九年级数学正多边形与圆练习含答案
鲁教版初三(上)数学:正多边形与圆,带答案

正多边形与圆1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形__________的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形__________的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.2.三角形的内切圆、外接圆三角形的内切圆:对比三角形的外接圆来学习三角形的内切圆三角形的外接圆:经过三角形三个顶点的圆叫三角形的外接圆三角形外接圆的圆心叫三角形的外心三角形的外心到三角形______________相等三角形的外心是三角形三边中垂线的交点三角形的内切圆:与三角形三边都相切的圆叫三角形的内切圆三角形内切圆的圆心叫三角形的内心三角形的内心到_________的距离相等三角形的内心是三角形三角平分线的交点3.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角________,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形______________.4.正多边形与圆在正多边形的有关计算中,如果分别以αn、a n、r n、R n、P n和S n表示正n(n≥3,n为整数)边形的中心角、边长、边心距、半径、周长和面积,则有:①αn=;②a n=2R n·sin;③r n=R n·cos;④+;⑤P n=na n;⑥S n=P n r n;⑦S n=n sin.(因为一个三角形的面积为:h·OB)注意两点:1.构造直角三角形(弦心距、边长的一半、半径组成的)求线段之间的关系等;2.准确记忆相关公式。
九年级数学 圆内接正多边形 专题练习(含解析)

C.连接 AD,则 AD 分别平分∠EAC 与∠EDC D.图中一共能画出 3 条对称轴
答案:B 解析:解答: A.∵多边形 ABCDEF 是正六边形, ∴△ACE 是等边三角形,故本选项正确; B.∵△ACE 是等边三角形,∴是轴对称图形,不是中心对称图形,故本选项错误; C.∵△ACE 是等边三角形,∴连接 AD,则 AD 分别平分∠EAC 与∠EDC,故本选项正确; D.∵△ACE 是等边三角形,∴图中一共能画 3 条对称轴,故本选项正确. 故选 B. 分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.
C.18
D.36
答案:C
解析:解答:连接正六边形的中心与各个顶点,得到六个等边三角形,
等边三角形的边长是 2 ,高为 3,
因而等边三角形的面积是 3 ,
∴正六边形的面积=18 , 故选 C. 分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.
12.已知某个正多边形的内切圆的半径是 ()
∴△OAB 是等边三角形, ∴OB=AB=24cm,
∴ 60 ´ 24 = 8 180
故选 B 分析:连接 OA、OB,得出等边三角形 AOB,求出 OB 长和∠AOB 度数,根据弧长公式求
出即可.
10.若一个正六边形的半径为 2,则它的边心距等于( )
A.2 B.1 C.
D.2
答案:C 解析:解答:已知正六边形的半径为 2,则正六边形 ABCDEF 的外接圆半径为 2, 如图:
连接 OA,作 OM⊥AB 于点 M, 得到∠AOM=30°,
则 OM=OA•cos30°= .
则正六边形的边心距是 .
故选 C. 分析:根据正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角 关系即可求出.
2020年人教版九年级数学上册24.3《正多边形和圆》随堂练习(含答案)

2020年人教版九年级数学上册24.3《正多边形和圆》随堂练习基础题知识点1 认识正多边形1.下面图形中,是正多边形的是( )A.矩形 B.菱形C.正方形 D.等腰梯形2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是( )A.240° B.120° C.60° D.30°3.一个正多边形的一个外角等于30°,则这个正多边形的边数为.4.如图,AC是正五边形ABCDE的一条对角线,则∠ACB= .知识点2 与正多边形有关的计算5.如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是( )A. 3 B.2 C.2 2 D.2 36.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( )A.正三角形 B.正方形C.正五边形 D.正六边形7.若正方形的外接圆半径为2,则其内切圆半径为( )A. 2 B.2 2C.22D.18.边长为6 cm的等边三角形的外接圆半径是.9.如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合.若A点的坐标为(-1,0),则点C的坐标为( ).10.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于 (结果保留根号).知识点3 画正多边形11.如图,甲:①作OD的中垂线,交⊙O于B,C两点;②连接AB,AC,△ABC即为所求的三角形.乙:①以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点;②连接AB,BC,CA,△ABC即为所求的三角形.对于甲、乙两人的作法,可判断( )A.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误 D.甲错误,乙正确12.图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为( )A.4R=5r B.3R=4rC.2R=3r D.R=2r14.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A.22B.32C. 2D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )A.2a2 B.3a2 C.4a2 D.5a217.如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为.18.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= .19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.综合题20.如图1,2,3,…,m,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…正n边形ABCDEF…的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是,图3中∠MON的度数是;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).参考答案01 基础题知识点1 认识正多边形1.下面图形中,是正多边形的是(C)A .矩形B .菱形C .正方形D .等腰梯形2.(柳州中考)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是(B)A .240°B .120°C .60°D .30°3.(连云港中考)一个正多边形的一个外角等于30°,则这个正多边形的边数为12.4.(资阳中考)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB=36°.知识点2 与正多边形有关的计算5.(沈阳中考)如图,正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是(B)A. 3B .2C .2 2D .2 3 6.(株洲中考)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是(A) A .正三角形 B .正方形 C .正五边形 D .正六边形7.(滨州中考)若正方形的外接圆半径为2,则其内切圆半径为(A)A. 2 B .2 2C.22D .1 8.边长为6 cm 的等边三角形的外接圆半径是23.9.(宁夏中考)如图,将正六边形ABCDEF 放在直角坐标系中,中心与坐标原点重合.若A点的坐标为(-1,0),则点C 的坐标为(12,-32).10.(教材P109习题T6变式)将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于1+2(结果保留根号).知识点3 画正多边形甲:①作OD的中垂线,交⊙O于B,C两点;②连接AB,AC,△ABC即为所求的三角形.乙:①以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点;②连接AB,BC,CA,△ABC即为所求的三角形.对于甲、乙两人的作法,可判断(A)A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确12.(镇江中考改编)图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).解:如图.02中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为(D)A.4R=5r B.3R=4rC.2R=3r D.R=2r14.(滨州中考)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是(C)A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.(达州中考)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(A)A.22B.32C. 2D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(A)A.2a2 B.3a2 C.4a2 D.5a217.(山西中考命题专家原创)如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为67.5°.18.(连云港中考)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=75°.19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为2∶1;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.解:BE是⊙O的内接正十二边形的一边,理由:连接OA ,OB ,OE ,在正方形ABCD 中,∠AOB=90°,在正六边形AEFCGH 中,∠AOE=60°,∴∠BOE=30°.∵n=360°30°=12, ∴BE 是正十二边形的边.03 综合题20.如图1,2,3,…,m ,M ,N 分别是⊙O 的内接正三角形ABC ,正方形ABCD ,正五边形ABCDE ,…正n 边形ABCDEF …的边AB ,BC 上的点,且BM=CN ,连接OM ,ON.(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是90°,图3中∠MON 的度数是72°;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).解:(1)连接OA ,OB.∵正三角形ABC 内接于⊙O ,∴OA=OB ,∠OAM=∠OBA=30°,∠AOB=120°.∵BM=CN ,AB=BC ,∴AM=BN.∴△AOM ≌△BON(SAS).∴∠AOM=∠BON.∴∠AOM +∠BOM=∠BON +∠BOM ,即∠AOB=∠MON.∴∠MON=120°.(3)∠MON=360°n.。
中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。
2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。
②正多边形的半径:外接圆的半径叫做正多边形的半径。
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。
练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。
人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案

人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案1.若正多边形的一个外角为72︒,则这个正多边形的中心角的度数是( )A.18︒B.36︒C.72︒D.108︒2.如图,正六边形ABCDEF内接于圆O,点M在AF上( )A.60︒B.45︒ C.30︒ D.15︒3.若⊙O的内接正n边形的边长与⊙O的半径相等,则n的值为( )A.4B.5C.6D.74.如图,正五边形ABCDE内接于O,点P为DE上一点(点P与点D,点E不重合),连接PC,PD,⊥DG PC垂足为G,则∠PDG等于( )A.72°B.54°C.36°D.64°5.如图,正六边形ABCDEF内接于,正六边形的周长是12,则的半径是( )A.3B.2C.22D.236.如图是半径为4的O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )O OA.23B.3C.2D.37.如图,正六边形ABCDEF 内接于O ,O 的半径为6,则这个正六边形的边心距OM 和弧BC 的长分别为( )A.32 πB.332 πC.332 2π3D.33 π8.如图,正三角形ABC 和正六边形ADBECF 都内接于,O 连接,OC 则∠+∠=ACO ABE ( )A.90︒B.100︒C.110︒D.120︒9.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点D 重合),则∠=CPD ________°.10.如图,正六边形ABCDEF内接于O,若O的周长等于6π,则正六边形的边长为______.11.早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为_________________.12.如图,圆内接正六边形ABCDEF的半径为2,则该正六边形的面积是_________________.13.有一个亭子,它的地基是半径为8m的正六边形,求地基的面积.(结果保留根号)14.如图,O的周长等于8πcm,正六边形ABCDEF内接于O.(1)求圆心O 到AF 的距离.(2)求正六边形ABCDEF 的面积.参考答案及解析1.答案:C 解析:正多边形的一个外角为72︒∴正多边形的边数为360725︒÷︒=∴这个正多边形的中心角的度数是360572︒÷=︒故选:C.2.答案:C解析:连接OC ,OD多边形ABCDEF 是正六边形60∴∠=︒COD1302∴∠=∠=︒CMD COD故选:C.3.答案:C解析:内接正n 边形的边长与⊙O 的半径相等∴正n 边形的中心角为60︒360606︒÷︒=∴n 的值为6故选:C.4.答案:B解析:正五边形ABCDE 内接于O∠CPD 与所对的弧相同1362∴∠=∠=︒CPD COD故选:B.5.答案:B解析:如图,连结OA ,OBABCDEF 为正六边形1360606∴∠=︒⨯︒=AOB∴AOB △是等边三角形正六边形的周长是1211226∴=⨯=AB2∴===AO BO AB故选B.6.答案:A解析:如图,做⊥OM AB 于点M360725COD ︒∴∠==︒COD ∠180903654PDG ∠=︒-︒-︒=∴︒正六边形ABCDEF 外接半径为4的O4∴==OA OB 360606︒∠==︒AOB 1302∴∠=∠=∠=︒AOM BOM AOB122∴===AM BM OA2223∴=-=OM OA AM ∴圆心O 到边AB 的距离为23故选:A.7.答案:D解析:连接OB 、OC六边形ABCDEF 为正六边形360606︒∴∠==︒BOC 。
正多边形和圆(解析版)九年级数学-下册

