最新北师大版九年级数学上册《反比例函数》教案(优质课一等奖教学设计).doc

合集下载

最新北师大版九年级数学上册《反比例函数》教案(优质课一等奖教学设计).doc

最新北师大版九年级数学上册《反比例函数》教案(优质课一等奖教学设计).doc

《1 反比例函数》教案
教学目标:
1、从现实情境和已有的知识经验出发,讨论两个变量之间的函数关系,加深对函数概念的理解.
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
3、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
教学重点:
理解和领会反比例函数的概念.
教学难点:
从现实环境和所学知识人手,探索两个变量之间的函数关系.
教学过程:
一、问题提出
电流I、电阻R、电压U之间满足关系式U=IR,当U=220
V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成表格(见可悲吧):当R越来越大时,I怎样变化?当R 越来越小呢?(3)变量I是R的函数吗?为什么?
根据提供的信息,对多对关系式的分析,可以得出:当电阻R越来越大时,电流I越来越小,当R越来越小时,I越来越大.当给定一个R的值时,相应地就确定了一个I值,因此,I是R的函数.
二、做一做
1、一个矩形的面积为20cm2,相邻的两条边长分别为x cm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2、某村有耕地346.2公顷,人数数量n每年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的
函数吗?是反比例函数吗?为什么?
3、y是x的反比例函数,表格(见课本)给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成表格.
三、课堂小结
反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意概念中变量的相依关系及变化规律,逐步加深理解.通过举例、说理、讨论等活动,用数学眼光审视某些实际现象.。

北师大版数学九年级上册5.1《反比例函数》教学设计

北师大版数学九年级上册5.1《反比例函数》教学设计

北师大版数学九年级上册5.1《反比例函数》教学设计一. 教材分析《反比例函数》是北师大版数学九年级上册第五章第一节的内容。

本节内容是在学生已经掌握了函数概念和正比例函数的基础上,引出反比例函数的概念,让学生进一步理解函数的本质,体会数学与实际生活的联系。

本节内容对于学生来说比较抽象,但是通过生活中的实例,可以让学生更好地理解反比例函数的概念和性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质已经有了初步的了解。

但是反比例函数的概念和性质较为抽象,学生可能难以理解。

因此,在教学过程中,我将会结合生活中的实例,让学生更好地理解反比例函数的概念和性质。

三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.反比例函数的概念和性质。

2.如何运用反比例函数解决实际问题。

五. 教学方法1.实例导入:通过生活中的实例,引导学生思考反比例函数的概念。

2.小组讨论:让学生通过小组讨论,共同探究反比例函数的性质。

3.练习巩固:通过大量的练习题,让学生巩固反比例函数的知识。

4.实际应用:让学生运用反比例函数解决实际问题,感受数学与生活的联系。

六. 教学准备1.PPT课件:制作反比例函数的教学课件,包括生活中的实例、反比例函数的性质等内容。

2.练习题:准备一些关于反比例函数的练习题,用于课堂练习和巩固知识。

3.教学视频:准备一些关于反比例函数的教学视频,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如商场打折,引导学生思考反比例函数的概念。

2.呈现(10分钟)通过PPT课件,呈现反比例函数的性质,让学生初步了解反比例函数的特点。

3.操练(10分钟)让学生通过小组讨论,共同探究反比例函数的性质。

期间,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生解答一些关于反比例函数的练习题,巩固所学知识。

反比例函数教学设计(北师大版本九年级上)

反比例函数教学设计(北师大版本九年级上)

课题:九年级数学上册第五章反比例函数一、教学目标设计(1)从现实情境和学生已有的知识经验出发,讨论两个变量之间的相互关系,加深对函数概念的理解。

(2)经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。

(3)体会数学从实践中来又到实际中去的研究、应用过程;培养学生的观察能力,及数学地发现问题,解决问题的能力。

二、教学内容及重点、难点分析本课内容是北师大版九年级(上)数学第五章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习产生积极的影响,为函数、方程、不等式间的关系的处理奠定了基础。

函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

重点:经历反比例函数的概念过程,理解和领会反比例函数的概念;难点:领悟反比例函数的概念;难点突破关键:从现实情景和所学的知识入手,探索两个变量之间的相依关系。

三、教学对象分析;九年级学生曾在小六(下)学过“反比例”,在七(下)学过“变量之间的关系”,在八(上)学过“函数及一次函数”。

对“反比例”、“函数”等已经有了一定认识,在此基础上来讨论反比例函数有了一定的经验积累,为这里的学习奠定了较好基础。

九年级学生的思维品质(完备性、深刻性、实践性、批判性等)尚待提高,学生抽象概括能力也有限,对函数的意义理解、数量变化规律的把握还是有一定难度,特别是对抽象的表达式中的变量与常量的取值理解不深。

由于函数概念把常量数学引入变量数学,是学生数学认识上的一次大的飞跃,在学生认知方式和思维方式上有的有较高的要求,因此,少部分学生对函数稍有畏惧心理。

因此在反比例函数概念的形成过程中,应注重充分利用学生已有的生活经验与背景知识,创设丰富的现实情境,同时充分让学生自主学习与合作交流相结合,通过举例、说理、讨论、交流等形式,内化、升华、巩固其知识,让学生揭示规律,形成能力。

