绝对值几何意义知识点、经典例题及练习题带答案培训讲学
绝对值应用(绝对值的几何意义)(北师版)(含答案)
![绝对值应用(绝对值的几何意义)(北师版)(含答案)](https://img.taocdn.com/s3/m/c0d98edd4028915f814dc207.png)
学生做题前请先回答以下问题问题1:绝对值的几何意义:①表示在数轴上,x所对应的点与_______的距离.②表示在数轴上____________________________对应点之间的距离.③表示____________________________对应点之间的距离.绝对值应用(绝对值的几何意义)(北师版)一、单选题(共10道,每道10分)1.已知,则a,b的值分别为( )A.a=3,b=5B.a=-3,b=5C.a=3,b=-5D.a=-3,b=-5答案:B解题思路:试题难度:三颗星知识点:绝对值的非负性2.若,则ab=( )A.0B.3C.-3D.±3答案:C解题思路:试题难度:三颗星知识点:绝对值的非负性3.若与互为相反数,则a+b=( )A.-1B.1C.5D.-5答案:A解题思路:试题难度:三颗星知识点:绝对值的非负性4.若x为有理数,则的最小值为( )C.3D.5答案:A解题思路:试题难度:三颗星知识点:绝对值的几何意义5.若x为有理数,则的最小值为( )A.1B.3答案:D解题思路:试题难度:三颗星知识点:绝对值的几何意义6.若x为有理数,则的最小值为( )A.1B.2C.3D.4答案:B解题思路:试题难度:三颗星知识点:绝对值的几何意义7.若x为有理数,则的最小值为( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:绝对值的几何意义8.当x=____时,有最_____值,是_____.( )A.0,小,6B.0,大,6C.0,小,0D.0,大,0答案:A解题思路:试题难度:三颗星知识点:利用绝对值的非负性求最值9.当x=____时,有最_____值,是_____.( )A.4,小,3B.4,大,-3C.4,小,-3D.0,大,3答案:C解题思路:试题难度:三颗星知识点:利用绝对值的非负性求最值10.当x=____时,有最_____值是_____.( )A.0,小,0B.0,小,3C.0,大,0D.0,大,3答案:D解题思路:试题难度:三颗星知识点:利用绝对值的非负性求最值。
绝对值的几何意义(练习)难含答案
![绝对值的几何意义(练习)难含答案](https://img.taocdn.com/s3/m/7fe45c3f102de2bd970588a1.png)
绝对值的几何意义(练习)难巧用绝对值的“几何意义”求多个绝对值之和的最小值问题【例1】求y=|x+3|+|x+2|+|x+1|+|x|+|x-1|+|x-2|+|x-3|的最小值,并指出y为最小值时,x的值为多少?【例2】已知y=⅔|x+1|+2|x-1|+|x-2|,求y的最小值。
【例3】已知|a+3|+|a-5|=8,求a的取值范围。
【例4】已知2|a+1|+|a-2|+|b+1|+4|b-5|=9,求a b的值。
【例5】如图4,一条公路旁有6个村庄,分别为A,B,C,D,E,F,现在政府要在公路边建一个公交站,请问建在哪一段比较合理?绝对值的几何意义(练习)难参考答案巧用绝对值的“几何意义”求多个绝对值之和的最小值问题【例1】求y=|x+3|+|x+2|+|x+1|+|x|+|x-1|+|x-2|+|x-3|的最小值,并指出y为最小值时,x的值为多少?初一引进绝对值的概念,但多数学生对绝对值的问题只是浅尝辄止。
绝对值有两个方面的意义,一个是代数意义,另一个几何意义,但一般教学往往侧重于代数意义而忽略了其几何意义。
绝对值的代数意义:|a|=a,(a≥0);|a|=-a,(a<0)。
绝对值的几何意义:|a|是数轴上表示数a的点到原点的距离。
众所周知,如果数轴上有两点A,B,它们表示的数分别为a,b(a≤b),则A,B之间的距离:|AB|=|a-b|(如图1)。
设点X在数轴上表示的点为x,则|x-a|+|x-b|表示点X到点A和点B的距离之和:|XA|+|XB|,由图2可以看出,如果X在A,B两点之间,那么|XA|+|XB|可以取到最小值|AB|,即:当a≤x≤b 时,|x-a|+|x-b|取最小值|a-b|;同样,设点C在数轴上表示的点为c,(a≤b≤c),则|x-a|+|x-b|+|x-c|表示点X到点A、点B和点C的距离之和:|XA|+|XB|+|XC|,由图3可以看出,如果X落在B点,那么|XA|+|XB|+|XC|可以取到最小值|AC|,即:当x=b 时,|x-a|+|x-b|+|x-c|取最小值|a-c|。
部编数学七年级上册专题03绝对值的几何意义(解析版)含答案
![部编数学七年级上册专题03绝对值的几何意义(解析版)含答案](https://img.taocdn.com/s3/m/eed1dc8329ea81c758f5f61fb7360b4c2e3f2afa.png)
专题03 绝对值的几何意义类型一求两个绝对值和的最小值1.数学实验室:我们知道,在数轴上,|a|表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A、B,分别表示有理数a、b,那么A、B两点之间的距离AB=|a-b|.利用此结论,回答以下问题:(1)数轴上表示1和5的两点之间的距离是______,数轴上表示1和-5的两点之间的距离是______.(1+1分,注意写出最后结果)(2)式子|x+2|可以看做数轴上表示x和______的两点之间的距离.(3)式子|x+2|+|x-3|的最小值是______.(4)当|x+2|+|x-3|取得最小值时,数x的取值范围是______.【答案】(1)4,(2)6;(3)-2;(4)5.(5)-2£x£3.【解析】【分析】根据绝对值的定义进行填空即可.【详解】-=4,数轴上表示1和-5的两点之间的距离是解:(1)数轴上表示1和5的两点的距离是15()6;15--=故答案为4,6;x--,(2)∵|x+2|=()2∴式子|x+2|可以看做数轴上表示x和-2的两点之间的距离;故答案为-2;(3)当x 在数轴上表示-2和3之间时,此时|x +2|+|x -3|的最小值为5;故答案为5.(4) 当x 在数轴上表示-2和3之间时,此时|x +2|+|x -3|的最小值为5;即当|x +2|+|x -3|取得最小值时,数x 的取值范围是-2£x £3.故答案为-2£x £3.2.我们知道,在数轴上,|a|表示数a 到原点的距离,这是绝对值的几 何意义,进一步地,数轴上两个点A 、B ,分别用a 和b 表示,那么A 、B 两点之间的距离为AB =|a ﹣b|利用此结论,回答以下问题:(1)数轴上表示3 和7 的两点之间的距离是,数轴上表示﹣3 和﹣7 的两 点之间的距离是 ,数轴上表示2 和﹣3 的两点之间的距离是 ;(2)数轴上表示x 和﹣5 的两点A 、B 之间的距离是,如果|AB|=3,那 么x 的值为 ;(3)当代数式|x ﹣1|+|x ﹣3|取最小值时,相应的x 的取值范围是多少?最小值是多少?(4)已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0,设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.【答案】(1)4;4;5;(2)5x +;-8或-2;(3)x 的范围是31x -££;最小值是4;(4)x 的值为12-.【解析】【分析】(1)(2)直接根据数轴上A 、B 两点之间的距离|AB |=|a ﹣b |.代入数值运用绝对值即可求任意两点间的距离.(3)根据|x ﹣a |表示数轴上x 与a 之间的距离,因而原式表示:数轴上一点到1和3距离的和,当x 在1和3之间时有最小值.(4)应考虑到A 、B 、P 三点之间的位置关系的多种可能解题.【详解】(1)数轴上表示3和7的两点之间的距离是|7﹣3|=4,数轴上表示﹣3和﹣7的两点之间的距离是|﹣7﹣(﹣3)|=4.数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5.(2)数轴上表示x 和﹣5的两点A 和B 之间的距离是|x ﹣(﹣5)|=|x +5|,如果|AB |=3,那么x 为﹣8或﹣2.(3)代数式|x ﹣1|+|x +3|表示在数轴上到1和﹣3两点的距离的和,当x 在﹣3和1之间时,代数式取得最小值,最小值是﹣3和1之间的距离4.故当﹣3≤x ≤1时,代数式取得最小值,最小值是4.(4)①当P 在点A 左侧时,|PA |﹣|PB |=﹣(|PB |﹣|PA |)=﹣|AB |=﹣5≠2.②当P 在点B 右侧时,|PA |﹣|PB |=|AB |=5≠2,∴上述两种情况的点P 不存在.③当P 在A 、B 之间时,|PA |=|x ﹣(﹣4)|=x +4,|PB |=|x ﹣1|=1﹣x .∵|PA |﹣|PB |=2,∴x +4﹣(1﹣x )=2,∴x 12=-,即x 的值为12-.故答案为(1)4;4;5.(2)|x +5|;﹣8或﹣2.(3)x 的范围是﹣3≤x ≤1;最小值是4.(4)x 的值为-12.【点睛】本题综合考查了一元一次方程的应用、数轴、绝对值的有关内容,解题的关键是正确理解题意给出的距离的定义,本题属于基础题型.3.“数形结合”是重要的数学思想.如:()32--表示3与2-差的绝对值,实际上也可以理解为3与2-在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A ,B ,所对应的数分别用a ,b 表示,那么A ,B 两点之间的距离表示为AB a b =-.利用此结论,回答以下问题:(1)数轴上表示2-和5两点之间的距离是__________.(2)若13x -=,则x =______.(3)若x 表示一个有理数,142x x ++-的最小值为_________.(4)已知数轴上两点A 、B 对应的数分别为2-,8,现在点A 、点B 分别以3个单位长度/秒和2单位长度/秒的速度同时向右运动,当点A 与点B 之间的距离为2个单位长度时,求点A 所对应的数是多少?【答案】(1)7;(2)4或2-;(3)142;(4)22或34.【解析】【分析】(1)利用数轴上两点之间的距离公式:AB a b =-,代入计算即可得到答案;(2)由3=3,± 可得13x -=或13,x -=- 再解方程即可得到答案;(3)先画好数轴,如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则此时111444,222AC AB BC x x æö=+=++-=--=ç÷èø而且利用两点之间线段最短,可得此时可得最小值;(4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t 再利用两点之间的距离公式表示,AB 再利用2,AB = 建立绝对值方程,解方程可得答案.【详解】解:(1)数轴上表示2-和5两点之间的距离是:()52527,--=+=故答案为:7(2)Q 13x -=13x \-=或13,x -=-解得:4x =或 2.x =-故答案为:4或2-(3)如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则11,4,22AB x x BC x æö=--=+=-ç÷èø 111444,222AC AB BC x x æö\=+=++-=--=ç÷èø此时:142x x ++-的值最小,为14.2故答案为:14.2(4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t而移动后:2,AB =()8+2232,t t \--+=102,t \-=102t \-=或102,t -=-解得:8t =或12.t =当8t =时,A 向右移动后对应的数为:2322422,t -+=-+=当12t =时,A 向右移动后对应的数为:2323634.t -+=-+=【点睛】本题考查的是数轴上两点之间的距离,绝对值的含义,建立绝对值方程,一元一次方程的解法,掌握数形结合的方法解题是解本题的关键.4.认真阅读下面的材料,完成问题.在学习绝对值时,我们知道绝对值的几何含义为数轴上一点到原点的距离.如|5|意义为表示5的点到原点的距离,实际上可理解为,|5|=|5-0|,即5到0点的距离.又如|5-3|表示5、3在数轴上对应的两点之间的距离;|5-(-3)|表示5、-3在数轴上对应的两点之间的距离,容易知道|5-(-3)|=|5+3|=8.即5与-3相距8个单位长度.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 之间的距离可表示为|a -b |.(1)利用上面的知识回答:点A 、B 在数轴上分别表示有理数-5、1,那么A 到B 的距离可表示为 ,这个距离的计算结果是 ;(2)利用上面的知识回答:若|x -1|=2,则x = ;(3)利用上面的知识回答:|x -2|+|x +1|的最小值是 .【答案】(1)|1-(-5)|,6;(2)-1或3;(3)3.【解析】【分析】(1)根据数轴上两点距离公式表示和计算即可;(2)根据点到1的距离等于2,即可找出x =-1或3即可;(3)根据条件化去绝对值当x ≥2时,|x -2|+|x +1|= 2x -1≥3,-1≤x <2时,|x -2|+|x +1|=3,当x <-1时,|x -2|+|x +1|=1-2x >3即可.【详解】解:(1)|1-(-5)|=|1+5|=6;故答案为:|1-(-5)|,6;(2)∵| 3-1|=2,∴x =3,∵|-1-1|=2,∴x=-1,∴|x -1|=2,x =-1或3,故答案为-1或3;(3)当x ≥2时,|x -2|+|x +1|=x -2+x +1=2x -1≥3,-1≤x <2时,|x -2|+|x +1|=2-x +x +1=3,当x <-1时,|x -2|+|x +1|=2-x -x -1=1-2x >3,|x -2|+|x +1|的最小值是3.故答案为:3.【点睛】本题考查数轴上两个点之间的距离,绝对值的意义,化简绝对值的方法,整式的加减法,同类项,掌握数轴上两个点之间的距离,绝对值的意义,化简绝对值的方法,整式的加减法,同类项是解题关键.5.我们知道,||a 可以理解为|0|a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点,A B ,分别用数,a b 表示,那么,A B 两点之间的距离为||||AB a b =-,反过来,式子||-a b 的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数1-的点和表示数3-的点之间的距离是__________.(2)数轴上点A 用数a 表示,若||5a =,那么a 的值为_________.(3)数轴上点A 用数a 表示:①若|3|5a -=,那么a 的值是________.②当|2||3|5a a ++-=时,数a 的取值范围是________,这样的整数a 有________个.③|3||2017|a a -++有最小值,最小值是___________.【答案】(1)5;2;(2)5或5-;(3)①2-或8;②23a -££,6;③2020.【解析】【分析】(1)根据两点之间的距离公式进一步计算即可;(2)根据绝对值的定义求解即可;(3)①利用绝对值的定义可知35a -=或5-,然后进一步计算即可;②|2||3|5a a ++-=的意义是表示数轴上到表示2-和表示3的点的距离之和是5的点的坐标,据此进一步求解即可;③|3||2017|a a -++是表示数轴上表示3与表示2017-的点的距离之和,然后进一步求解即可.【详解】(1)数轴上表示数8的点和表示数3的点之间的距离是:83=5-;数轴上表示数1-的点和表示数3-的点之间的距离是:()13=2---,故答案为:5,2;(2)若||5a =,则5a =或5-,故答案为:5或5-;(3)①若|3|5a -=,则35a -=或5-,∴8a =或2-,故答案为:2-或8;②∵|2||3|5a a ++-=的意义是表示数轴上到表示2-和表示3的点的距离之和是5的点的坐标,∴23a -££,其中整数有2-、1-、0、1、2、3共6个,故答案为:23a -££,6;③∵|3||2017|a a -++是表示数轴上表示3与表示2017-的点的距离之和,∴当20173a -££时,|3||2017|a a -++有最小值,此时最小值为:3(2017)=2020--,故答案为:2020.【点睛】本题主要考查了绝对值意义的综合运用,熟练掌握相关概念是解题关键.类型二 求多个绝对值和的最小值6.我们知道,a 表示数a 对应的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B 分别表示数a 、b ,那么AB a b =-.利用此结论,回答下列问题:(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示2-和5-的两点之间的距离是_____,数轴上表示1和3-的两点之间的距离是____;(2)数轴上表示x 和-1的两点A 、B 之间的距离是____,如果AB =2,那么x 的值为_____;(3)写出13x x +++表示的几何意义:_____,该式的最小值为______;(4)123x x x +++++的最小值_____.【答案】(1)3,3,4;(2)1x +,1或-3;(3)点x 到1-的距离与点x 到3-的距离之和,2;(4)2【解析】【分析】(1)结合题意,根据数轴和绝对值的性质计算,即可得到答案;(2)根据数轴、绝对值的性质计算,即可得到答案;(3)根据数轴、绝对值的性质,对x 的取值分类计算,即可完成求解;(4)结合(3)的结论,根据数轴和绝对值的性质计算,即可得到答案.【详解】(1)数轴上表示2和5的两点之间的距离是:2533-=-=;数轴上表示2-和5-的两点之间的距离是:()()25253---=-+=;数轴上表示1和3-的两点之间的距离是:()13134--=+=;故答案是:3,3,4;(2)数轴上表示x 和-1的两点A 、B 之间的距离是:()11--=+x x ;∵AB =2∴()112x x --=+=∴1x =或3-故答案为:1x +,1或-3(3)13x x +++表示的几何意义:点x 到1-的距离与点x 到3-的距离之和;当3x <-时,132x x +++>当31x -££-时,13132x x x x +++=--++=当1x >-时,132x x +++>∴13x x +++的最小值为:2故答案为:点x 到1-的距离与点x 到3-的距离之和,2;(4)结合(3)的结论,当31x -££-时, 13x x +++的最小值为:2∴12322x x x x +++++=++当2x =-时,2x +取最小值,即20x +=∴123202x x x +++++=+=∴123x x x +++++的最小值为:2故答案为:2.【点睛】本题考查了数轴、绝对值的知识;解题的关键是熟练掌握数轴、绝对值的性质,从而完成求解.7.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道|4||40|=-,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子|73|-,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离.也就是说,在数轴上,如果点A 表示的数记为a ,点B 表示的数记为b ,则A ,B 两点间的距离就可记作||-a b .回答下列问题:(1)几何意义是数轴上表示数2的点与数3-的点之间的距离的式子是________;式子|5|+a 的几何意义是_______________________;(2)根据绝对值的几何意义,当|2|3-=m 时,m =________;(3)探究:|1||9|++-m m 的最小值为_________,此时m 满足的条件是________;(4)|1||9||16|++-+-m m m 的最小值为________,此时m 满足的条件是__________.【答案】(1)23+或2(3)--;数轴上表示数a 的点与数2的点之间的距离.(2)1-或5(3)10,19m -££(4)17,9m =【解析】【分析】(1)根据距离公式及定义表示即可;(2)分点在2表示的数的点的左边和右边两种情形求解;(3)利用数形结合思想,画数轴求解即可;(4)利用数形结合思想,画数轴求解即可.(1)解:①在数轴上的意义是表示数2的点与表示数3-的点之间的距离的式子是()23-- ,故答案为:()2323--=+;②∵5a +=|a -(-5)|,∴5a +在数轴上的意义是表示数a 的点与表示数-5的点之间的距离.故答案为:表示数a 的点与表示数-5的点之间的距离.(2)解:∵2m -表示数m 到2的距离,画数轴如下:当数在2的右边时,右数3个单个单位长,得到对应数是5,符合题意;当数在2的左边时,左数3个单个单位长,得到对应数是-1,符合题意;故答案为:-1或5;(3)解:∵19m m ++-表示数m 与-1,9的距离之和,画数轴如下:根据两点之间线段最短,-1表示点与9表示点的最短距离为9-(-1)=10,此时动点m 在-1表示点与9表示点构成的线段上,∴19m -££ ;故答案为:10、19m -££;(4)解:根据题意,画图如下,根据两点之间线段最短,-1表示点与16表示点的最短距离为16-(-1)=17,此时动点m 在-1表示点与16表示点构成的线段上,且到9表示的点的距离为0,∴9m = ;故答案为:17、 9m =.【点睛】本题考查了数轴上两点间的距离计算公式,线段最短原理,数轴的意义,解题的关键是利用数形结合思想,分类思想,结合数轴,运用数学思想解题.8.我们知道,在数轴上,|a |表示数a 到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么A 、B 两点之间的距离为:AB =|a ﹣b |.利用此结论,回答以下问题:(1)数轴上表示﹣20和﹣5的两点之间的距离是 .(2)数轴上表示x 和﹣1的两点A ,B 之间的距离是 .(3)式子|x +1|+|x ﹣2|+|x ﹣3|的最小值是 .(4)结合数轴求|1||||2||4|x x x x -++++-的最小值为,此时符合条件的整数x 为 .(5)结合数轴求4|1|||3|2|2|4|x x x x -++++-的最小值为,此时符合条件的整数x为 .(6)结合数轴求|1||3|x x ---的最小值为 ,最大值为 .【答案】(1)15;(2)|x +1|;(3)4;(4)7;0,1;(5)16;1;(6)-2;2.【解析】【分析】(1)利用两点距离公式-5-(-20)计算即可;(2)利用两点距离公式|x -(-1)|计算即可;(3)分当x ≤-1当-1<x ≤2,当2<x ≤3,当x ≥3区间化去绝对值,合并同类项即可;(4)分当x ≤-2,当-2≤x ≤0, 当0≤x ≤1, 当1≤x ≤4, 当x ≥4区间化去绝对值,合并同类项,再确定区间的代数式最小值即可;(5)分当x ≤-2,当-2≤x ≤0, 当0≤x ≤1, 当1≤x ≤4, 当x ≥4区间化去绝对值,合并同类项,再确定区间的代数式最小值即可;(6)分区间化去绝对值当x ≤1,|1||3|2x x ---=-,当1≤x ≤3,|1||3|242x x x ---=-³- ,当x ≥3,|1||3|2x x ---=即可.【详解】解:(1)-5-(-20)=-5+20=15,故答案为15;(2)|x -(-1)|=|x +1|,故答案为:|x +1|;(3)当x ≤-1,|x +1|+|x ﹣2|+|x ﹣3|=- x -1 –x +2- x +3=-3x +4≥7,当-1<x ≤2,|x +1|+|x ﹣2|+|x ﹣3|= x +1–x +2- x +3=- x +6≥4,当2<x ≤3,|x +1|+|x ﹣2|+|x ﹣3|= x +1+x -2- x +3= x +2>4,当x >3,|x +1|+|x ﹣2|+|x ﹣3|= x +1+x -2+ x -3=3 x -4>5,式子|x +1|+|x ﹣2|+|x ﹣3|的最小值是4,故答案为4;(4)当x ≤-2,|1||||2||4|1243411x x x x x x x x x -++++-=----+-=-³,当-2≤x ≤0,|1||||2||4|124727x x x x x x x x x -++++-=--+++-=-³当0≤x ≤1,|1||||2||4|1247x x x x x x x x -++++-=-++++-=当1≤x ≤4,|1||||2||4|124527x x x x x x x x x -++++-=-++++-=+³当x ≥4,||1||||2||4|1244313x x x x x x x x x -++++-=-++++-=-³∴|1||||2||4|x x x x -++++-的最小值为7,符合条件的整数x 为0,1,故答案为:7;0,1;(5)当x ≤-2,4|1|||3|2|2|4|44368261026x x x x x x x x x -++++-=----+-=-³,当-2≤x ≤0,4|1|||3|2|2|4|44368218418x x x x x x x x x -++++-=--+++-=-³当0≤x ≤1,4|1|||3|2|2|4|44368218218x x x x x x x x x -++++-=-++++-=-³当1≤x ≤4,4|1|||3|2|2|4|44368210616x x x x x x x x x -++++-=-++++-=+³当x ≥4,|4|1|||3|2|2|4|44362810636x x x x x x x x x -++++-=-++++-=-³∴|1||||2||4|x x x x -++++-的最小值为16,符合条件的整数x 为1,故答案为16;1;(6)当x ≤1,()|1||3|132x x x x ---=---=-,当1≤x ≤3,()|1||3|13242x x x x x ---=---=-³- ,当x ≥3,()|1||3|132x x x x ---=---=,|1||3|x x ---的最小值为-2,最大值为2.故答案为-2;2.【点睛】本题考查数轴上两点距离,绝对值化简,最值,掌握数轴上两点距离,分区间绝对值化简方法是解题关键.9.阅读理解;我们知道,若A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点间的距离表示为AB ,则AB a b =-.所以2x -的几何意义是数轴上表示X 的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A 表示-2,点B 表示3,则AB = .(2)若35x -=,则x 的值是 .(3)如果数轴上表示数a 的点位于-4和2之间,求42a a ++-的值;(4)点a 取何值时,42a a ++-取最小值,最小值是多少?请说明理由;(5)直接回答:当式子-129a a a +-+¼+-取最小值时,相应a 的取值范围是多少?最小值是多少?【答案】(1)5;(2)2-或8;(3)6;(4)当42a -££时,最小值为6;(5)当5a =时,最小值为20【解析】【分析】(1)根据题目中的方法确定出AB 的长即可;(2)原式利用绝对值的代数意义化简即可求出x 的值;(3)根据数轴上两点间的距离的求法,化简42a a ++-即可;(4)根据线段中点到各点的距离的和最小,可得答案;(5)根据线段中点到各点的距离的和最小,可得答案.