关于抗浮锚杆的设计(精制甲类)

合集下载

抗浮锚杆设计方案--新规范2.18

抗浮锚杆设计方案--新规范2.18

都江堰“维纳斯堡”项目抗浮锚杆设计文件项目负责:兰恒强设计:兰恒强证书等级:岩土工程设计甲级证书编号:二〇一七年二月目录1、工程概况 (1)2、场地工程地质条件及水文地质条件 (2)3、抗浮锚杆设计 (4)3.1设计依据 (4)3.2设计计算 (4)3.2.1锚杆间距、单根锚杆抗拨力的确定 (4)3.2.2锚杆配筋计算 (5)3.2.3锚杆直径与长度 (5)3.2.4锚杆设计结果统计 (7)3.2.5锚杆抗浮力验算 (7)3.3锚杆材料防腐 (9)3.4防水设计 (9)3.5锚杆抗拔试验 (9)3.5.1基本试验 (9)3.5.2验收试验 (9)4、施工工艺及技术要求 (10)4.1施工方法与特点 (10)4.1.1嵌入深度及成孔技术要求 (10)4.1.2灌浆材料要求 (10)4.2施工工艺流程 (10)4.3操作过程及技术要求 (10)4.4防腐、防锈措施 (11)附图:1、抗浮锚杆平面布置图都江堰维纳斯堡项目抗浮锚杆设计方案1、工程概况都江堰维纳斯堡项目位于省都江堰市翔凤大道与二环路交界处,交通方便。

依照建设单位提供的建筑设计总平面图,该拟建项目为多栋4-6层建筑,设2层地下室,局部为纯地下室,拟采用框架结构,独立基础,主体结构设计由恒欣建筑设计股份完成,工程地质勘察由建材地质工程勘察院完成。

我公司受建设方翔凤房地产开发委托对该工程进行专项抗浮锚杆设计。

拟建物情况一览表表1.1拟建建筑全部采用独立基础结合抗水板。

根据结构设计要求,本工程综合楼及商业楼-2F部分地下室抗浮板设计抗浮力标准值为70kN/m,抗浮面积为2094.77㎡。

设备房及下沉式广场-1F抗浮板设计抗浮力标准值为40kN/m,设备房部分抗浮面积为85.94㎡,下沉式广场部分抗浮面积为223.07㎡。

本工程抗浮采用抗浮锚杆进行处理,抗浮锚杆间距不宜大于2.5m。

本工程±0.00绝对标高为711.50m,抗水板板厚250-400mm。

抗浮锚杆设计

抗浮锚杆设计

目录1.抗浮锚杆设计........................................................................................................................... 21.1工程概况......................................................................................................................... 21.3设计依据......................................................................................................................... 21.4地层及水文地质条件..................................................................................................... 21.5抗浮锚杆布置方法及抗拔力设计要求......................................................................... 31.6锚杆直径与长度............................................................................................................. 32 抗浮锚杆施工要求................................................................................................................... 52.1 施工方法与特点............................................................................................................ 52.2 施工工艺流程................................................................................................................ 62.3 操作过程及技术要求.................................................................................................... 61.抗浮锚杆设计1.1工程概况场FA2-422、FA2-424、FA2-430、FA2-432钢筋笼使用错误,钢筋笼原配筋为24根HRB400直径为28的钢筋,而现场用的钢筋为24根HRB400直径为18的钢筋。

的锚杆抗浮设计

的锚杆抗浮设计

设计设计参考参考20112011--01-19------关于关于关于抗浮锚杆的设计抗浮锚杆的设计抗浮锚杆的设计1 设计设计设计依据依据依据1.11.1 《建筑地基建筑地基基础基础基础设计规范设计规范设计规范》》第6.7节;第8.6节:8.6.3 对设计等级为甲级的建筑物,单根锚杆抗拔承载力特征值Rt 应通过现场试验确定;对于其他建筑物可按下式计算:Rt≤0.8πd 1lf式中 f--砂浆与岩石间的粘结强度特征值(MPa),可按表6.7.6选用。

1.2 1.2 《《高层建筑岩土工程勘察规程高层建筑岩土工程勘察规程》》第8.6节:8.6.11 抗浮锚杆承载力特征值可按下式估算:Fa=∑q si u i l i式中 Fa —抗浮锚杆抗拔承载力特征值(KN);u i —锚固体周长(m),对于等直径锚杆u i =πd(d 为锚固体直径);q si —第i 层岩土体与锚固体粘结强度特征值(KPa),可按现行国家标准《建筑边坡工程技术规范》GB50330取值。

1.3 1.3 《《建筑边坡工程技术规范建筑边坡工程技术规范》》第7.2节、第7.4节:7.2.1 锚杆的轴向拉力标准值和设计值可按下式计算:Nak=……Na=r Q N ak (7.2.1-2)式中 N ak —锚杆轴向拉力标准值(KN);Na —锚杆轴向拉力设计值(KN);……r Q —荷载分项系数,可取1.30,当可变荷载较大时应按现行荷载规范确定。

7.2.2 锚杆钢筋截面面积应满足下式的要求:As≥(r 0Na)/(ξ2f y ) (7.2.2)式中 As —锚杆钢筋或预应力钢绞线截面面积(m 2);ξ2 —锚杆抗拉工作条件系数,永久性锚杆取0.69,临时性锚杆取0.92;r 0 —边坡工程重要性系数;7.2.3 锚杆锚固体与地层的锚固长度应满足下式要求:La≥N ak /(ξ1πDf rb ) (7.2.3)式中 La —锚固段长度(m);尚应满足7.4.1条要求;D —锚固体直径(m);f rb —地层与锚固体粘结强度特征值(KPa),应通过试验确定,当无试验资料时可按表7.2.3-1和表7.2.3-2取值;ξ1 —锚固体与地层粘结工作条件系数,对永久性锚杆取1.00,对临时性锚杆取1.33。