27.4正多边形和圆姓名:_______班级_______学号:________题型1直角三角形周长、面积与内切圆半径的关系1.(2023上·江苏苏州·九年级校联考阶段练习)三角形两边的长分别是8和6,第三边的长是方程212200x x -+=的一个实数根,则三角形的内切圆半径是()A .1B .2C .3D .4【答案】B【分析】本题主要考查了三角形内切圆,勾股定理的逆定理,解一元二次方程,先利用因式分解法求出方程的两根,根据构成三角形的条件确定这个三角形的三边长为6、8、10,由此利用勾股定理的逆定理证明该三角形是直角三角形,根据等面积法得到求出OD 的长即可得到答案.【详解】解:212200x x -+=,()()2100x x --=,10x ∴=或2,当2x =时,268+=,不能组成三角形,不符合题意;10x ∴=,当第三边为10时,2226810+= ,此三角形是直角三角形,如图所示,在Rt ABC △中,点O 是Rt ABC △的内接圆,分别与,,AB BC AC 相切于D 、E 、F ,,,OD OE OF OD AB OE ∴==⊥ABC ABO ACO BCO S S S S ∴=++ 111222AB BC AB OD BC ∴⋅=⋅+1683452OD OE OF ∴⨯⨯=++2OD ∴=,∴圆O 的半径为2,【答案】()5,1()8093,1【分析】作PD OA ⊥交OA 于D ,PF OB ⊥交OB PB ,由A 、B 的坐标得出4OA =,3OB =,由勾股定理可得点A的坐标为()3,0,0,4,点B的坐标为()OA=,∴=,43OB2222∴=+=+=,AB OA OB435点P是Rt OAB内切圆的圆心,PD OA⊥⊥,PF OB【答案】3cm【分析】此题主要考查了直角三角形内切圆的性质及半径的求法.根据已知得出1()2CD CF AC BC AB ==+-是解题关键.设易证得四边形OFCD 是正方形;那么根据切线长定理可得:在Rt ABC △,90C ∠=︒,9cm BC =根据勾股定理2215(cm)AB AC BC =+=四边形OECF 中,OD OF =,ODC ∠∴四边形OFCD 是正方形,题型2圆外切四边形模型5.(2022上·河北邯郸·九年级校考期中)如图,O 是四边形ABCD 的内切圆.若70AOB ∠=︒,则COD ∠=()A .110︒B .125︒C .140︒D .145︒【答案】A 【分析】根据内切圆得到四条角平分线,结合四边形内角和定理求解即可得到答案;【详解】解:∵O 是四边形ABCD 的内切圆,∴OAB OAD ∠=∠,ODA ODC ∠=∠,OCD OCB ∠=∠,OBC OBA ∠=∠,∵360OAB OAD ODA ODC OCD OCB OBC OBA ∠+∠+∠+∠+∠+∠+∠+∠=︒,∴180OAB OBA ODC OCD OAD ODA OCB OBC ∠+∠+∠+∠=∠+∠+∠+∠=︒,∵70AOB ∠=︒,180OAB OBA AOB ∠+∠+∠=︒,180ODC OCD DOC ∠+∠+∠=︒,∴18070110COD ∠=︒-︒=︒,故选:A ;【点睛】本题考查圆内切四边形及四边形的内角和定理,解题的关键是得到180OAB OBA ODC OCD ∠+∠+∠+∠=︒.6.(2021·九年级课时练习)下面图形中,一定有内切圆的是()A .矩形B .等腰梯形C .菱形D .平行四边形【答案】C【分析】根据内切圆的定义以及特殊四边形的性质进行分析,从而可得答案.【详解】角平分线上的点到角的两边距离相等,角平分线的交点是内切圆的圆心,菱形的对角线平分对角,所以菱形的两条对角线的交点到菱形的各边的距离相等,以交点为圆心,交点到菱形的边为半径的圆就是菱形的内切圆,选项中只有菱形,对角线平分对角.故选C【点睛】本题考查了内切圆的定义,菱形的性质,掌握内切圆的定义是解题的关键.7.(2019上·浙江温州·九年级校考期末)如图,正方形EBFI ,正方形MFCG 和正方形HLGD 都在正方形ABCD 内,且=BF HD .O 分别与AE ,EI ,HL ,AH 相切,点M 恰好落在【答案】1682-【分析】连接AC ,由题意可知【详解】解:如图所示,连接∵正方形EBFI ,正方形MFCG ∴45ACD MCD DAC ∠=∠=∠=∵O 分别与AE ,EI ,HL ,∴四边形AQOP 是正方形,∴AC 过点O ,M ,四边形ABCD 为正方形,题型3三角形内心有关应用9.(2023上·四川绵阳·九年级校联考阶段练习)下列语句中正确的是()A.平分弦的直径垂直于弦B.三点确定一个圆A .12B .【答案】B 【分析】过内心向正三角形的一边作垂线,【详解】解:过O 点作OD ∵O 是正ABC 的内切圆,A.100︒B.【答案】D【分析】此题主要考查了三角形内心的性质以及三角形内角和定理.利用内心的性质得出1【答案】52-/2-+【分析】在AB 的下方作等腰直角三角形过点K 作KT DB ⊥交DB ∵点P 是ACB △的内心,∠∴12PAB CAB ∠=∠,PBA ∠=∴(12PAB PBA CAB ∠+∠=∠∴18045135APB ∠=︒-︒=︒,∴点P 在以K 为圆心,KA 为半径的圆上运动,∵2AB =,AK BK =,AKB ∠设这个三角形内切圆的半径为r ,则11145222S ar br cr =++=,即()1452r a b c ++=,∵三角形的三边a ,b ,c 分别为7,6,∴()1763452r ++=,则:DAC DBC ∠=∠,∵I 是ABC 内心,∴,ABD DBC CAI ∠=∠∠=∴DAC DBA ∠=∠,∴DAC CAI DBA ∠+∠=∠+则:222CH AC AH =-=即:(222141315x -=--解得:425x =,∴22CH AC AH =-=设AD x =,则2BD =-由勾股定理得:2CD AC =222243(2)x x ∴-=--.解得: 2.75x =.【答案】4【分析】首先利用勾股定理求出斜边切线长定理求出内切圆半径,进而求出周长.【详解】如图,连接OD 、在Rt ABC △中,AC AB =设内切圆半径为r ,AB 、BC ∴OD AB ⊥,OE BC ⊥,∵AB BC ⊥,OD OE =,∴四边形ODBE 为正方形,∴OD OE BD BE r ====,由切线长定理得,8AF AD r ==-,6CE CF r ==-,MD MP =,NE NP =,∴8610AC AF CF r r =+=-+-=,解得2r =,则的周长为BM BN MN++BM BN MP NP=+++BM BN MD NE=+++BD BE=+2BD=2r=4=.故答案为:4.【点睛】本题考查了三角形的内切圆,切线的性质定理,切线长定理,解题关键是判断四边形ODBE 为正方形,再依据切线长定理把三角形的周长化为两条切线长,再转化为半径进行求解.题型5三角形内切圆与外接圆综合18.(2023上·河北邢台·九年级校联考期中)已知O 是ABC 的内心,70BAC ∠=︒,P 为平面上一点,点O 恰好又是BCP 的外心,则BPC ∠的度数为()A .50︒B .55︒C .62.5︒D .65︒【答案】C 【分析】本题考查了三角形的内心和三角形外心的性质,三角形内角和定理,利用三角形内心的性质得OB OC 、分别是ABC ACB ∠∠、的角平分线,进而求出BOC ∠的大小,再利用三角形外心的性质得出BPC ∠等于BOC ∠的一半,即可得出答案,牢记以上知识点得出各角之间的关系是解题的关键.∵O是ABC的内心,,∴12OBC ABC ∠=∠,∴12 OBC OCB∠+∠=∠【答案】65︒/65度【分析】本题考查三角形的内心和外心、角平分线的定义、三角形的内角和定理、圆周角定理,连接OB、OC,根据三角形的内心是三角形的内角平分线的交点,结合三角形的内角和定理求得BOC∠,再根据圆周角定理得到∵80BAC ∠=︒,∴180ABC ACB ∠+∠=︒-∵O 是ABC 的内心,∴12OBC ABC ∠=∠,OCB ∠【答案】58【分析】作AD BC ⊥于点D ,作PF 且AD 垂直平分BC ,及BD CD ==得BQ 、PF 和DQ ,由PCF ≌ R R t 答案.则90ADB ADC ∠=∠=︒,∵5AB AC ==,∴AD 平分BAC ∠,且AD 垂直平分∵6BC =,∴1=32BD CD BC ==,【答案】40︒/40度【分析】本题考查三角形内切圆、切线长定理,根据内切圆的定义和切线长定理,可以计算出COB ∠的度数和OGE ∠【详解】解:连接,OD OE【答案】5【分析】连接OA 、OB 、OC 、33BE BD OE ===,进而得出【详解】解:如图,连接OA 、OB ∵ABC 的内切圆半径3r =,30ABO CBO ∴∠=∠=︒,33BE BD OE ∴===,8BC = ,A.72°【答案】A【分析】根据正n边形的中心角的度数为【答案】2【分析】本题考查圆内接正多边形的性质、形的中心角36060AOB︒∠==︒,进而证明由题意,360 AOB∠=∴AOB为等边三角形,【答案】72︒/72度【分析】本题考查的是正多边形和圆;根据正五边形的性质可得解.【详解】∵五边形ABCDE1【答案】72︒/72【分析】本题考查圆周角定理,正多边形与圆,求出正五边形的中心角的度数,掌握圆周角定理是正确解答的前提.求出正五边形的中心角的度数,再根据圆周角定理进行计算即可.【详解】解:如图,连接∵五边形ABCDE 是O 的内接正五边形,∴3605AOB BOC ︒∠=∠=∴7272144AOC ∠=︒+︒=∴1722AFC AOC ∠=∠=A.4B【答案】B【分析】本题考查了正多边形和圆,正六边形的性质,垂径定理,勾股定理,等边三角形的性质,熟练掌握正六边形的性质,证明三角形是等边三角形,运用垂径定理求出60BOC ∠=︒,OB OC =∴BOC 是等边三角形,∴6OB BC ==,OM BC ⊥,1A .2B .确定,所以CMP S △的值不确定【答案】A【分析】本题考查了正多边形与圆,三角形的面积,根据正六边形的性质,得出1S S =则2MN OM =,∵12COD S CD OM = ,PCM S ∴COD PCM S S = ,∵16COD ABCDEF S S = 正六边形,34.(2023上·浙江温州记ACE △的周长为1C ,正六边形为【答案】32【分析】本题主要考查了正六边形的性质,含长为a ,利用含30︒角的直角三角形的性质求出【详解】解:设正六边形的边长为∵六边形ABCDEF 是∴DC DE a ==,CDE ∠∴60,EDH DEH ∠=︒∠∴12DH a =,(1)在方格纸中画出以AC为对角线的正方形小正方形的顶点上;∠为顶角的等腰三角形(2)在方格纸中画出以GFE格点上,连接AG,并直接写出线段【答案】(1)见详解;∠为顶角的等腰三角形(2)解:以GFE22AG=+=.5334【点睛】本题考查作图−应用与设计、勾股定理、等腰直角三角形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题,属于中考常考题型.36.(2022·陕西·陕西师大附中校考模拟预测)如图,已知的内接正方形ABCD法,作出O【答案】见解析【分析】作AC的垂直平分线交⊙【详解】解:如图,正方形ABCD的直径,∵BD垂直平分AC,AC为O的直径,∴BD为O∴BD⊥AC,OB=OD,OA=OC,的内接正方形.∴四边形ABCD是O【点睛】本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆的基本性质,正方形的判定.37.(2020下·山东青岛·九年级统考学业考试)请用圆规和直尺作图,不写作法,但要保留作图痕迹.已知:⊙O,点A在圆上.求作:以A为一顶点作圆内接正方形ABCD.【答案】见解析【分析】作直径AC,过点O作BD⊥AC交⊙O于B,D,连接AB,BC,CD,AD即可.【详解】如图,四边形ABCD即为所求作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.38.(2022上·江西景德镇·九年级统考期末)已知正六边形ABCDEF,请仅用无刻度直尺,按要求画图:(1)在图1中,画出CD的中点G;(2)在图2中,点G为CD中点以G为顶点画出一个菱形.【答案】(1)见解析(2)见解析【分析】(1)如图1,分别连接AD、CF交于点H,分别延长线段BC、线段ED于点I,连接HI与线段CD交于点G,点G即为所求;(2)如图2,延长线段IH与线段AF交于点J,连接BG、GE、EJ、JB,四边形BGEJ即为所求.【详解】(1)如图1,分别连接AD、CF交于点H,分别延长线段BC、线段ED于点I,连接HI与线段CD交于点G,点G即为所求;(2)如图2,延长线段IH与线段AF交于点J,连接BG、GE、EJ、JB,四边形BGEJ即为所求.【点睛】本题考查了无刻度直尺作图的问题,掌握正六边形的性质、中线的性质、菱形的性质是解题的关键.39.(2023上·江苏盐城【答案】(1)3;(2)21316AN≤≤;(3)9373222r-≤≤【分析】(1)由折叠的性质即可得出结果;(2)当MNA'的外接圆与线段DC相交,且点N与D重合时,此时AN外接圆与线段DC相切时,此时AN最小,利用勾股定理构建方程求解即可;由折叠的性质得:A D AD'=,当MNA ' 的外接圆与线段DC 相交,且点N 与D 重合时,此时AN 最大,即3AN =,当MNA ' 的外接圆与线段DC 相切时,设半径为r ,则3,OF r AO r =-=,则1924AF AM ==,∴()222934r r ⎛⎫-+= ⎪⎝⎭,当N 与D 重合时r 最大,3,6,6A F r MF r MA ''∴=-=-=,Rt FA M ' 中,()()222366r r -+-=,1r =9372+(舍),29372r -=,故答案为:93732r -≤≤.。
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。
2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。
在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。
(含答案)九年级数学苏科版上册课时练第2单元《2.6 正多边形与圆》(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练2.6正多边形与圆1.已知正六边形的边长是2,则该正六边形的边心距是()A.1B.C.2D.2.若一个圆内接正多边形的中心角是36°,则这个多边形是()A.正五边形B.正八边形C.正十边形D.正十八边形3.如图,正六边形ABCDEF内接于⊙O,过点O作OM⊥边BC于点M,若⊙O的半径为4,则边心距OM的长为()A.B.C.2D.4.边长为2的正六边形的面积为()A.6B.6C.6D.5.如图,在圆内接正六边形ABCDEF中,BF,BD分别交AC于点G,H.若该圆的半径为15cm,则线段GH的长为()A.cm B.5cm C.3cm D.10cm6.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠BOQ=.7.已知正六边形的半径是4,则这个正六边形的周长为.8.若一个正六边形的周长为24,则该六边形的面积为.9.已知⊙O的内接正六边形的边心距为,则⊙O的周长为.10.已知正六边形的半径是3,则这个正六边形的边长是.11.如图,正方形ABCD内接于⊙O,P为上的一点,连接DP,CP.(1)求∠CPD的度数;(2)当点P为的中点时,CP是⊙O的内接正n边形的一边,求n的值.12.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:P A =PB+PC;(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:;(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究P A、PB、PC三者之间有何数量关系,并给予证明.13.如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,CD=5cm,求⊙O的半径R.14.如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.15.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.16.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:AB•r1+AC•r2=AB•h,∴r1+r2=h(1)理解与应用如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r 1,r2,r3,试证明:.(2)类比与推理边长为2的正方形内任意一点到各边的距离的和等于;(3)拓展与延伸若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为r1,r2,…r n,请问r1+r2+…r n是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值.17.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.18.如图正方形ABCD内接于⊙O,E为任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.19.如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).20.如图,⊙O的周长等于8πcm,正六边形ABCDEF内接于⊙O.(1)求圆心O到AF的距离;(2)求正六边形ABCDEF的面积.21.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.22.如图,⊙O外接于正方形ABCD,P为弧AD上一点,且AP=1,PC=3,求正方形ABCD 的边长和PB的长.23.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.24.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t=s时,四边形PBQE为菱形;②当t=s时,四边形PBQE为矩形.25.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.参考答案1.B.2.C.3.A.4.A.5.B.6.15°.7.24.8.24.9.4π.10.3.11.解:(1)连接OD,OC,∵正方形ABCD内接于⊙O,∴∠DOC=90°.∴;(2)连接PO,OB,∵正方形ABCD内接于⊙O,∴∠COB=90°,∵点P为BC的中点,∴=,∴,∴n=360÷45=8.12.证明:(1)延长BP至E,使PE=PC,连接CE.∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°,∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP,∵△ABC、△ECP为等边三角形,∴CE=PC,AC=BC,∴△BEC≌△APC(SAS),∴P A=BE=PB+PC.(2)过点B作BE⊥PB交P A于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,∴∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(3)答:;证明:过点B,作BM⊥AP,在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.∴MP=QM,又∵∠APB=30°,∴cos30°=,∴PM=PB,∴∴13.解:连接OB,OC,OD,∵等边△ABC内接于⊙O,BD为内接正十二边形的一边,∴∠BOC=×360°=120°,∠BOD=×360°=30°,∴∠COD=∠BOC﹣∠BOD=90°,∵OC=OD,∴∠OCD=45°,∴OC=CD•cos45°=5×=5(cm).即⊙O的半径R=5cm.14.(1)证明:∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,在△ABG与△BCH中,∴△ABG≌△BCH;(2)解:由(1)知:△ABG≌△BCH,∴∠BAG=∠HBC,∴∠BPG=∠ABG=120°,∴∠APH=∠BPG=120°.15.解:(1)(Ⅰ)连接BD,∵AD=3×5=15cm,AB=5cm,∴BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴A、B、C三点在以O为圆心,以OA为半径的圆上,∴OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,∵CE⊥AB,AC=BC,∴AD是过A、B、C三点的圆的直径,∵OA=OB=OD,∴O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10﹣x,则有:,解得:,(8分)则ON=,∴直径为.16.解:(1)分别连接AP,BP,CP,作AD⊥BC于D,∴∠ADB=90°,∵△ABC是等边三角形∴AB=BC=AC=2,∠ABC=60°,∴∠BAD=30°,∴BD=1,在Rt△ABD中,由勾股定理,得∴AD=∵S△ABP +S△BCP+S△ACP=S△ABC.∴AB•r1+BC•r2+AC•r3=BC×AD,∵BC=AC=AB,∴r1+r2+r3=AD.∴r1+r2+r3=(2)如图2,∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=2.∵PE⊥AB,PF⊥BC,PG⊥DC,PH⊥AD,∴四边形PEBF是矩形,四边形PFCG是矩形,四边形PGDH是矩形,四边形PHAE是矩形,∴PE=AH,PF=BE,PG=HD,PH=AE,∴PE+PF+PG+PH=AH+BE+HD+AE=AD+AB=4.故答案为4.(3)设正n边形的边心距为r,且正n边形的边长为2,∴S正n边形=×2×r×n.r=,∵S正n边形=×2×r1+×2×r2+×2×r1+…+×2×r n,∴×2×r1+×2×r2+×2×r1+…+×2×r n=×n,∴r1+r2+…+r n=nr=(为定值).17.解:(1)连接OB,OC,∵四边形ABCD为正方形,∴∠BOC=90°,∴∠P=∠BOC=45°;(2)过点O作OE⊥BC于点E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE===4∴BC=2BE=2×4=8.解法二:如图,连接BD.∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,∴∠CBD=45°,∴BC=BD•cos45°=16×=8.18.解:(1)如图1中,连接OA、OD.∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图2中,连接CF,CE,CA,BD,作DH⊥AE于H.∵BF∥DE,AB∥CD,∴∠BDE=∠DBF,∠BDC=∠ABD,∴∠ABF=∠CDE,∵∠CF A=∠AEC=90°,∴∠DEC=∠AFB=135°,∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC==,∴AD=AC=,∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4﹣x)2+x2,解得x=或(舍弃),∴DE=DH=19.解:(1)图1:∵点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN,又∵∠APN=∠BPM,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:在图2中,∠APN=90°;在图3中,∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n中,.20.解:(1)连接OC、OD,作OH⊥CD于H,∵⊙O的周长等于8πcm,∴半径OC=4cm,∵六边形ABCDE是正六边形,∴∠COD=60°,∴∠COH=30°,∴圆心O到CD的距离=4×cos30°=2,∴圆心O到AF的距离为2cm;(2)正六边形ABCDEF的面积=×4×2×6=24cm2.21.(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.22.解:连接AC,作AE⊥PB于E,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABC=∠D=∠BCD=90°,∠ACB=45°,∴AC是⊙O的直径,△ABC是等腰直角三角形,∴∠APC=90°,AC=AB,∴AC===,∴AB==,∵∠APB=∠ACB=45°,AE⊥PB,∴△APE是等腰直角三角形,∴PE=AE=AP=,∴BE===,∴PB=PE+BE=+=2.23.(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36=54,∴矩形PBQE的面积与正六边形ABCDEF的面积之比=.24.(1)证明:∵正六边形ABCDEF内接于⊙O,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=4﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB是平行四边形.(2)解:①当P A=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.②当t=0时,∠EPF=∠PEF=30°,∴∠BPE=120°﹣30°=90°,∴此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.综上所述,t=0s或4s时,四边形PBQE是矩形.故答案为2s,0s或4s.25.解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD=2.∴⊙O的内接正四边形的边长为AD的长为2.。
人教版九年级数学上册24.3正多边形和圆(含答案)

