基于UC3842反激式开关电源

合集下载

UC3842在单端反激式PWM型开关电源中的应用

UC3842在单端反激式PWM型开关电源中的应用

UC3842在单端反激式PWM型开关电源中的应用作者:国防科技大学机电工程与自动化学院 王 朕 潘孟春 单庆晓摘 要:介绍了UC3842在单端反激式PWM型开关电源中的应用。

在对UC3842常用的三种电压反馈电路分析的基础上,设计了一种新的电压反馈电路,实验证明了这种新的电压反馈电路具有很好的稳压效果。

关键词:UC3842;电压反馈电路;电压稳定;脉宽调制1、 概述通常,PWM型开关电源把输出电压的采样作为PWM控制器的反馈电压,该反馈电压经PWM 控制器内部的误差放大器后,调整开关信号的占空比以实现输出电压的稳定。

但不同的电压反馈电路,其输出电压的稳定精度是不同的。

本文首先对电流型脉宽控制器UC3842(内部电路图如图1所示)常用的三种稳定输出电压电路作了介绍,分析其各自的优缺点,在此基础上设计了一种新的电压反馈电路,实验证明这种新的电路具有很好的稳压效果。

2、 UC3842常用的电压反馈电路2.1 输出电压直接分压作为误差放大器的输入如图2所示,输出电压Vo经R2及R4分压后作为采样信号,输入UC3842脚2(误差放大器的反向输入端)。

误差放大器的正向输入端接UC3842内部的2.5V的基准电压。

当采样电压小于2.5V时,误差放大器正向和反向输出端之间的电压差经放大器放大后,调节输出电压,使得UC3842的输出信号的占空比变大,输出电压上升,最终使输出电压稳定在设定的电压值。

R3与C1并联构成电流型反馈。

这种电路的优点是采样电路简单,缺点是输入电压和输出电压必须共地,不能做到电气隔离。

势必引起电源布线的困难,而且电源工作在高频开关状态,容易引起电磁干扰,必然带来电路设计的困难,所以这种方法很少使用。

2.2 辅助电源输出电压分压作为误差放大器的输入如图3所示,当输出电压升高时,单端反激式变压器T的辅助绕组上产生的感应电压也升高,该电压经过D2,D3,C15,C14,C13和R15组成的整流、滤波和稳压网络后得到一直流电压,给UC3842供电。

基于UC3842的单端反激式开关电源的设计

基于UC3842的单端反激式开关电源的设计

基于UC3842的单端反激式开关电源的设计电源装置是技术应用的一个重要领域,其中高频开关式直流因为具有效率高、体积小和分量轻等突出优点,获得了广泛的应用。

的控制可以分为控制型和控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调节率精度,后者,较电压控制型有不行比拟的优点。

UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。

所谓电流型脉宽调制器是按反馈电流来调整脉宽的。

在脉宽的输入端挺直用流过输出线圈电流的信号与误差输出信号举行比较,从而调整占空比使输出的电感峰值电流尾随误差电压变幻而变幻。

因为结构上有电压环、电流环双环系统,因此,无论开关电源的电压调节率、负载调节率和瞬态响应特性都有提高,是比较抱负的新型的控制器闭。

1 电路设计和原理1.1 UC3842工作原理UC3842是单电源供电,带电流正向补偿,单路调制输出的集成芯片,其内部组成框图l所示。

其中脚1外接阻容元件,用来补偿误差放大器的频率特性。

脚2是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压举行比较,产生误差电压。

脚3是电流检测输入端,与协作,构成过流庇护电路。

脚4外接锯齿波外部定时电阻与定时,打算振荡频率,基准电压VREF为0.5V。

输出电压将打算的变压比。

由图1可见,它主要包括高频振荡、误差比较、欠压锁定、电流取样比较、脉宽调制锁存等功能电路。

UC3842主要用于高频中小容量开关电源,用它构成的传统离线式反激变换器电路在驱动隔离输出的单端开关时,通常将误差比较器的反向输入端通过反馈绕组经电阻分压得到的信号与内部2.5V基准举行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压举行比较,从而控制序列的占空比,达到电路稳定的目的。

1.2 系统原理本文以UC3842为核心控制部件,设计一款AC 220V输入,DC 24V输出的单端反激式开关稳压电源。

基于UC3842的反激式开关电源的设计与仿真

基于UC3842的反激式开关电源的设计与仿真

基于UC3842的反激式开关电源的设计与仿真华南理工大学电力学院冯自成摘要:反激式开关电源由于纹波小、体积小、效率高等诸多优点占据着小功率开关电源的大部分市场。

本文基于UC3842芯片设计了一款反激式开关电源,详细分析了主电路的工作原理、控制电路的设计以及保护电路的设计等,最后在开关电源仿真软件saber中搭建了仿真模型,验证了设计的正确性。

关键词:反激;开关电源;UC3842;反馈电路ABSTRACT:Flyback switching power source occupies most of the market of low switching power source due to the small ripple,small size,high efficiency advantages.This paper designs a flyback circuit based on the UC3842chip,detailedly describes the working principle of the main circuit,the design of the control circuit and protection circuit.Finally a simulation model was built in saber software to verify the correctness of the design.KEYWORDS:flyback;switching source;UC3842;feedback0引言随着开关电源技术的飞速发展,近年来开关稳压电源正朝着小型化、高频化、集成化的方向发展,高效率的开关电源得到越来越多的重视[1]。