【详解】解:(1)235AB =--=,则5AB =;(2)∵35x -=,∴35x -=±,故2x =-或8,故答案为:2-或8;(3)∵数轴上表示数a 的点位于-4和2之间,∴42426a a a a ++-=++-=;(4)∵42a a ++-,代表点a 到4-和到2之间的距离之和,当42a -££时,42a a ++-取得最小值,最小值为6;(5)当5a =时,-129a a a +-+¼+-有最小值,最小值为=123456789a a a a a a a a a-+-+-+-+-+-+-+-+-=15a +=515+=20.【点睛】本题考查了绝对值,数轴两点间的距离,利用了两点间的距离公式,注意线段上的点与线段两端点的距离的和最小.10.我们知道,|a|表示数a 到原点的距离,这是绝对值的几何义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么AB=|a-b|.(思考一下,为什么?),利用此结论,回答以下问题:(1)数轴上表示2和5 的两点之间的距离是______,数轴上表示-2和-5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是_______;(2)数轴上表示x 和-1的两点A 、B 之间的距离是_______,如果|AB|=2,那么x 的值为_______;(3)当x 取何值时,式子|x -1|+|x -2|+|x -3|+ |x -4|+|x -5|的值最小,并求出这个最小值.【答案】(1)3,3,4;(2)|x+1|,1或-3;(3)x=3,最小值为6【解析】【分析】(1)根据两点间的距离的求法列式计算即可得解;(2)根据绝对值的几何意义列式计算即可得解;(3)根据数轴上两点间的距离公式得到式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的意义,从而分析出x=3时,式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值最小.【详解】解:(1)表示2和5 的两点之间的距离是|2-5|=3,表示-2和-5的两点之间的距离是|-2-(-5)|=3,表示1和-3的两点之间的距离是|1-(-3)|=4;(2)表示x 和-1的两点A 、B 之间的距离是|x+1|,∵|AB|=2,∴|x+1|=2,∴x+1=2或x+1=-2,解得x=1或-3;(3)式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|表示x 到数轴上1,2,3,4,5五个数的距离之和,∴当x 与3重合时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|有最小值,最小值为6,此时x=3.【点睛】本题主要考查了数轴以及数轴上两点间的距离公式的综合应用,解决问题的关键是掌握:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.解题时注意:数轴上任意两点分别表示的数是a 、b ,则这两点间的距离可表示为|a-b|.11.我们知道,a 表示数a 对应的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点,A B 分别表示数,a b ,那么,A B 两点之间的距离为a b -.利用此结论,回答下列问题:(1)数轴上表示3和-3的两点之间的距离是 ;(2)数轴上表示x 和-1的两点之间的距离为2,那么x 的值为 ;(3)直接写出24x x ++-的最小值为 ;(4)直接写出+21+4x x x +--的最小值为 ;(5)简要求出12399x x x x -+-+-++-…的最小值.【答案】(1)6;(2)-3或1;(3)6;(4)6;(5)2450【解析】【分析】(1)根据两点间的距离公式求解可得;(2)根据绝对值的定义可得;(3)得出24x x ++-的几何意义,从而得到最小值;(4)得出+21+4x x x +--的几何意义,从而得到最小值;(5)根据绝对值的几何意义可知:当x=50时值最小,然后去掉绝对值符号,再利用求和公式列式计算即可得解.【详解】解:(1)数轴上表示3和-3的两点之间的距离是()336--=,故答案为:6;(2)由题意可得:()12x --=,则x 的值为:-3或1;(3)∵24x x ++-表示数轴上表示点x 到-2和4两点的距离和,∴当x 在-2到4之间时,24x x ++-有最小值,最小值为6;(4)+21+4x x x +--表示数轴上表示点x 到-2和1和4三点的距离和,∴当x 与1重合时,+21+4x x x +--的值最小,最小值为6;(5)12399x x x x -+-+-++-…的中间一项是|x-50|,当x=50时,12399x x x x -+-+-++-…有最小值,∴12399x x x x -+-+-++-…=5015025035099-+-+-++-…=49+48+47+…+1+0+1+2+…+49=2×(1+2+ (49)=2450.【点睛】本题主要考查的是绝对值的意义的应用,理解并应用绝对值的定义及两点间的距离公式是解题的关键.类型三 利用绝对值的几何意义解方程12.阅读理解;我们知道」x 丨的几何意义是在数轴上数x 对应的点与原点的距离,即丨x 丨=丨x -0丨,也就是说丨x |表示在数轴上数x 与数0对应点之间的距离;这个结论可以推广为:丨x -y 丨表示在数轴上数x 、y 对应点之间的距离.在解题中,我们常常运用绝对值的几何意义.①解方程|x | = 2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为 x =±2.②在方程丨x -1丨=2中,x 的值就是数轴上到1的距离为2的点对应的数,所以该方程的解是x = 3或x = -1.知识运用:根据上面的阅读材料,求下列方程的解(1)方程|x |= 5的解(2)方程| x -2|= 3的解【答案】(1)5x =±;(2)5x =或1-【解析】【分析】(1)由阅读材料中的方法求出x 的值即可;(2)由阅读材料中的方法求出x 的值即可;【详解】(1)∵在数轴上与原点距离为5的点对应的数为5±∴方程5x =的解是5x =±(2)∵在方程23x -=中,数轴上到2的距离为3的点对应的数.∴方程23x -=的解是5x =或1-.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示方法是解题的关键.13.阅读下列材料:我们知道x 表示的是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,x 对表示在数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示在数轴上数1x ,2x 对应点之间的距离.例1解方程6x =.解:∵06x x =-=,∴在数轴上与原点距离为6的点对应的数为6±,即该方程的解为6x =±.例2解不等式12x ->.解:如图,首先在数轴上找出12x -=的解,即到1的距离为2的点对应的数为1-,3,则12x ->的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程53x -=的解为______;(2)解不等式2219x ++<;(3)若123x x -++=,则x 的取值范围是_______;(4)若12y x x =--+,则y 的取值范围是_______.【答案】(1)128,2x x ==(2)62x -<<(3)21x -£<(4)33y -££【解析】【分析】(1)利用绝对值的性质,直接化简进而求出即可;(2)将原式化解为24x +<,首先在数轴上找出+24x =的解,即2x =或6x =-,则24x +<的解集为到-2的距离小于4的点对应的所有数,写出解集即可;(3)表示到1的点与到-2的点距离和为3,-2与1之间的距离为3,据此可得出答案;(4)1x -表示数x 到1的距离,2x +表示数x 到-2的距离,12y x x =--+表示数到1的距离减去数x 到-2的距离,然后分三者情况讨论y 的取值即可.【详解】解:(1)53x -=Q ,53x \-=±,解得:128,2x x ==,故答案为:128,2x x ==;(2)2219x ++<228x +<24x +<,首先找2=4x +的解,即到-2距离为4的点对应的数为-6和2,24x +<表示到-2的距离小于4的点对应的所有数,\不等式解集为62x -<<;(3)123x x -++=,表示到1的点与到-2的点距离和为3,Q -2与1之间的距离为3,21x \-£<;故答案为:21x -£<;(4)12y x x =--+,1x -表示数x 到1的距离,2x +表示数x 到-2的距离,12y x x =--+表示数x 到1的距离减去数x 到-2的距离,当x 在点1右边时,3y =-,当x 在点-2左边时,3y =,当x 在-2到1之间时,33y -££,33y \-££;故答案为:33y -££.【点睛】本条考查含有绝对值的方程和不等式的解法,正确对x的范围进行讨论,转化为一般的不等式是关键.14.我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:(1)方程|x|=5的解是_______________.(2)方程|x﹣2|=3的解是_________________.(3)画出图示,解方程|x﹣3|+|x+2|=9.【答案】(1)x=5或-5;(2)x=5或-1;(3)x=5或-4.【解析】【详解】试题分析:(1)由于|x|=5表示在数轴上数x与数0对应点之间的距离,所以x=±5;(2)由于|x-2|=3中,x的值就是数轴上到2的距离为3的点对应的数,显然x=5或-1;(3)方程|x-3|+|x+2|=9表示数轴上与3和-2的距离之和为9的点对应的x值,在数轴上3和-2的距离为5,满足方程的x的对应点在3的右边或-2的左边,画图即可解答.试题解析:(1)∵在数轴上与原点距离为5的点对应的数为±5,∴方程|x|=5的解为x=±5;(2)∵在方程|x-2|=3中,x 的值是数轴上到2的距离为3的点对应的数,∴方程|x-2|=3的解是x=5或-1;(3)∵在数轴上3和-2的距离为5,5<9,∴满足方程|x-3|+|x+2|=9的x 的对应点在3的右边或-2的左边.若x 的对应点在3的右边,由图示可知,x=5;若x 的对应点在-2的左边,由图示可知,x=-4,所以原方程的解是x=5或x=-4.点睛:本题考查了绝对值的定义,解答此类问题时要用分类讨论及数形结合的思想,同时考查了学生的阅读理解能力.15.阅读材料:我们知道||x 的几何意义是在数轴上数x 对应的点与原点的距离,即|0|x x =-,也就是说||x 表示在数轴上数x 与数0对应的点之间的距离,这个结论可以推广为12||x x -表示数轴上1x 与2x 对应点之间的距离.例1:已知||2x =,求x 的值.解:容易看出,在数轴上与原点距离为2的点的对应数为2-和2,即x 的值为2-和2.例2:已知|1|2x -=,求x 的值.解:在数轴上与1的距离为2的点的对应数为3和1-,即x 的值为3和1-.仿照阅读材料的解法,求下列各式中的值.(1)||3x =(2)|2|4x +=(3)由以上探索猜想:对于任何有理数,36x x x -+-是否有最小值?如果有,写出最小值;如果没有,请说明理由.【答案】(1)-3和3;(2)-6和2;(3)有最小值,最小值为3【解析】【分析】(1)由阅读材料中的方法求出x 的值即可;(2)由阅读材料中的方法求出x 的值即可;(3)根据题意得出原式最小时x 的范围,并求出最小值即可.【详解】(1)3x =,在数轴上与原点距离为3的点的对应数为-3和3,即x 的值为-3和3;(2)24x +=,在数轴上与-2距离为4的点的对应数为-6和2,即x 的值为-6和2;(3)有最小值,最小值为3,理由是:∵36x x -+-理解为:在数轴上表示x 到3和6的距离之和,∴当x 在3与6之间的线段上(即36x ££)时:即36x x -+-的值有最小值,最小值为633-=.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示方法是解题的关键.类型四 利用绝对值的几何意义解不等式16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.【答案】(1) 1和-7;(2) x ≥4或x ≤-5(3) a ≤7【解析】【分析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x -3|+|x +4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x -3|+|x +4|≥a 对任意的x 都成立,即求到3与-4两点距离的和最小的数值.【详解】(1)方程|x +3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x 的值.在数轴上,3和-4的距离为7,满足方程的x 对应点在3的右边或-4的左边,若x 对应点在3的右边,由图可以看出x ≥4;同理,若x 对应点在-4的左边,可得x ≤-5,即可求得x ≥4或x ≤-5.(3)|x -3|+|x +4|即表示x 的点到数轴上与3和-4的距离之和,当表示对应x 的点在数轴上3与-4之间时,距离的和最小,是7.故a ≤7.【点睛】此题主要考察不等式的应用,熟知不等式与数轴的关系是解题的关键.17.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.。
七年级上学期数学 绝对值的几何意义题型训练 带答案
![七年级上学期数学 绝对值的几何意义题型训练 带答案](https://img.taocdn.com/s3/m/293dbc97376baf1ffd4fada4.png)
绝对值的几何意义训练1、借助数轴理解绝对值的意义,会求实数的绝对值2、会利用绝对值的知识解决简单的化简问题例题精讲板块一:绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例题1】m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.⑴ x 的几何意义是数轴上表示 的点与 之间的距离;0-(>,=,<);⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则2- ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则 x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则 x = .⑸ 当1x =-时,则22x x -++= .【解析】⑴ x ,原点;=;⑵1;⑶x ,3,2或4;⑷x ,-2,0或-4;⑸4.【例题2】已知m 是实数,求12m m m +-+-的最小值【解析】根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使点m 到点o ,点1和点2的距离之和最小,显然当m=1时,原式的最小值为2【例题3】已知m 是实数,求2468m m m m -+-+-+-的最小值【解析】根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使m 到点2,点4,点6和点8的距离和最小,显然当点m 在点4和点6之间(包括点4和点6)时,原式的值最小为8【例题4】设123...n a a a a ,,,是常数(n 是大于1的整数),且123...n a a a a <<<<,m 是任意实数,试探索求123...n m a m a m a m a -+-+-++-的最小值的一般方法【解析】根据题意,结合数轴,不难得到:⑴当n 为奇数时,即当n=2k+1(k 为正整数)时,点m 应取在点a k +1处,原式的值最小,最小值为(a 2k+1-a 1)+(a 2k -a 2)+.......+(a k+2-a k )⑵当n 为偶数2k (k 是正整数)时,m 应取点a k 和点a k+1之间的任意位置,原式的值最小,最小值为(a 2k -a 1)+(a 2k-1-a 2)+.......+(a k+1-a k )【例题5】122009x x x -+-++-的最小值为 .【解析】当x=1005时,∣x-1∣+∣x-2∣+......∣x-2009∣取到最小值:∣x-1∣+∣x-2∣+......∣x-2009∣=∣1005-1∣+∣1005-2∣+......∣1005-2009∣ =1004+1003+.....+1+0+1+.....+1003+1004=1009020【巩固1】试求123...2005x x x x -+-+-++-的值【解析】联想到绝对值的几何意义:∣x-x n ∣即表示数轴上数x 的对应点与数x n 的对应点的距离,把这些绝对值转化为同一数轴上若干条线段之和来研究,发现∣x-1∣+∣x-2∣,当1≤x ≦2时,它有最小值1,对于∣x-1∣+∣x-2∣+∣x-3∣,,当x=2时,最小值为2,…猜想当x=1003时,原式有最小值最小值为∣x-1∣+∣x-2∣+......∣x-2005∣=∣1003-1∣+∣1003-2∣+......∣1003-2005∣ =1002+1001+.....+1+0+1+.....+1001+1002 =1005006【巩固2】设a b c <<,求当x 取何值时x a x b x c -+-+-的最小值.【解析】∣x-a ∣+∣x-b ∣+∣x-c ∣实际表示x 到a,b,c 三点的距离和,画图可知当x=b 时,原式有最小值为c-a .【巩固3】若1x 、2x 、3x 、4x 、5x 、6x 是6个不同的正整数,取值于1,2,3,4,5,6,记122334455661||||||||||S x x x x x x x x x x x x =-+-+-+-+-+-,则S 的最小值是 .【解析】利用此题我们充分展示一下数形结合的优越性:利用绝对值的几何意义∣x 1-x 2∣+∣x 2-x 3∣+∣x 3-x 4∣+∣x 4-x 5∣+∣x 5-x 6∣+∣x 6-x 1∣在数轴上表示出来,从x 1开始又回到x 1,我们可以看成是一个圈,故最小值为10,如下图所示,即使重叠路程最少.【例题6】正数a 使得关于x 的代数式162x x x a ++-+-的最小值是8,那么a 的值为 .【解析】如果a ≦6,那么当x=a 时,∣x+1∣+∣x-6∣+2∣x-a ∣=∣a+1∣+∣a-6∣=(a+1)+(6-a)=7,小于8与已知条件矛盾.所以a>6,那么算式∣x+1∣+∣x-6∣+2∣x-a ∣的几何意义是点x 到-1、6、a 、a 的4个距离之和,当6≦x ≦a 时取最小值,因此令x=6可得7+2∣6-a ∣=8,解得a=13/2.【巩固4】182324x x a x x -+-+-+-的最小值为12,则a 的取值范围是 .【解析】最小值一定能在零点处取到,而零点处代数式值为14+2a 、5+a 、12、19+a ,故12是这四个数中最小的,即14+2a ≧12且5+a ≧12且19+a ≧12,所以a ≧7.【例题7】已知代数式374x x -+-=,则下列三条线段一定能构成三角形的是( ).A . 1,x ,5B . 2,x ,5C . 3,x ,5D . 3,x ,4【解析】根据∣x-3∣+∣x-7∣=4可得3≦x ≦7,所以选择C .【巩固5】⑴是否存在有理数x ,使132x x ++-=?⑵是否存在整数x ,使433414x x x x -+-++++=?如果存在,求出所有整数x ,如果不存在,请说明理由【解析】⑴不存在⑵x=±3,x=±2,x=±1,x=0【巩固6】第17届希望杯培训试题)不等式127x x ++-<的整数解有 个.【解析】可分类讨论来做,也可以利用绝对值的几何意义来解,∣x+1∣+∣x-2∣<7的整数解表示数轴上到-1和2的距离之和小于7的点集合,利用数轴容易找到满足条件的整数有-2、-1、0、1、2、3共六个.【例题8】一共有多少个整数x 适合不等式20009999x x -+≤.【解析】零点为2000和0,可将数轴分成几段去考虑: (1)当x ≧2000时,原不等式变形为:x-2000+x ≦9999,进而得:x ≦5999.5,即2000≦x ≦5999.5,共有4000个整数适合;(2)当0<x<2000时,原不等式变形为:2000-x+x ≦9999,而2000<9999恒成立, 所以又有2000个整数适合.(3)当x<0时,原不等式变形为2000-x+(-x)≦9999,x ≧-3999.5, 即-3999.5<x<0,共有3999个整数适合.综上所得共有9999个整数适合不等式∣x-2000∣+∣x ∣≦9999.【例题9】已知∣x ∣≦1,∣y ∣≦1,设M=∣x+1∣+∣y+1∣+∣2y-x-4∣,求M 的最大值和最小值【解析】由已知首先讨论绝对值符号内的代数式的符号因为∣x ∣≦1,所以-1≦x ≦1,所以0≦x+1≦2,同理可得0≦y+1≦2 因为∣y ∣≦1,所以-1≦x ≦1,所以-2≦2y ≦2⑴因为∣x ∣≦1,,所以-1≦x ≦1,所以-1≦-x ≦1,所以-1-4≦-x-4≦1-4 即-5≦-x-4≦-3⑵⑴与⑵同向相加得-7≦2y-x-4≦-1 化简M 的表达式:M=2x-y+6 求M 的取值范围:因为-1≦x ≦1,所以-2≦2x ≦2 因为-1≦x ≦1,所以-1≦-y ≦1 所以-3≦2x-y ≦3 所以3≦2x-y+6≦9当x=1,y=-1时,M 最大值为9 当x=-1,y=1时,M 最小值为3【例题10】彼此不等的有理数a b c ,,在数轴上的对应点分别为A ,B ,C ,如果a b b c a c -+-=-,那么A ,B ,C 的位置关系是_____.【解析】由绝对值的几何意义知, ∣a-b ∣表示点A 与点B 之间的距离;∣b-c ∣表示点B 与点C 之间的距离;表示点A 与点C 之间的距离;当点B 位于点A 与点C 之间(包括A ,C 两点)时,∣a-b ∣+∣b-c ∣取得最小值,为∣a-c ∣.由题设知,a ,b ,c 相等,以A ,B ,C 不重合,故点B 位于点A 与点C 之间(包括A,C 两点).【巩固7】有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且 (1)∣b-d ∣比∣a-b ∣,∣a-c ∣、∣a-d ∣、∣b-c ∣、∣c-d ∣都大; (2)∣d-a ∣+∣a-c ∣=∣d-c ∣;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是 【解析】R 、X 、Z 、Y.【巩固8】如果1a b -=,1b c +=,2a c +=,求2a b c ++的值.【解析】可以去掉绝对值,分类讨论,但非常麻烦,我们仍可采用数形结合的方法,从绝对值的几何意义出发.根据∣a-b ∣=1,∣b+c ∣=∣b-(-c)∣=1,∣a+c ∣=∣a-(-c)∣=2,我们可以得到a 、b 、-c 三点在数轴上从左到右依次是-c 、b 、a 或a 、b 、-c ,我们会发现在这两种情况下,a-(-c),b-(-c)同号,所以∣a+b+2c ∣=∣a-(-c)+b-(-c)∣=∣a-(-c)∣+∣b-(-c)∣=∣a+c ∣+∣b+c ∣=3【巩固9】已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d += .【解析】法1:四个非负整数和为2,∣a+d ∣只可能为0、1或2. 讨论: ① 当a=0,b=0,c=1,d=0,满足条件,∣a+d ∣=0; ② 当a=1,b=0,c=0,d=0,满足条件,∣a+d ∣=1;③ 若∣a+d ∣=2,即a+d ≠0且∣a+b ∣=0,∣b+c ∣=0,∣c+d ∣=0,∴a+b=0, b+c=0,c+d=0,故0=0-0+0=(a+b)-(b+c)+(c+d)=a+d ,这与a+d ≠0矛盾. 所以,∣a+b ∣=0或1.【例题11】在数轴上把坐标为123...2006,,,,的点称为标点,一只青蛙从点1出发,经过2006次跳动,且回到出发点,那么该青蛙所跳过的全部路径的最大长度是多少?请说明理由 【解析】设青蛙依次到达的点为x 1 x 2 x 3 x 4......x 2006 x 1,整个跳过的路径长度为 S=∣x 1-x 2∣+∣x 2-x 3∣+∣x 3-x 4∣+......+∣x 2006-x 1∣≤2(1004+1005+....+2006)-2(1+2+3+...+1003)=2×1003×1003 故青蛙跳过的路径的最大长度为2×1003×1003【例题12】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置城市【解析】因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄BC 之间,7 个村庄依次排列为A B G C D E F .设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:y=∣x-4∣+∣x-10∣+∣x-12∣+∣x-15∣+∣x-17∣+∣x-19∣+∣x-20∣,因为4<10<12<15<17<19<20,所以当x=15时y 有最小值,所以活动中心应当建在c 处.【巩固10】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?F EDCBPA7A6A5A4A3A2A1【解析】每一条小路都是工厂到车站的必经之路,和其他工厂无关.但在公路上,有些路段将是一些工厂重复经过的,应使重复路线越短越好.要使各工厂到车站的距离之和最小,只要各工厂经小路进入公路的入口处(B C D E F)到车站的距离之和最小即可,各路段的弯曲程度是无关紧要的,因此可以把公路看成一条直线,这就和题例题6类似了!即车站设在D点最好.若在P处再建一个工厂,则车站建在D处、E处或它们之间的任何地方都是最佳的.。
绝对值教案知识要点例题及答案习题
![绝对值教案知识要点例题及答案习题](https://img.taocdn.com/s3/m/91b3d3ddaa00b52acfc7ca92.png)
绝对值绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续算术根的基础。
绝对是又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等式(组)等问题中有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面入手。
1.去绝对值的符号法则:⎪⎩⎪⎨⎧<=>=0)(a a -)0a (0)0(a a a 2.绝对值的基本性质①非负性:|a|≥0;②|ab|=|a||b|;③ba b a=(b ≠0); ④|a|2=|a|2=a 2;⑤|a+b|≤|a|+|b|;⑥||a|-|b||≤|a-b|≤|a|+|b|3.绝对值的几何意义从数轴上看,|a|表示数a 的点到远点的距离(长度,非负);|a-b|表示数a 、数b 的两点间的距离。
4. 零点分段法零点分段法的基本步骤是:求零点、分区间、定性质、去符号,即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,崽崽各区间内化简求值即可。
请读者通过例4的解决,仔细体会上述解题步骤。
≮例题求解≯【例1】(1)已知,,1y 5==x 那么=+-y x y -x 。
(2)非零整数m,n 满足,05m =-+n 所有这样的整数组(m,n)共有组。
(首届江苏省数学文化节基础闯关题) 思路点拨(1)既可以对x,y 的取值进行分类求解,又可以利用绝对值的几何意义解;(2)从把5拆分成两个正整数的和入手。
【例2】如果a 、b 、c 是非零有理数,且a+b+c=0,那么abcabc c c b b a +++a 的所有可能的值为( )。