24.3 正多边形和圆知识点1 .相等,也相等的多边形叫做正多边形 .2 .把一个圆分成几等份,连接各点所得到的多边形是 ,它的中央角等于3 .一个正多边形的外接圆的 叫做这个正多边形的中央,外接圆的叫做正多边形的半径,正多边形每一边所对的 叫做正多边形的中央角,中央到正 多边形的一边的 叫做正多边形的边心距. 4 .正n 边形的半径为 R,边心距为r,边长为a, (1)中央角的度数为:. (2)每个内角的度数为:. (3)每个外角的度数为: . (4)周长为: ,面积为: .5 .正n 边形都是轴对称图形,当边数为偶数时,它的对称轴有 条,并且还是中央对 称图形;当边数为奇数时,它只是.(填“轴对称图形〞或“中央对称图形〞) 一、选择题1 .以下说法正确的选项是 A.各边相等的多边形是正多边形 B.各角相等的多边形是正多边形 C.各边相等的圆内接多边形是正多边形 D.各角相等的圆内接多边形是正多边形 6,那么其外接圆半径与内切圆半径的大小分别为()2. (2021以津)正六边形的边心距与边长之比为3.(2021山东滨州 )假设正方形的边长为A. 6, 3亚B. 3行,3C. 6, 3D. 6• 3匹4 .如下图,正六边形ABCDEF内接于.O, 那么/ADB的度数是( ).A. 60°B. 45C. 30D. 22. 55 .半径相等的圆的内接正三角形,正方形,正六边形的边长的比为〔〕A.1: .2 : 3B. 3: 2:1C.3:2:1D.1:2:36 .圆内接正五边形ABCDE中,对角线AC和BD相交于点P,那么/APB的度数是〔〕.A. 36°B, 60° C. 72° D, 108°7 . 〔2021?自贡〕如图,点O是正六边形的对称中央,如果用一副三角板的角,借助点0〔使该角的顶点落在点O处〕,把这个正六边形的面积n等分,那么n的所有可能取值的个数是〔〕A.4B.5C.6D. 78 .如图,△ PQ幅..的内接正三角形,四边形ABC皿OO的内接正方形,BC// QR那么/A0Q的度数是〔〕A.60 °B.65 °C.72 °D.75、填空题9 .一个正n边形的边长为a,面积为S,那么它的边心距为.10 .正多边形的一个中央角为36度,那么这个正多边形的一个内角等于度.11 .假设正六边形的面积是24j3cm2,那么这个正六边形的边长是.12 .正六边形的边心距为B那么它的周长是.13 .点M、N分别是正八边形相邻的边AB、BC上的点,且AM=BN,点O是正八边形的中央,那么/ MON=.14 .边长为a的正三角形的边心距、半径〔外接圆的半径〕和高之比为15 .要用圆形铁片截出边长为4cm的正方形铁片,那么选用的圆形铁片的直径最小要_________ cm.16 .假设正多边形的边心距与边长的比为1:2,那么这个正多边形的边数是17 .一个正三角形和一个正六边形的周长相等,那么它们的面积比为18 .〔2021超州〕如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,那么正八边形的面积为_______ cm2.三、解做题19 .比拟正五边形与正六边形,可以发现它们的相同点与不同点正五边形正六边形例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等^它们的一个不同点:正五边形不是中央对称图形,正六边形是中央对称图形.请你再写出它们的两个相同点和不同点.相同点:〔1〕_________________________________________________________________ (2). 不同点:〔1〕_________________________________________________________________________(2) ___________________________________________________________________21 .如图,O O 的半径为 短,..的内接一个正多边形,边心距为 1,求它的中央角、边长、面积.22 ..O 和.O 上的一点 A.(1)作.O 的内接正方形 ABCDF 口内接正六边形 AEFCGH(2)在(1)题的作图中,如果点 E 在弧AD 上,求证:DE 是..内接正十二边形的一边.20.,如图,正六边形 距「6、面积S 6.ABCDEF 的边长为6cm,求这个正六边形的外接圆半径R 、边心第21题第22题23 .如图1、图2、图3、…、图n, M N分别是.0的内接正三角形ABC正方形ABCD正五边形ABCDE…、正n边形ABCDE•的边AR BC上的点,且BM=CN连结OM ON.圉1 图2 囹斗3图式(1)求图1中/ MON勺度数;(2)图2中/ MON勺度数是 ,图3中/ MON勺度数是(3)试探究/ MON的度数与正n边形边数n的关系(直接写出答案).知识点 1 .各边各角2 .正多边形正多边形每一边所对的圆心角3 .圆心半径圆心角 距离 5.n 轴对称图形 一、选择题 1.C 2.B 3.B 4.C 5.B 6.C 7.B解:根据圆内接正多边形的性质可知, 只要把此正六边形再化为正多边形即可,以30的倍数就可以解决问题. 360+30=12; 360+60=6; 360+90=4; 360+120=3; 360+180=2.因此n 的所有可能的值共五种情况, 应选B. 8.D 二、填空题9. 2S 10.144 11.4cm 12.12 13.45° 14.1:2:3 15.4 v2 16.na18.40 三、解做题19.相同点:〔1〕每个内角都相等〔或每个外角都相等或对角线都相等〕;〔2〕都是轴对称图形〔或都有外接圆和内切圆〕^不同点:〔1〕正五边形的每个内角是 108° ,正六边形的每个内角是120°〔2〕正五边形的对称轴是 5条,正六边形的对称轴是 6条.参考答案4.360(2)(『2)|18°n360 nar⑷皿⑸方即让周角除四 17.2:3解:连接OA,OB.过点O作OG AB于G.** AOB =60 , OA OB* AOB是等边三角形OA OB 6 即R=6O OA OB ,OG AB1 1AG -AB -63 2 2在Rt AOG 中,r6 OG JOA 2~AG 2相~3T3 点S6 1- 6 6 3 /3 54 . 3R 6 cm,「6 3 .. 3cm , S6 54 .3 cm 2.21.解:连结OB•・在•△AOC^, AC=J OA2 OC2^/T7=1AC=OC / AOCh OAC=45• .OA=OB OCL AB• .AB=2AC=2 /AOB=2 OAC=2< 45° =90°,这个内接正多边形是正方形「•面积为22=4••・中央角为90.,边长为2,面积为4.22. (1)作法:①作直径AC;②作直径BDL AC;③依次连结A、B、C D四点,四边形ABCD^为.0的内接正方形;于E、H、F、G;④分别以A、C为圆心,以OA长为半径作弧,交.0⑤顺次连结A、E、F、C G H各点.六边形AEFCG即为.0的内接正六边形(2)证实:连结OE DE.•. /AOD= 360- = 90° , /AOE= 360-= 60° ,・ ./DOB Z AOD- /AO2 90° -60 ° =30・•・DE为.0的内接正十二边形的一边 .23. (1)方法一:连结OB OC.・•・正4ABC内接于.O,・・./OBM =OCN= 30° , ZBOC=120 .X / BM=CN OB=OC・.△OB阵AOCN( SAS . ・./ BOM= /CON.・./ MON=BOC=120 .方法二:连结OA OB. ・•・正^ABC内接于.O, .•.AB=AC /OAM =OBN=30 , ZAOB=120 .又「BM= CN.•.AM=BN.X/OA=OB,・.△AO阵△BON SAS . ・./AOM = BON.・./MON =AOB=120 .(2)90 ° 72 °(3) / MON=360-.。
九年级数学上册《正多边形和圆》练习题及答案解析