北师大版初中数学九年级上册《第六章 反比例函数 1 反比例函数》 赛课教案_5

北师大版初中数学九年级上册《第六章 反比例函数 1 反比例函数》 赛课教案_5

6.1反比例函数教学设计一、教材分析本课内容是北师大版九年数学级(上)第六章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习产生积极的影响,为函数、方程、不等式间关系的处理奠定了基础。

函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

二、教学设想采用“先学后教,当堂训练”的五步自主教学法进行教学。

在教师的指导下通过学生复习旧知、自学、互学、当堂训练等环节,让学生自主探索和交流从而得出反比例函数的定义及其三种表达式,能根据反比例函数判断一个函数是否为反比例函数,会用待定系数法求反比例函数的表达式。

三、教学目标1、经历抽象反比例函数概念的过程进程,知道反比例函数的概念及三种表达式。

2、能判定一个函数是否为反比例函数。

3、会求反比例函数的解析式。

四、教学重点与难点1、反比例函数的概念及三种表达式。

2、求反比例函数的解析式。

五、教学过程设计:(一)温故知新1、什么是函数?2、我们学习过哪些函数?你能分别说出它们的表达式吗?(二)自学指导自学课本P149页上的内容,完成课本上的相关问题,知道反比例函数的定义。

1、练习一(1)反比例函数的定义一般地,如果两个变量x,y之间的关系可以表示成(k为常数,k ≠0)的形式,那么称y是x的。

(2)在下列函数表达式中,x表示自变量,哪些是反比例函数?每一个反比例函数的k值是多少?(1) (2) (3) (4)(5) (6) (7) (8)23x y =(三)反比例函数的表示形式(四)小试牛刀下列表达式中y 是x 的反比例函数的有哪些?(1) (2) (3) (4) (5) (6)(五)回味无穷★1、反比例函数 一般地,如果两个变量x ,y 之间的关系可以表示成 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。

1反比例函数-北师大版九年级数学上册教案

1反比例函数-北师大版九年级数学上册教案

反比例函数-北师大版九年级数学上册教案一、教学目标通过本课的学习,学生应该能够:1.掌握反比例函数的概念和性质;2.理解反比例函数的图像特征;3.能运用反比例函数解决实际问题。

二、教学重点1.反比例函数的概念和性质;2.反比例函数的图像特征。

三、教学难点反比例函数实际应用问题的解决。

四、教学过程1. 导入新知本课学习的主要内容是反比例函数,回顾一下之前学过的正比例函数。

请同学们简单回答一下什么是正比例函数,它的图像特征是什么。

2. 概念认识引入反比例函数的定义和性质,讲解反比例函数的概念和性质。

并通过学生自主练习来巩固概念。

3. 图像探究通过计算几个反比例函数的图像,来观察图像的特征。

并通过课堂小组讨论,学生们分别汇报各自的观察结果。

最终得到反比例函数图像的特征是:经过点(1, a)并且与x轴垂直。

4. 例题演练通过实例演示,来帮助学生更好的掌握反比例函数的解法。

要求学生先自主思考解题思路,然后再与同桌讨论交流。

最后由教师进行总结和点评。

5. 创新实践让学生通过实际问题来运用反比例函数进行解题,如水桶漏水、利润分配、比例缩小等问题。

鼓励学生思考不同的解法,并形成小组或个人汇报解答思路和结果。

五、教学方法本课采用讲授、讨论、实践等方法。

通过学生自主练习、案例演示和小组讨论等活动,帮助学生更好地掌握反比例函数的概念和解法。

六、教学评价本课教学重心是帮助学生理解反比例函数的概念和性质,并能够运用反比例函数解决实际问题。

针对不同难度的反比例函数题目,采取引导和提示的方式,帮助每个学生充分思考并解答问题。

通过不同方式的评价,如课堂监测、作业和小组汇报等,来检验课程效果。

七、拓展延伸让学生在家通过复习反比例函数的相关知识并完成一定数量的习题,巩固课堂所学知识。

同时,鼓励学生通过网络教育资源自学更多知识内容,加深对反比例函数的认识。

北师大版数学九年级上册《反比例函数》教案

北师大版数学九年级上册《反比例函数》教案

北师大版数学九年级上册《反比例函数》教案一、教学目标1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解;3.能够应用反比例函数解决实际问题;4.发展学生的数学思维能力和解决问题的能力。