(精编)抗浮锚杆施工方案

(精编)抗浮锚杆施工方案

(精编)抗浮锚杆施工方案抗浮锚杆施工方案目录第一章施工条件3一、编制依据3二、工程概况3三、地层概况4四、水文地质情况5第二章抗浮桩(锚杆)设计与基本试验6一、抗浮锚杆结构设计主要参数6二、抗浮锚杆拉力设计参数6三、抗浮锚杆基本试验7第三章施工组织和措施10一、施工准备10二、施工进度安排13三、抗浮桩锚杆施工工艺流程、技术参数14四、排污措施20五、应急措施20六、成品保护措施20七、施工组织措施23第四章工程施工质量保证措施25一、质量控制措施25二、质量保证具体内容26三、材料质量要求及节约措施28第五章文明施工与安全措施29一、安全生产、文明施工29二、安全保证体系及措施31三、环保文明施工保证体系及措施33第一章施工条件二、工程概况本工程由1栋高层多功能主体大楼及其四周纯地下室部分组成,主体大楼建筑总高度105.90m,主结构为钢筋混凝土框架剪力墙结构+钢结构,外围纯地下建筑为框架结构,总建筑面积100660m2。

地下四层,基础板厚600mm~2000mm,基础埋深约-24.50m,±0.00=44.20m,地下水常年水位即历年最高位在标高38.52m~41.02m,抗浮设计水位为标高37.00m,抗浮水压145kN/m2。

因此,拟采用抗浮锚桩设计方案对建筑物整体抗浮,保证建筑物的稳定和正常使用。

目前基坑内已施工。

三、地层概况《岩土工程勘察报告》,基础底板以下地层各层情况如下:1、粘土、重粉质粘土⑤层:褐黄色,湿~饱和,可塑~硬塑,属中低~低压缩性土,层顶标高21.36~24.29m;2、卵石、圆砾⑥层:内含细砂、中砂为杂色,低压缩性,层顶标高19.26~21.53m;3、粉质粘土、重粉质粘土⑦层:褐黄色,湿~饱和,可塑~硬塑,属中低~低压缩性土,层顶标高10.31~12.02m;4、卵石、圆砾⑧层:内含细砂、中砂为杂色,低压缩性,层顶标高6.65~8.88m;5、粉质粘土、粘质粉土⑨层:褐黄色,湿~饱和,硬塑~可塑,低压缩性土,层顶标高-3.67~-3.34m;6、卵石、圆砾⑩层:内含细砂、中砂为杂色,低压缩性,层顶标高-10.94~-10.16m;7、粉质粘土、重粉质粘土⑾层:褐黄色,湿~饱和,可塑~硬塑,低压缩性土,层顶标高-21.54m。

大型地下建筑抗浮锚杆的设计

大型地下建筑抗浮锚杆的设计

大型地下建筑抗浮锚杆的设计
, 对于大型地下建筑物来讲, 由于地下水位较高, 结构荷载往往不能抵抗地下水产生的浮力,因此需要采取竖向抗浮措施。

近年来, 采用抗浮锚杆来抵抗地下室底板所承受的地下水浮力, 显示出明显的经济技术优越性。

以大连商业城工程为例, 介绍抗浮锚杆的试验、设计及施工过程, 对存在的问题作了有益的探讨。

一、工程概况
大连商业城工程, 地下2 层, 地上裙房部分5 层,高层部分32 层, 建筑总面积为16万m2, 占地面积2.6万m平方, 地下室基本呈矩形, 南北长299m, 东西宽88m,深12m, 地形由北向南向略倾斜, 地面标高12.84m, 地下室底板标高0.6m, 平面布置如图1 所示。

图1 基坑平面布置图
因地下室自重及地面回填土重量不能平衡地下水浮力, 采用抗浮锚杆作为永久性抗浮结构。

抗浮锚杆杆体为螺纹钢, 不施加预应力, 锚杆锚固于底板下的岩层上, 锚杆顶部预留部分直接浇筑在混凝土底板内。

场地的地质构造属于大连市古老东西向倒转背斜的北翼, 基岩为中震旦系长岭子组钙质板岩, 岩层倾向南,走向近东西向, 层面倾角30度~ 40度。

由于场区较大, 地下室底板坐落在不同的岩层上, 分别为全风化钙质板岩、强风化钙质板岩、中风化钙质板岩, 其地质情况如表1 所示。

场地地下水总体类型属于承压水, 主要来源有两方面: 1) 赋存于基岩风。

(精编)抗浮锚杆施工方案

(精编)抗浮锚杆施工方案

(精编)抗浮锚杆施工方案抗浮锚杆施工方案目录第一章施工条件3一、编制依据3二、工程概况3三、地层概况4四、水文地质情况5第二章抗浮桩(锚杆)设计与基本试验6一、抗浮锚杆结构设计主要参数6二、抗浮锚杆拉力设计参数6三、抗浮锚杆基本试验7第三章施工组织和措施10一、施工准备10二、施工进度安排13三、抗浮桩锚杆施工工艺流程、技术参数14四、排污措施20五、应急措施20六、成品保护措施20七、施工组织措施23第四章工程施工质量保证措施25一、质量控制措施25二、质量保证具体内容26三、材料质量要求及节约措施28第五章文明施工与安全措施29一、安全生产、文明施工29二、安全保证体系及措施31三、环保文明施工保证体系及措施33第一章施工条件二、工程概况本工程由1栋高层多功能主体大楼及其四周纯地下室部分组成,主体大楼建筑总高度105.90m,主结构为钢筋混凝土框架剪力墙结构+钢结构,外围纯地下建筑为框架结构,总建筑面积100660m2。

地下四层,基础板厚600mm~2000mm,基础埋深约-24.50m,±0.00=44.20m,地下水常年水位即历年最高位在标高38.52m~41.02m,抗浮设计水位为标高37.00m,抗浮水压145kN/m2。