九年级数学上册《正多边形和圆》练习题及答案解析学校:___________姓名:___________班级:________________一、填空题1.已知正方形ABCD,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为_______,面积为_______.2.正十二边形的中心角是_____度.二、解答题3.(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(2)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(3)如图①,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D的位置时,你能求出①A'、①D、①1与①2之间的数量关系吗?并说明理由.4.阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)材料中划横线部分应填写的内容为 .(2)如图2,正五边形ABCDE 内接于①O ,AB =2,求对角线BD 的长.5.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由;(2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.6.如图所示,正五边形的对角线AC 和BE 相交于点M .(1)求证:AC ①ED ;(2)求证:ME =AE .7.如图1,正五边形ABCDE 内接于①O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;①以F 为圆心,FO 为半径作圆弧,与①O 交于点M ,N ;①连接,,AM MN NA .(1)求ABC∠的度数.(2)AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在①O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.8.如图,ABC是等边三角形,点D、E、G分别在边AB、AC、BC上,且AD CE BG==,BE、CD、AG分别相交于点F、P、Q.求证:①PQF是等边三角形.9.如图,在圆内接正三角形ABC中,若①DOE保持120°角度不变,求证:当①DOE绕着O点旋转时,由两条半径和①ABC的两条边围成的图形,图中阴影部分的面积始终是①ABC的面积的13.10.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.三、单选题11.如图,已知①O 的半径为1,AB 是直径,分别以点A 、B 为圆心,以AB 的长为半径画弧.两弧相交于C 、D 两点,则图中阴影部分的面积是( )A .52π-B .56πC .53πD .83π-12.对于等边三角形的性质,下列说法不正确的是( )A .等边三角形的三条边都相等,三个内角也都相等;B .等边三角形的边都等于60,角都等于60°;C .等边三角形中线、高、角平分线都相等,而且都交于一点;D .等边三角形具有等腰三角形的所有性质;132,则这个多边形的内角和为( )A .720︒B .360︒C .240︒D .180︒14.如图,四边形ABCD 为⊙O 的内接正四边形,△AEF 为⊙O 的内接正三角形,若DF 恰好是同圆的一个内接正n 边形的一边,则n 的值为( )A.6B.8C.10D.1215.连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分①CHEC.整个图形不是中心对称图形D.CEH△是等边三角形参考答案及解析:1.1)a22)a【分析】设正八边形的边长为x,表示出剪掉的等腰直角三角形的直角边,再根据正方形的边长列出方程求解即可;利用正八边形的面积等于正方形的面积减去剪掉的四个等腰直角三角形的面积列式计算即可得解.【详解】解:正方形ABCD外接圆的直径就是它的对角线,∴正方形边长为a,如图所示,设正八边形的边长为x,在Rt AEL 中,LE x =,AE AL x ==,2x x a ∴+=,解得:1)x a =,即正八边形的边长为1)a .2222241)]2)AEL S S S a x a a a =-=-=-=正方形正八边形.故答案是:1)a ,22)a .【点睛】本题考查了正方形的性质,等腰直角三角形的性质,勾股定理,解题的关键是读懂题目信息,根据正方形的边长列出方程.2.30 【分析】根据正多边形的中心角公式:360n计算即可 【详解】正十二边形的中心角是:360°÷12=30°.故答案为30.【点睛】本题的关键是掌握正多边形中心角的计算公式3.(1)2①A =①1+①2;见解析;(2)2①A =①1﹣①2;见解析;(3)2(①A +①D )=①1+①2+360°,见解析【分析】(1)根据翻折的性质表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出①3、①4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,①3=EDA '∠=12(180-①1),①4=DEA '∠=12(180-①2),①①A +①3+①4=180°,①①A +12(180-①1)+12(180-①2)=180°,整理得,2①A =①1+①2;(2)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180+①2),①①A+①3+①4=180°,①①A+12(180-①1)+12(180+①2)=180°,整理得,2①A=①1-①2;(3)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180-①2),①①A+①D+①3+①4=360°,①①A+①D+12(180-①1)+12(180-①2)=360°,整理得,2(①A+①D)=①1+①2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.4.(1)AC BD AB CD AD BC ⋅=⋅+⋅;(2)1【分析】(1)由托勒密定理可直接求解;(2)连接,AD AC ,根据圆周角与弦的关系可得AD AC BD ==,设BD x =,在四边形ABCD 中,根据托勒密定理有,AC BD AB CD AD BC ⋅=⋅+⋅,建立方程即可求得BD 的长【详解】(1)由托勒密定理可得:AC BD AB CD AD BC ⋅=⋅+⋅故答案为:AC BD AB CD AD BC ⋅=⋅+⋅(2)如图,连接,AD AC ,五边形ABCDE 是正五边形,则E ABC BCD ∠=∠=∠,2AB BC CD ===AD AC BD ∴==设BD x =,AC BD AB CD AD BC ⋅=⋅+⋅即2222x x =⨯+解得1211x x ==1BD ∴=+【点睛】本题考查了托勒密定理,圆周角与弦的关系,解一元二次方程,理解题意添加辅助线是解题的关键.5.(1)点A在该反比例函数的图象上,理由见解析(2)3+【分析】(1)过点P作x轴垂线PG,连接BP,可得BP=4,G是CD的中点,所以P(4,;(2)易求D(6,0),E(8,,待定系数法求出DE的解析式为y﹣次函数即可求点Q.(1)解:点A在该反比例函数的图象上,理由如下:过点P作x轴垂线PG,连接BP,①P是正六边形ABCDEF的对称中心,CD=4,①BP=4,G是CD的中点,①sin604PG BO BC==⋅︒==①P(4,,①P在反比例函数y=kx(k>0,x>0)的图象上,①k=①反比例函数解析式为y由正六边形的性质可知,A(2,,①点A在反比例函数图象上;(2)解:由(1)得D (6,0),E (8,,设DE 的解析式为y =mx +b ,①608m b m b +=⎧⎪⎨+=⎪⎩①m b ⎧=⎪⎨=-⎪⎩①y﹣由方程y y ⎧=⎪⎨⎪=-⎩,解得x=3,①Q点横坐标为3+..【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标结合是解题的关键.6.(1)见解析;(2)见解析【分析】(1)作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒,由①EAC 的度数等于EDC 的度数的一半,得到①EAC =1144722⨯︒=︒,同理,①AED =12×72°×3=108°,则 ①EAC +①AED =180°,即可证明ED∥AC ;(2)由①AEB 的度数等于AB 的度数的一半,得到①AEB =36°,则①EMA =180°-①AEB -①EAC =72°,可推出①EAM =①EMA =72°,即可证明 EA =EM .【详解】解:①正多边形必有外接圆,①作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒, ① ①EAC 的度数等于EDC 的度数的一半,① ①EAC =1144722⨯︒=︒, 同理,①AED =12×72°×3=108°,① ①EAC +①AED =180°,① ED∥AC ;(2)①①AEB 的度数等于AB 的度数的一半,①①AEB =36°,①①EMA =180°-①AEB -①EAC =72°,① ①EAM =①EMA =72°,① EA =EM .【点睛】本题主要考查了正多边形与圆,平行线的判定,等腰三角形的判定,解题的关键在于能够熟练掌握圆的相关知识.7.(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:①正五边形ABCDE .①BC CD DE AE AB ====, ①360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ①3AEC AE =,①AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ①1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,①ON OF =,①ON OF FN ==,①OFN △是正三角形,①60OFN ∠=︒,①60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,①60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,①AMN 是正三角形;(3)①AMN 是正三角形,①2120A N A N M O =∠=︒∠.①2AD AE =,①272144AOD ∠=⨯︒=︒,①DN AD AN =-,①14412024NOD∠=︒-︒=︒,①3601524n==.【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.8.见解析【分析】先根据“SAS”证明△ACD①△CBE,得到①ACD=①CBE,结合三角形外角的性质可证①BFD=①60°,进而可证△PQF是等边三角形.【详解】证明:①△ABC是等边三角形,①①A=①BCE=60°,AC=CB,又①AD=CE,①△ACD①△CBE(SAS);①①ACD=①CBE,①①ACB=①ACD+①BCF=60°,①①BFD=①CBE+①BCF=①ACD+①BCF =60°,同理可得,①APE=60°,①△PQF是等边三角形.【点睛】本题考查了等边三角形的判定与性质,全等三角形的判定与性质,以及三角形外角的性质,综合运用各知识点是解答本题的关键.9.见解析【分析】连接OA、OB、OC,由正多边形和圆的性质可得:①OAB①①OBC①①OCA.则①1=①2,再证明①OAG①①OCF,即可求解.【详解】如图:连接OA、OB、OC,由正多边形和圆的性质可得①OAB①①OBC①①OCA.①①1=①2.设OD 交BC 于F ,OE 交AC 于G ,则①AOC =①3+①4=120°,①DOE =①5+①4=120°,① ①3=①5.∴在①OAG 和①OCF 中2135OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,① ①OAG ①①OCF .① ΔAOC ΔABC 13OFCG S S S ==四边形. 【点睛】本题考查了正多形和圆的性质,全等三角形的判定和性质,将阴影部分的面积转化为固定的三角形面积是解题关键.10.(1)2(3)-【分析】(1)根据题意可得GE DC ∥,根据平行线分线段成比例即可求解;(2)根据(1)的结论,可得AG AD AE AC ==根据旋转的性质可得DAG CAE ∠=∠,进而证明GAD EAC ∽,根据相似三角形的性质即可求解;(3)分两种情况画出图形,证明①ADG ①①ACE ,根据相似三角形的判定和性质以及勾股定理即可得出答案.(1) 解:正方形AFEG 与正方形ABCD 有公共点A ,点G 在AD 上,F 在AB 上,GE DC ∴∥AG AE DG EC ∴= EC AE DG AG∴= 四边形AFEG 是正方形 ∴AE =∴2DG AGE === (2)解:如图,连接AE ,正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,DAG CAE ∴∠=∠AG AD AE AC ==GAD EAC ∴∽∴AC CE DG AD= (3) 解:①如图,AB =AG AD =,AD AB ∴==8AG ==,16AC ==, ,,G E C 三点共线,Rt AGC △中,GC ==8CE GC GE ∴=-=,由(2)可知GAD EAC ∽,∴CE AC DG DA==()816DA CE DG AC ⋅∴==4==. ①如图:由(2)知△ADG ①①ACE ,①DG AD CE AC ==,①DG , ①四边形ABCD 是正方形,①AD =BC ,AC 16,①AG ,①AG =8, ①四边形AFEG 是正方形,①①AGE =90°,GE =AG =8,①C ,G ,E 三点共线.①①AGC =90°①CG①CE =CG +EG,①DG =综上,当C ,G ,E 三点共线时,DG 的长度为-【点睛】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.11.A【分析】连接AC 、BC ,如图,先判断△ACB 为等边三角形,则①BAC =60°,由于S 弓形BC =S 扇形BAC ﹣S △ABC ,所以图中阴影部分的面积=4S 弓形BC +2S △ABC ﹣S ⊙O ,然后利用扇形的面积公式、等边三角形的面积公式和圆的面积公式计算.【详解】解:连接BC ,如图,由作法可知AC =BC =AB =2,①①ACB 为等边三角形,①①BAC =60°,①S 弓形BC =S 扇形BAC ﹣S △ABC ,①S 阴=4S 弓形BC +2S △ABC ﹣S ⊙O=4(S 扇形BAC ﹣S △ABC )+2S △ABC ﹣S ⊙O=4S 扇形BAC ﹣2S △ABC ﹣S ⊙O=42602360π⨯⨯-222﹣π×12 53=π﹣ 故选:A .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了扇形的面积公式.12.B【分析】根据等边三角形的性质逐项分析判断即可求解.【详解】解:A . 等边三角形的三条边都相等,三个内角也都相等,故该选项正确,不符合题意;B . 等边三角形的三个角都等于60°,三条边都相等,不一定等于60,故该选项不正确,符合题意;C . 等边三角形中线、高、角平分线都相等,而且都交于一点,故该选项正确,不符合题意;D . 等边三角形具有等腰三角形的所有性质,故该选项正确,不符合题意;故选B .【点睛】本题考查了等边三角形的性质,掌握等边三角形的性质是解题的关键.13.A【分析】设AB 是正多边形的一边,OC①AB ,在直角①AOC 中,利用三角函数求得①AOC 的度数,从而求得中心角的度数,然后利用360度除以中心角的度数,求出边数,根据内角和公式即可求出多边形的内角和.【详解】如图:①2,①2,设AB 是正多边形的一边,OC①AB , 2OC OA OB k ===,,在直角①AOC 中,OC cos AOC AO ∠== ①①AOC=30°,①①AOB=60°, 则正多边形边数是:360660︒︒=, ①多边形的内角和为:()62180720-⨯︒=︒,故选:A .【点睛】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.14.D【分析】连接,,AC OD OF ,先根据圆内接正多边形的性质可得点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,从而可得1145,3022CAD BAD CAF EAF ∠=∠=︒∠=∠=︒,再根据角的和差可得15DAF ∠=︒,然后根据圆周角定理可得230DOF DAF ∠=∠=︒,最后根据正多边形的性质即可得.【详解】解:如图,连接,,AC OD OF ,四边形ABCD 为O 的内接正四边形,AEF 为O 的内接正三角形,∴点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,90,60BAD EAF ∠=︒∠=︒,1145,3022CAD BAD CAF EAF ∴∠=∠=︒∠=∠=︒, 15DAF CAD CAF ∴∠=∠-∠=︒,230DOF DAF ∴∠=∠=︒, DF 恰好是圆O 的一个内接正n 边形的一边,3603601230n DOF ︒︒∴===∠︒, 故选:D .【点睛】本题考查了圆内接正多边形、圆周角定理等知识点,熟练掌握圆内接正多边形的性质是解题关键.15.D【分析】根据正八边形和圆的性质进行解答即可.【详解】解:A .① 根据正八边形的性质, 四边形ABCH 与四边形EFGH 能够完全重合,即四边形ABCH 与四边形EFGH 全等①四边形ABCH 与四边形EFGH 的周长相等,故选项正确,不符合题意;B .连接DH ,如图1,① 正八边形是轴对称图形,直线HD 是对称轴,① HD 平分①CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.①八边形ABCDEFGH是正八边形,① B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,①DOE=360=45 8︒︒①OE=OH①①OEH=①OHE=12①DOE=22.5°①①CHE=2①OHE=45°①①HCE=①HEC=12(180°-①CHE)=67.5°①CEH△不是等边三角形,故选项错误,符合题意.故选:D.【点睛】本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.。
九上 圆 第12课时 正多边形与圆含答案