二、教学重点1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解。

三、教学难点1.能够应用反比例函数解决实际问题;2.发展学生的数学思维能力和解决问题的能力。

四、教学内容及教学方法教学内容1.反比例函数的定义及其特点;2.反比例函数的表格、图像、实例;3.反比例函数的应用。

教学方法1.归纳法和演绎法相结合;2.以实例为基础进行教学;3.组织学生进行小组讨论;4.利用多种教学手段,如讲解、展示、讨论等。

五、教学步骤第一步:引入介绍本课的主题:反比例函数,通过捕捉学生的注意力引入本课。

第二步:概念的讲解1.反比例函数的定义;2.反比例函数的图像及其特点;3.反比例函数的一般式及其性质。

第三步:小组讨论案例提供 5~10 个实际问题,组织学生分组讨论如何用反比例函数来解决这些问题。

第四步:作业辅导老师根据本课教学内容布置作业,并对学生作业进行辅导。

六、教学评价1.学生通过小组讨论和作业完成任务,能够较好的理解反比例函数的定义、特点和应用;2.学生在课堂上和小组中能积极表达,互相交流,并进行了有效合作;3.学生通过课堂练习和作业完成,能够掌握所学知识,较好的掌握了课堂所学内容。

七、教学反思通过本课的教学,学生在课堂上和小组中都能积极参与讨论,并且能够掌握反比例函数的基本概念和应用,达到了本课的预期教学目标。

同时也发现了一些问题:部分学生对于难度较大的问题理解困难,需要老师进一步解释;有些学生的知识储备较少,需要老师根据学生的情况进行差异化教学。

在以后的教学中,需要更注重学生的个性化需求,实现更有效的教学效果。

最新北师大版九年级数学上册 第六章 反比例函数 优秀教案教学设计

最新北师大版九年级数学上册 第六章 反比例函数 优秀教案教学设计

第六章反比例函数1反比例函数 (1)2反比例函数的图象与性质 (3)3反比例函数的应用 (6)1反比例函数1.了解反比例函数的概念,会判断一个式子是否是反比例函数.2.能够列出实际问题中的反比例函数的表达式,并能确定自变量的取值范围.重点了解反比例函数的概念,会判断一个式子是否是反比例函数.难点能够列出实际问题中的反比例函数的表达式.一、情境导入课件出示:导体中的电流I,与导体的电阻R、导体两端电压U之间满足关系式U=IR.当U=220 V 时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20 40 60 80 100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?学生小组合作讨论后举手回答,教师点评,并引出本节课课题——反比例函数.二、探究新知1.反比例函数的概念问题1:小明有10元钱,购买y(个)单价是x(元)的铅笔,你能用含x的代数式表示y 吗?学生:y =10x.问题2:京沪高速公路全长约为1 318 km ,汽车沿京沪高速公路从上海开往北京,汽车行完全程所需的时间为t(h ),行驶的平均速度为v(km /h ),你能用含t 的代数式表示v 吗?学生:v =1318t.教师:从上面的两个问题得出关系式y =10x 和v =1318t .它们是函数吗?能否根据这两个问题归纳出这一类函数的表达式呢?引导学生观察,归纳总结出反比例函数的概念:一般地,如果两个变量x ,y 之间的对应关系可以表示成 y =kx (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.从y =kx 中可知自变量x 作为分母,所以x 不能为零.2.反比例函数的表达式 课件出示:下列函数表达式中,哪些式子表示y 是x 的反比例函数?如果是,请写出k 的值. (1)y =5x ; (2)y =0.4x ;(3)y =x2; (4)xy =2;(5)y =x π; (6)y =-5x ;(7)y =2x -1.学生思考后汇报答案,教师点评.教师:通过上面这道题,你能总结出反比例函数表达式的不同形式吗? 学生积极思考,归纳总结: 第一种:y =k x .第二种:xy =k. 第三种:y =kx -1. 三、举例分析 例1 若y =(5+m)x2+n是反比例函数,则m ,n 的取值是( )A .m =-5,n =-3B .m≠-5,n =-3C .m ≠-5,n =3D .m≠-5,n =-4 学生举手回答,教师点评.例2 一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和 y cm ,那么变量y 是变量x的函数吗?是反比例函数吗?为什么?例3 某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?例4 y是x的反比例函数,下表给出了x与y的一些值:x -2 -1 -12121 3y 232 -1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.学生独立完成后汇报答案,教师点评,并提出问题:上述问题中,自变量能取哪些值?四、练习巩固教材第150页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.什么是反比例函数?六、课外作业教材第150~151页习题6.1第1~4题.本节课的知识是反比例函数.课堂上,结合实例引导学生了解所讨论的函数的表达式,形成反比例函数概念的具体形象,让学生经历从感性认识到理性认识的转化过程,发展学生的思维.在探索具体问题中的数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数.通过练习题既巩固了反比例函数的定义,也让学生认识到反比例函数的表达式有不同的形式.由学生总结归纳,锻炼了学生的观察总结能力,紧接的练习又巩固了反比例函数表达式的3种形式.在教学过程中,给学生足够的时间和空间,培养学生自主分析问题、解决问题的能力,让学生得到一个良好的自主学习的环境.2反比例函数的图象与性质1.掌握画出反比例函数图象的基本步骤,会画反比例函数的图象.2.掌握反比例函数的主要性质.3.能利用反比例函数的图象及性质解决一些实际问题.重点画反比例函数的图象,理解反比例函数的性质. 难点理解反比例函数的性质,并能灵活应用.一、复习导入1.什么是反比例函数?2.画出一次函数y =4x 的图象,图象是什么形状?画一次函数图象的步骤是什么? 学生自主思考后给出答案,教师点评. 二、探究新知 1.反比例函数的图象教师:反比例函数y =4x 的图象会是什么形状呢?我们可以用什么方法画这个反比例函数的图象?学生独立画图象,指名板演.教师点评,引导学生归纳画反比例函数图象的基本步骤. 教师:你以为画反比例函数图象时应注意哪些问题? 引导学生总结:(1)反比例函数的图象是双曲线;(2)画反比例函数的图象要经过列表、描点、连线这三个步骤; (3)双曲线的两端是无限延伸的,画的时候要“出头”;(4)画双曲线时,取的点越密集,描出的图象就越准确,但计算量会越大,故一般在原点的两侧各取3~5个点即可;(5)连线时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接.注意:两个分支不连接.教师:观察上面的函数图象,如果点P(x 0,y 0)在函数y =4x 的图象上,那么与点P 关于原点成中心对称的P′的坐标应是什么?这个点在函数y =4x的图象上吗?学生思考回答后,教师进一步讲解:反比例函数的图象既是一个轴对称图形,又是一个中心对称图形.对称轴有两条,分别是直线y =x 与直线y =-x ;对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.2.反比例函数的性质 课件出示:。