单端反激式变换器因其电路简单可以高效提供直流输出等许多优点,特别适合用于小功率的开关电源的设计。

开关电源的控制可以分为电压型控制和电流型控制,相比单闭环控制的电压型控制,双闭环电流控制具有不可比拟的优点,因此被广泛采用[2]。

基于UC3842的多端反激式开关电源的设计与实现

基于UC3842的多端反激式开关电源的设计与实现

论文提交日期
学校代号:10532 学 密 号:S1109W309 级:公开
湖南大学工程硕士学位论文
基于 UC3842 的多端反激式开关电源 的设计与实现
学位申请人姓名: 导师姓名及职称: 培 专 养 业 单 名 位: 称:
朱晓曲 全惠敏 副教授 刘国清高工
电气与信息工程学院 电子与通信工程 2013 年 4 月 15 日 2013 年 5 月 18 日 黎福海 教授
作者签名:
日期:



学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保 留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。 本人授权湖南大学可以将本学位论文的全部或部分内容编入有关数据库进行检 索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1、保密□,在______年解密后适用本授权书。 2、不保密√ □。 (请在以上相应方框内打“√”)
论文提交日期 : 论文答辩日期 : 答辩委员会主席:
Design and Implementation of the UC3842 multiple-output flyback switching power
by Zhu Xiaoqu B.E.(Hunan University of Science and Technology)2011 A thesis submitted in partial satisfaction of the Requirements for the degree of Master of Engineering in Electronics and Communications Engineering in the Graduate School of Hunan University

基于UC3842反激式AC-DC开关电源设计

基于UC3842反激式AC-DC开关电源设计

基于UC3842反激式AC-DC开关电源设计
朱云智;冯文博;崔祖胤;王宏伟;王国桢
【期刊名称】《电子设计工程》
【年(卷),期】2024(32)2
【摘要】基于传统的反激开关电源使用二极管整流,开关电源损耗较大。

设计了一种多路输出反激式AC-DC同步整流开关电源,输出分别为12 V和6 V。

采用导通电阻极低的MOSFET代替二极管。

介绍了开关电源的工作原理、UC3842内部结构、反激闭环控制以及同步整流。

使用PSIM仿真软件搭建开关电源整体闭环模型,对电路进行仿真。

结果表明,电路同步整流相比于二极管整流电路输出电压精度更高,同步整流输出电压、电流特性好、纹波小。

【总页数】6页(P83-88)
【作者】朱云智;冯文博;崔祖胤;王宏伟;王国桢
【作者单位】湖南工业大学电气与信息工程学院
【正文语种】中文
【中图分类】TN86
【相关文献】
1.基于UC3842反激式AC-DC开关电源设计
2.基于UC3842的反激式开关电源电路设计
3.基于UC3842的单端反激式开关电源设计
4.基于UC3842的反激式开关电源设计
5.基于UC3842的反激式开关电源设计与仿真
因版权原因,仅展示原文概要,查看原文内容请购买。

uc3842

uc3842

基于UC3842 的多输出开关电源设计刘俊1 楚君2 郭照南1 王玲3(1.湖南工程学院电气与信息工程系湖南湘潭4111012.湘潭大学信息工程学院湖南湘潭4111053.湖南大学电气与信息工程学院湖南长沙410082 )摘要:本文阐述了一种基于UC3842 PWM 控制器的新型多路输出反激式开关电源电路的设计。

该设计详细给出了变压器、漏感消除电路、启动电路以及电压电流反馈电路的设计过程。

实验结果表明该电源性能优良。

作为电机控制的电源模块,具有很高的应用价值。

关键词:电流型PWM;UC3842;反激式开关电源中图分类号:TN492 文献标志码:BDesign of Multi-output Switching Power Supply based on UC3842LIU Jun1, CHU Jun2, GUO Zhao-nan1, WANG Ling3(1.Hunan Institute of Engineering Department of Electricaland Information Engineering,Xiangtan,411101,china2. College of Information Engineering, Xiangtan University,Xiangtan,411105,China3. College of Electric and Information Engineering,HunanUniversity,Changsha,410082,China)Abstract:The design of a new multi-output switching power supply based on UC3842 is proposed in this paper. The design of transformer, leakage inductance elimination circuit, start circuit and voltage and current feedback circuit is introduced in detail. Experiment results show that the power supply has good performance.It can be used for motor control as a power module and has better application value.Key words: current PWM; UC3842; flyback switch power0 引言近年来,随着电源技术的飞速发展,开关稳压电源朝着高频化,集成化的方向发展,开关电源已经得到广泛的应用。

单端反激式开关电源设计UC3842

单端反激式开关电源设计UC3842

基于UC3842的开关电源设计摘要电源是实现电能变换和功率传递的主要设备。

在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电影产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。

这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。

开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。

UC3842是一种性能优良的电流控制型脉宽调制器。

假如由于某种原因使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空比D,使斩波后的平均值电压下降,从而达到稳压目的,反之亦然。