第12课时正多边形与圆1.若一个正多边形的一个外角是40°,则这个正多边形的边数是( )A.10 B.9 C.8 D.62.正六边形的边心距与边长之比为( )A.3:3 B.3:2 C.1:2 D.2:23.如图,要拧开一个边长为a=6 cm的正六边形螺帽,扳手张开的开口6至少为( )A.62cm B.12 cmC.63cm D.43cm4.下列命题中正确的是( )①矩形是正多边形;②边数相等的正多边形一定是形状相同;③正五边形的对角线都相等;④正多边形既是轴对称图形,又是中心对称图形.A.①③④B.②④C.②③D.①②③④5.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为( )A.3 B.4-3C.4 D.6-236.等边三角形的边长为a cm,则它的高为_______cm,面积为_______cm2,它的外接圆的半径为_______cm,面积为_______cm2,它的内切圆半径为_______cm,面积为_______.7.半径为2 cm的圆内接正方形的对角线长为_______cm,面积为_______cm2.8.在线段、正三角形、正方形、正五边形、正六边形这些图形中,既是轴对称图形又是中心对称图形的有_______.9.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20 cm2,则正八边形的面积为_______cm2.10.小亮从A点出发前进10 m,向右转15°,再前进10 m,又向右转15°……这样一直走下去,他第一次回到出发点A时,一共走了_______m.11.如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,CD=52cm,求⊙O的半径R.12.如图⊙O中,直径AB、CD互相垂直,试画出⊙O的一个内接正方形和外切正方形,并求出这两个正方形的面积比.13.如图,已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A、D、E三点,求该圆的半径长.14.如图,⊙O与⊙O'交于A、B两点,AB既是⊙O的内接正六边形的一边,又是⊙O'的内接正方形的一边,且AB=12,求圆心距⊙O'.15.如图,O是边长为a的正多边形的中心,将一块半径足够长,圆心角为a的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:①如图①,正三角形ABC的边被扇形纸板覆盖部分的总长度为_______;②如图②,正三角形ABC的边被扇形纸板覆盖部分的总长度为_______;(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图③,正方形ABCD的边被扇形纸板覆盖部分的总长度为_______;②如图④,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;(3)若正多边形为正五边形,如图⑤,当扇形纸板的圆心角α为_______时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为_______时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.参考答案1—5 BBCCB6.2 4a3 23a π 6a 2212a cm π 7.4 88.线段、正方形、正六边形9.4010.24011.5 cm12.1:213.2.14.6+15.解:(1)①a ;②a ;(2)①a ;②正方形ABCD 的边被扇形纸板覆盖部分的总长度为a .(3)108°.(4)()2180n n-•︒。
九年级数学正多边形和圆(基础)(含答案)

正多边形和圆(基础)一、单选题(共10道,每道10分)1.下列说法:①各边相等,各角相等的多边形是正多边形;②菱形是正多边形;③各角均为120°的六边形是正六边形;④正多边形既是轴对称图形又是中心对称图形;⑤正多边形的外角和是360°,其中正确的个数是( )A.1个B.2个C.3个D.4个答案:B解题思路:解题要点:各个角都相等,各条边都相等的多边形叫做正多边形.多边形的外角和为360°.解题过程:根据正多边形的定义,①正确菱形的各边相等,各角不一定相等,故②错误各角均为120°,各边不一定相等,故③错误边数是偶数的正多边形既是轴对称图形又是中心对称图形,而边数为奇数的正多边形是轴对称图形,不是中心对称图形,故④错误多边形的外角和为360°,故⑤正确综上,正确的是①⑤,共2个试题难度:三颗星知识点:略2.如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是( )A.60°B.70°C.72°D.144°答案:C解题思路:∵五边形ABCDE为正五边形∴∠ABC=∠C=∵CD=CB∴∠CBD=∴∠ABD=∠ABC-∠CBD=72°试题难度:三颗星知识点:略3.如果一个正多边形的中心角为30°,那么这个正多边形的边数是( )A.8B.10C.12D.36答案:C解题思路:解题要点:正多边形每一边所对的圆心角叫做正多边形的中心角解题过程:∵正多边形的中心角和为360°,正多边形的中心角是30°∴这个正多边形的边数=试题难度:三颗星知识点:略4.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是( )A.正三角形B.正四边形C.正五边形D.正六边形答案:D解题思路:解题要点:正多边形每一边所对的圆心角叫做正多边形的中心角解题过程:∵由题意得,这个正n边形的中心角为60°∴∴这个多边形是正六边形试题难度:三颗星知识点:略5.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=( )A.30°B.35°C.45°D.60°答案:A解题思路:如图,连接OA,OB∵多边形ABCDEF为正六边形∴∠AOB=又OA=OB∴∠OAB=∠AOB=60°∵直线PA与⊙O相切于点A∴∠OAP=90°∴∠PAB=∠OAP-∠OAB=90°-60°=30°试题难度:三颗星知识点:略6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( )A. B.C. D.答案:A解题思路:如图,连接AC∵正六边形螺帽的边长是2cm∴AB=BC=2,∠ABC=120°∴AC=试题难度:三颗星知识点:略7.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为( )A. B.3C.6D.答案:D解题思路:如图,连接OB,OC,可得△OBC为等边三角形,且边长为6∵OM为边心距∴OM⊥BC∴试题难度:三颗星知识点:略8.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是( )A.2B.1C. D.答案:B解题思路:如图,连接OC,过点O作ON⊥CE于点N,过点O作OM⊥BC于点M∵圆内接正三角形ACE的面积为∴S△ACE=∴CE=2∴OM=CN=∴圆的内接正六边形的边心距是1试题难度:三颗星知识点:略9.如图,已知⊙O的内接正六边形ABCDEF的边心距OM=2,则该圆的内接正三角形ACE的面积为( )A.2B.4C. D.答案:D解题思路:如图,连接OB,OC,过点O作ON⊥CE于点N∵多边形ABCDEF是正六边形∴∠COB=60°∵OB=OC∴△COB是等边三角形∴在Rt△CMO中,∠MOC=30°,OM=2∴OC=,ON=CM=∴在Rt△CNO中,CN=∴CE=2CN=4∴S△ACE=试题难度:三颗星知识点:略10.如图,正六边形ABCDEF的中心为坐标原点建立平面直角坐标系,顶点C,F在x轴上,顶点A的坐标为(1,),则顶点C的坐标为( )A. B.C.(-2,0)D.答案:C解题思路:如图,连接OA,设AB交y轴于点G由题意可知,OA=OF=OC∵A的坐标为∴AG=1,OG=∴∴OC=OA=2∴C的坐标为(-2,0)试题难度:三颗星知识点:略。
24.3正多边形和圆+同步练习+2024-2025学年人教版数学九年级上册