数学北师大版九年级上册第一节《反比例函数》教学设计

数学北师大版九年级上册第一节《反比例函数》教学设计

九年级数学第六章第一节《反比例函数》教学设计一、指导思想与理论依据函数是在探索具体问题中数量关系和变化规律基础上抽象出的重要数学概念,是研究现实世界变化规律的重要数学模型.在前面已学习过“变量之间的关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念,为后继学习产生积极影响。

二、教学背景分析 1、教学内容分析本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念.通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义.2、学生情况分析由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向.三、教学目标设计 知识与能力1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念 过程与方法结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式. 情感态度与价值观结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用. 四、重点难点重点是经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.难点是:学生对函数概念的理解单位 临漳县香菜营中学 年级 九 学科 数学 姓名 石良有 ············································密·········封·········线········································五、教学方法自主学习、合作探究六、教学过程教师活动学生活动设计意图第一个环节:引入新课给学生设置疑问,激发学生学习兴趣。

初中数学北师大九年级上册(2023年修订) 反比例函数反比例函数教学设计

初中数学北师大九年级上册(2023年修订) 反比例函数反比例函数教学设计
二、探究新知
探究一
电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,
(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表:
R/Ω
20
40
60
80
100
I/A
当R越来越大时,I怎样变化?当R越来越小呢?
(2)变量I是R的函数吗?为什么?
探究二
京沪高铁(全程约为1318km),全程所用的时间t(h)随速度v(km/h)的变化而变化
(4)领悟用函数观点解决某些实际问题的基本思路。
(5)通过小组交流,积累数学活动经验。培养学生积极的情感,态度。学会和别人沟通。
教学重点:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
教学难点:领会反比例函数的意义,理解反比例函数的概念。
三、学习过程预设
学习活动
课堂评价
设计意图
七、
课堂小结
1、什么是反比例函数?
2、反比例函数的三种表达方式分别是什么?其中需要强调的是什么?
3、确定反比例函数的步骤是怎样的?
1.鼓励发言,自我反思
2.对本节课表现好的同学进行表扬
1.让学生学会总结与反思;
2.激发学生兴趣,为下节课图像做铺垫。
让学生发言,说自己的收获,这样便于老师了解学生的学习情况及需求,从而在课下进行有针对地指导.
3. 若函数 是反比例函数,则m的值为。
4. 已知y与x成反比例,并且当x= 时,y=12.
求:①反比例函数表达式;
②当x= 时,y的值;
③当y=2时,x的值。
1.限时训练5min,给出每题分值,现做现改
、B、C层划分不同过关线;
3.鼓励突破层次界限

《反比例函数的图像和性质》优质课一等奖教案

《反比例函数的图像和性质》优质课一等奖教案

行程问题中的应用举例
匀速直线运动
已知物体的速度和运动时间,求 物体运动的距离。通过反比例函 数关系,可以建立速度、时间和
距离之间的数学模型。
变速直线运动
已知物体的加速度和运动时间,求 物体运动的距离。利用反比例函数 关系,结合物理公式进行求解。
曲线运动
对于某些特殊的曲线运动,如简谐 振动等,也可以利用反比例函数关 系来描述其运动规律。
反比例函数的图像是一条双曲线,且 关于原点对称。
变量关系
当 $x$ 增大时,$y$ 减小;当 $x$ 减 小时,$y$ 增大。
反比例函数自变量取值范围
自变量 $x$ 的取值 范围是所有不等于零 的实数。
对于不同的 $k$ 值 ,反比例函数的图像 会在不同的象限内。
由于分母不能为零, 因此 $x$ 不能等于 零。
面积问题中的应用举例
矩形面积问题
01
已知矩形的面积和一边的长度,求另一边的长度。通过反比例
函数关系,可以建立数学模型并求解。
三角形面积问题
02
已知三角形的面积和底边长度,求高。同样可以利用反比例函
数关系进行求解。
平行四边形面积问题
03
已知平行四边形的面积和一组对边的长度,求另一组对边的长
度。反比例函数关系在此类问题中同样适用。
反比例函数与其他数学知识点 的联系,如一次函数、二次函 数、三角函数等
数学史上关于反比例函数的研 究和发现,如欧拉、柯西等数 学家的贡献
思考题引导学生深入思考,提升思维能力
01
02
ቤተ መጻሕፍቲ ባይዱ
03
04
探究反比例函数图像上任意一 点处的切线斜率与该点横坐标
之间的关系
讨论反比例函数在定义域内的 单调性,并解释其物理意义