UC3842可以直接驱动MOS管、IGBT等,适合于制作20~80W小功率开关电源。

由于器件设计巧妙,由主电源电压直接启动,构成电路所需元件少,非常符合电路设计中“简洁至上”的原则。

设计思路,并附有详细的电路图。

关键词:开关电源,uc3842,脉宽调制,功率,IGBT前言 (1)第1章开关电源的简介 (2)1.1 开关电源概述 (2)1.1.1 开关电源的工作原理 (2)1.1.2 开关电源的组成 (3)1.1.3 开关电源的特点 (4)1.2 开关器件 (4)1.2.1开关器件的特征 (4)1.2.2器件TL431. (5)1.2.3电力二极管 (5)1.2.4光耦PC817 (6)1.2.5电力场效应晶体管MOSFET (7)第2章主要开关变换电路 (8)2.1 滤波电路 (8)2.2 反馈电路 (8)2.2.1电流反馈电路 (8)2.2.2电压反馈电路 (9)2.3电压保护电路 (9)第3章UC3842 .................................................. 错误!未定义书签。

3.1 UC3842简介 (10)3.1.1 UC3842的引脚及其功能 (11)3.1.2 UC3842的内部结构 (11)3.1.3 UC3842的使用特点 (13)3.2 UC3842的典型应用电路 (14)3.2.1反激式开关电源 (14)3.2.2 UC3842控制的同步整流电路 (15)3.2.3升压型开关电源 (17)第4章利用UC3842设计小功率电源 (18)4.1 电源设计指标 (18)4.1.1元件的选择 (19)4.1.2电路结构的选择 (20)4.2 启动电路 (21)4.3 PWM脉冲控制驱动电路 (22)4.4 直流输出与反馈电路 (23)4.5 总体电路图分析 (24)结论 (24)参考文献 ............................................................. 错误!未定义书签。

基于UC3842的多端反激式开关电源的设计与实现共3篇

基于UC3842的多端反激式开关电源的设计与实现共3篇

基于UC3842的多端反激式开关电源的设计与实现共3篇基于UC3842的多端反激式开关电源的设计与实现1多端反激式开关电源是现代电子设备中广泛应用的一种电源,其特点是功率密度高、效率高、成本低,且能够适应多种电压等级的电子元器件。

本文将介绍基于UC3842的多端反激式开关电源的设计与实现。

开关电源的基本原理是将来自市电的交流电转化为直流电,并通过电感和电容构成的滤波电路,提供带有稳定直流电压和电流的电源。

反激式开关电源是一种常见的开关电源拓扑结构,它通过电容和电感构成的反激电路来实现AC/DC转换。

UC3842是一款常用的控制集成电路,它能够对开关管的开关频率、占空比、电压反馈等进行精确控制,以保证反激式开关电源的工作稳定性和高效性。

该芯片还具备过流保护、过温保护等功能,非常适合用于电源控制电路中。

设计多端反激式开关电源的第一步是确定电路的架构和元器件。

通常根据输出功率、输出电流、转换效率等因素综合考虑,选择合适的电容、电感、二极管、开关管等元器件。

在此基础上,根据UC3842的控制信号要求,设计控制电路和反馈回路。

控制电路的设计是多端反激式开关电源设计的关键之一。

UC3842需要提供稳定的控制信号,以保证开关管工作的可靠性和高效性。

控制电路包括电流采样电路、电压采样电路等,可通过适当的电路参数设计和优化,提高控制系统的响应速度和稳定性。

反馈回路是另一重要的电路模块,它通过采集输出电压和电流信息,实现对开关管的控制。

反馈回路需要满足精度高、响应速度快的要求,以提高多端反激式开关电源的工作效率和准确性。

在确定电路架构和元器件之后,多端反激式开关电源的实现需要进行优化和验证。

这包括元器件的选型和参数设计、电路板的布局和线路走线、电磁兼容(EMC)测试等。

在实现过程中,还需要对反馈回路和控制电路进行修整和验证,并对开关电源的电源输出特性进行测试和分析。

总的来说,基于UC3842的多端反激式开关电源的设计和实现需要综合考虑多种因素,包括稳定性、效率、成本等。

基于UC3842-UC3843的隔离单端反激式开关电源设计

基于UC3842-UC3843的隔离单端反激式开关电源设计

基于UC3842/UC3843的隔离单端反激式开关电源设计开关电源以其高效率、小体积等优点获得了广泛应用。

传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM 技术得到了飞速发展。

相比电压型PWM,电流型PWM 具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。

电流型PWM 集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM 控制小功率电源已经取代电压型PWM 控制小功率电源。

Unitrode 公司推出的UC3842 系列控制芯片是电流型PWM 控制器的典型代表。

DC/DC 转换器转换器是开关电源中最重要的组成部分之一,其有5 种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。

下面重点分析隔离式单端反激转换电路,电路结构电路工作过程如下:当M1 导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD 处于反偏压状态,所以二极管VD 截止,在变压器次级无电流流过,即没有能量传递给负载;当M1 截止时,变压器次级电感线圈中的电压极性反转,使VD 导通,给输出电容C 充电,同时负载R 上也有电流I 流过。

M1 导通与截止的等效拓扑如与电压型PWM 比较,电流型PWM 控制在保留了输出电压反馈控制外,又增加了一个电感电流反馈环节,并以此电流反馈作为PWM 所必须的斜坡函数。