因此,拟采用抗浮锚桩设计方案对建筑物整体抗浮,保证建筑物的稳定和正常使用。

目前基坑内已施工。

三、地层概况《岩土工程勘察报告》,基础底板以下地层各层情况如下:1、粘土、重粉质粘土⑤层:褐黄色,湿~饱和,可塑~硬塑,属中低~低压缩性土,层顶标高21.36~24.29m;2、卵石、圆砾⑥层:内含细砂、中砂为杂色,低压缩性,层顶标高19.26~21.53m;3、粉质粘土、重粉质粘土⑦层:褐黄色,湿~饱和,可塑~硬塑,属中低~低压缩性土,层顶标高10.31~12.02m;4、卵石、圆砾⑧层:内含细砂、中砂为杂色,低压缩性,层顶标高6.65~8.88m;5、粉质粘土、粘质粉土⑨层:褐黄色,湿~饱和,硬塑~可塑,低压缩性土,层顶标高-3.67~-3.34m;6、卵石、圆砾⑩层:内含细砂、中砂为杂色,低压缩性,层顶标高-10.94~-10.16m;7、粉质粘土、重粉质粘土⑾层:褐黄色,湿~饱和,可塑~硬塑,低压缩性土,层顶标高-21.54m。

抗浮锚杆的设计与应用

抗浮锚杆的设计与应用

抗浮锚杆的设计与应用当建筑自重及地面上的永久荷载标准值不能抵抗浮力(抵抗建筑物向上移位),可采用抗浮锚杆抵抗这些外力。

浮力由锚杆钢筋传递给锚固体,再传递到基础。

设计时既应保证锚杆不会从岩土中被拔出也应保证钢筋在锚固体中不被拔出。

标签:浮力;抗浮锚杆1、引言随着我国经济实力的增强,城市建设迅猛发展,城市空间需求急剧膨胀与空间资源有限这一矛盾日益突出。

土地的合理配置成为急需解决的问题,向地下拓展空间成为重要手段,单层多层地下室已经越来越多,由于该类建筑面积大、基础埋藏较深,建筑层数相对较少,在历史最高地下水位、暴雨及地下水管破裂等情况下,结构自重不足以抵抗地下水的上浮力,地下结构抗浮问题日益突出。

为此,作者从设计角度出发,探讨了抗浮錨杆的计算方法和设计步骤。

2、原理抗浮锚杆一端锚固在地下室基础或底板,另一端锚固在地基土层中,当基础发生形变受力时,首先是锚固体钢筋与注浆体之间的作用将上拔力传至锚固浆体上,而后通过锚固浆体与周边土层之间的摩擦力将锚固浆体所受到的力传至周围稳定土体中去,从而形成一定抗拔能力,起到抗浮作用。

3、设计方法、步骤目前关于抗浮锚杆的设计可以参照以下几种规范:《建筑地基基础设计规范》GB50007-2011中“岩石锚杆基础”部分、《建筑边坡工程技术规范》GB50330-2013有关锚杆的部分、《建筑工程抗浮技术标准》JGJ476-2019、广东省标准《建筑地基基础设计规范》DBJ15-31-2016、广东省标准《建筑工程抗浮设计规程》DBJ/T15-125-2017等。

下面以广东省标准《建筑工程抗浮设计规程》相关条文进行设计说明;(1)选取锚杆钢筋,并根据钢筋强度计算锚杆轴向拉力标准值。

KbRt≤Asfyk7.2.1 -4式中:Kb-锚杆钢筋抗拉安全系数,取2;Rt-锚杆抗拔承载力特征值;As-纵向钢筋截面面积;fyk-钢筋屈服强度标准值。

(2)根据锚杆抗拔承载力特征值计算锚杆在土体中的锚固长度,保证锚固体在土层中不被拉出。

抗浮锚杆方案

抗浮锚杆方案

抗浮锚杆方案清晨的阳光透过窗帘,洒在满是图纸和资料的工作台上,我的思绪随着咖啡的香气飘散开来。

抗浮锚杆方案,这个念头在我脑海中盘旋,仿佛已经等不及要倾泻而出。

一、项目背景想起那次甲方会议,甲方代表焦虑的神情历历在目,他们的项目位于地下水位较高的区域,基础沉降和抗浮问题成了他们的一块心病。

我深吸一口气,开始了方案的第一部分。

1.项目概述:位于市的项目,占地面积平方米,建筑高度米,地下层,主要用于商业和办公。

由于地下水位较高,项目存在较大的抗浮风险。

2.抗浮要求:根据《建筑基础设计规范》,本项目抗浮安全系数需大于1.2,确保建筑物的稳定性和安全性。

二、方案设计1.抗浮锚杆选型:考虑到项目的特殊性和地质条件,我选择了高性能的抗浮锚杆。

这种锚杆具有高强度、耐腐蚀、施工方便等优点,能够满足项目的抗浮需求。

2.锚杆布置:根据地质勘察报告,我将锚杆布置在地下室的底层和中间层,采用梅花形布设,锚杆间距为2米。

3.锚杆施工:施工过程中,要进行锚杆孔的钻探,然后安装锚杆,进行注浆作业。

为确保施工质量,我要求施工队伍采用专业的设备和工艺。

4.抗浮效果评估:方案实施后,对抗浮效果进行评估,包括锚杆的拉拔力测试、位移监测等,确保抗浮效果满足设计要求。

三、施工要点1.施工准备:提前做好施工方案和技术交底,确保施工队伍了解工程特点和施工要求。

2.施工过程控制:严格按照施工方案进行,确保锚杆的施工质量。

对施工过程中出现的问题,及时进行调整和解决。

3.施工安全:施工过程中,加强安全防护措施,确保施工人员的人身安全。

四、项目优势1.抗浮效果显著:采用高性能抗浮锚杆,能够有效降低建筑物的抗浮风险。

2.施工周期短:锚杆施工速度快,对整个项目的施工周期影响较小。

3.经济效益高:与传统的抗浮措施相比,抗浮锚杆具有更高的经济效益。

4.环境友好:锚杆施工过程中,对环境影响较小,有利于保护生态环境。

五、项目实施1.项目启动:与甲方沟通,明确项目要求和施工期限,制定详细的施工计划。

抗浮锚杆的设计探讨

抗浮锚杆的设计探讨

抗浮锚杆的设计探讨抗浮锚杆的设计探讨在建造大型桥梁、特别是跨海大桥时,常常会遇到海底水深较浅或者海底地质条件不佳的情况,这时候如果只用管道安装桥墩还不够安全,需要引进抗浮锚杆系统来固定桥墩,确保桥梁的稳定和安全。