北师大版数学九年级上册《1 反比例函数》教学设计1

北师大版数学九年级上册《1 反比例函数》教学设计1

北师大版数学九年级上册《1 反比例函数》教学设计1一. 教材分析北师大版数学九年级上册《1 反比例函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。

本节内容通过实例引入反比例函数,让学生理解反比例函数的定义、性质和图象,从而提高学生对函数知识的掌握和应用能力。

二. 学情分析学生在学习本节内容前,已经掌握了函数的基本概念、一次函数和二次函数的知识。

但反比例函数的概念和性质相对复杂,需要通过实例和图象让学生加深理解。

因此,在教学过程中,要注重引导学生通过观察、分析、归纳等方法,自主探究反比例函数的性质和图象。

三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图象特点,能运用反比例函数解决实际问题。

2.过程与方法:通过观察实例和图象,培养学生的观察能力、分析能力和归纳能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的特点。

五. 教学方法采用问题驱动法、实例分析法、小组合作法等,引导学生主动探究,培养学生的动手操作能力和思维能力。

六. 教学准备1.准备相关实例和图象,用于引导学生观察和分析。

2.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入反比例函数的概念。

例如:一辆汽车以每小时60公里的速度行驶,行驶的路程与时间成反比,求行驶2小时的路程。

2.呈现(10分钟)呈现反比例函数的定义和性质,引导学生观察实例和图象,分析反比例函数的特点。

3.操练(10分钟)让学生分组讨论,自主探究反比例函数的性质和图象,每组选一个实例进行分析。

4.巩固(10分钟)针对各组的探究结果,进行讲解和总结,让学生加深对反比例函数的理解。

5.拓展(10分钟)引导学生运用反比例函数解决实际问题,如购物、交通等。

6.小结(5分钟)对本节课的内容进行总结,强调反比例函数的定义、性质和图象特点。

北师大版数学九年级上册的第六章第一节《反比例函数》教案

北师大版数学九年级上册的第六章第一节《反比例函数》教案

北师大版数学九年级上册的第六章第一节《反比例函数》教案一. 教材分析北师大版数学九年级上册的第六章第一节《反比例函数》是本章的第一节内容,也是学生继学习正比例函数后的又一函数类型。

本节课主要让学生了解反比例函数的概念、性质及其图象,培养学生运用函数观点解决实际问题的能力。

教材通过引入反比例函数的概念,让学生在已有的正比例函数知识基础上,进一步拓展对函数的理解。

二. 学情分析学生在学习本节课之前,已经学习了正比例函数的相关知识,对函数的概念、图象和性质有一定的了解。

但九年级学生的抽象思维能力仍需培养,对于反比例函数的理解可能仍存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,通过合适的教学方法,帮助学生更好地理解和掌握反比例函数。

三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。

2.能够绘制反比例函数的图象,并能分析实际问题中的反比例关系。

3.培养学生的抽象思维能力,提高学生运用函数观点解决问题的能力。

四. 教学重难点1.反比例函数的概念及其性质。

2.反比例函数图象的特点。

3.运用反比例函数解决实际问题。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,培养学生运用函数观点解决问题的能力。

2.启发式教学法:教师引导学生思考,通过提问、讨论等方式,帮助学生自主探索反比例函数的知识。

3.直观教学法:利用多媒体课件、板书等手段,展示反比例函数的图象和性质,增强学生的直观感受。

六. 教学准备1.多媒体课件:制作反比例函数的图象、性质等相关内容的多媒体课件。

2.教学板书:准备反比例函数的定义、性质等相关内容的板书。

3.练习题:准备适量的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用多媒体课件展示反比例函数在实际生活中的应用,如商场打折、比例尺等,引导学生关注反比例关系。