下面分析理想空载下电流型PWM 电路的工作情况(不考虑互感)。

电路如iL 以斜率ui/L 线性增长,L 为T1 原边电感。

经无感电阻R1 采样Ud=R1-iL 送到脉宽比较器A2 与Ue 比较,当UdUe,A2 输出高电平,送到RS 锁存器的复位。

基于UC3842的反激式开关电源设

基于UC3842的反激式开关电源设

基于UC3842的反激式开关电源设
高频开关稳压电源由于具有效率高、体积小、重量轻等突出优点而得到了广泛应用。

传统的开关电源控制电路普遍为电压型拓扑,只有输出电压单闭控制环路,系统响应慢,线性调整率精度偏低。

随着PWM 技术的飞速发展产生的电流型模式拓扑很快被大家认同和广泛应用。

电流型控制系统
是电压电流双闭环系统,一个是检测输出电压的电压外环,一个是检测开关管电流且具有逐周期限流功能的电流内环,具有更好的电压调整率和负载调整率,稳定性和动态特性也得到明显改善。

UC3842是一款单电源供电,带电流正向补偿,单路调制输出的高性能固定频率电流型控制集成芯片。

本设计采用UC3842 制作一款1 kW 铅酸电池充电器控制板用的辅助电源样机,并对其进行工作环境下的测试。

1 UC3842 的工作原理
UC3842 内部组成框图如图1所示。

其中: 1 脚是内部误差放大器的输出端,通常此脚与2 脚之间接有反馈网络,以确定误差放大器的增益和频响。

2 脚是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压(一般为2.5 V)进行比较,产生误差电压。

3 脚是电流检测输入端,与取样电阻配合,构成过流保护电路。

当电源电压异常时,功率开关管的电流增大,当取样电阻上的电压超过1 V时,U。

基于UC3842反激式开关电源的设计

基于UC3842反激式开关电源的设计

基于UC3842反激式开关电源的设计制作摘要随着电力电子技术的飞速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。

开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由PWM(脉冲宽度调制)控制IC和MOSFET构成。

本文利用开关电源芯片UC3842设计制作一款新颖的单端反激式、宽电压输入范围、12V8A固定电压输出的96W 开关稳压电源,适用于需要较大电流的直流场合(如对汽车电瓶充电),同时本文对电路参数计算也做了详细的讨论。

关键词:开关电源反激变换 RCD箝位 UC3842A Flyback Converter Mode Switching Power Supply designed basedon UC3842AbstractThis article amply introduced the characteristics, inner structure and working principle chip UC3842, and presented the working principle and the design method of parameters of the flyback converter, is composed using UC3842. The application of RCD circuit in converter can realize low cost. How to design that circuit is introduced. A 96Watt offline flyback switching power supply which has universal input and 12V8A fixed output voltage is designed based on UC3842. The power supply can be applied to the most field where DC voltage is provided.Key words: s witching power supply; flyback converter; RCD clamp ;UC3842目录论文总页数:29页引言 (1)1开关稳压电源 (1)1.1线性稳压电源与开关稳压电源 (1)1.1.1线性稳压电源概述 (1)1.1.2开关稳压电源概述 (2)1.2开关稳压电源的原理及分类 (3)1.2.1开关稳压电源的原理 (3)1.2.2开关稳压电源的分类 (4)1.2.3常用的拓扑结构 (4)1.3开关稳压电源的发展方向 (9)2开关稳压电源主控芯片 (9)2.1 系统框图 (9)2.2 UC3842工作原理 (10)2.3由UC3842构成的单端反激式开关稳压电源 (12)3电路参数的计算 (12)3.1开关稳压电源中RCD箝位参数计算 (12)3.1.1反激式变换器中RCD箝位电路的工作原理 (13)3.1.2 RCD 箝位电路的设计 (13)3.2开关变压器及主电路参数计算 (16)3.3反馈环路计算 (21)4实验数据记录 (24)4.1 UC3842 PIN3脚电压 ················································································错误!未定义书签。

uc3842反激式开关电源环路补偿计算书

uc3842反激式开关电源环路补偿计算书

UC3842反激式开关电源环路补偿计算书一、介绍1.1 UC3842简介UC3842是一款具有反激式开关电源功能的控制IC,它被广泛应用于交换电源、逆变器和其他开关电源中。