本文主要介绍抗浮锚杆的设计原理、设计流程、实施细节和相关工程应用。

一、抗浮锚杆的原理当桥梁架设在海上时,因为海底地质条件和海水的作用,所以桥墩产生的浮力可能导致桥梁倾斜,造成事故。

此时应该用抗浮锚杆来解决这个问题,抗浮锚杆本质上是一种钢筋混凝土杆,通过预应力拉筋的作用,将锚杆与桥墩的结合强度加强,从而增加桥墩的稳定性。

抗浮锚杆可以分为拉压杆和拉杆两种类型,一般结合使用,以获得更好的抗浮效果。

同时,随着海水的涨潮和退潮,抗浮锚杆可以通过预留的调整卡来实现对拉伸度的实时调整,从而保证桥梁的牢固和平衡。

二、抗浮锚杆的设计流程1、选址。

在海上架设桥梁时,需要根据海底地质条件和周边环境来选择适合的建设点。

选择建设点的时候需要注意海底地质条件、水面风浪、海水潮汐等因素。

2、确定锚杆数量和位置。

根据桥墩的大小和重量、水深以及抗浮锚杆的强度,可以确定锚杆的数量和位置。

一般情况下,抗浮锚杆的数量一般为四条,分别在桥墩的四个角落处。

然后需要进行实际的地质勘探和试验,以得出最准确的抗浮锚杆的设计方案。

3、设计杆长和直径。

抗浮锚杆的长度和直径可以根据桥梁的质量、风浪、潮汐等多种因素来确定。

一般来说,抗浮锚杆的直径一般在50-100毫米之间,长度可以达到数百米。

4、设计预应力。

根据设计的杆长和直径,可以确定需要预应力杆的数量和预应力大小。

这个过程需要经验丰富的工程师来测算,建议由多人试错。

5、合理设置锚点。

锚点正确设置对于抗浮锚杆的设计非常重要,同时也要注意锚点的材质和强度,最好是根据实际情况进行定制化设计。

三、实施细节1、材料。

在选择材料时,需要考虑抗浮锚杆受到海洋环境的影响,因此需要选择耐腐蚀的材料。

在生产过程中,还需要加入适量的防腐剂。

抗浮锚杆设计及施工方案(完整的)

抗浮锚杆设计及施工方案(完整的)

目录1.工程概述 (2)1.1工程概况 (2)1.2工程地质条件 (2)1.3设计依据 (3)2.抗浮锚杆方案设计 (3)2.1抗浮锚杆技术要求 (3)2.2抗浮锚杆布置原则和方案选择 (3)2.3抗浮锚杆设计计算 (3)2.3.1抗浮锚杆设计轴向拉力值的确定 (3)2.3.2抗浮锚杆钢筋截面面积的计算 (3)2.3.3锚杆长度及锚固体直径 (4)2.3.4锚杆钢筋和锚固砂浆间锚固长度的验算 (4)2.3.5钢筋锚入抗水板长度 (5)2.3.6锚固体材料 (5)3.锚杆检测 (5)4.施工方案设计 (6)4.1施工方法与特点 (6)4.2施工工艺流程 (6)4.3操作过程及技术要求 (6)4.4锚杆的制作 (6)4.5防腐、防锈措施 (6)5.施工部署 (6)5.1施工用水、用电 (6)5.2组织机构及人员配备 (7)6.施工准备 (7)6.1施工准备工作计划 (7)6.2技术准备 (7)6.3施工现场准备 (8)6.4物资材料准备 (8)7.施工组织 (8)7.1施工设备组织 (8)7.2劳动力计划 (9)7.3施工进度计划 (9)8.质量保证措施 (9)9.安全生产措施 (9)10.文明施工保证措施 (10)11.工期保证措施 (10)1.工程概述1.1工程概况拟建的“成都颐和京都项目”位于成都市青羊区光华大道与武青路交叉口,紧邻成都三十七中。

该工程三期(2#、9#楼)设两层地下室,主楼25-30层,框剪结构,筏板基础,该工程基础底标高为503.40,±0.000为513.800。

地下室底板顶标高均为-9.250,即相当于绝对高程504.550。

该工程设计单位为深圳星蓝德工程顾问有限公司,勘察单位为中国建筑西南勘察设计研究院有限公司,施工单位为四川光海建设工程有限公司。

我公司承担该工程三期抗浮锚杆施工组织设计的编制。

根据深圳星蓝德工程顾问有限公司提供的《扩大地下室部分基础平面图》,进行该工程纯地下室区域设计抗浮锚杆。

抗浮预应力锚杆设计

抗浮预应力锚杆设计

抗浮预应力锚杆设计1 预应力锚杆类型与构造1.1拉力型抗浮锚杆由杆体、自由段、锚固段及锚头构造组成,分普通拉力型锚杆及拉力分散型锚杆(图1.1)。

图1.1-1 拉力型锚杆图1.1-2 拉力分散型锚杆1—杆体2—锚具3—垫板4—保护罩(填充防腐材料)5—钻孔6—锚固段灌浆体7—自由段隔离套8—杆体隔离架9—结构底板10—垫层1.2 压力型锚杆分普通压力型抗浮锚杆及压力分散型抗浮锚杆(图1.2)。