提问:这些实际问题中是否存在某种数学规律?2.呈现(10分钟)教师引导学生回顾正比例函数的知识,然后给出反比例函数的定义。

新北师版初中数学九年级上册6.1反比例函数1公开课优质课教学设计

新北师版初中数学九年级上册6.1反比例函数1公开课优质课教学设计

1 6.1 反比例函数1.领会反比例函数的意义,理解并掌握反比例函数的概念;(重点)2.会判断一个函数是否是反比例函数;(重点)3.会求反比例函数的表达式.(难点)一、情景导入你吃过拉面吗?有人能拉到细如发丝,同时还能做到丝丝分明.实际上在做拉面的过程中就渗透着数学知识.一定体积的面团做成拉面,面条的总长度与面条的粗细之间有什么关系呢?二、合作探究探究点一:反比例函数的概念【类型一】辨别反比例函数在下列函数表达式中,哪些函数表示y 是x 的反比例函数?(1)y =x 5; (2)y =3x ; (3)y =23x;(4)xy =12; (5)y =2x -1; (6)y =-2x;(7)y =2x -1; (8)y =a -5x(a ≠5,a 是常数).解析:根据反比例函数的概念,必须是形如y =kx(k 是常数,k ≠0)的函数,才是反比例函数.如(2)(3)(6)(8)均符合这一概念的要求,所以它们都是反比例函数.但还要注意y =k x(k 是常数,且k ≠0)的一些常见的变化形式,如xy =k ,y =kx -1等,所以(4)(7)也是反比例函数.在(5)中,y 是(x -1)的反比例函数,而不是x 的反比例函数.(1)中的y 是x 的正比例函数.解:(2)(3)(4)(6)(7)(8)表示y 是x 的反比例函数.方法总结:判断一个函数是否是反比例函数,关键看它能否写成y =kx(k 是常数,k ≠0)或xy =k (k ≠0)或y =kx -1(k ≠0)这样的形式,即两个变量的积是不是一个非零常数.如果两个变量的积是一个不为0的常数,则这两个变量就成反比例关系;否则便不成反比例关系.【类型二】根据反比例函数的概念求值若y =(k 2+k )xk 2-2k -1是反比例函数,试求(k -3)2015的值.解:根据反比例函数的概念,得⎩⎪⎨⎪⎧k 2-2k -1=-1,k 2+k ≠0.所以⎩⎪⎨⎪⎧k =0或k =2,k ≠0且k ≠-1.2即k =2. 因此(k -3)2015=(2-3)2015=-1.易错提醒:反比例函数表达式的一般形式y =k x(k 是常数,k ≠0)也可以写成y =kx -1(k ≠0),利用反比例函数的定义求字母参数的值时,一定要注意y =k x中k ≠0这一条件,不能忽略,否则易造成错误.探究点二:确定反比例函数的表达式 【类型一】 用待定系数法求反比例函数的表达式已知y 是x 的反比例函数,当x =-4时,y =3.(1)写出y 与x 之间的函数表达式; (2)当x =-2时,求y 的值; (3)当y =12时,求x 的值. 解:(1)设y =k x(k ≠0), ∵当x =-4时,y =3, ∴3=k-4,解得k =-12.因此,y 和x 之间的函数表达式为y =-12x;(2)把x =-2代入y =-12x,得y =-12-2=6; (3)把y =12代入y =-12x,得12=-12x,x =-1.方法总结:(1)求反比例函数表达式时常用待定系数法,先设其表达式为y =k x(k ≠0),然后再求出k 值;(2)当反比例函数的表达式y =k x(k ≠0)确定以后,已知x (或y )的值,将其代入表达式中即可求得相应的y (或x )的值.【类型二】 用待定系数法求有反比例关系的函数的表达式已知y 与x -1成反比例,当x =2时,y =4.(1)用含有x 的代数式表示y ; (2)当x =3时,求y 的值. 解:(1)设y =kx -1(k ≠0),因为当x =2时,y =4,所以4=k2-1,解得k =4.所以y 与x 的函数表达式是y =4x -1; (2)当x =3时,y =43-1=2.易错提醒:题中y 与x -1成反比例,而y 与x 不成反比例,防止出现设y =kx(k ≠0)的错误.探究点三:建立反比例函数的模型已知一个长方体水箱的体积为1000立方厘米,它的长是y 厘米(y >25),宽是25厘米,高是x 厘米.(1)写出用高表示长的函数关系式; (2)写出自变量x 的取值范围. 解:(1)根据题意,可得y =100025x,化简3 得y =40x;(2)根据题设可知自变量x 的取值范围为0<x <85.方法总结:反比例函数的自变量取值范围是全体非零实数,但在解决实际问题的过程中,自变量的取值范围要根据实际情况来确定.解题过程中应该注意对题意的正确理解.三、板书设计 反比例函数⎩⎪⎪⎨⎪⎪⎧概念:一般地,如果两个变量x ,y 之间的对应关系可以表示成y =k x(k为常数,k ≠0)的形式,那么称y 是x 的反比例函数,反比例函数 的自变量x 不能为0确定表达式:待定系数法建立反比例函数的模型结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,从感性认识到理性认识的转化过程,发展学生的思维.利用多媒体创设大量生活情境,让学生体验数学来源于生活实际,并为生活实际服务,让学生感受数学有用,从而培养学生学习数学的兴趣.。

北师大版数学九年级上册6.1反比例函数(教案)