24.3正多边形和圆同步练习2024-2025学年人教版数学九年级上册一、单选题1.正十边形的每一个外角的度数都等于()A.135°B.45°C.36°D.144°2.如图,已知A,B、C,D、E是⊙O上的五个点,圆心O在AD上,⊙BCD=110°,则⊙AEB的度数为()A.70°B.35°C.40°D.20°3.如图,连接正五边形的两条对角线,得到的图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形不是中心对称图形C.是中心对称图形但不是轴对称图形D.既不是轴对称图形也不是中心对称图形4.如图,⊙O与正六边形OABCDE的边OA、OE分别交于点F、G,点M为劣弧FG的中点.若FM=2⊙O的半径为()A.2B6C.2D.265.用两种正多边形组合铺满地面,其中的一种是正八边形,则另一种是()A.正三角形B.正方形C.正五边形D.正六边形6.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于2RD.只有正方形的外角和等于360°7.正多边形的一个外角等于40°.则这个多边形的边数为()A.6B.9C.10D.128.如图,四边形ABCD内接于⊙O,D是AC的中点,若⊙B=70°,则⊙CAD的度数为()A.70°B.55°C.35°D.20°9.下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形10.已知矩形MNPQ的顶点M,N,P,Q分别在正六边形ABCDEF的边DE,FA,AB,CD上,且MN BC.在点M从E移向D(与D不重合)的过程中,下列的判断中,正确的是()A.矩形MNPQ的面积与周长保持不变B.矩形MNPQ的面积逐渐减小,周长逐渐增大C.矩形MNPQ的面积与周长均逐渐增大D.矩形MNPQ的面积与周长均逐渐减小二、填空题11.如图,正五边形ABCDE中,将半径OA绕点O逆时针旋转90︒得OF,连接OC,OF,CF,则∠的度数为.F12.半径为6 cm的圆内接正四边形的边长是cm.13.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的面积是米2.14.如图,点P从正八边形的顶点A出发,沿着正八边形的边顺时针方向走,第1次走1条边长到点H,第2次走2条边长到点F,3次走3条边长到点C……以此类推,第50次走到顶点.15.⊙ ABC中,⊙ ACB=120°,AC=BC=3,点D为平面内一点,满足⊙ ADB=60°,若CD的长度为整数,则所有满足题意的CD的长度的可能值为.三、解答题16.如图,四边形ABCD是⊙O的内接四边形,若⊙BOD=88°,求⊙BCD的度数.17.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若⊙E+⊙F=α,求⊙A 的度数(用含α的式子表示);(2)若⊙E+⊙F=60°,求⊙A 的度数.18.已知直线l 与⊙O 相切于点C ,AB 是⊙O 的直径,AD⊙l 于点D .(1)如图①,当直线l 与⊙O 相切于点C 时,若⊙DAC=30°,求⊙BAC 的大小; (2)如图②,当直线l 与⊙O 相交于点E 、F 时,若⊙DAE=18°,求⊙BAF 的大小. 19.一个多边形的内角和是外角和的2倍,则这个多边形是几边形?20.如图所示,四边形ABCD 内接于O AC ,为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明.(2)若21AB AD =,,求CD 的长度.21.如图,在正六边形ABCDEF 中,AB=2,P 是ED 的中点,连结AP .求AP 的长.22.如图,已知三角形ΔABC 中,AB=AC ,D 是ΔABC 的外接圆劣弧AC 上的点(不与点A ,C 重合),延长BD至E。
九年级数学下册 27.4 正多边形和圆课时练习(含解析)(新版)华东师大版

第27章 第4节 正多边形和圆课时练习一、单选题(共15小题)1.已知圆的半径是,则该圆的内接正六边形的面积是( )A .B .C .D .答案:C解析:解答:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是,高为3,因而等边三角形的面积是∴正六边形的面积, 故选C .分析:掌握正六边形的特点,它被半径分成六个全等的等边三角形.2.如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 的长分别为( )A . 2,3πB . ,πC .23πD . ,43π 答案:D解析:解答:如图所示:连接OB,∵OB=4,∴BM=2,∴,BC= 604180π⨯=43π,故选D.分析:正六边形的边长与外接圆的半径相等,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解.3.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A. R2﹣r2=a2B.a=2Rsin36°C.a=2r tan36°D.r=Rc os36°答案:A解析:解答:如图所示:∵⊙O是正五边形ABCDE的外接圆,∴∠BOC=15×360°=72°,∴∠1=12∠BOC=12×72°=36°,R2﹣r2=(12a)2=14a2,12a=Rsin36°,a=2Rsin36°;12a=r tan36°,a=2r tan36°,cos36°=rR,r=Rcos36°,所以,关系式错误的是R2﹣r2=a2.故选A.分析:由圆内接正五边形的性质求∠BOC,再由垂径定理求出∠1后利用勾股定理和解直角三角形对各选项分析判断即可.4.一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A. 5:4 B.5:2 C. 2 D.答案:A解析:解答:如左图所示:连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:52π;如右图所示: 连接MB 、MC ,∵四边形ABCD 是⊙M 的内接四边形,四边形ABCD 是正方形, ∴∠BMC=90°,MB=MC , ∴∠MCB=∠MBC=45°, ∵BC=2,∴,∴⊙M 的面积是π)2=2π, ∴扇形和圆形纸板的面积比是52π÷(2π)=54. 故选:A .分析:求出扇形和圆的半径,根据扇形和圆的面积公式求出面积,最后求出比值. 5.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF 的对称中心与原点O 重合,点A 在x 轴上,点B 在反比例函数ky x=位于第一象限的图象上,则k 的值为( )A .B .C .D .答案:B解析:解答:如图所示:连接OB ,过B 作BG ⊥OA 于G , ∵ABCDEF 是正六边形, ∴∠AOB=60°, ∵OB=OA ,∴△AOB 是等边三角形, ∴OB=OA=AB=6, ∵BG ⊥OA , ∴∠BGO=90°, ∴∠OBG=30°,∴OG=12OB=3,由勾股定理得:,即B 的坐标是(3,, ∵B 点在反比例函数ky x上,∴k , 故选B .分析:连接OB ,过B 作BG ⊥OA 于G ,得出等边三角形OBA ,求出OB ,求出OG 、BG ,得出B 的坐标,即可.6.正八边形的中心角是( ) A . 45° B . 135°C . 360°D . 1080°答案:A解析:解答:正八边形的中心角等于360°÷8=45°; 故选A分析:中心角是正多边形相邻的两个半径的夹角.7.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于( )A .B . 20C . 18D .答案:B解析:解答:如图所示:作出正方形ABCD .△AEF 中,AE=x ,则AF=x ,x x .则正方形的边长是()x .x ()x =20,解得:x 2﹣1). 则阴影部分的面积是:2[x ()x ﹣2×12x 2]=2+1)x 2=2+1﹣1)=20. 故选B .分析:设直角△AEF 中,AE=x ,则AF=x ,x x .根据空白部分的面积是20即可列方程求得x 的值,利用矩形和三角形的面积求解.8.如图,已知边长为2cm 的正六边形ABCDEF ,点A 1,B 1,C 1,D 1,E 1,F 1分别为所在各边的中点,则图中阴影部分的总面积是( )A .B .C .D . 答案:A解析:解答:如图所示:边长是2cm 的正六边形ABCDEF 的面积是:6×12×sin60°×22cm 2. 作出连接中心O ,连接OD 1,OC . 在直角△OCD 1中,∠O=30°,CD 1=12CD=1(cm ).则OD 1CD 1,OG=12OD 1,C 1D 1则A 1B 1C 1D 1E 1F 1的面积是:6×12)2cm 2.则图中阴影部分的总面积是12().故选A .分析:六边形ABCDEF 和A 1B 1C 1D 1E 1F 1都是正多边形,两个多边形的面积的差的一半就是阴影部分的面积.9.如图,在正八边形ABCDEFGH 中,连接AC ,AE ,则AEAC的值是( )A . 1B .C . 2D .答案:B解析:解答:如图所示:连接AG 、GE 、EC ,则四边形ACEG 为正方形,故AEAC. 故选B .分析:连接AG 、GE 、EC ,四边形ACEG 为正方形,根据正方形的性质求解. 10.边长为1的正六边形的内切圆的半径为( )A . 2B . 1C . 12D . 答案:D解析:解答:如图所示:连接OA 、OB ,OG ;∵六边形ABCDEF 是边长为1的正六边形, ∴△OAB 是等边三角形, ∴OA=AB=1,,∴边长为a.故选D.分析:利用正六边形中的等边三角形的性质求解.11.若正多边形的一个外角为60°,则这个正多边形的中心角的度数是()A.30°B.60°C.90°D.120°答案:B解析:解答:∵正多边形的一个外角为60°,∴正多边形的边数为36060=6,其中心角为3606=60°.故选B.分析:由正多边形的外角和是360°求出正多边形的边数,再求出中心角.12.如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED的度数为()A.30°B.45°C.50°D.60°答案:B解析:解答:∵正六边形ADHGFE的内角为120°,正方形ABCD的内角为90°,∴∠BAE=360°﹣90°﹣120°=150°,∵AB=AE,∴∠BEA=12×(180°﹣150°)=15°,∵∠DAE=120°,AD=AE,∴∠AED=1801202︒-︒=30°, ∴∠BED=15°+30°=45°. 故选B .分析:由正六边形的内角为120°,正方形的内角为90°可得∠BEA=30°,∠AED=30°后求解.13.如图,边长为a 的正六边形,里面有一菱形,边长也为a ,空白部分面积为S 1,阴影部分面积为S 2,则12S S =( )A . 12 B . 13C .D .答案:A解析:解答:如图所示:连接BC ,找到正六边形的中心D ,作△DEF ,∵正六边形边长为a ,菱形边长为a 且有一角为60°, ∴S △DEF =S △ABC , ∴S 1=2S △ABC ,S 2=6S △ABC ﹣2S △ABC =4S △ABC ; ∴12S S =24ABC ABCS S=12. 故选A .分析:连接BC,找到正六边形的中心D,作△DEF,求出S1=2S△ABC,S2=6S△ABC﹣2S△ABC=4S△ABC;再求比值.14.正多边形的中心角是36°,那么这个正多边形的边数为()A. 10 B.8 C.6 D.5答案:A解析:解答:设这个正多边形的边数是n,∵正多边形的中心角是36°,∴360n=36°,解得n=10.故选A.分析:设正多边形的边数是n,根据正多边形的中心角是36°求出这个正多边形的边数.152,则此正多边形的边数是()A.八B.六C.四D.三答案:B解析:解答:根据勾股定理得:22)2=1,∴正多边形的边长为2,∴正多边形的中心角为60°,∴此正多边形是正六边形,故选B.分析:由正多边形的内切圆的半径,外接圆的半径,正多边形的边长的一半构成直角三角形,可得出正多边形的中心角,从而得出正多边形的边数.二、填空题(共5小题)16.已知正六边形ABCDEF,则正六边形的半径为cm.答案:2解析:解答:如图所示:连接OA、OB,过O作OD⊥AB,∵多边形ABCDEF是正六边形,∴∠OA D=60°,∴OD=OA•sin∠,解得:AO=2.故答案为:2.分析:画出图形,连接OA、OB,过O作OD⊥AB,根据正六边形的性质及锐角三角函数的定义求解.17.如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有个.答案:8解析:解答:等边三角形有△AML、△BHM、△CHI、△DIJ、△EKJ、△FLK、△ACE、△BDF 共有8个.故答案是:8.分析:在正六边形的六个顶点是圆的六等分点,可求得图中每个角的度数,即可判断等边三角形的个数.18,则这个正六边形的边长为.答案:2解析:解答:如图所示:,∴,∠OAB=60°,∴AB= tan 60OB =1, ∴AC=2AB=2.故答案为:2分析:用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理求解.19.如图,将正六边形ABCDEF 放在直角坐标系中,中心与坐标原点重合,若A 点的坐标为(﹣1,0),则点C 的坐标为 .答案:(12) 解析:解答:如图所示:连接OE ,由正六边形是轴对称图形知:在R t △OEG 中,∠GOE=30°,OE=1.∴GE=12,.∴A (﹣1,0),B (﹣12),C (12)D (1,0),E (12),F (﹣12,).故答案为:(12) 分析:连接OE ,由正六边形是轴对称图形,设EF 交Y 轴于G ,则∠GOE=30°;在R t △GOE中,则GE=12,.可求得E 的坐标,和E 关于Y 轴对称的F 点的坐标,其他坐标类似.20.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 .答案:54°解析:解答:如图所示:连接OB ,则OB=OA ,∴∠BAO=∠ABO ,∵点O 是正五边形ABCDE 的中心,∴∠AOB=3605=72°, ∴∠BAO=12(180°﹣72°)=54°; 故答案为:54°.分析:连接OB ,则OB=OA ,得出∠BAO=∠ABO ,再求出正五边形ABCDE 的中心角∠AOB 的度数,由等腰三角形的性质和内角和定理即可得出结果.三、解答题(共5小题)21.如图:⊙O的内接正方形ABCD,E为边CD上一点,且DE=CE,延长BE交⊙O于F,连结FC,若正方形边长为1,求弦FC的长.答案:解答:如图所示:连接BD.∵CE= 12×1=12,∴,在R t△ABD中,,∵∠DBE=∠FCE,∠CFE=∠BDE,∴△DEB∽△FEC,∴FC CEBD BE=,,∴.解析:分析:连接BD,构造△DBE,然后证出△DBE∽△FCE,列出FC CEBD BE=,计算FC.22.已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A、D、E三点,求该圆半径的长.答案:解答:如图所示:作AF⊥BC,垂足为F,并延长AF交DE于H点.∵△ABC为等边三角形,∴AF垂直平分BC,∵四边形BDEC为正方形,∴AH垂直平分正方形的边DE.又∵DE是圆的弦,∴AH必过圆心,记圆心为O点,并设⊙O的半径为r.在R t△ABF中,∵∠BAF=30°,.∴OH=AF+FH﹣+2﹣r.在R t△ODH中,OH2+DH2=OD2.∴(﹣r)2+12=r2.解得r=2.∴该圆的半径长为2.解析:分析:作AF⊥BC,垂足为F,并延长交DE于H点.根据轴对称,则圆心必定在AH 上.设其圆心是O,连接OD,OE.根据等边三角形的性质和正方形的性质,可求AH,DH,设圆的半径是r.Rt BOH中,根据勾股定理列方程求解.23.如图,四边形ABCD内接于大圆O,且各边与小圆相切于点E,F,G,H.求证:四边形ABCD是正方形.答案:解答:证明:连结OE、OF、OG、OH.∵四边形ABCD与小圆分别切于点E、F、G、H,∴OE=OF=OG=OH,OE⊥AB、OF⊥BC、OG⊥CD、OH⊥AD.∴AB=BC=CD=DA.∴A、B、C、D是大圆O的四等分点.∴四边形ABCD是正方形.解析:分析:连结OE、OF、OG、OH,利用切线的性质以及弦心距相等则弦相等可证明A、B、C、D是大圆O的四等分点,进而可证明四边形ABCD是正方形.24.已知,如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,AB、AC的中垂线分别交⊙O于点E、F.证明:五边形AEBCF是⊙O的内接正五边形.答案:解答:证明:如图所示:连接BF,CE,∵AB=AC,∴∠ABC=∠ACB,又∵∠BAC=36°,∴∠ABC=∠ACB=72°.又∵AB、AC的中垂线分别交⊙O于点E、F,∴AF=CF,AE=BE,∴∠BAC=∠BCE=∠ACE=∠ABF=∠FBC=36°,====,∴AE AF BE BC FC∴AE=AF=BE=BC=FC,∴∠EAF=∠AFC=∠FCB=∠CBE=∠BEA.∴五边形AEBCD为正五边形.解析:分析:要求证五边形是正五边形,就是证明这个五边形的五条边所对的弧相等.25.如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.(1)求这个镶嵌图案中一个正三角形的面积;答案:解答:如图所示:过A作AD⊥BC于D,∵△ABC是等边三角形,BC=2,∴BD=CD=12BC=1,在△BDA 中由勾股定理得:,∴△ABC 的面积是12BC•AD=12,(2)如果在这个镶嵌图案中随机确定一个点O ,那么点O 落在镶嵌图案中的正方形区域的概率为多少?(结果保留二位小数)答案:解答:由图形可知:由10个正三角形,11个正方形,2个正六边形,正方形的面积是2×2=4,连接OA 、OB ,∵图形是正六边形,∴△OAB 是等边三角形,且边长是2,,∴正六边形的面积是=6∴点O 落在镶嵌图案中的正方形区域的概率是:≈0.54, 答:点O 落在镶嵌图案中的正方形区域的概率约为0.54.解析:分析:(1)过A 作AD ⊥BC 于D ,根据等边△ABC ,得到BD ,由勾股定理求出AD ,根据△ABC 的面积即可求出答案;(2)由图形得到由10个正三角形,11个正方形,2个正六边形,分别求出三个图形的面积,即可求出点O 落在镶嵌图案中的正方形区域的概率.。
人教版九年级数学上册圆一章正多边形和圆练习题及答案