普通压力型预应力锚杆结构由不与灌浆体相互粘结的带隔离防护层的杆体和位于杆体底端的承载体及锚头组成。

压力分散型锚杆应由两个或两个以上压力型单元锚杆复合而成,各压力型单元锚杆的锚固段应位于锚杆总锚固段的不同部位。

图1.2-1 压力型锚杆图1.2-2 压力分散型锚杆1-杆体2—锚具3—垫板4—保护罩(填充防腐材料)5—钻孔6—锚固段灌浆体7—自由段隔离套8—杆体隔离架9—承载体10—结构底板11—垫层2 锚杆计算2.1单锚平均竖向上拔力标准值,应满足式2.1的要求:wk k k N G N n -=(2.1) 式中:N k ——荷载效应标准组合时传至单根锚杆顶部的平均竖向上拔力标准值(如同时作用有偏心荷载,按现行有关建筑结构规范规定计算采用);N wk ——水浮力作用标准值;G k ——结构自重及其上作用的有利永久荷载的标准值(不计入活荷载),结构顶部上覆土处于地下水位以下部分取浮重度; n ——锚杆数量;注:未计入地下室侧壁摩擦力及其它抗浮抗力。

2. 2单锚平均竖向上拔力设计值,满足式(2.2)的要求:0f k N N γγ= (2.2)式中:N——荷载效应基本组合下的单根锚杆顶部的平均竖向上拔力设计值;γf ——上拔力分项系数,取值1.3;γ0——抗浮结构重要性系数2. 3单锚抗拔承载力标准值R k 应按下式确定:uk k R R K =(2.3) 式中:R uk ——单根锚杆极限抗拔承载力标准值;K——安全系数,取值2.0;2.4单根锚杆极限抗拔承载力标准值R uk 应按3.01条规定由基本试验确定,当无相应试验资料时可按式2.4-1估算;对荷载分散型锚杆极限抗拔承载力标准值可由各个单元锚杆极限抗拔承载力标准值组合而成,并按式8.3.4-2 估算:uk mgik ai R D f l π=∑(2.4-1),1n u k uk i i R R ==∑ (2.4-2) ''uki mgi k ai R Df l π=∑ (2.4-3)式中 R uk ——单根锚杆极限抗拔承载力标准值(KN );,uk i R ——第i 个单元锚杆极限抗拔承载力标准值(KN ),i=1,2,3…n ;n ——单元锚杆数量;ai l ——穿越第i 层岩土层锚杆锚固段长度(m );'ai l ——穿越第i 层岩土层单元锚杆锚固段长度(m ),i ‘=1,2,3…n ;D ——锚杆锚固段钻孔直径(m );mgik f ——锚杆锚固段灌浆体与第i 层岩土层间极限粘结强度标准值(kPa ),应通过试验确定,当无试验资料时可按表2.4-1取值;表2.4-1 岩土层与水泥砂浆(或水泥结石体)极限粘结强度标准值注:1 表中数据适用于一次常压灌浆,若采用二次压力灌浆法加固锚固段周边地层时,锚杆承载力可提高20%~60%,或由现场试验确定;2 采用泥浆护壁成孔工艺时,应按表取低值后再根据具体情况适当折减;3 采用套管护壁成孔工艺时,可采用表中高值;4 当砂土中细粒含量超过总质量的30%时,表中数值可乘以0.75;5 对有机质含量为5%~10%的有机质土,应按表取值后适当折减;6 当锚固段长度大于10m 时,应对表中数值适当折减。

抗浮预应力锚杆设计

抗浮预应力锚杆设计

抗浮预应力锚杆设计1 预应力锚杆类型与构造1.1拉力型抗浮锚杆由杆体、自由段、锚固段及锚头构造组成,分普通拉力型锚杆及拉力分散型锚杆(图1.1)。

图1.1-1 拉力型锚杆图1.1-2 拉力分散型锚杆1—杆体2—锚具3—垫板4—保护罩(填充防腐材料)5—钻孔6—锚固段灌浆体7—自由段隔离套8—杆体隔离架9—结构底板10—垫层1.2 压力型锚杆分普通压力型抗浮锚杆及压力分散型抗浮锚杆(图1.2)。

普通压力型预应力锚杆结构由不与灌浆体相互粘结的带隔离防护层的杆体和位于杆体底端的承载体及锚头组成。

压力分散型锚杆应由两个或两个以上压力型单元锚杆复合而成,各压力型单元锚杆的锚固段应位于锚杆总锚固段的不同部位。

图1.2-1 压力型锚杆图1.2-2 压力分散型锚杆1-杆体2—锚具3—垫板4—保护罩(填充防腐材料)5—钻孔6—锚固段灌浆体7—自由段隔离套8—杆体隔离架9—承载体10—结构底板11—垫层2 锚杆计算2.1单锚平均竖向上拔力标准值,应满足式2.1的要求:wk k k N G N n -=(2.1) 式中:N k ——荷载效应标准组合时传至单根锚杆顶部的平均竖向上拔力标准值(如同时作用有偏心荷载,按现行有关建筑结构规范规定计算采用);N wk ——水浮力作用标准值;G k ——结构自重及其上作用的有利永久荷载的标准值(不计入活荷载),结构顶部上覆土处于地下水位以下部分取浮重度; n ——锚杆数量;注:未计入地下室侧壁摩擦力及其它抗浮抗力。