UC3842具有工作频率可调的特点,典型应用中通常工作在50kHz至500kHz的范围内。

它内部集成有高压开关管,用于控制开关管的导通和关断,从而实现输出电压的稳定控制。

1.2 反激式开关电源环路补偿的重要性反激式开关电源的环路补偿是影响其稳定性和性能的关键因素之一。

正确的环路补偿设计可以有效地提高电源的动态响应和稳态精度,在保证系统稳定性的还能够提高系统的动态性能和抗干扰能力。

进行反激式开关电源环路补偿的计算十分重要。

二、环路补偿计算2.1 反激式开关电源的环路补偿原理反激式开关电源的环路补偿主要通过在控制回路中引入补偿网络来实现。

在设计中需要考虑控制回路的开环增益、相位裕度、带宽等参数,以及输出环路特性和负载特性等因素。

通常使用频率补偿网络和振荡器来实现环路补偿。

2.2 环路补偿计算步骤进行环路补偿计算时,需要依次进行以下步骤:步骤一:根据设计要求确定系统的带宽和相位裕度。

步骤二:选择合适的频率补偿网络和振荡器。

步骤三:计算补偿网络的元件参数。

步骤四:进行仿真验证和实际电路测试。

三、计算实例3.1 设计要求假设需要设计一个输出电压为12V、输出电流为2A的反激式开关电源,工作频率为100kHz。

系统要求带anWh (abolt-Var) 。

宽3dB,相位裕度为45°。

现进行环路补偿的计算和元件选择。

3.2 计算过程步骤一:根据设计要求计算系统的带宽和相位裕度。

设计带宽=100kHz,相位裕度=45°。

步骤二:选择频率补偿网络和振荡器。

选择一个合适的频率补偿网络和振荡器,比如R-C振荡器和阻容型频率补偿网络。

步骤三:计算补偿网络的元件参数。

根据选择的频率补偿网络,计算出所需的元件参数。

步骤四:进行仿真验证和实际电路测试。

基于UC3842的单端反激式开关稳压电源的设计

基于UC3842的单端反激式开关稳压电源的设计

基于UC3842的单端反激式开关稳压电源的设计1 引言电源,即提供电能的设备,主要分三类:一次电源(将其它能量转换为电能),二次电源和蓄电池。

其中,二次电源指的是把输入电源(由电网供电)转换为电压、电流、频率、波形及在稳定性、可靠性(含电磁兼容,绝缘散热,不间断电源,智能控制)等方面符合要求的电能供给负载。

高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。

开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。

UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。

所谓电流型脉宽调制器是按反馈电流来调节脉宽的。

在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。

由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。

2 开关电源概述2.1 开关电源的分类开关型稳压电源的电路结构一般分类如下:(1)按驱动方式分,有自激式和他激式。

(2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。

(3)按电路组成分,有谐振型和非谐振型。

(4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式;③PWM 与PFM混合式。

2.2 开关电源的控制原理开关电源是指电路中的电力电子器件工作在开关状态的稳压电源,是一种高频电源变换电路,采用直-交-直变换,能够高效率地产生一路或多路可调整的高品质的直流电压。

开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。

开关电源的基本构成如图2.1所示,其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。

基于UC3842芯片控制的60W反激开关电源的制作报告

基于UC3842芯片控制的60W反激开关电源的制作报告

中山火炬职业技术学院开关电源项目考核报告专业班级:电信092班姓名:陈楚洁学号: 00指导老师:何薇薇电子工程系2011 年1 月7 日二、项目内容及要求基于UC3842芯片控制的60W反激开关电源的制作,输入电源电压:220V±15%,输出电流5A,输出电压12V,输出功率60W,开关频率60K,占空比最大为45%。

三、项目电路图四、项目各部分电路的工作原理(输入EMI滤波电路、整流滤波电路、反激变换器、输出整流滤波电路、UC3842控制电路、反馈电路)输入EMI滤波电路的工作原理:该电路在输入端首先由热敏电阻R2来抑制浪涌电流,再由保险管F2和压敏电阻ZR1来保护电路,ZR1不仅起到过压保护的作用,更为电路吸收了尖峰电压,差模电容C2、C3和差模电感L2构成差模滤波器滤除差模干扰信号,共模电容C4、C5和共模电感L1构成共模滤波器滤除共模干扰信号。

整流滤波电路的工作原理:该部分电路采用全桥整流,正半周时,回路为:C3+——D1——D3——C3-;负半周时,回路为:C3-——D2——D4——C3+。

反激变换器的工作原理:在该部分电路中,变压器T1的原边电感工作时,副边不工作;正半周时,Q2导通,原边电感极性上正下负,此时回路为:C3+——Np——Q1——C3-,D8不导通;负半周时,Q1关断,副边电感极性上正下负,此时回路为:NS——D8——L3——负载,原边辅助绕组作为辅助电源给UC3842提供16V的启动电压。

输出整流滤波电路的工作原理:该电路由二极管D8构成半波整流电路,整流后再用电容C10、C11、C12和电感L3进行整流。

UC3842控制电路的工作原理:该电路首先由电阻R3对电源进行限流从而给芯片提供16V 的启动电压,由芯片UC3842来控制占空比,稳定输出。

反馈电路的工作原理:该电路采用精密基准源TL431构成误差电压放大器,通过线性光耦PC817进行精确的调整,从而取样输出信号,当取样信号的电压值大于TL431内部基准电压2.5V时,TL431导通,因此线性光耦PC817也导通,从而将信号传送到UC3842,从而稳定输出;当取样信号的电压值小于TL431内部基准电压2.5V时,TL431关断,电路不能起到稳压作用。

基于UC3842芯片的单端反激式开关电源设计

基于UC3842芯片的单端反激式开关电源设计

基于UC3842芯片的单端反激式开关电源设计赵志敏(冀东油田供电公司,河北唐山 063299)摘 要:基于UC3842芯片,采用模块化设计方案,制作了一款单端反激式开关电源。

该开关电源对电源技术的发展有着重要的应用价值。

关键词:UC3842芯片;电源设计;单端反激式开关;电路控制中图分类号:TN86 文献标识码:A 文章编号:2095-6835(2014)06-0036-021 问题的提出在现代电子设备中,电能变换和功率传递都离不开直流电源,且对电源的要求越来越高。

近年来,随着电源技术的飞速发展,高效率的开关电源已被广泛应用在生活中,小型化、高频化、继承化的特点已成为开关稳压电源发展的方向。

单端反激式变换器电路简单,可以高效提供直流输出,被应用在许多方面,并取得很好的效果。

2 单端反激式开关电源概述UC3842芯片是目前我国应用比较广泛的一种高性能固定频率电流型控制脉宽调制芯片,它是由美国Unitrode公司开发的新型控制器,具有良好的电压调整率和负载调整率,且稳定性和动态性也有了明显提高。

