0,﹣2),A 5坐标(3,1)则可知,每4次一个循环,∵2018=504×4+2,∴A 2018坐标为(0,4),故答案为:(﹣3,1),(0,4)【点睛】本题为平面直角坐标系中的动点坐标探究题,考查了点坐标的变换,解答关键是理解变换规则.14.n(n+1);【解析】分析:归纳走到(n ,n )处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向解析:n(n+1);分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n,n)处,走过的长度单位是2+4+6+…+2n=n(n+1),点睛:本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.其中需知道2+4+6+…+2n=n(n+1)即可.15.(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律.16.【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,19,20解析:()由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x ,y )到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x 轴上,横坐标为偶数时,所用时间为x 2秒,在y 轴上时,纵坐标为奇数时,所用时间为y 2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键. 17.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A (3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n =500,∴1000A (1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.18.【分析】先求出点A1,A2,A3,A4的横坐标,再从特殊到一半套就出规律,然后利用规律即可解决问题.【详解】点A1的横坐标为,点A2的横坐标为,点A3的横坐标为,点A4的横坐标为,…解析:202121-【分析】先求出点A 1,A 2,A 3,A 4的横坐标,再从特殊到一半套就出规律,然后利用规律即可解决问题.【详解】点A 1的横坐标为11=2-1,点A 2的横坐标为23=2-1,点A 3的横坐标为37=2-1,点A 4的横坐标为415=2-1,…,按这个规律平移得到点点A n 的横坐标为2-1n ,∴点2021A 的横坐标为20212-1,故答案为:202121-.【点睛】本题考查坐标与图形变化-平移、规律型问题等知识,解题关键是学会套就规律的方法. 19.60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点.根据正方形是中心对称图形,则四条边共有4⨯1=4个整点,②第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点.根据正方形是中心对称图形,则四条边共有4⨯2=8个整点,③第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点.根据正方形是中心对称图形,则四条边共有4⨯3=12个整点,④第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点.根据正方形是中心对称图形,则四条边共有4⨯4=16个整点,⑤第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点.根据正方形是中心对称图形,则四条边共有4⨯5=20个整点,...以此类推,第15个正方形,四条边上的整点共有4⨯15=60个.故答案为:60.【点睛】本题主要考查了坐标与图形的性质,图形中的数字的变化规律.准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键.20.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.三、解答题21.(1)1或3;(2)∠APD =∠CDP +∠PAB 或∠APD =∠PAB -∠CDP ,理由见解析【分析】(1)由非负数的性质求出a ,b ,得到AB 的长,结合点C 坐标求出平行四边形ABCD 的面积,再根据ABP △的面积等于平行四边形ABCD 面积的14,列出方程,解之即可; (2)分点P 在线段OC 上和点P 在OC 的延长线上,两种情况,过P 作PQ ∥AB ,利用平行线的性质求解.【详解】解:(1)∵430a b ++-=,∴a =-4,b =3,即A (-4,0),B (3,0),∴AB =3-(-4)=7,又C (0,4),∴OC =4,∴平行四边形ABCD 的面积=4×7=28,由题意可知:PC =2t ,则OP =42t -,∵ABP △的面积等于平行四边形ABCD 面积的14, ∴114272824t ⨯-⨯=⨯, 解得:t =1或t =3,(2)如图,当点P 在线段OC 上时,过P 作PQ ∥AB ,则PQ ∥CD ,∴∠CDP =∠DPQ ,∠APQ =∠PAB ,∴∠APD =∠DPQ +∠APQ =∠CDP +∠PAB ;当点P 在OC 的延长线上时,过P 作PQ ∥AB ,则PQ ∥CD ,∴∠CDP =∠DPQ ,∠APQ =∠PAB ,∴∠APD =∠APQ -∠DPQ =∠PAB -∠CDP .【点睛】本题考查了坐标与图形,平行线的性质,解题的关键是掌握坐标和图形的关系,将坐标与线段长进行转化,同时适当添加辅助线,构造平行线.22.(1)(3,0);(2)①P 1;②42-≤≤-t 或1t =;(3)13t ≤≤【分析】(1)根据“l 型平移”的定义解决问题即可.(2)①画出线段A 1B 1即可判断.②根据定义求出t 最大值,最小值即可判断.(3)如图2中,观察图象可知,当B ′在线段B ′B ″上时,B 'M 的最小值保持不变,最小值为2.【详解】(1)将点A (2,1)进行“l 型平移”后的对应点A '的坐标为(3,0),故答案为:(3,0);(2)①如图1中,观察图象可知,将线段AB 进行“﹣l 型平移”后得到线段A 'B ',点P 1(1.5,2),P 2(2,3),P 3(3,0)中,在线段A ′B ′上的点是P 1,故答案为:P 1;②若线段AB 进行“t 型平移”后与坐标轴有公共点,则t 的取值范围是﹣4≤t ≤﹣2或t =1. 故答案为:﹣4≤t ≤﹣2或t =1.(3)如图2中,观察图象可知,当B ′在线段B ′B ″上时,B 'M 的最小值保持不变,最小值为2,此时1≤t ≤3.故答案为:1≤t ≤3.【点睛】本题属于几何变换综合题,考查了平移变换,“t 型平移”的定义等知识,解题的关键理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题,属于中考创新题型. 23.(1)A (-2,0)、B (0,3);(2)∠APD=90°;(3)∠N 的大小不变,∠N=45°【分析】(1)利用非负数的和为零,各项分别为零,求出a ,b 的值;(2)如图,作DM ∥x 轴,结合题意可设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y ,根据平角的定义可知∠OAD=90°-2y ,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y ,再结合图形即可得出∠APD 的度数;(3)∠N 的大小不变,∠N=45°,如图,过D 作DE ∥BC ,过N 作NF ∥BC ,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=12∠BMD+12∠OAD ,据此即可得到结论. 【详解】(1)由()2230a b ++-=,可得20a 和230b ,解得2,3a b =-=∴A 的坐标是(-2,0)、B 的坐标是(0,3);(2)如图,作DM ∥x 轴根据题意,设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y ,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系
一、填空题
1.已知点M(x,y)与点N(-2, 3)关于x轴对称,则x+y= _______ 。