2. 2单锚平均竖向上拔力设计值,满足式(2.2)的要求:0f k N N γγ= (2.2)式中:N——荷载效应基本组合下的单根锚杆顶部的平均竖向上拔力设计值;γf ——上拔力分项系数,取值1.3;γ0——抗浮结构重要性系数2. 3单锚抗拔承载力标准值R k 应按下式确定:uk k R R K =(2.3) 式中:R uk ——单根锚杆极限抗拔承载力标准值;K——安全系数,取值2.0;2.4单根锚杆极限抗拔承载力标准值R uk 应按3.01条规定由基本试验确定,当无相应试验资料时可按式2.4-1估算;对荷载分散型锚杆极限抗拔承载力标准值可由各个单元锚杆极限抗拔承载力标准值组合而成,并按式8.3.4-2 估算:uk mgik ai R D f l π=∑(2.4-1),1n u k uk i i R R ==∑ (2.4-2) ''uki mgi k ai R Df l π=∑ (2.4-3)式中 R uk ——单根锚杆极限抗拔承载力标准值(KN );,uk i R ——第i 个单元锚杆极限抗拔承载力标准值(KN ),i=1,2,3…n ;n ——单元锚杆数量;ai l ——穿越第i 层岩土层锚杆锚固段长度(m );'ai l ——穿越第i 层岩土层单元锚杆锚固段长度(m ),i ‘=1,2,3…n ;D ——锚杆锚固段钻孔直径(m );mgik f ——锚杆锚固段灌浆体与第i 层岩土层间极限粘结强度标准值(kPa ),应通过试验确定,当无试验资料时可按表2.4-1取值;表2.4-1 岩土层与水泥砂浆(或水泥结石体)极限粘结强度标准值注:1 表中数据适用于一次常压灌浆,若采用二次压力灌浆法加固锚固段周边地层时,锚杆承载力可提高20%~60%,或由现场试验确定;2 采用泥浆护壁成孔工艺时,应按表取低值后再根据具体情况适当折减;3 采用套管护壁成孔工艺时,可采用表中高值;4 当砂土中细粒含量超过总质量的30%时,表中数值可乘以0.75;5 对有机质含量为5%~10%的有机质土,应按表取值后适当折减;6 当锚固段长度大于10m 时,应对表中数值适当折减。

关于抗浮锚杆的设计(精制甲类)

关于抗浮锚杆的设计(精制甲类)

关于抗浮锚杆的设计一、抗浮锚杆的构造要求:(1)、《全国民用建筑工程设计技术措施》2009 (简称《技术措施》)。

第80页,7.3.1-5中,锚杆的长度不应小于4m,且不宜大于10m.。

(2)锚杆的间距除必须满足锚杆的受力要求外,尚需大于1.5m。

(3)《岩土锚杆(索)技术规程》第5.3.1条对注浆材料有要求。

A、水泥强度应大于32.5MPa,B、水泥采用普通硅酸盐水泥,其质量应符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB 175的要求。

C、第5.3.2条对搅拌水要求采用饮用水。

拌合水的水质应复核现行行业标准《混凝土拌合用水标准》JGJ 63。

D、第5.3.3条对注浆材料采用的细骨料有要求。

E、第5.3.4条对注浆材料中使用的外加剂有要求。

二、抗浮锚杆的计算:1、符号说明:Ru-------锚杆抗拔极限承载力标准值Rt--------锚杆抗拔极限承载力特征值Nt--------锚杆的轴向拉力设计值Kt--------锚杆杆体的抗拉安全系数。

K---------锚杆锚固体的抗拔安全系数2、计算内容(1)、锚杆的轴向拉力设计值计算根据抗浮水位及锚杆的间距,计算单根锚杆的所承担的轴向拉力设计值NtA、地下室底板的水头为h,则水的浮力为f=10*h。

B、底板的自重为GC、抗浮锚杆承受的荷载q fD、根据《建筑荷载规范》,地下水浮力属可变荷载,底板自重(含地面做法)属永久荷载,则荷载效应组合的设计值应根据其最不利荷载组合确定。

即抗浮锚杆承受的荷载q f由下式计算:q f=γQ*f - γG*G---------q f 为设计值,其中γQ ----1.4 γG----0.9单根锚杆的轴向拉力设计值Nt 计算Nt= q f *a*b--------a、b为锚杆的间距附加说明:根据《地基基础设计规范》第9页3.0.5 条第3点,计算《建筑地基基础设计规范》第9页第3.0.5条第3 点的要求,计算基础抗浮稳定时,作用效应应按承载力极限状态下作用的基本组合,但其分项系数均为 1.0。

抗浮锚杆设计(8.0m)

抗浮锚杆设计(8.0m)

抗浮锚杆设计与施工本工程基础抗浮采用土层锚杆来解决,土层锚杆是一种埋入土层深处的受拉杆件,它的一端与工程建筑基础相连,另一端锚固在土层中,通过杆体与土体间的粘结力抵抗地下水对地下室的浮力。

本工程抗浮设计水位按36.0m 考虑,浮力标准值30kPa 。

锚杆间距根据本地区同类型设计施工经验,锚杆间距占取2.0m×2.0m (土方开挖完成后锚杆抗拔试验完成后最终确定)。

9.1 单锚抗拔力确定单根锚杆的抗拔力设计值R=2.0×2.0×30×1.25(荷载分项系数)=150kN;9.2 锚杆直径与长度抗浮锚杆主要依靠杆体与土体(抗水板下主要为为稍密~密实卵石)的粘结力来抵抗(水体对基础或底板的浮力)上拔力。

依据《建筑桩基技术规范》(JGJ94-2008)中5.4.6-1式进行抗浮设计计算: i i si l u q λ∑=a R (5.4.6-1)式中:a R —锚杆抗拔承载力特征值(kN ),根据设计要求为150kN ;i q —第i 层土体与锚固体粘界强度特征值(kPa);i u —锚杆的周长m ,对等直径锚杆取d u i π=(d 为锚固体直径),根据北京地区的施工常用的施工机械,d 可取0.150m ;i l —第i 层土体中的锚杆长度(m );根据勘察报告,锚杆按稍密卵石层进行计算,取i q =70kPa 。