单端反激式开关电源的工作原理是利用UC3842集成芯片单电源供电、带电流正向补偿和单路调制输出的特点。

变压器变压比的大小是由输出电压的大小决定的。

对于那些处在驱动隔离输出的单端开关高频中的小容量开关电源,通常用UC3842构成的传统离线式反激变换器电路,将误差比较器的反向输入端通过反馈绕组。

将经过电阻分压后得到的信号与内部 2.5 V 的基准电压进行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压进行比较,从而达到控制PWM序列的占空比,实现电路稳定的目的。

3 单端反激式开关电源设计3.1 系统参数的设计3.1.1 电路形式电路采用单端反激式形式。

3.1.2 交流电源电压交流电源的电压为220 V,误差为10%.3.1.3 开关电源的输出电压和输出电流开关电源的输出电压和电流有以下三种形式:①+30 V,1 A;②12 V,0.5 A;③+5 V,1 A。

基于UC3842反激式AC-DC开关电源设计

基于UC3842反激式AC-DC开关电源设计

基于UC3842反激式AC-DC开关电源设计朱彩莲;熊丽萍;魏海红【摘要】According to the modem electronic equipment is more and more high to the requirement of DC power supply,this paper design an AC-DC switching power supply,output 12 V voltage and 5 A current.The design is Based on UC3842 PWM controller,first,the alternating current (AC) directly convert the DC high voltage,,and then circuit is designed by flyback converter,linear photoelectric coupler,threeterminal voltage regulator tube,and output sampling resistance constitute output voltage feedback circuit.The test results show that the designed circuit meet the requirements,the switching power sup-ply has high precision,small ripple,high efficiency and high reliable.%针对现代电子设备对直流电源的要求越来越高,设计了一种AC-DC开关电源,输出电压为12V电流5A.设计中以UC3842为PWM控制器,首先将交流电直接变换为直流高压,然后采用反激变换器设计电路,利用线性光电耦合器、三端可调稳压管以及输出采样电阻构成输出电压反馈电路.对电路测试结果表明设计电路满足设计要求,具有精度高、纹波小、效率高、性能可靠等优点.【期刊名称】《电子设计工程》【年(卷),期】2017(025)024【总页数】5页(P148-151,156)【关键词】开关电源;反激变换器;UC3842;PWM控制器【作者】朱彩莲;熊丽萍;魏海红【作者单位】东莞职业技术学院电子工程系,广东东莞523808;东莞职业技术学院电子工程系,广东东莞523808;东莞职业技术学院电子工程系,广东东莞523808【正文语种】中文【中图分类】TN702电子设备的供电离不开直流电源,直流电源的作用主要是将交流电转换为稳定的直流电。

基于UC3842单端反激电源的设计与仿真分析

基于UC3842单端反激电源的设计与仿真分析

图1 UC3842的内部结构图图2 总体设计框图电压,再经过大容量滤波电容得到直流高压电。

输入额定电压为220V,电压最大值为311V,考虑2倍裕量,选择整流二极管1N4005(600V/1.0A),输出侧可选择容值为80μF电解电容。

3.2 反馈回路设计(图4)反馈回路采用精密稳压源TL431和线性光耦[14]袁先举,苌飞霸,王子洪等.医院应急调配设备及维修配件精准储备探讨[J].医疗卫生装备, 2021.[15]陈淑芬.医疗调配中心的实践探讨[J].中国医疗器械信息, 2017, 23(20):2.4N25A。

光耦工作在线性放大区,其电流放大系数传输比CTR 为20%。

其中,U o =12V,U re f =2.5V,=10mA。

UC3842外围电路设计选取R 17=1.2kΩ,C 假设开关电源效率为耐压,可选择3.5 变压器设计(表选磁芯材料和型号。

选用软磁铁氧体度的变化量△o nT max_=磁芯填充系数:铜的填充系数:电流密度:选用P A e1=0.297cm 计算变压器初级电感量。

DCM 模式在最大输出功率时,电流临界连续:计算铁芯上所开气隙的长度δ:(6)计算变压器原边绕组匝数:(7)取68匝,计算匝比,确定各副边绕组匝数:(8)1V 为输出整流二极管压降。

图3 稳压电源原理图图4 反馈回路表2 变压器技术指标电气性能指标断续模式(DCM)输入电压V in_min =249V 输出电压V O1=12V 输出功率24W 效率η=0.9输入功率P i n =26W 最大占空比0.45工作频率150kHz 输出电压纹波50mV表1 开关电源技术指标电气性能指标断续模式(DCM)输入电压176~264V 输出电压V O1=12V 输出功率24W 效率η=0.75输入功率P in =32W 最大占空比0.45工作频率150kHz 输出电压纹波50mV取5匝,计算变压器原副边绕组电流有效值。

变压器原边电流峰值为:P 2变压器原边电流有效值为:变压器各副边电流有效值为:(13)确定原副边导线线径和股数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“开关电源设计”课程设计报告设计课题:开关电源设计专业班级:2011级电子信息工程2班*名:***学号:**********设计时间:2014年11月18日设计课题题目:开关电源一、设计任务与要求采用隔离式电源结构,实现以下性能:a.输入直流电压范围为20~24Vb.输出电压可调范围为10~12Vc.最大输出电流为0.5Ad.电压调整率≤0.5%(输入电压变化范围内,空载到满载)e.负载调整率≤1%(最低输入电压下,满载)f.纹波电压(峰-峰值)≤10mV(最低输入电压下,满载)g.效率≥80%(输出电压10V、输入电压dc24V下,满载)h.具有过流及短路保护功能二、设计过程2.1、开关电源的选用(1)、输出电流的选择因开关电源工作效率高,一般可达80%以上,故在输出电流的选择上,应准确测量或计算用电设备的最大吸收电流,以使被选用的开关电源具有较高的性价比。