北师大版数学九年级上册6.1反比例函数(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x (k≠0)的函数,其中x为自变量,y为函数,k为常数。它在生活中有广泛的应用,如速度与时间、压力与面积等关系。
2.案例分析:接下来,我们来看一个具体的案例。以物体在反比例力作用下移动的距离与速度的关系为例,分析反比例函数在实际中的应用,以及如何帮助我们解决问题。
-反比例函数图像的绘制,理解不同k值对图像的影Байду номын сангаас。
-反比例函数在实际问题中的应用,如何建立模型并求解。
举例:讲解反比例函数定义时,通过具体例子(如物体在反比例力作用下移动的距离与速度的关系)来说明函数表达式的含义。
2.教学难点
-反比例函数性质的深入理解,特别是k值的正负对图像和函数值的影响。
-图像的绘制,如何准确把握双曲线的形状及其在坐标平面上的位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“反比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.提高学生数学建模能力:使学生能够从实际问题中抽象出反比例函数关系,建立数学模型,并利用模型分析和解决问题。
3.强化学生空间想象能力:通过观察和分析反比例函数图像,培养学生对双曲线及其在坐标平面上的位置关系的想象能力。
4.增强学生数学运算能力:让学生掌握反比例函数运算方法,能够熟练求解涉及反比例函数的方程和不等式,提高运算准确性。

北师大版九年级上数学《第6章 反比例函数》教案教案

北师大版九年级上数学《第6章 反比例函数》教案教案

北师大版九年级上数学《第6章反比例函数》教案教案一. 教材分析《第6章反比例函数》是北师大版九年级上数学的重要内容,本章主要让学生了解反比例函数的定义、性质及图象,掌握反比例函数的计算方法,并能解决一些实际问题。

通过本章的学习,学生能更好地理解函数的概念,培养其数学思维能力。

二. 学情分析九年级的学生已经学习了函数、方程等基础知识,具备一定的逻辑思维能力和数学解题技巧。

但部分学生对抽象的函数概念理解不够深入,对反比例函数的图象和性质认识不足。

因此,在教学过程中,需要关注学生的认知差异,引导学生从实际问题中发现反比例函数的规律,提高其数学应用能力。

三. 教学目标1.理解反比例函数的定义,掌握反比例函数的计算方法。

2.了解反比例函数的性质和图象,能运用反比例函数解决实际问题。

3.培养学生的数学思维能力,提高其数学素养。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的特点。

3.反比例函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。

2.引导发现法:引导学生发现反比例函数的规律,培养学生独立思考的能力。

3.合作学习法:分组讨论,共同探究反比例函数的应用,提高学生的团队协作能力。

4.实践操作法:让学生动手绘制反比例函数的图象,加深对反比例函数的理解。

六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节。

2.准备反比例函数的图象和性质的PPT,用于呈现和讲解。

3.准备一些实际问题,用于拓展环节。

4.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,如:在一定时间内,行驶的路程与速度成反比。

引导学生从实际问题中发现反比例函数的规律,激发学生的学习兴趣。

2.呈现(15分钟)利用PPT展示反比例函数的图象和性质,讲解反比例函数的定义和计算方法。

让学生直观地感受反比例函数的特点,理解反比例函数的概念。

《反比例函数》优课一等奖教学设计精选全文完整版

《反比例函数》优课一等奖教学设计精选全文完整版

可编辑修改精选全文完整版
教学设计
科目: 数 学
课题:
课型:新授课
)
0(2≠++=a c bx ax y )
0(≠+=k b kx y
x
y x 23)6(3=+x k y =)5(1
2)4(5
--=x y
2.函数 是
反比例函数,那么 m = .
3.当m = 时,关于x 的函数 是反比例函数?
4.以下的数表中分别给出了变量y 与x 之间的对应关系,其中有一个表示的是反比例函数,你能把它找出来吗?
要求:学生指明每一题是根据反比例函数的哪种形式解题 思考: 如果y 是z 的反比例函数,z 是x 的反比例函数,那么y 与x 具有怎样的函数关
学生独立完成1-4题
学生代表口答每题答案并说明解题思路,其他学生纠错和补充
独立思考,并完成 检测,进一步稳固所学新知,同时检测学习效果,做到堂堂清
引导学生回归反比例函数的三种形式
利用反比例函数的概念解题,通过此题建立反比例与其他函数的联系
板书设计
26.1.1反比例函数
一、回忆
二、新知
1.反比例函数三种形式
)0(≠=
k x
k
y )0(≠=k k xy )0(1≠=-k kx y
2.建模思想
分层作业
学生的板演导学案练习1的过程
73-=m x y 2
2)1(-+=m x m y 3
2-
21-当堂检测 反应新知
拓展延伸
)0(≠=k kx y )0(2≠++=a c bx ax y )0(≠+=k b kx y。