初中数学试卷金戈铁骑整理制作九年级数学圆一章正多边形和圆练习题及答案一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化 2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3 3.正五边形共有__________条对称轴,正六边形共有__________条对称轴. 4.中心角是45°的正多边形的边数是__________.5.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________. 二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴. 2.同圆的内接正三角形与内接正方形的边长的比是( )A.26 B.43 C.36D.343.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3 4.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63 B.43 C.332 D.332.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形 3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.4.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-26.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-38.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-49.用等分圆周的方法画出下列图案:图24-3-510.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).参考答案一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化 思路解析:由题意知圆的半径扩大一倍,则相应的圆内接正n 边形的边长也扩大一倍,所以相应的圆内接正n 边形的边长与半径之比没有变化. 答案:D2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3 思路解析:如图,设正三角形的边长为a ,则高AD=23a ,外接圆半径OA=33a ,边心距OD=63a , 所以AD ∶OA ∶OD=3∶2∶1. 答案:A3.正五边形共有__________条对称轴,正六边形共有__________条对称轴.思路解析:正n 边形的对称轴与它的边数相同. 答案:5 64.中心角是45°的正多边形的边数是__________.思路解析:因为正n 边形的中心角为n ︒360,所以45°=n︒360,所以n=8.答案:85.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________.思路解析:由切线长定理及三角形周长可得. 答案:6二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴. 思路解析:因为正n 边形的外角为n ︒360,一个内角为nn ︒•-180)2(,所以由题意得n ︒360=32·nn ︒•-180)2(,解这个方程得n=5. 答案:52.同圆的内接正三角形与内接正方形的边长的比是( )A.26 B.43 C.36D.34思路解析:画图分析,分别求出正三角形、正方形的边长,知应选A. 答案:A3.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3 思路解析:周长相等的正多边形的面积是边数越多面积越大. 答案:B4.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1思路分析:求作⊙O 的内接正六边形和正方形,依据定理应将⊙O 的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE 是⊙O 内接正十二边形的一边,由定理知,只需证明DE 所对圆心角等于360°÷12=30°.(1)作法: ①作直径AC; ②作直径BD ⊥AC;③依次连结A 、B 、C 、D 四点, 四边形ABCD 即为⊙O 的内接正方形;④分别以A 、C 为圆心,OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点. 六边形AEFCGH 即为⊙O 的内接正六边形. (2)证明:连结OE 、DE. ∵∠AOD =4360︒=90°,∠AOE =6360︒=60°, ∴∠DOE =∠AOD -∠AOE =30°. ∴DE 为⊙O 的内接正十二边形的一边. 三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63 B.43 C.332 D.33思路解析:正六边形的两条平行边之间的距离为1,所以边心距为0.5,则边长为33. 答案:D2.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形 思路解析:将问题转化为直角三角形,由直角边的比知应选B. 答案:B3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.思路解析:转化为直角三角形求出正六边形的边长,然后用P 6=6a n 求出周长.答案:184.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.答案:144.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-2思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半径R 3与R 6的平方比即可.解:设正三角形外接圆⊙O 1的半径为R 3,正六边形外接圆⊙O 2的半径为R 6,由题意得R 3=33AB ,R 6=AB ,∴R 3∶R 6=3∶3.∴⊙O 1的面积∶⊙O 2的面积=1∶3. 6.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.思路分析:由正多边形的内角与外角公式可求. 解:设此正多边形的边数为n ,则各内角为n n ︒•-180)2(,外角为n︒360,依题意得n n ︒•-180)2(-n︒360=100°.解得n =9. 7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-3思路分析:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,设大圆的圆心为O ,则点O 是正△O 1O 2O 3的中心,求出这个正△O 1O 2O 3外接圆的半径,再加上⊙O 1的半径即为所求.解:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O1O2O3,则正△O1O2O3外接圆的半径为334cm,所以大圆的半径为334+2=3634(cm).8.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-4答案:略.9.用等分圆周的方法画出下列图案:图24-3-5作法:(1)分别以圆的4等分点为圆心,以圆的半径为半径,画4个圆;(2)分别以圆的6等分点为圆心,以圆的半径画弧.10.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).答案:(1)方法一:连结OB、OC.∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN.∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON.∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=n360.。
人教版九年级数学上册正多边形和圆2同步练习题含答案

第24章 24.3《正多边形和圆》同步练习及答案 (2)1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(4)2.以下说法正确的是 A .每个内角都是120°的六边形一定是正六边形. B .正n 边形的对称轴不一定有n 条. C .正n 边形的每一个外角度数等于它的中心角度数.D .正多边形一定既是轴对称图形,又是中心对称图形.(3)(2006年天津市)若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .1:2:3B .3:2:1C .1:2:3D . 3:2:14. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为______________________.5.如图,正方形ABCD 内接于⊙O ,点E 在AD 上,则∠BEC= .6.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.7.(2006年威海市)如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则AB B A 11的值为( )A .21 B .22 C .41 D .42 8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .9.如图五边形ABCDE 内接于⊙O,∠A =∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动。
九年级数学上册24-3《正多边形与圆》基础课时练习题(含答案)