通常输出计算公式为:(2)、保护电路开关电源在设计中必须具有过流、过热、短路等保护功能,在设计时应首选保护功能齐备的开关电源模块,并且其保护电路的技术参数应与用电设备的工作特性相匹配,以避免损坏用电设备或者是开关电源。

2.2、UC3842(1)、简介(2)、工作原理UC3842是高性能固定频率电流模式控制器专为离线和直流直至直流变换器应用而设计,为设计人员提供只需最少外部元件就能获得成本效益高的解决方案。

这些集成电路具有可微调的振荡器、能进行精确的占空比控制、温度补偿的参考、高增益误差放大器。

电流取样比较器和大电流图腾柱式输出,是驱动功率MOSFET的理想器件。

其他的保护特性包括输入和参考欠压锁定,各有滞后、逐周电流限制、可编程输出静区时间和单个脉冲测量锁存。

UC3842简易方框图如下:各管脚功能简介如下:(1)8脚双列直插塑料封装的器件:1脚输出补偿,内部误差放大器的输出,并可用于环路补偿。

2脚电压反馈,此脚是内部误差放大器反相输入,脉宽调制器使用此信息中止输出开关的导通,产生控制电压,控制脉冲的宽度。

3脚电流取样,在外围电路中,在功率开关管(如Vmos管)的源极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电压,此电压送入3脚,控制脉宽。

此外,当电源电压异常时,功率开关管的电流增大,当取样电阻上的电压超过1V时,UC3842就停止输出,有效地保护了功率开关管。

4脚RT/CT,通过将电阻RT连接至Vref以及电容CT连接至地,使振荡器频率和最大输出占空比可调。

工作频率可达500kHz。

5脚接地,为控制电路和电源的公共地。

6脚输出端,该输出直接驱动功率MOSFET的栅极,高达1.0A的峰值电流经此管脚拉和灌。

7脚VCC,控制集成电路的正电源。

8脚Vref,基准电压的参考输出,它通过电阻RT向电容CT提供充电电流,可输出精确的+5V基准电压,电流可达50mA。

(3)、UC3842的工作描述:①、振荡器振荡器频率由定时元件Rt和Ct选择值决定。

电容Ct由5.0V的参考电压通过电阻Rt充电,充至约2.8V,再有一个内部的电流宿放电至1.2V。

在Ct放电期间,振荡器内产生一个内部消隐脉冲保持“或非”门的中间输入为高电平,这导致输出为低状态,从而产生一个数量可控的输出静区时间。

要注意的是尽管许多的Rt和Ct值都可以产生相同的振荡器频率,但只有一种组合可以得到在给定频率下的特定输出静区时间。

振荡器门限是温度补偿的,放电电流在Tj=25摄氏度时被微调并确保在±10%之内,这些内部电路的优点使振荡器频率及最大输出占空比的变化最小。

结果显示在下图:振荡器放电电流与温度关系曲线最大输出占空比与定时电阻关系曲线②、误差放大器提供一个有可访问反相输入和输出的全补偿误差放大器。

同相输入在内部偏置于2.5V而不经管脚引出。

典型情况下变换器输出电压通过一个电阻分压器分压,并由反相输入监视。

最大输入偏置电流为-2.0uA,它将引出输出电压误差,后者等于输入偏置电流和等效输入分压器源电阻的乘积。

锁定关断误差放大器输出(管脚1)用于外部回路补偿(图4.9)。

输出电压因两个二极管压降而失调(≈1.4V)并在连接至电流取样比较器的反相输入之前被三分。

这将在管脚1处于其最低状态时(Vol),保证在输出(管脚10)不出现驱动脉冲。

这发生在电源正在工作并且负载被取消时,或者在软启动过程的开始(图4.10,4.11)。

最小误差放大器反馈电阻受限于放大器的拉电流(0.5mA)和到达比较器的1.0V 箝位电平所需的输出电压(Voh):Rf(min)≈[3.0(1.0V)+1.4V]/0.5mA=8800Ω③、电流取样比较器和脉宽调制锁存器UC3842作为电流模式控制器工作,输出开关导通由振荡器起始,当峰值电感电流到达误差放大器输出/补偿(管脚1)建立的门限电平时中止。

这样在逐周基础上误差信号控制峰值电感电流。

所用的电流取样比较器-脉宽调制锁存配置确保在任何给定的振荡器周期内,仅有一个单脉冲出现在输出端。

电感电流通过插入一个与输出开关Q1的源极串联的以地为参考的取样电阻Rs转换成电压。

此电压由电流取样输入(管脚3)监视并与来自误差放大器的输出电平相比较。

在正常的工作条件下,峰值电感电流由管脚1上的电压控制,其中:Ipk(max)=[V(pin1)-1.4V]/3Rs当电源输出过载或者如果输出电压取样丢失时,异常的工作条件将出现。