A .0B .±1C .±2D .0或-2(山东省竞赛题)思路点拨根据a 、b 的符号所有可能情况,脱去绝对值符号,这是解本例的关键。
【例3】已知2-ab 与1-b 互为相反数,试求代数式+ab 1+++)1)(1(1b a )2)(2(1++b a +…+)2002)(2002(1++b a 的值。
人教版七年级上册数学《绝对值》专题讲义(含答案)
![人教版七年级上册数学《绝对值》专题讲义(含答案)](https://img.taocdn.com/s3/m/53defed0bcd126fff6050b46.png)
绝对值1. 掌握绝对值的概念与化简 2. 绝对值的几何意义3. 分类讨论思想在绝对值中的应用模块一 绝对值的意义及其化简1. 绝对值的几何意义:一个数a 的绝对值就是数轴上表示a 的点与原点的距离。
数a 的绝对值记作a2. 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3. 绝对值的性质:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩,②(0)(0)a a a a a ≥⎧=⎨-<⎩或(0)(0)a a a a a >⎧=⎨-≤⎩4. 绝对值其他的重要性质:①任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥且a a ≥- ②若a b =,则a b =或a b =- ③a b a b ⋅=⋅,a ab b=(0b ≠) ④222a a a ==☞绝对值的意义【例1】 在数轴上表示数a 的点到原点的距离是13,那么a = 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】13a =±【巩固】绝对值等于2的数有 个,是 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】2个,2±例题精讲重难点【巩固】绝对值不大于7且大于4的整数有 个,是 【难度】2星【解析】绝对值的代数意义,几何意义 【答案】6个,5±、6±、7±☞绝对值化简【例2】 计算:3π-= ,若23x -=,则x = 【难度】1星 【解析】绝对值化简 【答案】3π-,5x =或1-【巩固】若220x x -+-=,则x 的取值范围是 【难度】2星 【解析】绝对值化简 【答案】2x ≤【巩固】已知:①52a b ==,,且a b <;分别求a b ,的值 【难度】3星 【解析】绝对值化简【答案】解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±【例3】 如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【难度】3星 【解析】绝对值化简【答案】解:如图所示,得0a b <<,01c <<∴0a b +<,10b -<,0a c -<,10c ->∴原式=()(1)()(1)a b b a c c -++-+---=11a b b a c c --+-+--+=2-【巩固】已知00x z xy y z x <<>>>,,,那么x z y z x y +++--= 【难度】3星 【解析】绝对值化简【答案】解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y -> ∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=【巩固】数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--【难度】3星 【解析】绝对值化简【答案】解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=【例4】 设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+- 【难度】3星 【解析】绝对值化简【答案】解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b < ∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=【巩固】已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 【难度】3星 【解析】绝对值化简【答案】解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+模块二 绝对值的非负性1. 非负性:若有几个非负数的和为0,那么这几个非负数均为02. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c =【例5】 若42a b -=-+,则_______a b +=【难度】2星【解析】绝对值的非负性【答案】解:∵42a b -=-+ ∴420a b -++=∵40a -≥,20b +≥ ∴40a -=,20b += 则4a =,2b =-【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【难度】2星【解析】绝对值的非负性 【答案】解:∵30m +≥,702n -≥,210p -≥ ∴30m +=,702n -=,210p -= 则3m =-,72n =,12p = ∴3232p n m ++=-【例6】 设a 、b 同时满足①2(2)|1|1a b b b -++=+;②|3|0a b +-=.那么ab = 【难度】3星【解析】绝对值化简与非负性【答案】解:∵2(2)0a b -≥,10b +≥,且2(2)|1|1a b b b -++=+∴10b +≥ ∴2(2)11a b b b -++=+ 则2(2)0a b -= ∴2a b =∵30a b +-= ∴230b b +-= 则1b =,2a = ∴2ab =【巩固】已知2()55a b b b +++=+,且210a b --=,那么ab =_______【难度】3星【解析】绝对值化简与非负性【答案】解:∵2()0a b +≥,50b +≥,且2()55a b b b +++=+∴50b +≥ ∴2()55a b b b +++=+ 则2()0a b += ∴a b =-∵210a b --= ∴210b b ---= ∴13b =-,13a = 则19ab =-模块三 零点分段法1. 零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.【例7】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【难度】3星 【解析】零点分段法【答案】解:⑴令20x +=,40x -=,则2x =-,4x =⑵零点为2x =-,4x =,则可分三段进行讨论:2x <-,24x -≤<,4x ≥ ①当2x <-时,则20x +<,40x -<∴2(2)2x x x +=-+=--,4(4)4x x x -=--=-+ ∴原式=24x x ---+=22x -+②当24x -≤<时,则20x +≥,40x -< ∴22x x +=+,4(4)4x x x -=--=-+ ∴原式=24x x +-+=6③当4x ≥时,则20x +>,40x -≥ ∴22x x +=+,44x x -=- ∴原式=24x x ++-=22x -综上所述,当2x <-时,24x x ++-=22x -+当24x -≤<时,24x x ++-=6 当4x ≥时,24x x ++-=22x -【巩固】化简12m m m +-+-的值 【难度】3星 【解析】零点分段法【答案】解:令0m =,10m -=,20m -=,则零点为0m =,1m =,2m =则可分四段进行讨论:0m <,01m ≤<,12m ≤<,2m ≥ ①当0m <时,10m -<,20m -<∴m m =-,11m m -=-+,22m m -=-+ ∴原式=12m m m --+-+=33m -+ ②当01m ≤<时,10m -<,20m -< ∴m m =,11m m -=-+,22m m -=-+ ∴原式=12m m m -+-+=3m -+ ③当12m ≤<时,10m -≥,20m -< ∴m m =,11m m -=-,22m m -=-+ ∴原式=12m m m +--+=1m + ④当2m ≥时,10m -≥,20m -≥ ∴m m =,11m m -=-,22m m -=- ∴原式=12m m m +-+-=33m -综上所述:当0m <时,12m m m +-+-=33m -+当01m ≤<时,12m m m +-+-=3m -+ 当12m ≤<时,12m m m +-+-=1m + 当2m ≥时,12m m m +-+-=33m -【巩固】化简:121x x --++.【难度】4星 【解析】零点分段法【答案】解:令10x -=,120x --=,10x +=,∴120x --=,则3x =或1x =-∴零点有1x =-,1x =,3x =∴分四段进行讨论1x <-,11x -≤<,13x ≤<,3x ≥ ①当1x <-时,则10x -<,10x +<,10x --> ∴11x x -=-+,11x x +=--,11x x --=--∴原式=121x x -+---=11x x ----=11x x ----=22x -- ②当11x -≤<时,则10x -<,10x +≥,10x --≤ ∴11x x -=-+,11x x +=+,11x x --=+∴原式=121x x -+-++=11x x --++=11x x +++=22x + ③当13x ≤<时,10x -≥,10x +>,30x -< ∴11x x -=-,11x x +=+,33x x -=-+ ∴原式=121x x --++=31x x -++=31x x -+++=4 ④当3x ≥时,10x ->,10x +>,30x -≥ ∴11x x -=-,11x x +=+,33x x -=-∴原式=121x x --++=31x x -++=31x x -++=22x -综上所述,当1x <-时,121x x --++=22x --当11x -≤<时,121x x --++=22x + 当13x ≤<时,121x x --++=4 当3x ≥时,121x x --++=22x -模块四 绝对值的几何意义的拓展1. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.2. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例8】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离⑴ x 的几何意义是数轴上表示 的点与 之间的距离;x 0-(>,=,<);⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=, 则x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x = .⑸ 当1x =-时,则22x x -++=【难度】3星【解析】绝对值的几何意义【答案】解:⑴x 、原点、=;⑵1;⑶x 、3、4或2;⑷x 、2-、4-或0;⑸设2-、2、x 在数轴代表的点为A 、B 、P ,如图P B A 112则2x PA +=,2x PB -=,∴224x x PA PB AB ++-=+==【例9】 已知m 是实数,求12m m m +-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令0m =,10m -=,20m -=,则零点有0m =,1m =,2m =设0、1、2、m 在数轴上分别用A 、B 、C 、P 表示,如图PC B A①当点P 在点A 左侧时,12m m m +-+-=PA PB PC ++=32PA AB BC ++=33PA + ∴当0PA =时,即点P 与点A 重合时,原式取得最小值为3 ∵点P 在点A 左侧 ∴原式3>PC B A②当点P 在线段AB 上时(不包含点B ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+ ∴当0PB =时,原式取得最小值 ∵此时不包含点B ,∴原式2>P CB A③当点P 在线段BC 上时(不包含点C ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+ ∴当0PB =时,即当点P 与点B 重合时,原式取得最小值,最小值为2PC B A④当点P 在点C 及点C 右侧时,12m m m +-+-=PA PB PC ++=32PC BC AB ++=33PC + ∴当0PC =时,即点P 与点C 重合时,原式取得最小值,最小值为3 综上所述,当点P 与点B 重合时,即1m =时,原式取得最小值为2【巩固】已知m 是实数,求2468m m m m -+-+-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令20m -=,40m -=,60m -=,80m -=则零点有2m =,4m =,6m =,8m =设2、4、6、8、m 在数轴上分别用A 、B 、C 、D 、P ∴2468m m m m PA PB PC PD -+-+-+-=+++①当点P 在点A 左侧时,43241212PA PB PC PD PA AB BC CD PA +++=+++=+> ②当点P 在线段AB 上时,(不包含点B ),2288PA PB PC PD PB BC AD PB +++=++=+> ③当点P 在线段BC 上时(不包含点C ),8PA PB PC PD BC AD +++=+=④当点P 在线段CD 上时(不包含点D ),2288PA PB PC PD PC BC AD PC +++=++=+≥ 当点P 与点C 重合时,取等号⑤当点P 在点D 及点D 右侧时,43241212PA PB PC PD PD CD BC AB PD +++=+++=+≥ 综上所述,当点P 在线段BC 上时,即46m ≤≤时,原式取得最小值为8【例10】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?城市【难度】3星【解析】绝对值的几何意义【答案】解:活动中心应该建在村庄C ,使各村到活动中心的路程之和最短【巩固】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?F EDCBPA7A6A5A4A3A2A1【难度】3星【解析】绝对值的几何意义【答案】解:长途汽车站应该设在点D,如果在点P 又建了一个工厂,那么此时长途汽车站应该设在DE 之间1.4x-的几何意义是数轴上表示的点与表示的点之间的距离,若42x-=,则x=.【难度】2星【解析】绝对值的几何意义【答案】x、4、2或62.化简:212x x x-++-【难度】4星【解析】零点分段法【答案】解:令10x-=,20x+=,0x=,∴零点为1x=、2x=-、0x=∴可分四段讨论:2x<-、20x-≤<、01x≤<、1x≥①当2x<-时,则10x-<,20x+<∴11x x-=-+,22x x+=--,x x=-∴原式=2(1)2()222x x x x x x-+----=-+--+=2x-②当20x-≤<时,则10x-<,20x+≥∴11x x-=-+,22x x+=+,x x=-∴原式=2(1)2()222x x x x x x-+++--=-++++=4课堂检测③当01x ≤<时,则10x -<,20x +> ∴11x x -=-+,22x x +=+,x x =∴原式=2(1)2222x x x x x x -+++-=-+++-24x =-+④当1x ≥时,10x -≥,20x +> ∴11x x -=-,22x x +=+,x x =∴原式=2(1)22222x x x x x x x -++-=-++-=综上所述,当2x <-时,212x x x -++-=2x -当20x -≤<时,212x x x -++-=4当01x ≤<时,212x x x -++-=24x =-+当1x ≥时,212x x x -++-=2x3. 化简124x x --+-【难度】4星【解析】零点分段法 【答案】解:令10x -=,40x -=,12x -=, ∴零点有1x =,4x =,3x =,1x =-则可以分五段来分类讨论:1x <-,11x -≤<,13x ≤<,34x ≤<,4x ≥ ①当1x <-时,10x -<,40x -<,10x --> ∴11x x -=-+,44x x -=-+,11x x --=--∴原式=124x x -+--+=14x x ---+=14x x ---+=23x -+②当11x -≤<时,10x -<,40x -<,10x --≤ ∴11x x -=-+,44x x -=-+,11x x --=+∴原式=124x x -+--+=14x x ---+=14x x +-+=5③当13x ≤<时,10x -≥,40x -<,30x -< ∴11x x -=-,44x x -=-+,33x x -=-+∴原式=124x x ---+=34x x --+=34x x -+-+=27x -+④当34x ≤<时,10x ->,40x -<,30x -≥ ∴11x x -=-,44x x -=-+,33x x -=-∴原式=124x x ---+=34x x --+=34x x --+=1⑤当4x ≥时,10x ->,40x -≥,30x -> ∴11x x -=-,44x x -=-,33x x -=-∴原式=124x x --+-=34x x -+-=34x x -+-=27x -综上所述,当1x <-时,124x x --+-=23x -+ 当11x -≤<时,124x x --+-=5 当13x ≤<时,124x x --+-=27x -+当34x ≤<时,124x x --+-=1当4x ≥时,124x x --+-=27x -1.通过本堂课你学会了 .2.掌握的不太好的部分 .3.老师点评:① .② . ③ .1. 化简:2121x x x -++--【难度】3星【解析】零点分段法 【答案】解:令210x -=,20x +=,10x -=, ∴零点有12x =,2x =-,1x = 则可分四段进行讨论:2x <-,122x -≤<,112x ≤<,1x ≥ ①当2x <-时,210x -<,20x +<,10x -<∴2121x x -=-+,22x x +=--,11x x -=-+∴原式=212(1)x x x -+----+=2121x x x -+--+-=22x --②当122x -≤<时,210x -<,20x +≥,10x -< ∴2121x x -=-+,22x x +=+,11x x -=-+∴原式=212(1)x x x -+++--+=2121x x x -++++-=2课后作业总结复习③当112x ≤<时,210x -≥,20x +>,10x -< ∴2121x x -=-,22x x +=+,11x x -=-+ ∴原式=212(1)x x x -++--+=2121x x x -+++-=4x ④当1x ≥时,210x ->,20x +>,10x -≥ ∴2121x x -=-,22x x +=+,11x x -=- ∴原式=212(1)x x x -++--=2121x x x -++-+=22x +综上所述,当2x <-时,2121x x x -++--=22x -- 当122x -≤<时,2121x x x -++--=2 当112x ≤<时,2121x x x -++--=4x 当1x ≥时,2121x x x -++--=22x +。
绝对值的性质与几何意义、数轴上动点问题(6种常考题型(解析版)
![绝对值的性质与几何意义、数轴上动点问题(6种常考题型(解析版)](https://img.taocdn.com/s3/m/6e0c736c42323968011ca300a6c30c225801f009.png)
绝对值的性质与几何意义、数轴上动点问题(6种常考题型)题型一利用绝对值的性质化简题型二绝对值非负性的应用题型三利用绝对值的性质求最值题型四绝对值几何意义题型五数轴上两点之间的距离题型六数轴上动点问题一.利用绝对值的性质化简(共15小题)1.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a b a b +的值是()2.若0ab ≠,那么a ab b +的取值不可能是()A .2-B .0C .1D .2【答案】C【分析】本题考查了绝对值的意义,由0ab ≠,可得:①0a >,0b >,②0a <,0b <,③0a >,0b <,④0a <,0b >;分别计算即可,采用分类讨论的思想是解此题的关键.【详解】解:∵0ab ≠,,3.已知有理数a ,b 在数轴上的位置如图所示,则化简1a b a +--的结果为()4.0a <,则化简a a a a a a ++-的结果为()5.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是()A .22a b+B .22a b c +-C .c -D .2b c--【答案】C 【分析】本题考查了整式的加减和去绝对值,根据数轴分别判断0a b +<,0c b ->的正负,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.6.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d +++的最大值是.7.已知数a b c 、、位置如图所示,化简a b a c --+=.的结果是.【答案】32a b c-+【分析】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.先根据各点在数轴上的位置判断出a 、b 、c 的符号及大小,再去绝对值符号,合并同类项即可.【详解】解: 由图可知,0b a c <<<,||a c >,0a b ∴->,0a c +<,∴原式()22232a b a c a b a c a b c =-++=-++=-+.故答案为:32a b c -+.9.若12x <<,求代数式21x x x ---+=.10.若0a >,a=;若0a <,||a =;①若0||||a b a b +=,则||ab ab=-;②若0abc <,则||||||a b c a b c ++=.1111||||||a b c a b c ++=-++=,当a 、b 、c 中有三个负数时,1113||||||a b c a b c ++=---=-,故答案为:1或3-.11.有理数0a >,0b >,0c <,且a c b <<.(1)在数轴上将a ,b ,c 三个数在数轴上表示出来如图所示;(2)化简:2b c a b a c +--+-.【答案】(1)见详解(2)3a【分析】(1)根据所给的范围确定数在数轴上的位置即可;(2)由题意可知0b c +>,0a b -<,0a c ->,再化简即可.本题考查实数与数轴,熟练掌握数轴上点的特征,绝对值的意义是解题的关键.【详解】(1)解:依题意,有理数0a >,0b >,0c <,且a c b<<∴如图所示:(2)解:0a > ,0b >,0c <,且a c b <<,0b c ∴+>,0a b -<,0a c ->,|||||2|b c a b a c ∴+--+-()(2)b c b a a c =+--+-2b c b a a c=+-++-3=a .12.已知有理数a b c d 、、、在数轴上对应的点的位置如图所示,化简:a c b d c b++---【答案】2a c d--+【分析】此题综合考查了数轴、绝对值的有关内容,熟练掌握以上知识是解题的关键.先观察数轴,得到0a b c d <<<<,从而得到0a c +<,0b d -<,0c b ->,然后根据绝对值的性质进行化简即可.【详解】解:由数轴可知,0a b c d <<<<,∴0a c +<,0b d -<,0c b ->,∴2a c b d c b a c b d c b a c d++---=---+-+=--+13.a ,b 在数轴上的位置如图,化简b a a a b --++.b ,.【答案】21b -【分析】本题考查数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.根据数轴可以判断a 、b 、c 的正负和绝对值的大小,从而可以化简题目中的式子.【详解】解:根据数轴,得10,0,0a c b a b c +<->++<,|1|(1),||,||()a a c b c b a b c a b c ∴+=-+-=-++=-++,|1|||||a cb a bc ∴+---++(1)()()a cb a bc =-+--+++1a c b a b c=---++++21b =-.15.有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.二.绝对值非负性的应用(共11小题)1.如果21(2)0a b ++-=,则a b +的值为()2.若()23a +与1b -互为相反数,则().3,1a b =-=-3.若320x y -++=,则x y +的值是().4.如果有理数x 、y 满足10x x y -++=,那么xy 的值是()5.若()22430||a b ++--=,则b =;a =.【答案】32【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++--=,∴20,30a b +=-=-,解得:3,2b a ==.故答案为:3,2.6.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.故答案为:1,2.2y =8.已知,b 是有理数,且满足,求与b 的值.【答案】1a =,2b =【分析】本题考查了绝对值非负的性质.当它们相加和为0时,必须满足其中的每一项都等于0.根据非负数的性质列出方程求出未知数的值.【详解】解:|1||2|0a b -+-= ,10a ∴-=,20b -=,1a ∴=,2b =,故答案为:1a =,2b =.9.已知230x y -++=.(1)求x y +的值.x y -的值.,求、的值.11.若201503b a --+=,求a ,b 的值.【答案】3a =,2015b =根据绝对值的性质去绝对值是解题的关键.三.利用绝对值的性质求最值(共9小题)1.设n 个有理数12,,,n x x x ⋅⋅⋅满足1(1,2,,)i x i n <= ,且12x x +++ 1219n n x x x x =++++ ,则n 的最小值是()2.如果x 为有理数,式子20232x -+存在最大值,这个最大值是()的最小值是()A .0B .1C .2D .3【答案】C【分析】根据绝对值的非负性即可求解.【详解】解:∵a 是有理数∴1a -可为正数、负数、零由绝对值的非负性可知:|1|0a -≥∴2|12|a -+≥即:|1|2a -+的最小值是2故选:C【点睛】本题考查绝对值的非负性.熟记相关结论即可.4.(1)若6m -有最小值,则当m =时,取最小值,最小值为.(2)若260m n -+-=,则m =,n =.(3)5m -有最(填“大”或“小”)值,这个最(大)小值是.5.已知a 为有理数,则24a -+的最小值为.【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,6.如果x 为有理数,式子20213x --存在最大值,那么这个式子有最值是,此x =a ,b ,c 满足()220240a b c ++-=,则(1)c 的值为.