按照8.6.11式计算,得l=7.58m 。

考虑到施工因素,取锚杆设计长度为8.0m 。

根据上述计算成果,在12400m 2抗浮底板上按照2.0m×2.0m 的间距共布置3100根长度8.0m 、直径Φ150mm 的抗浮锚杆可以满足抗浮要求,其平面布置见抗浮锚杆平面布置图。

该工程整个抗浮锚杆施工工作量如表3.2.1所示。

锚杆工作量 表3.2.19.3 锚杆配筋根据工程性质、施工工艺,拟采用热轧普通钢筋(HRB400),按下式进行计算配筋:0a s yR A f γξ≥ 式中:γ0—建筑物重要系数,针对于本工程,取1.1;ξ—锚筋抗拉工作条件系数,永久性锚杆取0.69;f y —钢筋抗拉强度设计值,取360MPa ;根据上式计算,As≥664mm 2,实际采用2根钢筋直径22mm ,As=691mm 2,满足设计要求。

抗浮锚杆施工设计的方案

抗浮锚杆施工设计的方案

抗浮锚杆施工设计的方案一、介绍抗浮锚杆是指在建筑结构中使用的一种特殊形式的锚杆,可以有效地防止建筑物浮动或起振。

抗浮锚杆通常由锚固的钢筋混凝土或钢材制成,通过将锚杆固定在地面或深层土体中,形成一个稳定的支撑系统。

下面将详细介绍抗浮锚杆施工设计的方案。

二、方案1.地质勘察在进行抗浮锚杆施工之前,必须对施工现场的地质情况进行彻底的勘察。

地质勘察的目的是确定土体的性质、深度和稳定性,以便选择合适的锚杆类型和施工方法。

2.锚杆类型选择根据地质勘察结果,选择适合的锚杆类型。

常见的锚杆类型包括钢筋混凝土锚杆和钢锚杆。

钢筋混凝土锚杆适用于大面积地下土体锚固,而钢锚杆适用于单个基础锚固或深堆锚固。

3.锚杆长度计算根据建筑结构的类型和规模,计算所需的锚杆长度。

通常,每个锚杆的长度应超过建筑结构水平投影面积的1.5倍。

如果有需要,可以通过进行施工试验来确定最佳的锚杆长度。

4.锚杆布置根据设计要求,确定锚杆的布置方式。

通常,锚杆应均匀分布在建筑结构的周围,且与其呈规律的网格状排列。

锚杆之间的距离宜控制在2-3倍锚杆长度的范围内,以确保锚杆的均匀承载。

5.锚杆固定方式选择根据地质条件和施工要求,选择适合的锚杆固定方式。

常见的固定方式包括预应力锚固和被动锚固。

预应力锚固需要在施工过程中施加一定的预应力,以增加锚杆的抗拉能力。

被动锚固则不需要预应力,锚杆仅起到固定土体的作用。

6.施工方法确定根据锚杆类型、锚杆长度和固定方式,确定合适的施工方法。

一般来说,施工过程包括如下几个步骤:(1)钻孔:根据设计要求,在施工现场进行钻孔,将锚杆安装在孔中。

(2)锚杆灌浆:将锚杆灌注浆液,以确保其与孔壁充分粘结。

(3)固化:等待锚杆浆液固化,使锚杆与周围土体形成牢固的结合。

(4)拉伸:如果采用预应力锚固方式,需要在固化后对锚杆施加预应力。

(5)确认:对已安装的锚杆进行确认,确保其稳定性和性能满足设计要求。

7.监测与维护在抗浮锚杆施工完成后,需要进行定期监测和维护。

抗浮锚杆设计方案--新规范2.18

抗浮锚杆设计方案--新规范2.18

都江堰“维纳斯堡”项目抗浮锚杆设计文件项目负责:兰恒强设计:兰恒强证书等级:岩土工程设计甲级证书编号:二〇一七年二月目录1、工程概况 (1)2、场地工程地质条件及水文地质条件 (2)3、抗浮锚杆设计 (4)3.1设计依据 (4)3.2设计计算 (4)3.2.1锚杆间距、单根锚杆抗拨力的确定 (4)3.2.2锚杆配筋计算 (5)3.2.3锚杆直径与长度 (5)3.2.4锚杆设计结果统计 (7)3.2.5锚杆抗浮力验算 (7)3.3锚杆材料防腐 (9)3.4防水设计 (9)3.5锚杆抗拔试验 (9)3.5.1基本试验 (9)3.5.2验收试验 (9)4、施工工艺及技术要求 (10)4.1施工方法与特点 (10)4.1.1嵌入深度及成孔技术要求 (10)4.1.2灌浆材料要求 (10)4.2施工工艺流程 (10)4.3操作过程及技术要求 (10)4.4防腐、防锈措施 (11)附图:1、抗浮锚杆平面布置图都江堰维纳斯堡项目抗浮锚杆设计方案1、工程概况都江堰维纳斯堡项目位于四川省都江堰市翔凤大道与内二环路交界处,交通方便。

依照建设单位提供的建筑设计总平面图,该拟建项目为多栋4-6层建筑,设2层地下室,局部为纯地下室,拟采用框架结构,独立基础,主体结构设计由浙江恒欣建筑设计股份有限公司完成,工程地质勘察由建材成都地质工程勘察院完成。

我公司受建设方四川翔凤房地产开发有限公司委托对该工程进行专项抗浮锚杆设计。

拟建物情况一览表表1.1拟建建筑全部采用独立基础结合抗水板。

根据结构设计要求,本工程综合楼及商业楼-2F部分地下室抗浮板设计抗浮力标准值为70kN/m,抗浮面积为2094.77㎡。

设备房及下沉式广场-1F抗浮板设计抗浮力标准值为40kN/m,设备房部分抗浮面积为85.94㎡,下沉式广场部分抗浮面积为223.07㎡。

本工程抗浮采用抗浮锚杆进行处理,抗浮锚杆间距不宜大于2.5m。

本工程±0.00绝对标高为711.50m,抗水板板厚250-400mm。

抗浮预应力锚杆设计

抗浮预应力锚杆设计

抗浮预应力锚杆设计11.2.1地下水浮力标准值与抗浮锚杆拉力标准值可按下列公式计算:式中:F f——地下水浮力标准值;A——基底面积;γw——地下水容重;△H——抗浮设防水位与建筑物基础底标高之差;G——结构自重及其他永久荷载标准值之和;n——设计抗浮区域内的锚杆数量;T k——单根抗浮锚杆受拉承载力标准值。