《反比例函数》示范课教学设计【数学九年级上册北师大】

《反比例函数》示范课教学设计【数学九年级上册北师大】

第六章反比例函数1反比例函数一、教学目标1. 理解反比例函数的概念,掌握反比例函数的一般形式和基本变式.2. 能利用待定系数法求反比例函数解析式.3. 经历反比例函数的形成过程,体验函数是描述变量间对应关系的重要模型.4. 掌握类比归纳的学习方法和感受模型思想.二、教学重难点重点:反比例函数概念的理解.难点:待定系数法求解反比例函数的解析式.三、教学用具多媒体等.四、教学过程设计【合作探究】我们知道,导体中的电流I ,与导体的电阻R,导体两端的电压U 之间满足关系式U=IR.当U=220V时,(1)你能用含有R的代数式表示I吗?预设答案:变量I与R之间的关系可以表示成220=I.R(2)利用写出的关系式完成下表:当R越来越大时,I怎样变化?当R越来越小呢?预设答案:当R越来越大时,I越来越小,当R越来越小时,I 越来越大.(3)变量I是R的函数吗?为什么?预设答案:是,对于R每一个给定的值,I都有唯一的一个值与其对应.【想一想】你知道台灯亮度的调整是什么原理吗?亮度可调节的台灯,其灯光亮度的改编,可以通过调节总电阻来控制电流的变化实现的.电压一定,电阻R越大,电流I越小,灯光越暗;反之,电阻R越小,电流I越大,灯光越亮.京沪高速铁路全长约为1318 km ,列车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t (h)与行驶的平均速度v (km/h)之间有怎样的关系?变量t 是v 的函数吗?为什么?预设答案:变量t 与v 之间的关系可以表示成:1318.t v =变量t 是v 的函数,对于v 每一个给定的值,t 都有唯一的一个值与其对应.【想一想】你还能举出类似的实例吗?与同伴交流.已知两个实数的乘积为-8,如果其中一个因数为p ,另一个因数为q ,则q 与p 之间的函数关系是什么?预设答案:变量q 与p 之间的关系可以表示成:8.q p -=【议一议】教师活动:引导学生找到三个函数的共同点,由此归纳得出反比例函数的概念,并给出几种常见的形式.由上面三个问题,我们可以得到三个函数关系式:220,I R =1318,t v=8.q p -= 思考:它们有什么共同特点? 预设答案:①显然都是函数;②等式右边都是分式;③等式右边的分子都是常数.【归纳】反比例函数的概念:一般地,如果两个变量x ,y 之间的关系可以表示成:()0ky k k x =≠为常数,的形式,那么称y 是x 的反比例函数. 【做一做】1.一个矩形的面积是20cm 2,相邻的两条边长为x cm 和y cm ,那么变量y 是x 的函数吗?是反比例函数吗?为什么?解:由题意知:20xy =,即20y x=. 因此,变量y 是x 的反比例函数.2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?解:由题意知:20mn =,即20m n=. 因此,变量m 是n 的反比例函数.3.y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.解:(1)∵y 是x 的反比例函数,不妨设()0=ky k x≠,把x =-1,y =2代入上式得:12=k-,解得:k =-2.∴反比例函数的表达式为2=y x-.(2)如下表:【想一想】(1)对于反比例函数()0ky k x =≠,自变量x 的取值范围是什么?预设答案: 由于自变量x 在分母上,所以反比例函数的自变量x 不能为0.(2)下列两个函数是反比例函数吗? ① xy =-2 ②y=x -1 预设答案: ①将xy =-2化为2y x -=是反比例函数,k =-2. ②将y=x -1化为1y x =是反比例函数,k =1. 【归纳】反比例函数的几种常见形式:()()100.k y k xy k k y kx x-=≠=≠=,, 【典型例题】已知P =5 W ,填写下表并回答问题:(1)变量R 是变量I 的函数吗? (2)变量R 是变量I 的反比例函数吗? 解:(1)由函数的定义可知,对于I 确定一个值,就有唯一的R 值对应,所以变量R 是变量I 的函数. (2)变量R 不是变量I 的反比例函数,理由如下: 将P =5代入可得 25R I,所以变量R 是变量I ²的反比例函数,不是变量I 的反比例函数.以思维导图的形式呈现本节课所讲解的内容.教科书第151页习题6.1第2、3题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《1 反比例函数》教案
教学目标:
1、从现实情境和已有的知识经验出发,讨论两个变量之间的函数关系,加深对函数概念的理解.
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
3、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
教学重点:
理解和领会反比例函数的概念.
教学难点:
从现实环境和所学知识人手,探索两个变量之间的函数关系.
教学过程:
一、问题提出
电流I、电阻R、电压U之间满足关系式U=IR,当U=220
V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成表格(见可悲吧):当R越来越大时,I怎样变化?当R 越来越小呢?(3)变量I是R的函数吗?为什么?
根据提供的信息,对多对关系式的分析,可以得出:当电阻R越来越大时,电流I越来越小,当R越来越小时,I越来越大.当给定一个R的值时,相应地就确定了一个I值,因此,I是R的函数.
二、做一做
1、一个矩形的面积为20cm2,相邻的两条边长分别为x cm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2、某村有耕地346.2公顷,人数数量n每年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的
函数吗?是反比例函数吗?为什么?
3、y是x的反比例函数,表格(见课本)给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成表格.
三、课堂小结
反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意概念中变量的相依关系及变化规律,逐步加深理解.通过举例、说理、讨论等活动,用数学眼光审视某些实际现象.。

相关文档
最新文档