(2)数轴上任意一点P ,点P 对应的数为x ,若存在x 使x a x b x c -+-+-的值最小,则x 的值为.8.阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求:(1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.点A B ,在数轴上分别表示有理数a b ,,A B ,两点之间的距离表示为AB .当A B ,两点中有一点在原点时,不妨设点A 在原点,如图①所示,AB OB b a b ===-;当A B ,两点都不在原点时,a .如图②所示,点A B ,都在原点的右边,AB OB OA b a b a a b =-=-=-=-;b .如图③所示,点A B ,都在原点的左边,()AB OB OA b a b a a b =-=-=---=-;c .如图④所示,点A B ,在原点的两边,()AB OA OB a b a b a b =+=+=+-=-.综上,数轴上A B ,两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2-和5-的两点之间的距离是,数轴上表示1和3-的两点之间的距离是;(2)数轴上表示x 和1-的两点A 和之间的距离是,如果2AB =,那么x 为;(3)当47x y ++-取最小值时,x =,y =.四.绝对值几何意义(共6小题)1.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是()A .12x ≤≤B .1x ≤-或2x ≥ 2.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取对x 的值进行分类讨论,进而得出代数式的值.以1-和2为界点,将数轴分成三部分,对x 的值进行分类讨论,然后根据绝对值的意义去绝对值符号,分别求出代数式的值进行比较即可.【详解】解:如图,当1x <-时,10x +<,20x -<,|1||2|x x ++-(1)(2)x x =-+--12x x =---+213x =-+>;当2x >时,10x +>,20x ->,|1||2|x x ++-(1)(2)x x =++-12x x =++-213x =->;当12x -≤≤时,10x +≥,20x -≤,|1||2|x x ++-(1)(2)x x =+--123x x =+-+=;综上所述,当12x -≤≤时,|1||2|x x ++-取得最小值,所以当|1||2|x x ++-取得最小值时,x 的取值范围是12x -≤≤.故答案为:12x -≤≤.3.阅读理解:对于有理数a 、b ,a 的几何意义为:数轴上表示数a 的点到原点的距离;|a -b |的几何意义为:数轴上表示数a 的点与表示数b 的点之间的距离.如:2x -的几何意义即数轴表示数x 的点与表示数2的点之间的距离,请根据你的理解解答下列问题:(1)根据2x +的几何意义,若23x +=,那么x 的值是.(2)画数轴分析23x x +++的几何意义,并求出23x x +++的最小值是.(3)11232023x x x x x x +++-+-+-+⋯+-的最小值是多少?的点之间的距离,当23x -≤≤-时,23x x +++的最小值是为根据绝对值的几何意义,我们知道53-表示5、3在数轴上对应的两点间的距离;535(3)+=--,所以53+表示5、3-在数轴上对应的两点之间的距离;550=-,所以5表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 两点之间的距离可以表示为AB a b =-.回答下列问题:(1)数轴上表示6与9-的两点之间的距离是_________;数轴上表示x 与2的两点之间的距离是_______.(2)若33x -=,则x =_______.(3)满足235x x ++-=的整数x 有_______个.经过有理数运算的学习,我们知道53-可以表示5与3之差的绝对值,同时也可以理解为5与3两个数在数轴上所对应的两点之间的距离,我们可以把这称之为绝对值的几何意义.同理,()52--可以表示5与2-之差的绝对值,也可以表示5与2-两个数在数轴上所对应的两点之间的距离.试探究:(1)5x -表示数轴上有理数x 所对应的点到________所对应的点之间的距离;2x +表示数轴上有理数x 所对应的点到________所对应的点之间的距离.若25x +=,则x =________.(2)利用绝对值的几何意义,请找出所有符合条件的整数x ,使得257x x ++-=.这样的整数x 有________________.(写出所有的整数x )(3)利用绝对值的几何意义,求出123x x x -+++-的最小值,并说明理由.(1)直接写出数轴上点B 表示的数;(2)53-表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离,试探索:①若82x -=,则x =(直接写出);②118x x ++-的最小值为(直接写出);(3)请直接写出所有满足37329a a ++-=的整数a 的值.故答案为:,,0.五.数轴上两点之间的距离(共15小题)1.已A B 、两点在数轴上表示的数分别是3-和6-,若在数轴上找一点C ,使得A 和C 之间的距离是4,使得B D 、之的距离是1,则C D 、之间的距离不可能是()A .0B .6C .2D .4【答案】D【分析】本题考查了数轴,画出数轴,然后根据两种情况确定出点C D 、的位置,再根据数轴上的两点间的距离求出C 的可能值,据此即可求解,掌握数形结合思想和分类讨论思想是解题的关键.【详解】解:如图,C D 、间的距离可能是0268、、、,∴C D 、之间的距离不可能是4,故选:D .2.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14-,10,现以点C 为折点,将数轴向右对折,若点A 落在射线C 上且到点B 的距离为6,则C 点表示的数是()A .1B .3-C .1或5-D .1或4-【答案】C 【分析】本题考查了数轴,分类讨论思想是解题的关键.先根据两点间的距离公式求出点A 落在对应点表示的数,在利用中点公式求出C 点表示的数.【详解】设A '是点A 的对应点,由题意可知点C 是A 和A '的中点当点A 在B 的右侧,6BA '=,A '表示的数为10616+=,那么C 表示的数为:(1416)21-+÷=,当点A 在B 的左侧,6BA '=,A '表示的数为1064-=,那么C 表示的数为:(144)25-+÷=-,故选:C .3.如图,已知A ,(B B 在A 的左侧)是数轴上的两点,点A 对应的数为12,且18AB =,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为(0)t t >秒,则下列结论中正确的有()①B 对应的数是6-;②点P 到达点B 时,9t =;③2BP =时,6t =;④在点P 的运动过程中,线段MN 的长度会发生变化.A .1个B .2个C .3个D .4个【答案】B 【分析】本题考查了数轴上两点距离.利用数轴,分类讨论即可求解.【详解】解: 已知A ,(B B 在A 的左侧)是数轴上的两点,点A 对应的数为12,且18AB =,B ∴对应的数为:12186-=-;故①是正确的;1829÷= ,故②是正确的;当2BP =时,16AP =,1628t =÷=,故③是错误的;在点P 的运动过程中,9MN =,故④是错误的;故选:B .4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移2个单位长度,得到点C .若点C 到A 、B 两个点的距离相等,则a 的值为()A .0B .1-C .2-D .1【答案】C【分析】此题考查了数轴上点的移动,由题意得点A 表示数为a ,点B 表示数为2,点C 表示数为2a +,熟知数轴A .1-B .0C .1D .2【答案】C 【分析】根据已知图形可写出墨水盖住的整数,相加即可;【详解】由图可知,被墨水盖住的整数为:3-,2-,1,2,3,相加为()321231-+-+++=;故选C .【点睛】本题主要考查了有理数的加法运算,准确表示出盖住的整数是解题的关键.6.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2013厘米的线段AB ,则线段AB 盖住的整点的个数是()个,且在数轴上的位置如图所示.已知343a b =-,则代数式5c d -的值是.【答案】12-【分析】根据题意,则2b a =+,3c a =+,7d a =+,结合343a b =-,列式解答即可.本题考查了数轴的意义,有理数的计算,熟练掌握有理数加减运算是解题的关键.【详解】解:仔细观察图形,由数轴可知:a b c d <<<.∵每相邻两点之间的距离是1个单位长,∴2b a =+,3c a =+,7d a =+.∵343a b =-,∴()3423a a =+-,∴5a =-,∴3532c a =+=-+=-,7572d a =+=-+=,∴521012c d -=--=-.故答案为:12-.8.如图,在数轴上,点A 表示的数是10,点B 表示的数为50,点P 是数轴上的动点.点P 沿数轴的负方向运动,在运动过程中,当点P 到点A 的距离与点P 到点B 的距离比是2:3时,点P 表示的数是.现将该刻度尺沿数轴向右平移3个单位,则刻度尺上6.1cm 对应数轴上的数为.平移动,移动后的正方形记为A B C D '''',点、、A B C 、D 的对应点分别为A B C D ''''、、、,点E 是线段AA '的中点,当BEC '△面积为9时,点A '表示的数为.【分析】本题考查了数轴上的动点问题,三角形的面积,解题的关键是根据正方形平移后正确地表示出各线段的长∵113922BEC S BE D A BE '''=⋅=⨯=V ,∴6BE =,∴369AE AB BE =+=+=,∵点E 是线段AA '的中点,∴18AA '=,∵点A 表示的数为4-,∴点A '表示的数为41814-+=;②当正方形ABCD 沿数轴向左移动时,如图,S V Q 6,BE ∴=∴633AE BE AB =-=-=,∵点E 是线段AA '的中点,∴6AA '=,∵点A 表示的数为4-,∴点A '表示的数为4610--=-.综上,数轴上点A '表示的数是14或10-;故答案为:14或10-.11.如图,A ,B ,C 为数轴上的点,4AC =,点B 为AC 的中点,点P 最小值为.【答案】6【分析】根据题意得出2AB BC ==,然后分情况讨论,作出相应图形求解即可.【详解】解:∵4AC =,点B 为AC 的中点,∴2AB BC ==,当点P 位于点A 左侧时,如图所示,()22410PA PB PC PA PA AB PA AC PA ++=++++=+;当点P 与点A 重合时,如图所示,202810PA PB PC ++=++=;当点P 位于点A 与点B 之间时,如图所示:()22226PA PB PC PB BC PB ++=++=+;当点P 与点B 重合时,如图所示,220226PA PB PC ++=++⨯=;当点P 位于点B 与点C 之间时,如图所示:22246PA PB PC AB PB PB PC ++=+++=+=;当点P 与点C 重合时,如图所示,2426PA PB PC ++=+=;当点P 位于点C 右侧时,如图所示,2264PA PB PC AC PC BC PC PC PC ++=++++=+;综上可得:2PA PB PC ++的最小值为6,故答案为:6.【点睛】本题主要考查数轴上两点之间的距离及分类讨论思想,理解题意,进行分类讨论是解题关键.12.如图所示,观察数轴,请回答:(1)点C 与点D 的距离为,点B 与点D 的距离为;(2)点B 与点E 的距离为,点A 与点C 的距离为;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们13.同学们都知道,()73--表示7与3-之差的绝对值,实际上也可理解为数轴上分别表示7与3-的两点之间的距离.试探索:(1)()73--=________;(2)找出所有符合条件的整数x ,使得415x x ++-=;(3)对于任何有理数x ,36x x -+-是否有最小值?若有,请求出最小值;若没有,请说明理由;(4)若169x x ++-=时,求x 的值.+=--=-,617112∴x的值为2-或7.14.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与1-表示的点重合,则2-表示的点与数表示的点重合;(2)若1-表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为2023(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?的和是m.(1)若B为原点.则A点对应的数是__________;点C对应的数是__________,m=__________.CO=.求m.(2)若原点O在图中数轴上点C的右边,且6【答案】(1)2--,1,1(2)22-A B C所对应的数是解题关键.【分析】本题主要考查了数轴的知识,根据题意确定点、、A B C所对应的数,即可获得答案;(1)根据题意,确定点、、A B C所对应的数,即可获得答案.(2)根据题意,确定点、、【详解】(1)解:根据题意,2BC=,AB=,1若B为原点,即点B对应的数为0,则点A 对应的数为2-,点C 对应的数为1,∴2011=-++=-m .故答案为:2-,1,1-;(2)解:根据题意,原点O 在图中数轴上点C 的右边,且6CO =,则点C 对应的数为6-,点B 对应的数为7-,点A 对应的数为9-,∴()()67922m =-+-+-=-.六.数轴上动点问题(共12小题)1.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为1-和0,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则翻转2019次后,数轴上数2019所对应的点是()三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点()个单位长度.A .0B .100C .50D .-50【答案】C【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【详解】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50,所以落点处离0的距离是50个单位.故答案为:C .【点睛】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.3.如图,在数轴上点A 、B 表示的数分别为﹣2、4,若点M 从A 点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N 从B 点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M 、N 同时出发,运动时间为t 秒,经过秒后,M 、N 两点间的距离为8个单位长度.【答案】14或149【分析】已知运动时间为t 秒,根据题意建立含有t 的一元一次方程,解出t 的值即可.【详解】解:已知运动时间为t 秒,根据题意M 、N 两点间的距离为8个单位长度,分析N 点的两种移动方向分别建立一元一次方程可得:当N 向左运动,则有25448t t -+-+=,解得t =149,当N 向右运动,则有25448t t -+--=,解得t =14.故答案为14或149.【点睛】本题主要考查线段的动点和数轴问题,根据题意分情况列出含有t 的一元一次方程是解决本题的关键.4.如图,动点A ,B ,C 分别从数轴-30,10,18的位置沿数轴正方向运动,速度分别为2个单位长度/秒,4个单位长度/秒,8个单位长度/秒,线段OA 的中点为P ,线段OB 的中点为M ,线段OC 的中点为N ,若k PM MN ⋅-为常数,则k 为.【答案】2【分析】运动t 秒后,点P 在数轴上表示的数为-15+t ,点M 在数轴上表示的数是5+2t ,点N 在数轴上表示的数是9+4t ,分别表示出PM =20+t ,MN =2t +4,再代入k PM MN ⋅-,根据k PM MN ⋅-为常数,得到关于k 的方程,解方程即可.【详解】解:根据题意得,点P 在数轴上表示的数为-3022t +=-15+t ,点M 在数轴上表示的数是1042t +=5+2t ,点N 在数轴上表示的数是1882t +=9+4t ,则PM =20+t ,MN =2t +4,(20)(24)(2)204k PM MN k t t k t k ∴⋅-=+-+=-+- k PM MN ⋅-为常数,2=0k ∴-2k ∴=故答案为:2.【点睛】本题考查一元一次方程的应用、数轴上点的位置关系,根据k PM MN ⋅-为常数列方程是解题关键.5.定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是【A ,B 】的美好点.例如:如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的美好点,但点D 是【B ,A 】的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2(1)点E ,F ,G 表示的数分别是3-,6.5,11,其中是【M ,N 】美好点的是_;写出【N ,M 】美好点H 所表示的数是_.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,P ,M 和N 中恰有一个点为其余两点的美好点?【答案】(1)G ;4-或16-(2)1.5,2.25,3,6.75,9,13.5【分析】本题考查数轴上的动点问题、数轴上两点之间的距离、点是【M ,N 】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.(1)根据美好点的定义,结合图2,直观考察点E ,F ,G 到点M ,N 的距离,只有点G 符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分8种情况,须区分各种情况分别确定P 点的位置,进而可确定t 的值.【详解】(1)解:根据美好点的定义,18GM =,9GN =,2GM GN =,只有点G 符合条件,故答案是:G .结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,点N 的右侧不存在满足条件的点,点M 和N 之间靠近点M 一侧应该有满足条件的点,进而可以确定4-符合条件.点M 的左侧距离点M 的距离等于点M 和点N 的距离的点符合条件,进而可得符合条件的点是16-.故答案为:4-或16-;(2)解:根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分8种情况,第一情况:当P 为【M ,N 】的美好点,点P 在M ,N 之间,如图1,当2MP PN =时,3PN =,点P 对应的数为231-=-,因此 1.5t =秒;第二种情况,当P 为【N ,M 】的美好点,点P 在M ,N 之间,如图2,当2PM PN =时,6NP =,点P 对应的数为264-=-,因此3t =秒;第三种情况,P 为【N ,M 】的美好点,点P 在M 左侧,如图3,当2PN MN =时,18NP =,点P 对应的数为21816-=-,因此9t =秒;第四种情况,M 为【P ,N 】的美好点,点P 在M 左侧,如图4,当2MP MN =时,27NP =,点P 对应的数为22725-=-,因此13.5t =秒;第五种情况,M 为【N ,P 】的美好点,点P 在M 左侧,如图5,当2MN MP =时,13.5NP =,点P 对应的数为213.511.5-=-,因此 6.75t =秒;第六种情况,M 为【N ,P 】的美好点,点P 在M ,N 左侧,如图6,当2MN MP =时, 4.5NP =,因此 2.25t =秒;第七种情况,N 为【P ,M 】的美好点,点P 在M 左侧,当2PN MN =时,18NP =,因此9t =秒,第八种情况,N 为【M ,P 】的美好点,点P 在M 右侧,当2MN PN =时, 4.5NP =,因此 2.25t =秒,综上所述,t 的值为:1.5,2.25,3,6.75,9,13.5.6.若A 、B 、C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是【A ,B 】的好点.例如,如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点.知识运用:如图2,M 、N 为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.(1)数所表示的点是【M ,N 】的好点;(2)如图3,A 、B 为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)2或10t=秒或20秒或15秒(2)10【分析】本题考查了数轴上两点之间的距离、数轴上的动点问题:(1)根据数轴求出两点距离,再根据新定义的概念求出结果,注意有两种情况;(2)分情况讨论,根据好点的定义可求出结果;正确理解新定义是解题的关键.【详解】(1)解:设点H是【M,N】的好点,∴=,2HM HN当H在M、N之间时,HM HN MN∴+==--=,4(2)6∴+=,HN HN26∴=,2HN∴表示的数为422H-=,当H在N右边时,设H表示的数为h,h h∴--=-,(2)2(4)∴=,10h故答案为:2或10;(2)解:当P是【A,B】好点时,即2=,PA PB\-=´,t t60222t∴=;10当P是【B,A】好点时,即2=,PB PA∴=-,t t22(602)t∴=;20当B是【A,P】好点时,即2BA BP=,\=´,6022tt∴=,15当A是【B,P】好点时,即2=,AB AP∴=-,602(602)tt∴=;15t=秒或20秒或15秒时,P、A和B中恰有一个点为其余两点的好点.综上所述,当10、两点表示的数是互为相反数;7.如图,数轴上的单位长度为1,A B(1)点A表示的数是______,点B表示的数______.(2)数轴上一个动点P先向左移动2个单位长度,再向右移动5个单位到达点M,若点M表示的数是1,则点P所表示的数是______.(3)在数轴上,点O为坐标原点,若点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度向右运动,当两点t>.同时运动时,设运动时间为t秒()0①点A 表示的数为______;点B 表示的数为______.(用含t 的式子表示)②当t 为何值时,点A 、点B 、点O 三点之间恰好有一个点到其他两个点的距离相等?(1)则点A 对应的数是,点B 对应的数是;(2)动点P 、Q 分别同时从A 、C 出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M 在线段AP 上,且AM MP =,N 在线段CQ 上,且14CN CQ =,设运动时间为()0t t >.①求点M、N对应的数(用含t的式子表示)②猜想的长度是否与t的大小有关?如果有关请你写出用t表示的代数式;如果无关请你求出的长度.如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB,线段AB的长可以用右边=-.的数减去左边的数表示,即AB b a请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置:(2)点C到点A的距离CA=______cm;若数轴上有一点D,且5AD=,则点D表示的数为_________;x,则移动后的点表示的数为_____;(用代数式表示)(3)若将点A向右移动cm(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,-的值是否会随着t的变化而改变?请说明理由.试探索:AC AB-,C表示4,图见解析;【答案】(1)A表示2-,B表示5CA=--=+=(cm);(2)4(2)426设D表示的数为a,度向终点C移动,设移动时间为t秒.若用PA,PB,PC分别表示点P与点A、点B、点C的距离,试回答以下问题.(1)当点P运动10秒时,PA=______,PB=______,PC=______;(2)当点P运动了t秒时,请用含t的代数式表示P到点A、点B、点C的距离:PA=______,PB=______,PC=______;(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请直接写出点P表示的数;如果不能,请说明理由.当Q 点未到达点,此时3AQ x =,BP x =,则Q 则()10243PQ x x =-+--+此时(343AQ AC QC =-=-则Q 点表示的数为2468-+-两个长方形ABCD 和EFGH 的宽都是3个单位长度,长方形ABCD 的长AD 是6个单位长度,长方形EFGH 的长EH 是10个单位长度,其中点A 、D 、E 、H 在数轴上(如图),点E 在数轴上表示的数是5,且E 、D 两点之间的距离为14,原点记为0.(1)求数轴上点H 、A 所表示的数?(2)若长方形ABCD 以4个单位长度/秒的速度向右匀速运动,同时长方形EFGH 以3个单位长度/秒的速度向左匀速运动,数轴上有M 、N 两点,其中点M 在A 、D 两点之间,且12AM AD =,其中点N 在E 、H 两点之间,且15EN EH =,设运动时间为x 秒.①经过x 秒后,M 点表示的数是,N 点表示的数是(用含x 的式子表示,结果需化简).②求MN (用含x 的式子表示,结果需化简).(3)若长方形ABCD 以2个单位长度/秒的速度向右匀速运动,长方形EFGH 固定不动,设长方形ABCD 运动的时间为()0t t >秒,两个长方形重叠部分的面积为S ,当12S =时,求此时t 的值.。
苏教版初一数学绝对值专题3 绝对值的几何意义
![苏教版初一数学绝对值专题3 绝对值的几何意义](https://img.taocdn.com/s3/m/aab173e72e3f5727a4e96237.png)