11.2.2抗浮锚杆应进行抗拔承载力及杆体抗拉承载力计算。

锚杆的拉力设计值、杆体截面积、锚固体长度、直径计算应符合本规范第4.6节的有关规定。

11.2.3抗浮锚杆长度应满足锚杆设计拉力及整体抗浮稳定要求,预应力抗浮锚杆自由杆体长度不宜小于5m,锚杆间距不宜小于1.5m。

11.2.4抗浮锚杆应进行整体抗浮稳定验算,抗浮稳定安全系数可按下式计算(图11.2.4):式中:W——基础下抗浮锚杆范围内总的土体重量,计算时采用浮重度(kN);G——结构自重及其他永久荷载标准值之和(kN);F f——地下水浮力标准值(kN);K——抗浮稳定安全系数,应满足国家现行有关标准的规定。

图11.2.4 抗浮锚杆整体稳定计算示意图11.2.5抗浮锚杆初始预应力值的确定应考虑锚杆受力变形及其对基础底板抗裂的影响,并宜符合下列要求:1抗浮锚杆的锁定拉力值宜为锚杆拉力设计值的0.8倍~1.0倍;2对于长期稳定水浮力作用下,以及变形控制要求较高的工程,锚杆的锁定拉力值宜为锚杆拉力设计值;3压力分散型抗浮锚杆的锁定拉力值宜为锚杆拉力设计值。

11.2.6抗浮锚杆的锁定时间应根据土层条件、结构荷载和变形完成情况综合确定。

11.2.7抗浮锚杆锚头设计与构造应符合下列要求:1锚下结构应具有足够的强度和刚度,确保在施加张应力时不产生有害变形;2锚具的质量与性能应满足锚杆长期工作受力要求;3锚杆锚头的防腐处理应符合本规范第4.5节的有关规定。

11.2.8抗浮锚杆与基础底板连接节点应满足基础底板整体防水等级及构造要求,可采用渗透结晶型防水材料对锚杆节点进行处理,并应在基础混凝土浇筑前在锚杆杆体上设置不少于2道的遇水膨胀橡胶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于抗浮锚杆的设计
一、抗浮锚杆的构造要求:
(1)、《全国民用建筑工程设计技术措施》2009 (简称《技术措施》)。

第80页,7.3.1-5中,锚杆的长度不应小于4m,且不宜大于10m.。

(2)锚杆的间距除必须满足锚杆的受力要求外,尚需大于1.5m。

(3)《岩土锚杆(索)技术规程》第5.3.1条对注浆材料有要求。

A、水泥强度应大于32.5MPa,
B、水泥采用普通硅酸盐水泥,其质量应符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB 175的要求。

C、第5.3.2条对搅拌水要求采用饮用水。

拌合水的水质应复核现行行业标准《混凝土拌合用水标准》JGJ 63。

D、第5.3.3条对注浆材料采用的细骨料有要求。

E、第5.3.4条对注浆材料中使用的外加剂有要求。

二、抗浮锚杆的计算:
1、符号说明:
Ru-------锚杆抗拔极限承载力标准值
Rt--------锚杆抗拔极限承载力特征值
Nt--------锚杆的轴向拉力设计值
Kt--------锚杆杆体的抗拉安全系数。

K---------锚杆锚固体的抗拔安全系数
2、计算内容
(1)、锚杆的轴向拉力设计值计算
根据抗浮水位及锚杆的间距,计算单根锚杆的所承担的轴向拉力设计值Nt
A、地下室底板的水头为h,则水的浮力为f=10*h。

B、底板的自重为G
C、抗浮锚杆承受的荷载q f
D、根据《建筑荷载规范》,地下水浮力属可变荷载,底板自重(含地面做法)属永久荷载,
则荷载效应组合的设计值应根据其最不利荷载组合确定。

即抗浮锚杆承受的荷载q f由下式计算:
q f=γQ*f - γG*G---------q f 为设计值,
其中γQ ----1.4 γG----0.9
单根锚杆的轴向拉力设计值Nt 计算
Nt= q f *a*b--------a、b为锚杆的间距
附加说明:
根据《地基基础设计规范》第9页3.0.5 条第3点,计算《建筑地基基础设计规范》第9页第3.0.5条第3 点的要求,计算基础抗浮稳定时,作用效应应按承载力极限状态下作用的基本组合,但其分项系数均为 1.0。

-------根据《技术措施》,计算抗浮时,安全系数为 1.05。

但计算锚杆的配筋时,安全系数为 1.35.
(2)、计算锚杆抗拔极限承载力标准值Ru
根据地勘报告提供的桩侧的阻力标准值,按《技术措施》第81页的7.3.2-2 公式
Ru=ξ1*π*D*Σ(λ1*q sin*L i )
其中ξ1--------经验系数,永久锚杆取0.8
λ1-------抗拔系数。

q sin--------第I 层土的锚杆锚固段侧阻力标准值。

(3)、计算锚杆抗拔极限承载力特征值Rt
根据《岩土锚杆(索)技术规程》第21页,锚杆的抗拔安全系数K=2.2
详见表第7.3.1。

Rt=Ru/K
注意:承压桩(灌注桩、预应力桩的安全系数为2)
结论1:
单根锚杆的所承担的轴向拉力设计值1.05*Nt ≤Rt-------Rt 为特征值。

相关文档
最新文档