2.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第 _______ 象限。

3.如果点M(x+3,2x-4)在第四象限内,那么x的取值范围是 ________________ 。

4.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy= ______ 。

5.在坐标系内,点P(2,-2)和点Q(2,4)之间的距离等于______ 个单位长度,线段PQ的中点的坐标是 ________ 。

6.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A’(-1,-2)处,使A与A′重合.则B、C两点坐标分别为 ________ ,________ 。

7.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘 -1,那么所得的图案与原图案会关于 ________ 对称.
8.已知平面直角坐标系中有一点M(m-1,2m+3),点M到y轴的距离为1,则m值为________ 。

‘9.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为 ________ 。

10.已知点P(3a-9,1-a)是第三象限的点,且横坐标、纵坐标均为整数,若P、Q关于原点对称,点Q的坐标为________ 。

11.若xy=0,则点P在 ________ ;若x2+y2=0,则点P在________ 。

12.已知线段AB=3,AB∥x轴,若点A坐标为(1,2),则B点坐标为 ________ 。

二、选择题
13.小红将直角坐标系中的点A的横坐标乘2再加2,纵坐标减2再除以2,点A恰好落在原点上,则点A的坐标是()
A.(-1,2)B.(-5,5)C.(-2,8)D.(1,5)
14.点P(a,b)到x轴、y轴的距离和为()
D.a-b
A.a+b B.|a+b| C.|a|+|b|
15.下列说法正确的是()
A.平面内,两条互相垂直的直线构成数轴
B.坐标为(3,4)与(4,3)表示同一个点
C.x轴上的点必是纵坐标为0,横坐标不为0
D.坐标原点不属于任何象限
16.下列说法正确的是()
A.点P(0,5)在x轴上
B.点A(-3,4)与点B(3,-4)在x轴的同一侧
C.点M(-a,a)在第二象限
D.坐标平面内的点与有序数对是一一对应的
17.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是()
A.(1,2)B.(1,2),(1,-2),(-1,2),(-1,-2)C.(2,1)D.(2,1),(2,-1),(-2,1),(-2,-1)18.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()
A.第二、四象限B.第一、三象限
C.平行于x轴的直线上D.平行于y轴的直线上
19.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.
A.(0,3),(0,1),(-1,-1)B.(-3,2),(3,2),(-4,0)
C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)
20.已知点M(2x-3,3-x)在第一象限的角平分线上,则M坐标为()
A.(-1,-1)B.(-1,1)C.(1,1)D.(1,-1)
三、解答题
21、已知:三点A(-2,-1)、B(4,-1)、C(2,3).在坐标平面内画出以这三个点为顶点的平行四边形,并写出第四个顶点的坐标.
22.如图所示,C、D两点的横坐标分别为2、3,线段CD=1;B,D两点的横坐标分别为 -2、3,线段BD=5;A、B两点的横坐标分别为-3、-2,线段AB=1.请探索:
(1)如果x轴上有两点M(x
1,0),N(x
2
,0)(x
1
<x
2
),那么线段MN的长为多少?
(2)如果y轴上有两点P(0,y
1),Q(0,y
2
)(y
1
<y
2
),那么线段PQ的长为多少?
23.如图:在直角坐标系中,第一次将△AOB变换成△OA
1B
1
,第二次将三角形变换成△OA
2
B
2
,第三
次将△OA
2B
2
,变换成△OA
3
B
3
,已知A(1,3),A
1
(3,3),A
2
(5,3),A
3
(7,3);B(2,0),B
1
(4,0),B
2(8,0),B
3
(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA
3B
3
变换成△OA
4
B
4

则A
4的坐标是 ___________,B
4
的坐标是 ____________。


(2)若按(1)找到的规律将△OAB进行了n次变换,得到△OA
n B
n
,比较每次变换中三角形顶点有
何变化,找出规律,推测A
n 的坐标是 _____________,B
n
的坐标是 ____________。


24.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有个。

25.已知点A(a-1,-2),B(-3,b+1).根据以下要求确定a、b的值:
(1)直线AB∥x轴;
(2)直线AB∥y轴;
(3)A、B两点在第二、四象限的角平分线上.。

相关文档
最新文档