绝对值的几何意义【知识概要】课本上对绝对值的定义,是结合数轴来说明的:一般地,数轴上表示数a 的点与原点的距离,叫做数a 的绝对值.这就是我们对“绝对值”的第一认识,而且也是从几何的角度来对它进行认识的.所以我们在之前的第一次课上就提到:从几何角度来看,绝对值的本质就是一段距离.“绝对值”的几何含义对于我们进一步认识它、运用它解题有着不可小觑的作用,但是关键一步就是:一定要认识到“绝对值”表示的是一段距离,那么它就不可能出现负值,最小取0.这其实也是“绝对值的非负性”的一个体现.【例题讲解】【例1】<考点:绝对值的基本概念>(1)数轴上表示1和6的两点之间的距离是 ;数轴上表示3-和7-的两点之间的距离是 ;数轴上表示7和3-的两点之间的距离是 ;归纳:求数轴上任意两点之间的距离时,只需要用右边的点对应的数减去左边的点对应的数即可.(2)数轴上表示x 和8-的两点之间的距离是 ,如果这段距离长为4,那么=x .【例2】<考点:最小值>(1)当x 满足什么条件时,32-++x x 能取最小值?最小值是多少? (2)已知a 为有理数,那么代数式321-+-+-a a a 的取值有没有最小值?如果有,请求出这个最小值;如果没有,请说明理由.归纳:对于这类问题,先确定“零点”,并将这些零点按从小到大的顺序排列好.若相加的绝对值有偶数个,则当x 在最中间两个零点之间任意位置取值时,代数式可以取到最小值;若相加的绝对值有奇数个,则x 取最中间的零点时,代数式可以取到最小值.【例3】<考点:“最小值问题”延伸类型一:化简>(2005年全国希望杯数学竞赛初一培训题)已知方程211=-++x x ,则=-+-124x _______ .【例4】<考点:“最小值问题”延伸类型二:带字母的方程>关于x 的方程a x x =-+-52,研究a 的存在条件,并对这个方程的解进行讨论.【例5】<考点:“最小值问题”延伸类型三:方程>已知y y x x +---=-++251012,求y x +的最大值和最小值.【例6】<考点:绝对值与不等式结合>适合于不等式99992000≤+-x x 的整数x 共有多少个? 【随堂练习】 1、当x 取什么值时,4321-+-+-+-x x x x 有最小值,并求出这个最小值. 2、设d c b a <<<,求d x c x b x a x -+-+-+-的最小值.3、试求1232009x x x x -+-+-+⋅⋅⋅+-的最小值.4、如下图,公共汽车运营线路AB 段上有A 、B 、C 、D 四个汽车站,现在要在AB 段上修建一个加油站M ,为了使加油站选址合理,要求A 、B 、C 、D 四个汽车站到加油站M 的路程总和最小.那么加油站M 在何处选址最好?5、当a 取哪些值时,方程a x x =-++12有解?6、若()()()36131221=++-++--++z z y y x x ,求z y x 32++的最小值和最大值.。
绝对值的几何意义
![绝对值的几何意义](https://img.taocdn.com/s3/m/01196288f8c75fbfc77db26e.png)
绝对值的几何意义【知识要点】大家知道,|a|的几何意义是:数轴上表示a的点到原点的距离;|a-b|的几何意义是:数轴上表示数a、b的两点的距离.对于某些问题用绝对值的几何意义来解,直观简捷,事半功倍.【例题精讲】【例题】我们知道,|a|可以理解为|a-0|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A.B,分别用a,b表示,那么A、B两点之间的距离为AB=|a-b|,利用此结论,回答以下问题:(1)数轴上表示8和3的两点之间的距离是______,数轴上表示-2和5的两点之间的距离是___________,数轴上表示-3和-7的两点之间的距离是__________;(2)数轴上点A用a表示,则|a-3|=5的几何意义是_____________,利用数轴及绝对值的几何意义写出a的值是___________________;(3) 利用数轴及绝对值的几何意义写出该式能取得的最小值是_____________. 【思路点拨】(1)根据数轴上两点间的距离公式,可得答案;(2)根据到一点距离相等的点有两个,可得a的值;(3)根据线段上的点与线段两端点的距离的和最小,可得答案.【解析】解:(1)数轴上表示8和3的两点之间的距离是5,数轴上表示-2和5的两点之间的距离是7,数轴上表示-3和-7的两点之间的距离是4;(2)数轴上点A用a表示,则|a-3|=5的几何意义是数轴上表示a和3两点之间的距离是5,利用数轴及绝对值的几何意义写出a的值是-2或8;(3)说出|x+1|+|x+2|表示的几何意义数轴上点x与-1的距离与点x与-2距离的和,利用数轴及绝对值的几何意义写出该式能取得的最小值是1,故答案为:5,7,4;数轴上表示a与3两点之间的距离是5,-2或8;数轴上点x与-1的距离与点x与-2的距离的和是1.【总结升华】本题考查了绝对值,(1)数轴上两点间的距离公式,(2)到一点距离相等的点有两个;(3)线段上的点与线段两端点的距离的和最小.【例题】阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为____________________;(2)解不等式|x-3|+|x+4|≥9;(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.【思路点拨】仔细阅读材料,根据绝对值的意义,画出图形,来解答.【解析】解:(1)根据绝对值得意义,方程|x+3|=4表示求在数轴上与-3的距离为4的点对应的x的值为1或-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点3与-4的两侧.当x在3的右边时,如图,易知x≥4.当x在-4的左边时,如图,易知x≤-5.∴原不等式的解为x≥4或x≤-5(3)原问题转化为:a大于或等于|x-3|-|x+4|最大值.当x≥3时,|x-3|-|x+4|应该恒等于-7,当-4<x<3,|x-3|-|x+4|=-2x-1随x的增大而减小,当x≤-4时,|x-3|-|x+4|=7,即|x-3|-|x+4|的最大值为7.故a≥7.【总结升华】本题是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合本题是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.由于信息量较大,同学们不要产生畏惧心理.【巩固练习】1、我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1-x2|表示在数轴上x1,x2对应点之间的距离;例1解方程|x|=2,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2例2解不等式|x-1|>2,如图,在数轴上找出|x-1|>2的解,即到1的距离为2的点对应的数为-1、3,则|x-1|>2的解为x<-1或X>3参考阅读材料,解答下列问题:不等式|x+3|>4的解为_____________________.2、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是____________;表示-3和2的两点之间的距离是___________;表示-5和-4的两点之间的距离是_________;一般地,数轴上表示数m和数n的两点之间的距离等于__________.(2)如果表示数a和-2的两点之间的距离是3,那么a=____________.(3)若数轴上表示数a的点位于-4与2之间,求|a+4|+|a-2|的值;【答案】1、解:∵|x+3|=|x-(-3)|>4,即到-3的距离为4的点对应的数为-7、1,用数轴表示为:∴不等式|x+3|>4的解为x<-7或x>1.2、解:(1)|1-4|=3,|-3-2|=5,|-5-(-4)|=1,|m-n|,故答案为:3;5;1;|m-n|;(2)|a-(-2)|=3,所以,a+2=3或a+2=-3,解得a=1或a=-5,故答案为:-5和1;(3)∵表示数a的点位于-4与2之间,∴a+4>0,a-2<0,∴|a+4|+|a-2|=(a+4)+[-(a-2)]=a+4-a+2=6;Welcome To Download !!!欢迎您的下载,资料仅供参考!。
湘教版-数学-七年级上册-【例题与讲解】绝对值
![湘教版-数学-七年级上册-【例题与讲解】绝对值](https://img.taocdn.com/s3/m/ec4829a155270722182ef701.png)
1.2.3 绝对值1.绝对值的概念及表示(1)绝对值的几何意义我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值.记作|a |. 这是绝对值的几何意义,例如:10到原点的距离是10;-10到原点的距离也是10,所以10与-10的绝对值相等,都是10.记作:|10|=10,|-10|=10.谈重点 绝对值的几何意义 绝对值的几何意义与数的正、负无关,只与表示该数的点到原点的距离有关.(2)绝对值的代数意义一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数.用字母表示为:若a >0,则|a |=a ;若a <0,则|a |=-a ;若a =0,则|a |=0.也可以归纳如下:|a |=⎩⎨⎧ a (a >0)0(a =0)-a (a <0)或|a |=⎩⎨⎧a (a ≥0)-a (a <0) 从代数角度来看:绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.【例1】 根据绝对值的概念,求下列各数的绝对值:-1.6,85,0,-10,+10,-a (a >0).分析:85,+10是正数,绝对值等于其本身;-1.6,-10是负数,绝对值等于其相反数;0的绝对值是0;因为a >0,所以-a 是负数,其绝对值等于它的相反数a .解:|-1.6|=1.6;⎪⎪⎪⎪⎪⎪85=85;|0|=0; |-10|=10;|+10|=10;|-a |(a >0)=a .2.绝对值的非负性一个数的绝对值就是表示这个数的点到原点的距离.由于距离是一个非负数,所以任何一个有理数的绝对值都是非负数,即无论a 取何值,都有|a |≥0.例如|2|=2,|-2|=2,|0|=0.一个数在数轴上表示的点离原点的距离越远,绝对值越大;离原点越近,绝对值越小.0的绝对值可以看成是原点到原点的距离,因此仍然是0.谈重点 数的大小与绝对值大小的关系 正数越大,它的绝对值越大;负数越小,它的绝对值越大;绝对值最小的数是0.【例2】 已知|x -4|+|y -1|=0,求x ,y 的值.分析:因为任何有理数的绝对值都是非负数,即|a |≥0,所以|x -4|≥0,|y -1|≥0,而两个非负数之和为0,则两个数均为0,所以可求出x ,y 的值.解:因为|x -4|≥0,|y -1|≥0,又|x -4|+|y -1|=0,所以只能|x -4|=0,|y -1|=0,即x -4=0,y -1=0,因此x =4,y =1. 析规律 非负数的性质 (1)若干个非负数的和仍是非负数;(2)有限个非负数的和为0,则每个非负数都为0;(3)非负数的最小值是0.3.绝对值的求法(1)利用数轴确定一个数的绝对值时,首先确定这个数在数轴上表示的点,然后再看一下这个点到原点的距离即可.(2)利用绝对值计算的法则,首先要判断这个数是正数、零,还是负数.如果绝对值里面的数是非负数,那么这个数的绝对值就是它本身;如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数,此时去掉绝对值号时,就要把绝对值里的数添上括号,再在括号前面加上负号,如|-5|=-(-5)=5.解技巧 求一个式子的绝对值的方法 求一个式子的绝对值时,要先根据题意判断这个式子的正负性,再根据法则化去绝对值符号.【例3】 (1)若a >3,则|a -3|=__________;(2)若a=3,则|a-3|=__________;(3)若a<3,则|a-3|=__________.解析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a-3>0,即a-3为正数,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a-3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).答案:(1)a-3(2)0(3)-(a-3)解技巧化简含有字母的式子的绝对值的方法化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性,否则会出现错误.4.绝对值的性质(1)任何一个有理数均有绝对值,这个绝对值是唯一的,并且任何一个有理数都不大于它的绝对值,即x≤|x|;(2)有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是0,且无最大的绝对值;(3)绝对值等于其本身的数是正数或0.反过来,如果一个数的绝对值是其本身,那么这个数必是正数或0;(4)若两个数绝对值的和等于0,则这两个数分别等于0.即若|a|+|b|=0,则a =0,b=0;(5)已知一个数的绝对值,那么它所对应的是两个互为相反数的数.【例4】如图,点A,B在数轴上对应的有理数分别为m,n,则A,B之间的距离是__________.(用含m,n的式子表示)解析:由点A,B在数轴上的位置可得,m<0,n>0,A,B间的距离AB=|m|+|n|=-m+n.答案:-m+n5.利用数轴求绝对值问题一个数a的绝对值就是数轴上表示数a的点与原点的距离.数a的绝对值记作|a|,例如|5|就是5到原点的距离.正数的绝对值等于其本身,负数的绝对值为它的相反数.总结得到:|a |=⎩⎨⎧ a ,a >0,0,a =0,-a ,a <0,可知:任何一个数的绝对值总是非负数,即|a |≥0.绝对值为本身的数是非负数;绝对值最小的数是0.从数轴上观察可知,绝对值为一个正数的数有两个,如|a |=2,则a =±2. 注意:从数轴上正负两个方向考虑.解技巧 利用数轴解决绝对值问题:已知一个数的绝对值求原数时,如果能充分地利用数轴的直观性,能够提高解题的正确性,避免漏解.【例5-1】 实数a ,b 在数轴上的位置如图所示,那么化简|-b |-|a |的结果是( ).A .a -bB .b +aC .b -aD .-b -a解析:从数轴上可以看出a >0,b <0,所以-b >0,即-b 与a 都是正数,它们的绝对值都等于本身,所以|-b |-|a |=-b -a .答案:D【例5-2】 已知a ,b ,c 中的a ,b 均为负数,c 为正数,且|b |>|a |>|c |,(1)在数轴上表示a ,b ,c 的大致位置;(2)比较a ,b ,c 的大小.分析:(1)a ,b 在原点的左侧,c 在原点的右侧,且b 到原点的距离最大,a 到原点的距离其次,c 到原点的距离最小;(2)在数轴上表示的有理数,右边的数总大于左边的数.解:(1)如图所示.(2)b <a <c .6.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.谈重点 化简绝对值符号的关键 化简绝对值符号的关键是判断绝对值符号内的数是正数还是负数.【例6】 化简(1)-⎪⎪⎪⎪⎪⎪-23;(2)+|-24|; (3)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫+312;(4)|-(-7.5)|;(5)-|-(-0)|. 分析:先判断数的符号,再求绝对值.解:(1)-⎪⎪⎪⎪⎪⎪-23=-23; (2)+|-24|=24;(3)⎪⎪⎪⎪⎪⎪-⎝⎛⎭⎪⎫+312=312; (4)|-(-7.5)|=7.5;(5)-|-(-0)|=-|0|=0.7.学习绝对值的五大误区误区一:认为|a |=a .因为a 可以表示正数、负数、0,由绝对值的意义可知,只有当a ≥0时,|a |=a 才成立.例如:已知实数a ,b 在数轴上的对应位置如图所示,则化简|a |=a ,而|b |=-b .误区二:误认为|a |=|b |,则a =b .事实上,当|a |=|b |时,可能a =b ,也可能a =-b .绝对值从几何意义上来讲是表示某数的点与原点的距离,互为相反数的两个数,虽然分布在原点的两边,但离原点的距离相等,所以互为相反数的两个数绝对值是相等的,不能由两数绝对值相等就简单的断定两数相等,还有可能互为相反数.误区三:忽略由绝对值求原数的双值特点.误认为|x |=a (a ≥0),则x =a .事实上,当|x |=a (a ≥0)时,x =±a .误区四:忽略“0”的特殊性.“0的绝对值是0”可以做两种理解,一种是0的绝对值是它本身(和正数的绝对值相同),另一种是0的绝对值是它的相反数(和负数的绝对值相同).误区五:计算绝对值,混淆绝对值符号与括号的意义.求多个数的绝对值的四则运算,应按顺序去掉绝对值后再进行运算.解含绝对值与相反数双重运算的计算题,应分清层次按照题意一步一步计算.【例7-1】下面推理正确的是().A.若|m|=|n|,则m=nB.若|m|=n,则m=nC.若|m|=-n,则m=nD.若m=n,则|m|=|n|解析:A中,若|m|=|n|,则m=±n;B中,若|m|=n(n一定是非负数),则m =±n,例如|±2|=2,此时m=±2,n=2,显然m=±n;C中,若|m|=-n,则m =n或m=-n,例如|±3|=-(-3)(n一定是非正数),此时m=±3,n=-3,所以m=±n.答案:D【例7-2】若m为有理数,且|-m|=-m,那么m是().A.非正数B.非负数C.负数D.不为零的数解析:根据“正数或零”的绝对值等于它本身可知,-m≥0,所以它的相反数m≤0,即非正数.答案:A【例7-3】填空:(1)-(-4)=__________;(2)-|-4|=__________;(3)|-18|-|-6|=__________(4)如果|a|=|-7|,那么a=__________.解析:(1)因为-(-4)表示-4的相反数,而-4的相反数是4,所以-(-4)=4;(2)因为-|-4|表示|-4|的相反数,而|-4|=4,所以-|-4|=-4;(3)因为|-18|=18,|-6|=6,所以|-18|-|-6|=18-6=12;(4)由绝对值的意义可知绝对值是7的数有两个是±7,所以a=±7.答案:(1)4(2)-4(3)12(4)±7。
专题05绝对值的几何意义解析版
![专题05绝对值的几何意义解析版](https://img.taocdn.com/s3/m/7bfc04eded3a87c24028915f804d2b160a4e860b.png)
专题05 绝对值的几何意义1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,求数x;(3)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值.【解答】解:(1)观察数轴即可得出:4和1的两点之间的距离是3,﹣3和2两点之间的距离是5,故答案为:3,5;(2)由(1)结论知:|x+1|=3,解得x=2或﹣4,故x值为2或﹣4;(3)|a+4|+|a﹣2|意思是表示数a的点到﹣4和2的距离和,∵a的点位于﹣4与2之间,∴表示数a的点到﹣4和2的距离和为6,故|a+4|+|a﹣2|=a+4+2﹣a=6.2.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a﹣b|.理解:(1)数轴上表示2和﹣3的两点之间的距离是 5 ;(2)数轴上表示x和﹣5的两点A和B之间的距离是 |x+5| ;(3)当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是 ﹣3≤x≤1 ;最小值是 4 .【解答】解:(1)数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5,故答案为:5;(2)数轴上表示x和﹣5的两点A和B之间的距离是|x+5|.故答案为:|x+5|;(3)在数轴上,|x﹣1|+|x+3|表示数轴上x和1的两点之间与x和﹣3的两点之间距离和,当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是﹣3≤x≤1,最小值是4.故答案为:﹣3≤x≤1,4.3.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离 2 .(2)数轴上表示﹣12和﹣6的两点之间的距离是 6 .(3)数轴上表示x和1的两点之间的距离表示为 |x﹣1| .(4)若x表示一个有理数,则|x﹣2|+|x+4|最小值为 6 .【解答】解:(1)数轴上表示1和3两点之间的距离是|3﹣1|=2,故答案为:2;(2)数轴上表示﹣12和﹣6的两点之间的距离表示为|﹣12﹣(﹣6)|=6,故答案为:6;(3)数轴上表示x和1的两点之间的距离表示为|x﹣1|,故答案为:|x﹣1|;(4)根据绝对值的定义有:|x﹣2|+|x+4|可表示为点x到2与﹣4两点距离之和,根据几何意义分析可知:当x在﹣4与2之间时,|x﹣2|+|x+4|的最小值=6.故答案为:6.4.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 4 ;(2)数轴上表示x和﹣3的两点之间的距离表示为 |x+3| ;(3)若x表示一个有理数,请你化简|x﹣1|+|x+3|,并结合数轴求|x﹣1|+|x+3|的最小值.【解答】解:(1)|1﹣(﹣3)|=4;故答案为:4;(2)|x﹣(﹣3)|=|x+3|;故答案为:|x+3|;(3)当x<﹣3时,|x﹣1|+|x+3|=1﹣x﹣x﹣3=﹣2x﹣2,当﹣3≤x≤1时,|x﹣1|+|x+3|=1﹣x+x+3=4,当x>1时,|x﹣1|+|x+3|=x﹣1+x+3=2x+2,在数轴上|x﹣1|+|x+3|的几何意义是:表示有理数x的点到﹣3及到1的距离之和,所以当﹣3≤x≤1时,它取得最小值为4.5.阅读下面的材料:我们知道,在数轴上,|a|表示有理数a对应的点到原点的距离,同样的道理,|a﹣2|表示有理数a 对应的点到有理数2对应的点的距离,例如,|5﹣2|=3,表示数轴上有理数5对应的点到有理数2对应的点的距离是3.请根据上面的材料解答下列问题:(1)数轴上有理数﹣9对应的点到有理数3对应的点的距离是 12 ;(2)|a﹣5|表示有理数a对应的点与有理数 5 对应的点的距离;如果|a﹣5|=2,那么有理数a的值是 7或3 ;(3)如果|a﹣1|+|a﹣6|=7,那么有理数a的值是 0或7 ;(4)代数式|a﹣1|+|a﹣6|的最小值是 5 ,此时有理数a可取的整数值有 6 个.【解答】解:(1)数轴上有理数﹣9对应的点到有理数3对应的点的距离为|﹣9﹣3|=12;故答案为:12;(2)|a﹣5|表示与有理数a对应的点与有理数5对应的点的距离;∵|a﹣5|=2,∴a﹣5=±2,解得a=7或3.故答案为:5,7或3;(3)当a<1时,依题意有﹣a+1﹣a+6=7,解得a=0;当1≤a≤6时,依题意有a﹣1﹣a+6=7,方程无解;当a>6时,依题意有a﹣1+a﹣6=7,解得a=7.故答案为:0或7;(4)此等式表示数轴上有理数a所在点到有理数1和6所在点的距离之和,距离之和最小为5,此时有理数a可取的整数值有:1,2,3,4,5,6共6个数,故答案为:5,6.6.【阅读】若点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为|AB|,则|AB|=|a﹣b|.即|5﹣3|表示为5与3两数在数轴上所对应的两点之间的距离.【探究】(1)点A,B表示的数分别为﹣7,2,则|AB|= 9 ,|x+2|在数轴上可以理解为 x与﹣2两数的距离 .(2)若|x﹣3.1|=4,则x= ﹣0.9或7.1 ,若|y+4|=|y﹣3|,则y= .【应用】(3)如图,数轴上表示点a的点位于﹣3和2之间,求|a+3|+|a﹣2|的值.(4)由以上的探索猜想,对于任意有理数x,|x+6|+|x+3|+|x﹣1|是否有最小值?如果有,求出最小值,并写出此时x的值;如果没有,说明理由.【解答】解:(1)数轴上表示﹣7的点与表示2的点之间的距离为9,|x+2|=|x﹣(﹣2)|,即可表示为x到﹣2的距离,故答案为:9;x与﹣2的距离.(2)∵|x﹣3.1|=4,∴x到3.1的距离为4,∴3.1﹣4=﹣0.9,3.1+4=7.1;∵|y+4|=|y﹣3|,∴y到﹣4的距离和y到3的距离相同,∴y=﹣0.5.故答案为:﹣0.9或7.1;﹣0.5.(3)∵|a+3|+|a﹣2|可表示a到﹣3的距离加上a到2的距离且a位于﹣3和2之间,∴原式可看作﹣3与2之间的距离,∴|a+3|+|a﹣2|=5.(4)|x+6|+|x+3|+|x﹣1|可表示为x到﹣6的距离加上x到﹣3的距离加上x到1的距离,∴当x=﹣3时,该式取得最小值,此时|x+6|+|x+3|+|x﹣1|=7.7.【阅读】已知m、n两个数在数轴上对应的点为M、N,其中m>n,求M、N两点之间的距离MN.小明利用绝对值的概念,结合数轴,进行探索:解:因为m>n,所以有以下情况:情况1:若m>0,n>0,如图①,M、N两点之间的距离MN=|m|﹣|n|=m﹣n;情况2:若m≥0,n<0,如图②,M、N两点之间的距离MN=|m|+|n|=m﹣n;情况3:若m<0,n<0,如图③,M、N两点之间的距离MN=|n|﹣|m|=m﹣n.由此小明得出结论:若m、n两个数在数轴上对应的点为M、N,其中m>n,则M、N两点之间的距离MN=m﹣n.【应用】在数轴上,点A表示的数为a,点B表示的数为b,点C对应的数为c.(1)若b=1,AB=2,则a= 3或﹣1 .(2)若a=﹣2,b=4,点C到点A的距离是点C到点B距离的n(n>0)倍.①当n=时,求c的值;②对于任意一个n的值,满足条件的点C的个数始终有2个,请直接写出n取值范围 n>0且n≠1 .(3)若a+b=﹣5,且a、b为整数,当ab的值最大时,求A、B两点之间的距离AB.【解答】解:(1)分两种情况:当点A在点B的右侧,即a>b时,因为AB=2,所以a﹣b=2,a=b+2=3,当点A在点B的左侧,即a<b时,因为AB=2,所以b﹣a=2,a=b﹣2=﹣1;(2)①分两种情况:当点C在线段AB之间时,CA=CB,即c﹣a=(b﹣c),c=0,当点C在点A的左侧时,CA=CB,即a﹣c=(b﹣c),c=﹣8,所以c=0或﹣8;②分三种情况:当点C在点A的左侧时,0<n<1,当点C在点B的右侧时;n>1,当点C在线段AB之间时,0<n<1或n>1,又因为点C的个数始终有两个,n≠1,所以n>0且n≠1;(3)因为a+b=﹣5,ab的值最大,所以a<0,b<0,因为a、b为整数,所以a=﹣2,b=﹣3或a=﹣3,b=﹣2,所以AB=1.8.借助下面的材料,材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离:|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离:|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A点B在数轴上分别表示有理数a,b,那么点A、点B之间的距离可表示为|a﹣b|.问题:如图,数轴上A,B两点对应的有理数分别为﹣8和12,点P从点O出发,以每秒1个单位长度的速度沿数轴负方向运动,点Q同时从点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)求经过2秒后,数轴点P、Q分别表示的数;(2)当t=3时,求PQ的值;(3)在运动过程中是否存在时间t使AP=AB,若存在,请求出此时t的值,若不存在,请说明理由.【解答】解:(1)1×2=2,2×2=4.∵点P沿数轴负方向运动,点Q沿数轴正方向运动,∴经过2秒后,点P表示的数为﹣2,点Q表示的数为4.(2)1×3=3,2×3=6.∵点P沿数轴负方向运动,点Q沿数轴正方向运动,∴当t=3时,点P表示的数为﹣3,点Q表示的数为6,∴PQ=|﹣3﹣6|=9.(3)当运动时间为t秒时,点P表示的数为﹣t,点Q表示的数为2t,点A表示的数为﹣8,点B表示的数为12,∴AP=|﹣8﹣(﹣t)|=|t﹣8|,AB=|﹣8﹣12|=20.∵AP=AB,∴|t﹣8|=×20,∴t=18或t=﹣2(不合题意,舍去).∴当t=18时,AP=AB.9.先阅读下面的材料,然后回答问题.在一条直线上有依次排列的n(n>1)台机床在工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,想解决这个问题,先“退”到比较简单的情形:如图①所示,如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等A1到A2的距离.