在这些条件下,电流取样比较器门限将被内部箝位至1.0V。

因此最大峰值开关电流为: Ipk(max)=1.0V/Rs当设计一个大功率开关稳压器时为了保持Rs的功耗在一个合理的水平上希望降低内部箝位电压。

调节此电压的简单方法如图4.12所示。

使用了两个外部二极管来补偿内部二极管,以便在温度范围内有固定箝位电压。

如果Ipk(max)箝位电压降低过多将导致由于噪声拾取而产生的不误操作。

图4.12 箝位电平可调节降低图4.13 电流波形尖脉冲抑制通常在电流波形的前沿可以观察到一个窄尖脉冲,当输出负载较轻时,它可能会引起电源不稳定。

这个尖脉冲的产生是由于电源变压器匝间电容和输出整流管恢复时间造成的。

在电流取样输入端增加一个RC滤波器,使它的时间常数接近尖脉冲的持续时间,通常将消除不稳定性。

④、欠压锁定采用了两个欠压锁定比较器来保证在输出级被驱动之前,集成电路已完全可用。

正电源端(Vcc)和参考输出(Vref)各由分离的比较器监视。

每个都具有内部的滞后,以防止在通过它们各自的门限时产生错误输出动作。

Vcc比较器上下门限分别为:UC3842 16V/10V。

Vref比较器高低门限为3.6V/3.4V。

⑤、输出这些器件有一个单图腾柱输出级,是专门设计用来直接驱动功率MOSFET的,在1.0nF负载下时,它能提供高达±1.0A的峰值驱动电路和典型值为50nS的上升、下降时间。

还附加了一个内部电路,使得任何时候只要欠压锁定有效,输出就进入灌模式,这个特性使外部下拉电阻不再需要。

SO-14表面贴装封装为Vc(输出电压)和电源地提供了分离的管脚,恰当地应用可以显著地减小加到控制电路的开关瞬态噪声。

这在降低Ipk(max)箝位电平时特别有用。

分离的Vc电压输入允许设计者在不受Vcc影响而调节驱动电压时具有更多灵活性。

当在Vcc大于20V的系统中驱动功率MOSFET时,通常在该输入端连接一个齐纳箝位。

⑥、参考电压5.0V带隙参考电压在Tj=25℃时调整误差至:±2.0%,它首要的目的是为振荡器定时电容提供充电电流。

参看部分具有短路保护功能并能向附加控制电路供电提供超过20mA的电流。

2.3、主电路设计本设计以UC3842为核心控制部件,设计一款单端反激式开关稳压电源。

主要的功能模块包括:启动电路、过流过压欠压保护电路、反馈电路。

以下对各个模块的原理和功能进行分析。

①、启动电路电源由直流电源产生的20~24V的直流电接入,经过启动电容,启动电阻组成的启动电路,当直流电通过启动电阻向电容充电,当电容的电压达到UC3842的启动电压门槛时,UC3842开始工作并提供驱动脉冲,由6脚输出驱动开关管工作。

随着UC3842的启动,启动电阻的工作也就基本完成,剩下的由反馈绕组向UC3842提供电压。

由于输入电压超过了UC3842的工作,为了避免意外,用D7稳压管限定UC3842的输入电压,否则将出现UC3842被损坏的情况。

②、短路过流、过压、欠压保护电路由于输入电压的不稳定,或者一些其他的外在因素,有时会导致电路出现短路、过压、欠压等不利于电路工作的现象发生,因此,电路必须具有一定的保护功能。

如果由于某种原因,输出端短路而产生过流,开关管的漏极电流将大幅度上升,UC3842的脚3上的电压也上升。

当该脚的电压超过正常值0.3V达到1V(即电流超过1.5A)时,UC3842的PWM比较器输出高电平,使PWM锁存器复位,关闭输出。

这时,UC3842的脚6无输出,MOS管Q1截止,从而保护了电路。

如果供电电压发生过压(在265V以上),UC3842无法调节占空比,变压器的初级绕组电压大大提高,UC3842的脚7供电电压也急剧上升,其脚2的电压也上升,关闭输出。

如果电网的电压低于85V,UC3842的脚1电压也下降,当下降lV(正常值是3.4V)以下时,PWM比较器输出高电平,使PWM锁存器复位,关闭输出。

因此,此电路具有短路过流、过压、欠压三重保护。

③、反馈电路反馈电路采用精密稳压源TL431和线性光耦PC817。

利用TL43l 可调式精密稳压器构成误差电压放大器,再通过线性光耦对输出进行精确的调整。

如图5.1所示,R13A,R13B,R13C是精密稳压源的外接控制电阻,它们决定输出电压的高低,和TL431一并组成外部误差放大器。

当输出电压升高时,取样电压VR5也随之升高,设定电压大于基准电压(TL431的基准电压为2.5V),使TL431内的误差放大器的输出电压升高,致使片内驱动三极管的输出电压降低,也使输出电压Vo下降,最后Vo趋于稳定;反之,输出电压下降引起设置电压下降,当输出电压低于设置电压时,误差放大器的输出电压下降,片内的驱动三极管的输出电压升高,最终使得UC3842的脚1的补偿输入电流随之变化,促使片内对PWM比较器进行调节,改变占空比,达到稳压的目的。

2.4、主要器件的选择及其功能TL431TL431是一个良好的热稳定性能的三端可调分流基准源。

外部有三极分别为:阴极(CATHODE)、阳极(ANODE)、参考端(REF)。

其芯片体积小、基准电压精密可调,输出电流大等优点,所以可以用来制作多种稳压器件。

其功能如下图TL431的功能模块示意图VI是一个内部的2.5V基准源,接在运放的反相输入端。

由运放特性可知,只有当REF端的电压十分接近VI时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管,电流将从1到100mA变化。

相关文档
最新文档