如图②,如果直线上有3台机床时,不难判断,供应站设在中间一台机床A2处最合适,因为如果P放在A2处,甲和丙所走的距离之和恰好为A1到A3的距离,而如果把P放在别处,例如D 处,那么甲和丙所走的距离之和仍是A1到A3的距离,可是乙还得走从A2到D的这一段,这是多出来的,因此P放在A2处是最佳选择.不难知道,如果直线上有4台机床,P应设在第2台与第3台之向的任何地方;有5台机床,P 应设在第3台位置.(1)有69台机床时,P应设在何处?有82台机床时,P应设在何处?(2)有n台机床时,P应设在何处?(3)根据(2)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+...|x﹣617|的最小值.【解答】解:(1)根据题意,直线上有3台机床,供应站P应设在最中间一台机床处,直线上有4台机床,P应设在第2台与第3台之向的任何地方,有5台机床,P应设在第3台位置…,所以有69台机床时,P应设在第35台处,有82台机床时,P应设在第41台和第42台之间的任何地方;(2)当n为偶数时,P应设在第台和(+1)台之间的任何位置,当n为奇数时,P应设在第台的位置;(3)(1+617)÷2=309,所以当x=309时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣617|取到最小值(1+308)×308=95172.所以最小值是95172.10.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数 ﹣12 ;(2)|5﹣3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.试探索:①:若|x﹣8|=2,则x= 6或10 .②:|x+12|+|x﹣8|的最小值为 20 .(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t >0)秒.求当t为多少秒时?A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.问当t为多少秒时?P,Q之间的距离为4.【解答】解:(1)点B表示的数8﹣20=﹣12.故答案为:﹣12;(2)①|x﹣8|=2,x﹣8=±2,则x=6或10.故答案为:6或10;②|x+12|+|x﹣8|的最小值为8﹣(﹣12)=20.故答案为:20;(3)设经过t秒时,A,P之间的距离为2.此时P点表示的数是5t,则|8﹣5t|=2,解得t=2或t=.故当t为2或秒时,A,P两点之间的距离为2;(4)设经过t秒时,P,Q之间的距离为4.此时P点表示的数是5t,Q点表示的数﹣12+10t,则|﹣12+10t﹣5t|=4解得t=或t=.故当t为或秒时,P,Q之间的距离为4.11.已知点A,B在数轴上分别表示m,n,其中m<n.(1)填写下表;m3﹣6﹣5n54﹣4 A,B两点的距离 2 10 1 (2)若A,B两点的距离为d,则d与m,n的数量关系为 d=n﹣m ;(3)若S=|x﹣3|+|x﹣4|+|x﹣5|+…+|x﹣2018|,求S的最小值,并写出当S取最小值时x的取值范围.【解答】解:(1)填写下表;m3﹣6﹣5n54﹣4 A,B两点的距离2101故答案为:2,10,1;(2)d=n﹣m,故答案为:d=n﹣m;(3)根据绝对值的几何意义,|x﹣a|的意义是数轴上表示数x的点到表示数a的点之间的距离.s=|x﹣3|当x=3时,s有最小值s=0s=|x﹣3|+|x﹣4|当3≤x≤4 时,s有最小值s=4﹣3=1s=|x﹣3|+|x﹣4|+|x﹣5|当x=4时,S有最小值S=2s=|x﹣3|+|x﹣4|+|x﹣5|+|x﹣6|当4≤x≤5 时,S有最小值S=(6﹣3)+(5﹣4)=3+1=4s=|x﹣3|+|x﹣4+|x﹣5|+|x﹣6|+|x﹣7|当x=5时,S有最小值S=(7﹣3)+(6﹣4)+0=4+2=6,…根据观察所得规律|x﹣3|+|x﹣4|+|x﹣5|+…+|x﹣2018|共有(2018﹣3)+1=2016项(2018+3)÷2=1010.5,∴1010≤x≤1011,当1010≤x≤1011时,S有最小值,S=(2018﹣3)+(2017﹣4)+(2016﹣5)+…(1011﹣1010)=2015+2013+2011+…+1=(2015+1)×1008=1016064.12.阅读理解数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段AB=|0﹣(﹣1)|=1;线段BC=|2﹣0|﹣2;线段AC=|2﹣(﹣1)|=3.问题(1)数轴上点M、N代表的数分别为﹣8和1,则线段MN= 9 ;(2)数轴上点E、F代表的数分别为﹣6和﹣2,则线段EF= 4 ;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m的值.【解答】解:(1)∵点M、N代表的数分别为﹣8和1,∴线段MN=1﹣(﹣8)=9;故答案为:9;(2)∵点E、F代表的数分别为﹣6和﹣2,∴线段EF=﹣2﹣(﹣6)=4;故答案为:4;(3)由题可得,|m﹣2|=5,解得m=﹣3或7,∴m值为﹣3或7.13.如图所示,一条直线上从左往右依次有A、B、C、D四个点.(1)如果线段AC、BC、BD的长分别为3a﹣b、a+b、4a﹣2b,试求A、D两点间的距离;(2)如果将这条直线看作是以点C为原点的数轴(向右为正方向).①直接写出数轴上与点B距离为a+2b的点所表示的数 b或﹣2a﹣3b ;②设线段BD上一动点P所表示的数为x,求|x+a+b|+|x﹣3a+3b|的值(用含a、b的代数式表示);③线段BD上有两个动点P、M,点P所表示的数为x,点M所表示的数为y,直接写出式子|x﹣y|+|x+a+b|+|x﹣y﹣6a+4b|的最小值 6a﹣4b (用含a、b的代数式表示).【解答】解:(1)AB=AC﹣BC=(3a﹣b)﹣(a+b)=3a﹣b﹣a﹣b=2a﹣2b;∴AD=AB+BD=(2a﹣2b)+(4a﹣2b)=2a﹣2b+4a﹣2b=6a﹣4b;(2)①∵点C为原点,BC=a+b,∴点B的坐标为:﹣a﹣b,∴数轴上与点B距离为a+2b的点所表示的数为(﹣a﹣b)+(a+2b)=b或﹣a﹣b﹣(a+2b)=﹣2a﹣3b.故答案b或﹣2a﹣3b;②x>﹣a﹣b即x+a+b>0,x<3a﹣3b,即x﹣3a+3b<0,所以|x+a+b|+|x﹣3a+3b|=x+a+b﹣(x﹣3a+b)=4a﹣2b;③∵AD=6a﹣4b,∴|x﹣y|+|x+a+b|+|x﹣y﹣6a+4b|的最小值6a﹣4b.故答案为6a﹣4b.14.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是 3 ;②数轴上表示﹣2和﹣6的两点之间的距离是 4 ;③数轴上表示﹣4和3的两点之间的距离是 7 ;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a= 10或﹣4 ;②若数轴上表示数a的点位于0与1之间,求|1﹣a|+|a|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?【解答】解:(1)探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7,(3)①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或﹣4,故答案为:3,4,7,10或﹣4;②若数轴上表示数a的点位于0与1之间,求|1﹣a|+|a|=1﹣a+a=1;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.15.先阅读下面的材料,然后解答问题.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A1和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上6台机床,供应站P应设在 第3台与第4台之间的任何地方的地方 的地方;如果直线上有7台机床,供应站P应设在 第4台 的地方.(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置?(3)联系拓广:根据以上阅读材料,回答当x取什么值时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,并求其最小值.【解答】解:(1)如果在直线上6台机床,供应站P应设在第3台与第4台之间的任何地方的地方;如果直线上有7台机床,供应站P应设在第4台的地方;故答案为:第3台与第4台之间的任何地方的地方;(2)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置;(3)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣99|的最小值,就是在数轴上找出表示x的点,使它到表示1,2,3,4…99各点的距离之和最小,根据问题(2)的结论,当x==50,即当x=50时,原式的值最小,∴最小值为(49+48+47+...+2+1)+0+(1+2+ (49)=(49+48+47+…+2+1)×2=(49+1)×49÷2×2=2450.16.已知A、B在数轴上分别表示a、b(1)对照数轴填写下表:a6﹣6﹣6﹣62﹣1.5b404﹣4﹣10﹣1.5A、B两点的距离 2 6 10 2 12 ,0 (2)若A、B两点间的距离记为d,则d和a、b数量关系为d= |a﹣b| .(3)若点C表示的数为x,|x+1|+|x﹣2|取得的最小值是 3 .(4)应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆数.【解答】解:(1)6﹣4=2,0﹣(﹣6)=6,4﹣(﹣6)=10,﹣4﹣(﹣6)=2,2﹣(﹣10)=12,﹣1.5﹣(﹣1.5)=0,故答案为:2,6,10,2,12,0;(2)A和B之间的距离d=|a﹣b|,故答案为:|a﹣b|;(3)∵﹣1到2的距离是2﹣(﹣1)=2+1=3,∴点C在﹣1到2之间时,|x+1|+|x﹣2|取得的值最小,最小值是3;故答案为:3;(4)应用:根据题意,共有5种调配方案,如下图所示:由上可知,调出的最小车辆数为:4+2+6=12辆.17.我们知道:|a|的几何意义可以理解为数轴上表示数a的点与原点之间的距离,请大家运用相关知识继续探索数轴上多个点之间的距离问题:(1)数轴上点A、点B分别是数﹣1、3对应的点,则点A与点B之间的距离为 4 .(2)再选几个点试试,猜想:若点A、点B分别是数a、b对应的点,则点A与点B之间的距离为 |b﹣a| .(3)若数轴上点A对应的数为a,且|a﹣2|+|a﹣1|=12,且点A对应的数为 ﹣4.5或7.5 .(4)继续利用绝对值的几何意义,探索|x﹣12|+|x+5|的最小值是 17 .(5)已知数x,y满足|x+7|+|1﹣x|=19﹣|y﹣10|﹣|1+y|,则x+y的最小值是 ﹣8 ,最大值是 11 .【解答】解:(1)点A、点B间的距离=3﹣(﹣1)=4;(2)若点A、点B分别是有理数a、b对应的点,则点A、点B间的距离为a﹣b(a>b)或b﹣a(a<b),即|b﹣a|;(3)|a﹣2|+|a﹣1|=12表示点A到2对应点和1对应的点的距离之和为12,而1与2对应的点表示的距离为12,则点A对应的实数为﹣4.5或7.5;(4)说出|x﹣12|+|x+5|表示的几何意义数轴上点x与12的距离与点x与﹣5距离的和,利用数轴及绝对值的几何意义写出该式能取得的最小值是17,(5)原式变形为:|x+7|+|1﹣x|+|y﹣10|+|1+y|=19,所以,要使等式满足,可得:﹣7≤x≤1,﹣1≤y≤10,所以x+y的最小值是﹣8,最大值是11;故答案为:4;|b﹣a|;﹣4.5或7.5;17;﹣8;1118.大家知道|5|=|5﹣0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=|a﹣b|.根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是 3 ;数轴上表示﹣3和15的两点之间的距离是 18 ;(2)点A、B在数轴上分别表示数x和﹣1.①用代数式表示A、B两点之间的距离;②如果|AB|=2,求x值.【解答】解:(1)数轴上表示2和5的两点之间的距离是:|5﹣2|=3;数轴上表示﹣3和15的两点之间的距离是:|15﹣(﹣3)|=18.故答案为:3,18.(2)①|AB|=|x﹣(﹣1)|=|x+1|.②如果|AB|=2,则|x+1|=2,x+1=2或x+1=﹣2,解得x=1或x=﹣3.19.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a= 1或﹣5 ;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值.【解答】解:(1)数轴上表示4和1的两点之间的距离是4﹣1=3;表示﹣3和2两点之间的距离是2﹣(﹣3)=5;如果表示数a和﹣2的两点之间的距离是3,那么a=1或﹣5;(2)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:3,5,1或﹣5.20.有理数a,b在数轴上的位置如下图所示:(1)请在数轴上分别标出表示﹣a和﹣b的点,并把a,b﹣a,﹣b和0这五个数用“<”连接起来;(2)如果表示a的点到原点的距离为2,|b|=3,那么a= ﹣2 ;b= 3 ;(3)由(2)中求出的a,b值,根据代数式|x﹣a|+|x﹣b|的几何意义,写出它的最小值是 5 ,相应的x的取值范围是 ﹣2≤x≤3 .【解答】解:(1)在数轴上表示﹣a,﹣b如下图:﹣b<a<0<﹣a<b…(4分)(2)﹣2,3 …(7分)(3)5,﹣2≤x≤3…(10分)21.探究数轴上两点之间的距离与这两点的对应关系:(1)观察数轴,填空:点A与点B的距离是 2 ;点C与点B的距离是 5 ;点E与点F的距离是 1 ;点D与点G的距离是 5 .我们发现:在数轴上,如果点M对应的数为m,点N对应的数为n,那么点M与点N之间的距离MN可表示为 |m﹣n| (用m、n表示).(2)利用你发现的规律,解决下列问题:数轴上表示x和2的两点之间的距离是3,则x= 5或﹣1 .(3)利用你发现的规律,逆向思维解决下列问题:①|x﹣2|=5,则x= 7或﹣3 .②|x+3|=2,则x= ﹣5或﹣1 .【解答】解:(1)由数轴可得:点A与点B的距离是2,点C与点B的距离是5,点E与点F 的距离是1,点D与点G的距离是5.点M与点N之间的距离MN可表示为|m﹣n|.故答案为:2,5,1,5,|m﹣n|.(2)若数轴上表示x和2的两点之间的距离是3,则|x﹣2|=3,即x﹣2=3或x﹣2=﹣3,解得x=5或﹣1.故答案为:5或﹣1.(3)①|x﹣2|=5,即x﹣2=5或x﹣2=﹣5,解得x=7或﹣3,故答案为:7或﹣3.②|x+3|=2,即x+3=2或x+3=﹣2,解得x=﹣1或﹣5,故答案为:﹣5或﹣1.22.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是 3 ;②数轴上表示x和﹣2的两点之间的距离表示为 |x+2| ;③若x表示一个有理数,且﹣3<x<1,则= 4 ;④若x表示一个有理数,且>4,则有理数x的取值范围是 x<﹣3或x>1 .【解答】解:①数轴上表示2和5两点之间的距离是|5﹣2|=3;②根据绝对值的定义有:数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|或|﹣2﹣x|=|x+2|;③∵﹣3<x<﹣1∴x+(﹣1)=x﹣1<0,x﹣(﹣3)=x+3>0∴=1﹣x+x+3=4;④∵当x<﹣3时,|x﹣1|+|x+3|=1﹣x﹣x﹣3=﹣2x﹣2,当﹣3≤x≤1时,|x﹣1|+|x+3|=1﹣x+x+3=4,当x>1时,|x﹣1|+|x+3|=x﹣1+x+3=2x+2∴>4,则有理数x的取值范围是:x<﹣3或x>1.故答案为:①3;②|x+2|;③4;④x<﹣3或x>1.23.阅读下列材料:点A、B在数轴上分别表示两个数a、b,A、B两点间的距离记为|AB|,O表示原点.当A、B两点中有一点在原点时,不妨设点A为原点,如图1,则|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,①如图2,若点A、B都在原点的右边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,若点A、B都在原点的左边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4,若点A、B在原点的两边时,|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|.回答下列问题:(1)综上所述,数轴上A、B两点间的距离为|AB|= |a﹣b| .(2)若数轴上的点A表示的数为2,点B表示的数为﹣3,则A、B两点间的距离为 5 ;(3)若数轴上的点A表示的数为x,点B表示的数为﹣1,则|AB|= |x+1| ,若|AB|=3,则x 的值为 2或﹣4 ;(4)代数式|x﹣2|+|x+3|的最小值为 5 ,取得最小值时x的取值范围是 ﹣3≤x≤2 .(5)满足|x+1|+|x+4|>3的x的取值范围是 x<﹣4或x>﹣1 .【解答】解:(1)|a﹣b|;(2)|AB|=|2﹣(﹣3)|=5;(3)|AB|=|x﹣(﹣1)|=|x+1|,∵|AB|=3,∴|x+1|=3,∴x+1=±3,解得x=2或﹣4;(4)∵|x﹣2|+|x+3|表示数轴上某点到﹣3表示的点与2表示的点的距离之和,∴当这个点在﹣3表示的点与2表示的点之间时,|x﹣2|+|x+3|最小,等于|2﹣(﹣3)|=5,即取得最小值时x的取值范围﹣3≤x≤2;(5)x<﹣4或x>﹣1.故答案为|a﹣b|;5;|x+1|,2或﹣4;5,﹣3≤x≤2;x<﹣4或x>﹣1.24.我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|请回答下列问题:(1)数轴上表示﹣2和3的两点之间的距离是 5 :(2)数轴上表示x和﹣3的两点之间的距离为2,则有理数x是 ﹣5或﹣1 ;(3)若x表示一个有理数,且﹣3<x<1,则|x﹣1|+|x+3|= 4 ;(4)若x表示一个有理数,且|x﹣1|+|x+3|>4,则有理数x的取值范围是 x>1或x<﹣3 ;(5)不等式|x﹣1|+|x+3|≥8的解集是 x≥3或x≤﹣5 .【解答】解:(1)∵﹣2和3两点之间的距离是:|﹣2﹣3|=5,(2)∵x和﹣3的两点之间的距离为:|x﹣(﹣3)|=|x+3|=2,∴数轴上表示x和﹣3的两点之间的距离表示为:|x+3|=2.∴x+3=±2,解得:x=﹣5或﹣1(3)∵﹣3<x<1,∴|x﹣1|+|x+3|=1﹣x+x+3=4.(4)当x>1时,原式=x﹣1+x+3=2x+2>4,解得,x>1;当x<﹣3时,原式=﹣x+1﹣x﹣3=﹣2x﹣2>4,解得,x<﹣3;当﹣3<x<1时,原式=﹣x+1+x+3=4,不符合题意,故舍去;∴有理数x的取值范围是:x>1或x<﹣3.(5)当x>1时,原式=x﹣1+x+3=2x+2≥8,解得,x≥3;当x<﹣3时,原式=﹣x+1﹣x﹣3=﹣2x﹣2≥8,解得,x≤﹣5;当﹣3<x<1时,原式=﹣x+1+x+3=4,∴不等式|x﹣1|+|x+3|≥8的解集是:x≥3或x≤﹣5.。
初一每日一练第九天-数学-绝对值的几何意义
![初一每日一练第九天-数学-绝对值的几何意义](https://img.taocdn.com/s3/m/197264349ec3d5bbfc0a746f.png)
在数轴上 5 与-2 所对的两点之间的距离: 5 2 7 ;
在数轴上-2 与 3 所对的两点之间的距离: 2 3 5 ;
在数轴上-8 与-5 所对的两点之间的距离: 8 5 3 ;
在数轴上点 A、B 分别表示数 a、b,则 A、B 两点之间的距离 AB a b b a 回答下列问题: (1)数轴上表示-2 和-5 的两点之间的距离是____________;
初一数学易错点:绝对值的几何意义
一.考点分析: 知识点: 绝对值的几何意义在月考和期中考试都是重难点,往往以中档题的难度出现。要
求学生能够用绝对值的几何意义求解最值问题。绝对值的定义即是绝对值的几何 意义,利用绝对值可以表示数轴上两点之间的距离,因此当我们看到“数轴上的 距离”要想到可以用“绝对值”来表示,反过来,当一个绝对值式子出现时,它也代 表着距离。 考查内容:绝对值的几何意义(定义):数轴上表示一个数的点到原点的距离。 易错点: 能否掌握用几何语言翻译式子的能力。 解题方法:几何意义+奇点偶段
三.练习巩固:
1. (18 雨花台月考)大家知道|2|=|2﹣0|,它在数轴上的意义是表示 2 的点与原点(即表示
0 的点)之间的距离,又如式子|6﹣3|,它在数轴上的意义是表示 6 的点与表示 3 的点之
间的距离。
(1)式子|4+5|在数轴上的意义是
。
(2)数轴上数 x 和﹣1 的两点 A 和 B 之间的距离可以表示为
取得的值最小。 所以相应的 x 的取值范围是﹣1≤x≤2 故而答案为:﹣1≤x≤2 (4)|DE|=|8﹣(﹣8)|=16 若点 P 到点 D 和到点 E 的距离之差大于 1 而小于 5,则点 P 在﹣8 到 8 之间,即﹣8≤x≤8; ∴有 1<||x+8|﹣|x﹣8||<5 解得﹣2.5<x<﹣0.5 或 0.5<x<2.5 ∴满足要求的所有的点 P 表示的整数是:﹣2,﹣1,1,2
用绝对值的几何意义解题 答案版
![用绝对值的几何意义解题 答案版](https://img.taocdn.com/s3/m/0a925d026edb6f1aff001fb5.png)
用绝对值的几何意义解题大家知道,|a|的几何意义是:数轴上表示a的点到原点的距离;|a-b|的几何意义是:数轴上表示数a、b的两点的距离.对于某些问题用绝对值的几何意义来解,直观简捷,事半功倍.一、求代数式的最值例1 已知a是有理数,| a-2007|+| a-2008|的最小值是________..解:由绝对值的几何意义知,| a-2007|+| a-2008|表示数轴上的一点到表示数2007和2008两点的距离的和,要使和最小,则这点必在2007~2008之间(包括这两个端点)取值(如图1所示),故| a-2007|+| a-2008|的最小值为1.例2 |x-2|-| x-5| 的最大值是_______,最小值是_______.解:把数轴上表示x的点记为P.由绝对值的几何意义知,|x-2|-| x-5|表示数轴上的一点到表示数2和5两点的距离的差,当P点在2的左边时,其差恒为-3;当P点在5的右边时,其差恒为3;当P点在2~5之间(包括这两个端点)时,其差在-3~3之间(包括这两个端点)(如图2所示),因此,|x-2|-| x-5|的最大值和最小值分别为3和-3.二、解绝对值方程例3 方程|x-1|+|x+2|=4的解为__________.解:把数轴上表示x的点记为P,由绝对值的几何意义知,当-2≤x≤1时,|x-1|+|x+2|恒有最小值3,所以要使|x-1|+|x+2|=4成立,则点P必在-2的左边或1的右边,且到表示数-2或1的点的距离均为个单位(如图3所示),故方程|x-1|+|x+2|=4的解为:x=-2-=-,x= 1+=.三、求字母的取值范围例4若 |x+1|+|2-x|=3,则x的取值范围是________.解:由绝对值的几何意义知,|x+1|+|x-2|的最小值为3,此时x在-1~2之间(包括两端点)取值(如图4所示),故x的取值范围是-1≤x≤2.例5对于任意数x,若不等式|x+2|+|x-4|>a恒成立,则a的取值范围是___________.解:由绝对值的几何意义知,|x+2|+|x-4|的最小值为6,而对于任意数x,|x+2|+|x-4|>a恒成立,所以a的最值范围是a<6.四、解不等式例6不等式|x+2|+|x-3|>5的解集是__________.解:由绝对值的几何意义知,|x+2|+|x-3|的最小值为5,此时x在-2~3之间(包括两端点)取值,若|x+2|+|x-3|>5成立,则x必在-2的左边或3的右边取值(如图5所示),故原不等式的解集为x<-2或x>3.五、判断方程根的个数例7 方程|x+1|+|x+99|+|x+2|=1996共有()个解.A..4; B. 3; C. 2; D.1解:当x在-99~-1之间(包括这两个端点)取值时,由绝对值的几何意义知,|x+1|+|x+99|=98,|x+2|<98.此时,|x+1|+|x+99|+|x+2|<1996,故|x+1|+|x+99|+|x+2|=1996时,x必在-99~-1之外取值,故方程有2个解,选(C).六、综合应用例8(第15届江苏省竞赛题,初一)已知|x+2|+|1-x|=9-|y-5|-|1+y|,求x+ y最大值与最小值.解:原方程变形得|x+2|+|x-1|+|y-5|+|y+1||=9,∵ |x+2|+|x-1|≥3,|y-5|+|y+1|≥6,而|x+2|+|x-1|+|y-5|+|y+1|=9,∴|x+2|+|x-1|=3,|y-5|+|y+1|=6,∴-2≤x≤1,-1≤y≤5,故x+ y的最大值与最小值分别为6和-3.。
初一数学绝对值含答案
![初一数学绝对值含答案](https://img.taocdn.com/s3/m/03b6df474431b90d6d85c706.png)
绝对值中考要求重难点1.掌握绝对值的概念与化简2.绝对值的几何意义3.分类讨论思想在绝对值中的应用课前预习外尔斯特拉斯现在通用的绝对值符号“| |”,是德国数学家外尔斯特拉斯在1841年率先引用的,后来为人们所广泛接受。
德国数学家外尔斯特拉斯也算业余高手,后来走上了职业数学家的道路。
他开始是学习法律和财经,一度在在中学任教。
这大概是中学数学教师中最杰出的一位了。
德国是一个多出哲学家的国度,德国人又以严格认真见长,外尔斯特拉斯也是一样,他的品性最能体现德国人对待真理的态度了。
他最大的贡献是在微积分严格化上作出了杰出的贡献。
外尔斯特拉斯还告诉我们,直观有时是靠不住甚至是完全错误的。
从前人们直观上一直认为连续曲线肯定是光滑的,或者大多数点都是光滑的。
用在函数上,就是一直认为连续函数是可导的,或者在多数点是可导的。
可是外尔斯特拉斯却举出一个反例,在每一个点都连续,却有在任何点都不可导。
他举出这个函数是画不出图像的,当时作为一个中学教师,的确令数学家们大跌了眼镜。
例题精讲模块一绝对值的意义及其化简1.绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离。
数a的绝对值记作a2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.绝对值的性质:①(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩,②(0)(0)a aaa a≥⎧=⎨-<⎩或(0)(0)a aaa a>⎧=⎨-≤⎩4.绝对值其他的重要性质:①任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥且a a ≥- ②若a b =,则a b =或a b =- ③a b a b ⋅=⋅,a ab b=(0b ≠) ④222a a a ==☞绝对值的意义【例1】 在数轴上表示数a 的点到原点的距离是13,那么a = 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】13a =±【巩固】绝对值等于2的数有 个,是 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】2个,2±【巩固】绝对值不大于7且大于4的整数有 个,是 【难度】2星【解析】绝对值的代数意义,几何意义 【答案】6个,5±、6±、7±☞绝对值化简【例2】 计算:3π-= ,若23x -=,则x = 【难度】1星 【解析】绝对值化简 【答案】3π-,5x =或1-【巩固】若220x x -+-=,则x 的取值范围是 【难度】2星 【解析】绝对值化简【答案】2x ≤【巩固】已知:①52a b ==,,且a b <;分别求a b ,的值【难度】3星 【解析】绝对值化简【答案】解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±【例3】 如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【难度】3星 【解析】绝对值化简【答案】解:如图所示,得0a b <<,01c <<∴0a b +<,10b -<,0a c -<,10c ->∴原式=()(1)()(1)a b b a c c -++-+---=11a b b a c c --+-+--+=2-【巩固】已知00x z xy y z x <<>>>,,,那么x z y z x y +++--= 【难度】3星 【解析】绝对值化简【答案】解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y -> ∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=【巩固】数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--【难度】3星 【解析】绝对值化简【答案】解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=【例4】 设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+- 【难度】3星 【解析】绝对值化简【答案】解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b < ∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=【巩固】已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 【难度】3星 【解析】绝对值化简【答案】解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+模块二 绝对值的非负性1. 非负性:若有几个非负数的和为0,那么这几个非负数均为02. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c =【例5】 若42a b -=-+,则_______a b +=【难度】2星【解析】绝对值的非负性【答案】解:∵42a b -=-+ ∴420a b -++=∵40a -≥,20b +≥ ∴40a -=,20b += 则4a =,2b =-【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【难度】2星【解析】绝对值的非负性 【答案】解:∵30m +≥,702n -≥,210p -≥ ∴30m +=,702n -=,210p -= 则3m =-,72n =,12p = ∴3232p n m ++=-【例6】 设a 、b 同时满足①2(2)|1|1a b b b -++=+;②|3|0a b +-=.那么ab = 【难度】3星【解析】绝对值化简与非负性【答案】解:∵2(2)0a b -≥,10b +≥,且2(2)|1|1a b b b -++=+∴10b +≥ ∴2(2)11a b b b -++=+ 则2(2)0a b -= ∴2a b =∵30a b +-= ∴230b b +-= 则1b =,2a = ∴2ab =【巩固】已知2()55a b b b +++=+,且210a b --=,那么ab =_______ 【难度】3星【解析】绝对值化简与非负性【答案】解:∵2()0a b +≥,50b +≥,且2()55a b b b +++=+∴50b +≥ ∴2()55a b b b +++=+ 则2()0a b += ∴a b =-∵210a b --= ∴210b b ---= ∴13b =-,13a = 则19ab =-模块三 零点分段法1. 零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.【例7】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【难度】3星 【解析】零点分段法【答案】解:⑴令20x +=,40x -=,则2x =-,4x =⑵零点为2x =-,4x =,则可分三段进行讨论:2x <-,24x -≤<,4x ≥ ①当2x <-时,则20x +<,40x -<∴2(2)2x x x +=-+=--,4(4)4x x x -=--=-+ ∴原式=24x x ---+=22x -+②当24x -≤<时,则20x +≥,40x -< ∴22x x +=+,4(4)4x x x -=--=-+∴原式=24x x +-+=6③当4x ≥时,则20x +>,40x -≥ ∴22x x +=+,44x x -=- ∴原式=24x x ++-=22x -综上所述,当2x <-时,24x x ++-=22x -+当24x -≤<时,24x x ++-=6 当4x ≥时,24x x ++-=22x -【巩固】化简12m m m +-+-的值 【难度】3星 【解析】零点分段法【答案】解:令0m =,10m -=,20m -=,则零点为0m =,1m =,2m =则可分四段进行讨论:0m <,01m ≤<,12m ≤<,2m ≥ ①当0m <时,10m -<,20m -<∴m m =-,11m m -=-+,22m m -=-+ ∴原式=12m m m --+-+=33m -+ ②当01m ≤<时,10m -<,20m -< ∴m m =,11m m -=-+,22m m -=-+ ∴原式=12m m m -+-+=3m -+ ③当12m ≤<时,10m -≥,20m -< ∴m m =,11m m -=-,22m m -=-+ ∴原式=12m m m +--+=1m + ④当2m ≥时,10m -≥,20m -≥ ∴m m =,11m m -=-,22m m -=- ∴原式=12m m m +-+-=33m -综上所述:当0m <时,12m m m +-+-=33m -+当01m ≤<时,12m m m +-+-=3m -+ 当12m ≤<时,12m m m +-+-=1m + 当2m ≥时,12m m m +-+-=33m -【巩固】化简:121x x --++. 【难度】4星 【解析】零点分段法【答案】解:令10x -=,120x --=,10x +=,∴120x --=,则3x =或1x =-∴零点有1x =-,1x =,3x =∴分四段进行讨论1x <-,11x -≤<,13x ≤<,3x ≥ ①当1x <-时,则10x -<,10x +<,10x --> ∴11x x -=-+,11x x +=--,11x x --=--∴原式=121x x -+---=11x x ----=11x x ----=22x -- ②当11x -≤<时,则10x -<,10x +≥,10x --≤ ∴11x x -=-+,11x x +=+,11x x --=+∴原式=121x x -+-++=11x x --++=11x x +++=22x + ③当13x ≤<时,10x -≥,10x +>,30x -< ∴11x x -=-,11x x +=+,33x x -=-+ ∴原式=121x x --++=31x x -++=31x x -+++=4 ④当3x ≥时,10x ->,10x +>,30x -≥ ∴11x x -=-,11x x +=+,33x x -=-∴原式=121x x --++=31x x -++=31x x -++=22x -综上所述,当1x <-时,121x x --++=22x --当11x -≤<时,121x x --++=22x + 当13x ≤<时,121x x --++=4 当3x ≥时,121x x --++=22x -模块四 绝对值的几何意义的拓展1. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.2. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例8】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离⑴ x 的几何意义是数轴上表示 的点与 之间的距离;x 0-(>,=,<); ⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=, 则x = .⑸ 当1x =-时,则22x x -++=【难度】3星【解析】绝对值的几何意义【答案】解:⑴x 、原点、=;⑵1;⑶x 、3、4或2;⑷x 、2-、4-或0;⑸设2-、2、x 在数轴代表的点为A 、B 、P ,如图P B A 2则2x PA +=,2x PB -=,∴224x x PA PB AB ++-=+==【例9】 已知m 是实数,求12m m m +-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令0m =,10m -=,20m -=,则零点有0m =,1m =,2m =设0、1、2、m 在数轴上分别用A 、B 、C 、P 表示,如图PC B A①当点P 在点A 左侧时,12m m m +-+-=PA PB PC ++=32PA AB BC ++=33PA + ∴当0PA =时,即点P 与点A 重合时,原式取得最小值为3 ∵点P 在点A 左侧 ∴原式3>PC B A②当点P 在线段AB 上时(不包含点B ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+ ∴当0PB =时,原式取得最小值 ∵此时不包含点B ,∴原式2>P CB A③当点P 在线段BC 上时(不包含点C ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+∴当0PB =时,即当点P 与点B 重合时,原式取得最小值,最小值为2C B A④当点P 在点C 及点C 右侧时,12m m m +-+-=PA PB PC ++=32PC BC AB ++=33PC + ∴当0PC =时,即点P 与点C 重合时,原式取得最小值,最小值为3 综上所述,当点P 与点B 重合时,即1m =时,原式取得最小值为2【巩固】已知m 是实数,求2468m m m m -+-+-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令20m -=,40m -=,60m -=,80m -=则零点有2m =,4m =,6m =,8m =设2、4、6、8、m 在数轴上分别用A 、B 、C 、D 、P ∴2468m m m m PA PB PC PD -+-+-+-=+++①当点P 在点A 左侧时,43241212PA PB PC PD PA AB BC CD PA +++=+++=+> ②当点P 在线段AB 上时,(不包含点B ),2288PA PB PC PD PB BC AD PB +++=++=+> ③当点P 在线段BC 上时(不包含点C ),8PA PB PC PD BC AD +++=+=④当点P 在线段CD 上时(不包含点D ),2288PA PB PC PD PC BC AD PC +++=++=+≥ 当点P 与点C 重合时,取等号⑤当点P 在点D 及点D 右侧时,43241212PA PB PC PD PD CD BC AB PD +++=+++=+≥ 综上所述,当点P 在线段BC 上时,即46m ≤≤时,原式取得最小值为8【例10】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?【难度】3星【解析】绝对值的几何意义【答案】解:活动中心应该建在村庄C ,使各村到活动中心的路程之和最短【巩固】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P 点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?FED C BP A 7A 6A 5A 4A 3A 2A 1【难度】3星【解析】绝对值的几何意义【答案】解:长途汽车站应该设在点D ,如果在点P 又建了一个工厂,那么此时长途汽车站应该设在DE之间课堂检测1. 4x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若42x -=,则x = .【难度】2星【解析】绝对值的几何意义【答案】x 、4、2或62. 化简:212x x x -++-【难度】4星【解析】零点分段法 【答案】解:令10x -=,20x +=,0x =,∴零点为1x =、2x =-、0x =∴可分四段讨论:2x <-、20x -≤<、01x ≤<、1x ≥①当2x <-时,则10x -<,20x +< ∴11x x -=-+,22x x +=--,x x =-∴原式=2(1)2()222x x x x x x -+----=-+--+=2x -②当20x -≤<时,则10x -<,20x +≥ ∴11x x -=-+,22x x +=+,x x =-∴原式=2(1)2()222x x x x x x -+++--=-++++=4③当01x ≤<时,则10x -<,20x +> ∴11x x -=-+,22x x +=+,x x =∴原式=2(1)2222x x x x x x -+++-=-+++-24x =-+④当1x ≥时,10x -≥,20x +> ∴11x x -=-,22x x +=+,x x =∴原式=2(1)22222x x x x x x x -++-=-++-=综上所述,当2x <-时,212x x x -++-=2x -当20x -≤<时,212x x x -++-=4当01x ≤<时,212x x x -++-=24x =-+当1x ≥时,212x x x -++-=2x3. 化简124x x --+-【难度】4星【解析】零点分段法 【答案】解:令10x -=,40x -=,12x -=, ∴零点有1x =,4x =,3x =,1x =-则可以分五段来分类讨论:1x <-,11x -≤<,13x ≤<,34x ≤<,4x ≥ ①当1x <-时,10x -<,40x -<,10x --> ∴11x x -=-+,44x x -=-+,11x x --=--∴原式=124x x -+--+=14x x ---+=14x x ---+=23x -+②当11x -≤<时,10x -<,40x -<,10x --≤ ∴11x x -=-+,44x x -=-+,11x x --=+∴原式=124x x -+--+=14x x ---+=14x x +-+=5③当13x ≤<时,10x -≥,40x -<,30x -< ∴11x x -=-,44x x -=-+,33x x -=-+∴原式=124x x ---+=34x x --+=34x x -+-+=27x -+④当34x ≤<时,10x ->,40x -<,30x -≥ ∴11x x -=-,44x x -=-+,33x x -=-∴原式=124x x ---+=34x x --+=34x x --+=1⑤当4x ≥时,10x ->,40x -≥,30x -> ∴11x x -=-,44x x -=-,33x x -=-∴原式=124x x --+-=34x x -+-=34x x -+-=27x -综上所述,当1x <-时,124x x --+-=23x -+当11x -≤<时,124x x --+-=5当13x ≤<时,124x x --+-=27x -+当34x ≤<时,124x x --+-=1当4x ≥时,124x x --+-=27x -总结复习1.通过本堂课你学会了 .2.掌握的不太好的部分 .3.老师点评:① .② . ③ .课后作业1. 化简:2121x x x -++--【难度】3星【解析】零点分段法 【答案】解:令210x -=,20x +=,10x -=, ∴零点有12x =,2x =-,1x = 则可分四段进行讨论:2x <-,122x -≤<,112x ≤<,1x ≥ ①当2x <-时,210x -<,20x +<,10x -< ∴2121x x -=-+,22x x +=--,11x x -=-+∴原式=212(1)x x x -+----+=2121x x x -+--+-=22x -- ②当122x -≤<时,210x -<,20x +≥,10x -< ∴2121x x -=-+,22x x +=+,11x x -=-+∴原式=212(1)x x x -+++--+=2121x x x -++++-=2 ③当112x ≤<时,210x -≥,20x +>,10x -< ∴2121x x -=-,22x x +=+,11x x -=-+∴原式=212(1)x x x -++--+=2121x x x -+++-=4x④当1x ≥时,210x ->,20x +>,10x -≥∴2121x x -=-,22x x +=+,11x x -=- ∴原式=212(1)x x x -++--=2121x x x -++-+=22x +综上所述,当2x <-时,2121x x x -++--=22x -- 当122x -≤<时,2121x x x -++--=2 当112x ≤<时,2121x x x -++--=4x 当1x ≥时,2121x x x -++--=22x +。
七年级上学期数学 绝对值的几何意义题型训练 带答案
![七年级上学期数学 绝对值的几何意义题型训练 带答案](https://img.taocdn.com/s3/m/293dbc97376baf1ffd4fada4.png)
绝对值的几何意义训练1、借助数轴理解绝对值的意义,会求实数的绝对值2、会利用绝对值的知识解决简单的化简问题例题精讲板块一:绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例题1】m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.⑴ x 的几何意义是数轴上表示 的点与 之间的距离;0-(>,=,<);⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则2- ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则 x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则 x = .⑸ 当1x =-时,则22x x -++= .【解析】⑴ x ,原点;=;⑵1;⑶x ,3,2或4;⑷x ,-2,0或-4;⑸4.【例题2】已知m 是实数,求12m m m +-+-的最小值【解析】根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使点m 到点o ,点1和点2的距离之和最小,显然当m=1时,原式的最小值为2【例题3】已知m 是实数,求2468m m m m -+-+-+-的最小值【解析】根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使m 到点2,点4,点6和点8的距离和最小,显然当点m 在点4和点6之间(包括点4和点6)时,原式的值最小为8【例题4】设123...n a a a a ,,,是常数(n 是大于1的整数),且123...n a a a a <<<<,m 是任意实数,试探索求123...n m a m a m a m a -+-+-++-的最小值的一般方法【解析】根据题意,结合数轴,不难得到:⑴当n 为奇数时,即当n=2k+1(k 为正整数)时,点m 应取在点a k +1处,原式的值最小,最小值为(a 2k+1-a 1)+(a 2k -a 2)+.......+(a k+2-a k )⑵当n 为偶数2k (k 是正整数)时,m 应取点a k 和点a k+1之间的任意位置,原式的值最小,最小值为(a 2k -a 1)+(a 2k-1-a 2)+.......+(a k+1-a k )【例题5】122009x x x -+-++-的最小值为 .【解析】当x=1005时,∣x-1∣+∣x-2∣+......∣x-2009∣取到最小值:∣x-1∣+∣x-2∣+......∣x-2009∣=∣1005-1∣+∣1005-2∣+......∣1005-2009∣ =1004+1003+.....+1+0+1+.....+1003+1004=1009020【巩固1】试求123...2005x x x x -+-+-++-的值【解析】联想到绝对值的几何意义:∣x-x n ∣即表示数轴上数x 的对应点与数x n 的对应点的距离,把这些绝对值转化为同一数轴上若干条线段之和来研究,发现∣x-1∣+∣x-2∣,当1≤x ≦2时,它有最小值1,对于∣x-1∣+∣x-2∣+∣x-3∣,,当x=2时,最小值为2,…猜想当x=1003时,原式有最小值最小值为∣x-1∣+∣x-2∣+......∣x-2005∣=∣1003-1∣+∣1003-2∣+......∣1003-2005∣ =1002+1001+.....+1+0+1+.....+1001+1002 =1005006【巩固2】设a b c <<,求当x 取何值时x a x b x c -+-+-的最小值.【解析】∣x-a ∣+∣x-b ∣+∣x-c ∣实际表示x 到a,b,c 三点的距离和,画图可知当x=b 时,原式有最小值为c-a .【巩固3】若1x 、2x 、3x 、4x 、5x 、6x 是6个不同的正整数,取值于1,2,3,4,5,6,记122334455661||||||||||S x x x x x x x x x x x x =-+-+-+-+-+-,则S 的最小值是 .【解析】利用此题我们充分展示一下数形结合的优越性:利用绝对值的几何意义∣x 1-x 2∣+∣x 2-x 3∣+∣x 3-x 4∣+∣x 4-x 5∣+∣x 5-x 6∣+∣x 6-x 1∣在数轴上表示出来,从x 1开始又回到x 1,我们可以看成是一个圈,故最小值为10,如下图所示,即使重叠路程最少.【例题6】正数a 使得关于x 的代数式162x x x a ++-+-的最小值是8,那么a 的值为 .【解析】如果a ≦6,那么当x=a 时,∣x+1∣+∣x-6∣+2∣x-a ∣=∣a+1∣+∣a-6∣=(a+1)+(6-a)=7,小于8与已知条件矛盾.所以a>6,那么算式∣x+1∣+∣x-6∣+2∣x-a ∣的几何意义是点x 到-1、6、a 、a 的4个距离之和,当6≦x ≦a 时取最小值,因此令x=6可得7+2∣6-a ∣=8,解得a=13/2.【巩固4】182324x x a x x -+-+-+-的最小值为12,则a 的取值范围是 .【解析】最小值一定能在零点处取到,而零点处代数式值为14+2a 、5+a 、12、19+a ,故12是这四个数中最小的,即14+2a ≧12且5+a ≧12且19+a ≧12,所以a ≧7.【例题7】已知代数式374x x -+-=,则下列三条线段一定能构成三角形的是( ).A . 1,x ,5B . 2,x ,5C . 3,x ,5D . 3,x ,4【解析】根据∣x-3∣+∣x-7∣=4可得3≦x ≦7,所以选择C .【巩固5】⑴是否存在有理数x ,使132x x ++-=?⑵是否存在整数x ,使433414x x x x -+-++++=?如果存在,求出所有整数x ,如果不存在,请说明理由【解析】⑴不存在⑵x=±3,x=±2,x=±1,x=0【巩固6】第17届希望杯培训试题)不等式127x x ++-<的整数解有 个.【解析】可分类讨论来做,也可以利用绝对值的几何意义来解,∣x+1∣+∣x-2∣<7的整数解表示数轴上到-1和2的距离之和小于7的点集合,利用数轴容易找到满足条件的整数有-2、-1、0、1、2、3共六个.【例题8】一共有多少个整数x 适合不等式20009999x x -+≤.【解析】零点为2000和0,可将数轴分成几段去考虑: (1)当x ≧2000时,原不等式变形为:x-2000+x ≦9999,进而得:x ≦5999.5,即2000≦x ≦5999.5,共有4000个整数适合;(2)当0<x<2000时,原不等式变形为:2000-x+x ≦9999,而2000<9999恒成立, 所以又有2000个整数适合.(3)当x<0时,原不等式变形为2000-x+(-x)≦9999,x ≧-3999.5, 即-3999.5<x<0,共有3999个整数适合.综上所得共有9999个整数适合不等式∣x-2000∣+∣x ∣≦9999.【例题9】已知∣x ∣≦1,∣y ∣≦1,设M=∣x+1∣+∣y+1∣+∣2y-x-4∣,求M 的最大值和最小值【解析】由已知首先讨论绝对值符号内的代数式的符号因为∣x ∣≦1,所以-1≦x ≦1,所以0≦x+1≦2,同理可得0≦y+1≦2 因为∣y ∣≦1,所以-1≦x ≦1,所以-2≦2y ≦2⑴因为∣x ∣≦1,,所以-1≦x ≦1,所以-1≦-x ≦1,所以-1-4≦-x-4≦1-4 即-5≦-x-4≦-3⑵⑴与⑵同向相加得-7≦2y-x-4≦-1 化简M 的表达式:M=2x-y+6 求M 的取值范围:因为-1≦x ≦1,所以-2≦2x ≦2 因为-1≦x ≦1,所以-1≦-y ≦1 所以-3≦2x-y ≦3 所以3≦2x-y+6≦9当x=1,y=-1时,M 最大值为9 当x=-1,y=1时,M 最小值为3【例题10】彼此不等的有理数a b c ,,在数轴上的对应点分别为A ,B ,C ,如果a b b c a c -+-=-,那么A ,B ,C 的位置关系是_____.【解析】由绝对值的几何意义知, ∣a-b ∣表示点A 与点B 之间的距离;∣b-c ∣表示点B 与点C 之间的距离;表示点A 与点C 之间的距离;当点B 位于点A 与点C 之间(包括A ,C 两点)时,∣a-b ∣+∣b-c ∣取得最小值,为∣a-c ∣.由题设知,a ,b ,c 相等,以A ,B ,C 不重合,故点B 位于点A 与点C 之间(包括A,C 两点).【巩固7】有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且 (1)∣b-d ∣比∣a-b ∣,∣a-c ∣、∣a-d ∣、∣b-c ∣、∣c-d ∣都大; (2)∣d-a ∣+∣a-c ∣=∣d-c ∣;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是 【解析】R 、X 、Z 、Y.【巩固8】如果1a b -=,1b c +=,2a c +=,求2a b c ++的值.【解析】可以去掉绝对值,分类讨论,但非常麻烦,我们仍可采用数形结合的方法,从绝对值的几何意义出发.根据∣a-b ∣=1,∣b+c ∣=∣b-(-c)∣=1,∣a+c ∣=∣a-(-c)∣=2,我们可以得到a 、b 、-c 三点在数轴上从左到右依次是-c 、b 、a 或a 、b 、-c ,我们会发现在这两种情况下,a-(-c),b-(-c)同号,所以∣a+b+2c ∣=∣a-(-c)+b-(-c)∣=∣a-(-c)∣+∣b-(-c)∣=∣a+c ∣+∣b+c ∣=3【巩固9】已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d += .【解析】法1:四个非负整数和为2,∣a+d ∣只可能为0、1或2. 讨论: ① 当a=0,b=0,c=1,d=0,满足条件,∣a+d ∣=0; ② 当a=1,b=0,c=0,d=0,满足条件,∣a+d ∣=1;③ 若∣a+d ∣=2,即a+d ≠0且∣a+b ∣=0,∣b+c ∣=0,∣c+d ∣=0,∴a+b=0, b+c=0,c+d=0,故0=0-0+0=(a+b)-(b+c)+(c+d)=a+d ,这与a+d ≠0矛盾. 所以,∣a+b ∣=0或1.【例题11】在数轴上把坐标为123...2006,,,,的点称为标点,一只青蛙从点1出发,经过2006次跳动,且回到出发点,那么该青蛙所跳过的全部路径的最大长度是多少?请说明理由 【解析】设青蛙依次到达的点为x 1 x 2 x 3 x 4......x 2006 x 1,整个跳过的路径长度为 S=∣x 1-x 2∣+∣x 2-x 3∣+∣x 3-x 4∣+......+∣x 2006-x 1∣≤2(1004+1005+....+2006)-2(1+2+3+...+1003)=2×1003×1003 故青蛙跳过的路径的最大长度为2×1003×1003【例题12】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置城市【解析】因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄BC 之间,7 个村庄依次排列为A B G C D E F .设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:y=∣x-4∣+∣x-10∣+∣x-12∣+∣x-15∣+∣x-17∣+∣x-19∣+∣x-20∣,因为4<10<12<15<17<19<20,所以当x=15时y 有最小值,所以活动中心应当建在c 处.【巩固10】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?F EDCBPA7A6A5A4A3A2A1【解析】每一条小路都是工厂到车站的必经之路,和其他工厂无关.但在公路上,有些路段将是一些工厂重复经过的,应使重复路线越短越好.要使各工厂到车站的距离之和最小,只要各工厂经小路进入公路的入口处(B C D E F)到车站的距离之和最小即可,各路段的弯曲程度是无关紧要的,因此可以把公路看成一条直线,这就和题例题6类似了!即车站设在D点最好.若在P处再建一个工厂,则车站建在D处、E处或它们之间的任何地方都是最佳的.。
【绝对值的几何意义的应用】题集【A】(教师版)--初中数学《四维三难》
![【绝对值的几何意义的应用】题集【A】(教师版)--初中数学《四维三难》](https://img.taocdn.com/s3/m/f2ea41be185f312b3169a45177232f60dccce70e.png)
【绝对值的几何意义的应用】题集【A】A.原点B.C.D.无法判断1.【解析】【标注】根据绝对值的几何意义,是数轴上和( )之间的距离.【答案】B由绝对值的几何意义,表示的是到的距离.【知识点】结合数轴化简绝对值2.【标注】请解释的几何意义.【答案】在数轴上,表示的是所在的点到和的距离之和.【知识点】绝对值综合3.【解析】【标注】已知是比大比小的数,化简的结果 .【答案】∵,∴,,则原式.故答案为.【知识点】已知范围化简绝对值(1)(2)(3)(4)4.解下列方程:....【答案】(1).(1)(2)(3)(4)【解析】【标注】(2)(3)(4)或.无解.当时,原方程无解;当时,原方程的解集为;当时,或.由最小值为可知,方程的解集为.由最小值为可知,方程的解为或.由最小值为可知,方程无解.当时,原方程无解;当时,原方程的解集为;当时,或.【知识点】含绝对值的一元一次方程5.【解析】【标注】同学们都知道,表示与之差的绝对值,实际上也可以理解为与两数在数轴上所对应的两点之间的距离,则使得这样的整数有 个.【答案】由题意可得:表示的意思是数轴上一点到和的距离之和等于,又∵和的距离等于,∴这个点应该在和之间,则,∴的整数有,,,,,,,故答案为.【知识点】绝对值综合6.【解析】取任意值,的最小值是 .【答案】的几何意义是数轴上表示的点到和的距离之和.当时,.当时,.【标注】当时,,故最小值为.【知识点】利用绝对值求最值(1)(2)(3)7.(1)(2)(3)【解析】【标注】如图,数轴上的点、、分别表示数、、.、两点的距离 ,、两点的距离 .通过观察,可以发现数轴上两点间距离与这两点表示的数的差的绝对值有一定关系,按照此关系,若点表示的数为,则 .利用数轴直接写出的最小值 .【答案】(1)(2)(3);由图知:,.故答案为:,.根据题意可得:.故答案为:.利用数轴可得:的最小值为:.故答案为:.【知识点】结合数轴化简绝对值(1)(2)8.(1)【解析】结合数轴与绝对值的知识回答下列问题:一般地,数轴上表示数和数的两点之间的距离等于.表示和两点之间的距离是 ;如果表示数和的两点之间的距离是,那么.数是数轴上任意一点,则的最小值是 .【答案】(1)(2); 或和之间的距离表示为,和之间的距离表示为,(2)【标注】由题可知:,得或.表示到的距离与到的距离之和,可知其最小值为.【知识点】利用绝对值求最值(1)(2)(3)(4)(5)9.(1)(2)(3)(4)(5)【解析】【标注】已知、在数轴上分别表示、.对照数轴填写下表:、两点的距离若、两点的距离记为,试问:和、有何数量关系?在数轴上标出所有符合条件的整数点,使它到和的距离之和为,并求所有这些整数的和.找出()中满足到和的距离之差大于而小于的整数的点.若点表示的数为,当点在什么位置时,取得的值最小?【答案】(1)(2)(3)(4)(5)答案见解析..和为.,.点的范围在时,取得最小值.所填表格如下:、两点的距离.整数点在数轴上表示的数是,,,,,,,,,,,它们的和为.(3)中满足到和的距离之差大于而小于的整数有,.根据绝对值的几何意义可得和之间的任何一点均能使取得的值最小,∴点的范围在时,取得最小值.【知识点】绝对值综合(1)(2)(3)(4)10.(1)(2)(3)(4)【解析】【标注】阅读:已知点、在数轴上分别表示有理数、,、两点之间的距离表示为.数轴上表示和的两点之间的距离是 .数轴上表示和的两点和之间的距离是 .当代数式取最小值,相应的的取值范围 ,最小值为 .当时,代数式的值 (填写“、或”).【答案】(1)(2)(3)(4);由题意可得,数轴上表示和的两点之间的距离是.由题意可得,数轴上表示和的两点和之间的距离是:.∵表示的几何意义是:数轴上一动点到和两个点的距离之和,∴当这一动点在数和之间运动时,取最小值,∴,最小值是数和之间的距离为.当时,,,∴,故答案填.【知识点】结合数轴化简绝对值11.阅读下列材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说,表示在数轴上数与数对应点之间的距离,这个结论可以推广为表示在数轴上数,对应点之间的距离,在解题中,我们会常常运用绝对值的几何意义:例:已知求的值.解:在数轴上与原点距离为的点对应的数为,即.例:已知,求的值.解:在数轴上与的距离为的点对应的数为,,(1)(2)(3)(1)(2)(3)【解析】【标注】即或.参考阅读材料,解答下列问题:已知,则的值为 .已知,则的值为 .已知是有理数,当取不同数时,式子的值也会发生变化,问式子是否有最小值?若有写出最小值,若没有,请说出理由.【答案】(1)(2)(3)或有最小值,最小值为.在数轴上与原点距离为的点对应的数为,即.在数轴上与的距离为的点对应的数为,,即或.当或时,解得:或.当时,,当时,,当时,,综上,,则有最小值,最小值为.【知识点】利用绝对值求最值(1)(2)12.根据数轴和绝对值的知识回答下列问题数轴上表示和的两点之间的距离是 .数轴上表示和两点之间的距离是 .一般地,数轴上表示数和数的两点之间的距离等于 .若数轴上表示数的点位于与之间,则的值为 .(3)(1)(2)(3)【解析】【标注】当 时,的值最小,最小值为 .【答案】(1)(2)(3); ;;;;.∵位于与之间,∴.当位于和之间时,有最小值,,∴当时, 有最小值为.【知识点】结合数轴化简绝对值(1)(2)(3)13.(1)(2)【解析】阅读材料:我们知道:点、在数轴上分别表示有理数、,、两点之间的距离表示为,在数轴上、两点之间的距离.所以式子的几何意义是:数轴上表示有理数的点与表示有理数的点之间的距离.根据上述材料,解答下列问题:数轴上,表示数和表示数两点之间的距离可表示为 .直接写出方程的解是 .小敏发现代数式有最小值,最小值是 ,此时的值是 .【答案】(1)(2)(3)或;由已知可知:与两点之间的距离为:.方程,(3)【标注】可理解为到与到的距离之和为,显然不在和之间,当在左侧时:,,当在右侧时,,,∴或.当之间时,有最小值.当时,有最小值,∴时,有最小值,此时最小值为.【知识点】一元一次方程的解(1)(2)(3)(4)14.(1)(2)【解析】如图所示:求出、两点和、两点的距离,你能发现所得的距离与这两个点所表示的有理数的差的绝对值有什么关系?答: .若数轴上的点表示的数为,点表示的数为,则、两点间的距离可以表示为 .结合数轴求出的最小值是 .若一条直线上依次排列了台机床工作,我们要设置一个零件供应站使这台机床到供应站的距离总和最小,应设在何处?【答案】(1)(2)(3)(4)、两点的距离为;、两点的距离为;两点间距离与两点所表示的有理数的差的绝对值相等设在第台处.、两点的距离为,、两点的距离为,又∵,,则:两点间距离与两点所表示的有理数的差的绝对值相等.∵点表示的数为,点表示的数为,(3)(4)【标注】∴、间距离可表示为:.当时,,∴;当时,,∴;当时,,∴;当时,,∴,则:的最小值是.假设有台,当为偶数时,可设在台和台之间,当为奇数时,可设在台位置,∴台时,,设在第台处.【知识点】绝对值综合。
初一数学:绝对值的几何意义(1)题型辅导
![初一数学:绝对值的几何意义(1)题型辅导](https://img.taocdn.com/s3/m/87fd9ce1f605cc1755270722192e453610665b1b.png)
初一数学:绝对值的几何意义(1)题型辅导绝对值概念有几何、代数两种描述方法。
代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0。
这是绝对值的代数意义。
今天姚老师要讲的是其几何意义及其常见应用。
几何意义:首先复习一下几何方法的描述是:|x|是在数轴上表示数x的点与原点的距离。
据此,我们可以略加推广:|x-a|指在数轴上表示数x的点与表示数a 的点的距离。
【典型例题】【总结归纳】1. |x-a|的值是数轴上表示x的点与表示a的点之间距离。
由此可以进一步得到数轴上两点间的距离公式:数轴上两个点A、B,分别用a、b表示,那么A、B两点之间的距离为AB=|a-b|2. |x-a|的几何意义是表示点x到点a的距离.到一点距离相等的点有两个,由此可知,方程 |x-a|=k的解是x=a+k或 x=a-k(k≥0)。
【练习提高】1.(1)式子∣-5.7∣表示的意义是________;(2)-2的绝对值表示它离开原点的距离是________个单位,记作________.2.解绝对值方程:|x-1|=3.3.已知A,B,C,D在数轴上对应的点分别是3,1,-1,-2,请画出数轴,然后回答下列问题:(1)求A和B之间的距离;(2)求C和D之间的距离;(3)求A和D之间的距离;(4)求B和C之间的距离;(5)两个点之间的距离与这两个点所对应的数的差的绝对值是什么关系?4.(1)已知数轴上的点A表示数+3,数轴上的点B表示数-3,试求它们之间的距离;(2)已知数轴上点A和点B分别表示互为相反数的两个数a,b,并且A,B两点间的距离是8,求a,b的值.【部分习题解答】4. a.b互为相反数,说明a+b=0,AB两点之间的举例为8,说明A、B两点关于数轴上原点对称,知a=-4,b=4;或者a=4,b=-4。
专题05 绝对值及其几何意义(解析版)
![专题05 绝对值及其几何意义(解析版)](https://img.taocdn.com/s3/m/9c2e9d3d76eeaeaad0f330c4.png)
第5讲 绝对值及其几何意义知识点 1(1)非负性:任何一个数 a 的绝对值都是非负数,即:|a|≥0,绝对值的最小值为 0(非负数的性质:几个非负数的和为 0,则这几个非负数均为 0)(2)去绝对值号:|a|= 特别提醒:|a|≠±a,|a|≠a1.如果x ,y 表示有理数,且x ,y 满足条件|x |=5,|y |=2,|x ﹣y |=y ﹣x ,那么x +2y = ﹣1或﹣9 .【解答】解:∵|x |=5,|y |=2,∴x =±5,y =±2.又∵|x ﹣y |=y ﹣x ,∴x ﹣y <0,即 x <y .∴x =﹣5,y =±2.当x =﹣5,y =2时,x +2y =﹣1;当x =﹣5,y =﹣2时,x +2y =﹣9.故答案为:﹣1或﹣9.2.已知|x |=3,|y |=2,且|x ﹣y |=y ﹣x ,则x ﹣y = ﹣1或﹣5 .【解答】解:∵|x |=3,|y |=2,∴x =±3,y =±2,∵|x ﹣y |=y ﹣x ≥0,∴y =2,x =﹣3或y =﹣2,y =﹣3,绝对值的性质∴当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=﹣3,y=﹣2时,x﹣y=﹣3﹣(﹣2)=﹣1,即x﹣y的值为﹣1或﹣5.故答案为﹣1或﹣5.3.已知|x﹣y|=y﹣x,|x|=2,|y|=3,则x+y=5或1.【解答】解:∵|x﹣y|=y﹣x,∴x﹣y≤0.∴x≤y.又∵|x|=2,|y|=3,∴x=±2,y=±3.当x=2,则y=3,此时x+y=5.当x=﹣2,则y=3,此时x+y=1.综上:x+y=5或1.故答案为:5或1.4.已知|n|=6,m=|﹣4|,且|m+n|=m+n,则m﹣n的值是﹣2.【解答】解:∵|n|=6,m=|﹣4|,∴n=±6,m=4,∵|m+n|=m+n,∴m+n≥0,∴n=6,m=4,∴m﹣n=4﹣6=﹣2.故答案为:2.5.如果x、y都是不为0的有理数,则代数式的最小值是﹣3.【解答】解:①当x,y中有二正,﹣+=1﹣1+1=1;②当x,y中有一负一正,﹣+=1+1﹣1=1或﹣+=﹣1﹣1﹣1=﹣3;③当x,y中有二负,﹣+=﹣1+1+1=1.故代数式﹣+的最小值是﹣3.故答案为:﹣3.6.若|5﹣a﹣b|=2a+2b,则3a+3b+1=6.【解答】解:①当5﹣a﹣b>0,则原式可化为:5﹣a﹣b=2a+26,解得3α+36=5,所以3a+3b+1=5+1=6;②当5﹣a﹣b<0,则原式可化为:﹣(5﹣a﹣b)=2a+2b,解得a+b=﹣5,若α+b=﹣5,则5﹣a﹣b=0,与假设不符,所以不存在这种情况;③当5﹣a﹣b=0,则原式可化为:0=2a+2b,解得α+b=0,若a+b=0,则5﹣a﹣b=5,与假设不符,所以不存在这种情况;综上所述,3a+36+1=6故答案为:67.已知有理数a,b满足ab<0,4a+b﹣3=|b﹣a|,则a+b的值为.【解答】解:∵有理数a,b满足ab<0,∴a,b异号当a>0,b<0,∴b﹣a<0,∵4a+b﹣3=|b﹣a|,∴4a+b﹣3=a﹣b,∴3a+2b=3,∴a+b==,当a<0,b>0,b﹣a>0,∵4a+b﹣3=|b﹣a|,∴4a+b﹣3=b﹣a,∴a=>0(这种情况不存在),综上所述,a+b的值为,故答案为:.二.解答题(共10小题)8.已知|a|+a=0,|ab|=ab,|c|﹣c=0,化简|b|﹣|a+b|﹣|c﹣b|+|a﹣c|.【解答】解:∵|a|+a=0,|ab|=ab,|c|﹣c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c﹣b≥0,a﹣c≤0,∴原式=﹣b+a+b﹣c+b﹣a+c=b.9.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,b﹣a>0,c﹣a>0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.【解答】解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0.10.a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a<0,b<0,c>0.(2)用“>、<、=”填空:﹣a>0,a﹣b<0,c﹣a>0.(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.【解答】解:从数轴可知:a<b<0<c,|a|>|c|>|b|,(1)a<0,b<0,c>0,故答案为:<,<,>;(2)﹣a>0,a﹣b<0,c﹣a>0,故答案为:>,<,>;(3)|a|﹣|a﹣b|+|c﹣a|=﹣a+a﹣b+c﹣a=c﹣b﹣a.11.①有理数a、b、c在数轴上的对应点如图,化简代数式:|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|;②已知|a+1|+(b﹣2)2=0,求(a+b)2016+a2017.【解答】解:①由题意,可得a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,∴|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|=﹣(a﹣b)﹣(a+b)﹣(c﹣a)﹣(b﹣c)=﹣a+b﹣a﹣b﹣c+a﹣b+c=﹣a﹣b.②解:∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,∴a+1=0,b﹣2=0,∴a=﹣1,b=2,∴(a+b)2016+a2017=(﹣1+2)2016+(﹣1)2017=1﹣1=0.12.已知数a,b,c在数轴上的位置如图所示(1)化简|a+b|﹣|a﹣b|+|a+c|(2)若|b﹣a﹣2|+(a﹣1)2=0.|c+l|=b,求a,b,c的值.【解答】解:(1)观察数轴,可知:c<0<a<b,且|c|>|a|,∴a+b>0,a﹣b<0,a+c<0,∴原式=a+b+(a﹣b)﹣(a+c)=a﹣c.(2)∵|b﹣a﹣2|+(a﹣1)2=0,|c+l|=b,∴,解得:.知识点2几何意义:|a-b|表示数a 数b 在数轴上对应的点之间的距离即:|a+b|=|a-(-b)|13.如图,数轴上A、B两点分别对应有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8;(2)数轴上一个点到表示2的点的距离为5.2,这个点表示的数为7.2或﹣3.2;(3)若x表示一个数,数轴上表示x和﹣5的两点之间的距离是|x+5|;(用含x的式子表示)(4)若x表示一个数,|x+1|+|x﹣2|的最小值是3,相应的x的取值范围﹣1≤x≤2.【解答】解:(1)数轴上表示2和10两点之间的距离是10﹣2=8,故答案为:8;(2)数轴上一个点到表示2的点的距离为5.2,这个点表示的数为:2+5.2=7.2或2﹣5.2=﹣3.2,故答案为:7.2或﹣3.2;(3)数轴上表示x和﹣5的两点之间的距离是:|x﹣(﹣5)|=|x+5|,故答案为:|x+5|;(4)当x>2时,|x+1|+|x﹣2|=x+1+x﹣2=2x﹣1>3,绝对值的几何意义当﹣1≤x≤2时,|x+1|+|x﹣2|=x+1+2﹣x=3,当x<﹣1时,|x+1|+|x﹣2|=﹣x﹣1+2﹣x=﹣2x+1>3,由上可得,|x+1|+|x﹣2|的最小值是3,故答案为:3,﹣1≤x≤2.14.点A、B在数轴上分别表示有理数a,b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8,数轴上表示2与﹣10的两点之间的距离是12.(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|.(3)若x表示一个有理数,且|x﹣1|+|x+2|=5,则x=2或﹣3.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值.(只需写当x取何值时,代入求出此代数式的最小值.)【解答】解:(1)∵|10﹣2|=8,|2﹣(﹣10)|=12,故答案为:8,12;(2)数轴上表示x和﹣2的两点之间的距离表示为:|x﹣(﹣2)|=|x+2|,故答案为:|x+2|;(3)当x>1时,|x﹣1|+|x+2|=x﹣1+x+2=5,得x=2,当﹣2≤x≤1时,|x﹣1|+|x+2|=1﹣x+x+2=3≠5,当x<﹣2时,|x﹣1|+|x+2|=1﹣x﹣x﹣2=5,得x=﹣3,故答案为:2或﹣3;(4)当x=1008时,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|取得最小值,∴|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|=2×(1007+1006+…+1)+0=2××1007+0=1015056,即|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值是1015056.15.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=﹣1;(2)当x=﹣4或2时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是﹣3≤x≤1;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动或2秒时,点P到点E,点F的距离相等.【解答】解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.16.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=﹣1;(2)当x=﹣4或2时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是﹣3≤x≤1;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动或2秒时,点P到点E,点F的距离相等.【解答】解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.17.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.【解答】解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值的几何意义
【考纲说明】
1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值;
2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。
【趣味链接】
正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。
【知识梳理】
1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。
2、绝对值的性质:
(1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;
a (a >0)
(2) |a|= 0 (a=0) (代数意义)
-a (a <0)
(3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0;
(4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a ,
且|a|≥-a ;
(5) 若|a|=|b|,则a=b 或a=-b ;(几何意义)
(6) |ab|=|a|·|b|;|b a |=|
|||b a (b≠0); (7) |a|2=|a 2|=a 2
;
(8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b|
【经典例题】
【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( )
A.a <0,b <0
B.a >0,b <0
C.a <0,b >0
D.ab <0
【例2】(2011莱芜)下列各组判断中,正确的是( )
A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b
C. 若|a|>b ,则一定有|a|>|b|
D.若|a|=b ,则一定有a 2=(-b) 2
【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )
A .2a+3b-c
B .3b-c
C .b+c
D .c-b
【例4】(2009淮安)如果a a -=||,下列成立的是( )
A .0>a
B .0<a
C .0≥a
D .0≤a
【例5】(2008扬州)在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是 .
【例6】(2010南京)数轴上分属于原点两侧且与原点的距离相等的两点间的距离为5,那么这两个点表示的数为________.
【例7】(2010泰安)已知a 是有理数,| a -2007|+| a -2008|的最小值是________.
【例8】绝对值小于3.1的整数有哪些?它们的和为多少?
【例9】(2012盐城)|x|=4,|y|=6,求代数式|x+y|的值.
【例10】(2012宿迁)已知:|x-2|+x-2=0,
求:(1)x+2的最大值;(2)6-x 的最小值.
【课堂练习】
1、(2012镇江)若a >b ,且|a|<|b|,则下面判断正确的是( )
A.a <0
B.a >0
C.b <0
D.b >0
2、(2008合肥)|x-2|+|x-1|+|x-3|的最小值是( )
A .1
B .2
C .3
D .4
3、(2009常州)绝对值大于或等于1,而小于4的所有的正整数的和是( )
A. 8
B.7
C. 6
D.5
4、数轴上表示数5-和表示14-的两点之间的距离是__________.
5、(2010曲阳)若|x-3|=3-x ,则x 的取值范围是____________ .
6、(2009南通)若|a-2|=2-a ,求a 的取值范围.
【课后作业】
1、下列代数式中,值一定是正数的是( )
A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+1
2、若a 为任意实数,则下列式子中一定成立的是( ).
A .|a|>0
B .|a|>a C. a
a 1> D. 01>+a 3、若 |x+1|+|2-x|=3,则x 的取值范围是________.
4、 |x -2|-| x -5| 的最大值是_______,最小值是_______.
5、绝对值大于2.1而小于4.2的整数有多少个?
6、设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?
7、求满足关系式|x-3|-|x+1|=4的x的取值范围.
8. 已知a<-2<0<b<2,去掉下列三式的绝对值符号:
【参考答案】
【经典例题】
1、D
2、D
3、C
4、D
5、5或-1
6、 2.5
±7、1 8、0,±1,±2,±3,和为0 9、2或10 10、(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=4
【课堂练习】
1、C
2、B
3、C
4、9
5、x≤3
6、a≤2
【课后作业】
1、C
2、D
3、-1≤x≤2
4、3,-3
5、±3,±4,有4个
6、有最小值9
7、x≤-1
8、
2
a
-,()
a b
-+,
2
b
a b
+。