九年级数学上册24-3《正多边形与圆》基础课时练习题(含答案)1、正十边形的中心角等于度.2、如图,正五边形ABCDE内接于⊙O,点P为DE⌢上的一点(点P不与点D重合),则∠CPD的度数为()A. 30°B. 36°C. 60°D. 72°3、已知一个正六边形的外接圆半径为2,则这个正六边形的周长为.4、若正六边形的边长为2,则它的半径为.5、若正六边形的内切圆半径为3,则其外接圆半径为.6、若正方形的外接圆半径为2,则其内切圆半径为().A. √2B. 2√2C. √2D. 127、如图,正六边形ABCDEF内接于⊙O,点M是边CD的中点,连接AM,若⊙O的半径为2,则AM=.8、一个正方形的内切圆半径,外接圆半径与这个正方形边长的比为.9、如图,⊙O的外切正八边形ABCDEFGH的边长2,则⊙O的半径为().A. 2B. 1+√2C. 3D. 2+√210、从一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边长是().A. 10B. 5√2C. 5√3D. 10√311、圆内接正八边形,一边所对的圆心角为.12、如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是.13、一个正多边形的中心角为40°,则这个正多边形的一个外角度数是.14、若正六边形的边长为2,则它的面积为.15、半径为5的圆内接正六边形的边心距为.16、若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是.17、如图,⊙O的半径为6,如果弦AB是⊙O内接正方形的一边,弦AC是⊙O内接正十二边形的一边,那么弦BC的长为.18、ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.19、如图,正六边形ABCDEF内接于⊙O,若⊙O的内接正三角形ACE的面积为48√3,试求正六边形的周长.20、已知正六边形的边长为2,则它的内切圆的半径是,扇形AOB的面积.1 、【答案】36;【解析】正十边形的中心角等于:360∘10=36∘.故答案为:36.2 、【答案】 B;【解析】解:如图,连接OC,OD,∵五边形ABCDE是正五边形,∴∠COD=360°5=72°,∴∠CPD=12∠COD=36°.故选:B.3 、【答案】12;【解析】如图所示,连接OB、OC,∵此六边形是正六边形,∴∠BOC=360°6=60°,∵OB=OC=2,∴△BOC是等边三角形,∴OB=OC=BC=2,所以正六边形周长=6×2=12.4 、【答案】2;【解析】如图所示,连接OB、OC,∵此六边形是正六边形,∴∠BOC=360°6=60°,∵OB=OC,∴△BOC是等边三角形,∴OB=OC=BC=2,∴它的半径为2,故答案为2.5 、【答案】2√3;【解析】如图,连接OA,OB,作OG⊥AB于G,则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA=OGsin60°=√32=2√3,∴正六边形的内切圆半径为2,则其外接圆半径为2√3.6 、【答案】 A;【解析】方法一 : 如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,OA=√2.∴OE=√22方法二 : 如图 :由“正方形的外接圆半径为2”可得OB=2,∠OBC=45°,由切线性质可得∠OCB=90°,所以△OBC为等腰直角三角形,由勾股定理得OC2+BC2=OB2.OB=√2.所以OC=√227 、【答案】√13;【解析】连接OM,AD,过M 作MN ⊥AD 交AD 于点N ,∵六边形ABCDEF 为正六边形,∴∠CDO =60°,∵M 为CD 中点,∴∠OMD =90°,∴∠DOM =30°,DM =CM =1,∴OM =√3,在Rt △OMN 中,MN =√32,ON =32, ∴AN =AO +ON =2+32=72,MN =√32, ∴在Rt △AMN 中,AM =√AN 2+MN 2=√(72)2+(√32)2=√13.8 、【答案】 1:√2:2;【解析】 如图所示,设正方形边长a ,连接OA 、OB ,过O 作OE ⊥AB ,∵∠AOB =360°4=90°,OA =OB ,∴∠AOE=12∠AOB=12×90°=45°,∴AE=OE=a2,OA=AEsin45°=a2√22=√22a,∴内切圆半径、外接圆半径与这个正方形边长的比为:OE:OA:AB=a2:√22a:a=1:√2:2,故答案为:1:√2:2.9 、【答案】 B;【解析】设DE与⊙O相切于点N,连接OD、OE、ON,作DM⊥OE于M,如图所示:则ON⊥DE,DE=2,OD=OE,∠DOE=360°8=45°,∵DM⊥OE,∴△ODM是等腰直角三角形,∴DM=OM,OE=OD=√2DM,设OM=DM=x,则OD=OE=√2x,EM=OE−OM=(√2−1)x,在Rt△DEM中,由勾股定理得:x2+(√2−1)2x2=22,解得:x2=2+√2,∵△ODE的面积=12DE×ON=12OE×DM,∴ON=OE×DMDE =√2x22=√2(2+√2)2=√2+1,即⊙O的半径为:1+√2.故选B.10 、【答案】 A;【解析】∵圆内接正六边形的边长等于圆的半径,∴一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边长为10.故选A.11 、【答案】45°;=45°.【解析】正八边形,即圆被8等分,圆心角度数为360°812 、【答案】72°;【解析】∵五边形ABCDE为正五边形,(5−2)×180°=108°,∴∠ABC=∠C=15∵CD=DB,(180°−108°)=36°,∴∠CBD=12∴∠ABD=∠ABC−∠CBD=72°.故答案为:72°.13 、【答案】40°;【解析】∵正多边形一个中心角为40°,∴正多边形的边数为:360°÷40°=9,∴正九边形每个外角为:360°÷9=40°.故答案为:40°.14 、【答案】6√3;【解析】如图:O点为正六边形的中心,AB为正六边形其中一个边长,过点O向AB作垂线,垂足为G,∵此多边形为正六边形,=60°,∴∠AOB=360°6∵OA=OB,∴△OAB是等边三角形,∴OA=OB=AB=2,∴OG=OA⋅cos30°=2×√32=√3,∴S△OAB=12×AB×OG=12×2×√3=√3,∴S六边形=6S△OAB=6×√3=6√3.15 、【答案】5√32;【解析】如图连接对角线可知过O作OH⊥CD,∠OCD=3606=60°,∵OC=OD,∴△OCD为等边三角形,又∵OC=5,OH⊥CD,∴CH=12CD=52,在Rt△CHO中由勾股定理得OH=√OC2−CH2=5√32,∴边心距为5√32.16 、【答案】√3或√3:2;2【解析】设该正多边形为正n边形,则(n−2)⋅180=120n,解得n=6,r,设正六边形外接圆半径为r,则内切圆半径是正六边形的边心距√32.∴两者之比为√3217 、【答案】6√3;【解析】连接OA,OB,OC,过O作OH⊥BC于H,BC,∴∠OHB=90°,CH=BH=12∵AB是⊙O内接正方形的一边,AC是⊙O内接正十二边形的一边,∴∠AOB=90°,∠AOC=30°,∴∠COB=∠AOB+∠AOC=120°,∵OC=OB=6,∴∠OCB=∠OBC=30°,在Rt△OBH中,∠OBH=30°,OB=3,∴OH=12∴BH=√OB2−OH2=3√3,∴BC=2BH=6√3.π;18 、【答案】14,【解析】联结切点F与圆心O,则OE2−OF2=EF2=14∴S环=π(OE2−OF2)=14π.19 、【答案】正六边形的周长为48.;【解析】连接OA,作OH⊥AE于点H,则∠OAH=30°,在Rt△OAH中,设OA=R,则OH=12R,由勾股定理可得AH=√OA2−OH2=√R2−(12R)2=√32R,∴3√34R2=48√3,∴R=8.故正六边形的周长为48.20 、【答案】√3;23π;【解析】如图,连接OA、OB,OG,∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA⋅sin60°=2×√32=√3,∴边长为2的正六边形的内切圆的半径为√3,S扇形OAB=60360π⋅22=23π.。
人教版九年级数学上《正多边形和圆》练习题含答案

24.3正多边形和圆知识点1正多边形与圆的关系1.如果一个四边形的外接圆与内切圆是同心圆,那么这个四边形一定是()A.矩形B.菱形C.正方形D.不能确定2.如图24-3-1所示,已知△ABC是⊙O的内接等腰三角形,顶角∠BAC=36°,弦BD,CE分别平分∠ABC,∠ACB.求证:五边形AEBCD是正五边形.图24-3-1知识点2与正多边形有关的计算3.如果一个正多边形的中心角为72°,那么这个正多边形的边数是()A.4 B.5 C.6 D.74.若正方形的边长为6,则其内切圆半径的大小为()A.3 2 B.3 C.6 D.6 25.2016·南平若正六边形的半径为4,则它的边长等于()A.4 B.2 C.2 3 D.4 36.如图24-3-2所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()图24-3-2A.60°B.45°C.30°D.22.5°7.正八边形的中心角等于________度.8.将一个边长为1的正八边形补成如图24-3-3所示的正方形,这个正方形的边长等于________.(结果保留根号)图24-3-39.2017·资阳边长相等的正五边形和正六边形如图24-3-4所示拼接在一起,则∠ABC =________°.图24-3-410.如图24-3-5,已知正五边形ABCDE,M是CD的中点,连接AC,BE,AM.求证:(1)AC=BE;(2)AM⊥CD.图24-3-5知识点3与正多边形有关的作图11.已知⊙O和⊙O上的一点A,作⊙O的内接正方形和内接正六边形(点A为正方形和正六边形的顶点).12.如图24-3-6所示,⊙O的内接多边形的周长为3,⊙O的外切多边形的周长为3.4,则下列各数中与此圆的周长最接近的是()图24-3-6A. 6B.8C.10D.1713.若AB是⊙O内接正五边形的一边,AC是⊙O内接正六边形的一边,则∠BAC等于()A.120°B.6°C.114°D.114°或6°14.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A. 2 B.2 2-2C.2- 2 D.2-115.2017·达州以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.22 B.32 C. 2 D. 316.2017·云南如图24-3-7,边长为4的正方形ABCD外切于⊙O,切点分别为E,F,G,H.则图中阴影部分的面积为________.图24-3-717.如图24-3-8,正六边形ABCDEF内接于⊙O,若⊙O的内接正三角形ACE的面积为48 3,试求正六边形的周长.图24-3-818.如图24-3-9①②③④,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDEFG…的边AB,BC上的点,且BM=CN,连接OM,ON.图24-3-9(1)求图①中∠MON的度数;(2)图②中,∠MON的度数是________,图③中∠MON的度数是________;(3)试探究∠MON的度数与正n边形的边数n的关系(直接写出答案).教师详解详析1.C [解析] 只有正多边形的外接圆与内切圆才是同心圆,故这个四边形是正方形.故选C .2.证明:∵△ABC 是等腰三角形,且∠BAC =36°, ∴∠ABC =∠ACB =72°.又∵BD 平分∠ABC ,CE 平分∠ACB , ∴∠ABD =∠CBD =∠BCE =∠ACE =36°, 即∠BAC =∠ABD =∠CBD =∠BCE =∠ACE , ∴BC ︵=AD ︵=CD ︵=BE ︵=AE ︵,∴A ,E ,B ,C ,D 是⊙O 的五等分点, ∴五边形AEBCD 是正五边形.3.B [解析] 设这个正多边形为正n 边形,由题意可知72n =360,解得n =5.故选B . 4.B5.A [解析] 正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边组成一个等边三角形.因为正六边形的外接圆半径等于4,所以正六边形的边长等于4.6.C [解析] 连接OB ,则∠AOB =60°, ∴∠ADB =12∠AOB =30°.7.45 8.1+ 2[解析] 如图,∵△BDE 是等腰直角三角形,BE =1,∴BD =22, ∴正方形的边长等于AB +2BD =1+ 2.9.24 [解析] 正六边形的一个内角=16×(6-2)×180°=120°,正五边形的一个内角=15×(5-2)×180°=108°,∴∠BAC =360°-(120°+108°)=132°.∵两个正多边形的边长相等,即AB =AC ,∴∠ABC =12×(180°-132°)=24°.10.证明:(1)由五边形ABCDE 是正五边形,得AB =AE ,∠ABC =∠BAE ,AB =BC , ∴△ABC ≌△EAB ,∴AC =BE.(2)连接AD ,由五边形ABCDE 是正五边形,得AB =AE ,∠ABC =∠AED ,BC =ED , ∴△ABC ≌△AED , ∴AC =AD.又∵M 是CD 的中点, ∴AM ⊥CD. 11.解:如图所示.作法:①作直径AC ;②作直径BD ⊥AC ,依次连接AB ,BC ,CD ,DA ,则四边形ABCD 是⊙O 的内接正方形;③分别以点A ,C 为圆心,OA 的长为半径画弧,交⊙O 于点E ,H 和F ,G ,顺次连接AE ,EF ,FC ,CG ,GH ,HA ,则六边形AEFCGH 为⊙O 的内接正六边形.12.C [解析] 根据两点之间,线段最短可得圆的周长大于3而小于3.4,选项中只有C 满足要求.13.D [解析] 分两种情况考虑:(1)如图①所示,∵AB 是⊙O 内接正五边形的一边,∴∠AOB =360°5=72°.∵AC 是⊙O 内接正六边形的一边,∴∠AOC =360°6=60°,∴∠BOC =72°-60°=12°,∴∠BAC =12∠BOC =6°.(2)如图②所示,∠AOB =72°,∠AOC =60°,∴∠OAB =54°,∠OAC =60°,∴∠BAC =60°+54°=114°.综上所述,可知选D .14.B [解析] ∵等腰直角三角形的外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边的长均为2 2.如图,根据三角形内切圆的性质可得CD =CE =r ,AD =BE =AO =BO =2 2-r ,∴AB =AO +BO =4 2-2r =4,解得r =2 2-2.故选B .15.A [解析] 如图①,∵OC =2,∴OD =1;如图②,∵OB =2,∴OE =2; 如图③,∵OA =2,∴OD =3, 则该三角形的三边长分别为1,2, 3. ∵12+(2)2=(3)2, ∴该三角形是直角三角形,∴该三角形的面积是12×1×2=22.故选A .16.2π+4 [解析] 如图,连接HO ,并延长交BC 于点P ,连接EO ,并延长交CD 于点M.∵正方形ABCD 外切于⊙O , ∴∠A =∠B =∠AHP =90°,∴四边形AHPB 为矩形,∴∠OPB =90°. 又∵∠OFB =90°,∴点P 与点F 重合, ∴HF 为⊙O 的直径, 同理:EG 为⊙O 的直径.由∠D =∠OGD =∠OHD =90°且OH =OG 知,四边形DGOH 为正方形. 同理:四边形OGCF 、四边形OFBE 、四边形OEAH 均为正方形, ∴DH =DG =GC =CF =2,∠HGO =∠FGO =45°, ∴∠HGF =90°,GH =GF =GC 2+CF 2=2 2, 则阴影部分面积=12S ⊙O +S △HGF=12·π·22+12×2 2×2 2 =2π+4. 故答案为2π+4.17.解:如图,连接OA ,作OH ⊥AC 于点H ,则∠OAH =30°.在Rt △OAH 中,设OA =R ,则OH =12R ,由勾股定理可得AH =OA 2-OH 2=R 2-(12R )2=123R. 而△ACE 的面积是△OAH 面积的6倍,即6×12×12 3R ×12R =48 3,解得R =8, 即正六边形的边长为8,所以正六边形的周长为48.18.解:(1)方法一:如图①,连接OB ,OC.图①∵正三角形ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120°.又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN ,∴∠BOM =∠CON ,∴∠MON =∠BOC =120°.方法二:如图②,连接OA ,OB.图②∵正三角形ABC内接于⊙O,∴AB=BC,∠OAM=∠OBN=30°,∠AOB=120°. ∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON,∴∠AOM=∠BON,∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=360°n.。
初中数学中考正多边形与圆的关系(含答案解析)

正多边形与圆的关系一、选择题(本大题共10小题,共30.0分)1.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a2.若正方形的外接圆半径为2,则其内切圆半径为()A. √2B. 2√2C. √22D. 13.一个正方形的边长为a,则它的内切圆的面积为()A. 34a2π B. 14a2π C. 32a2π D. a2π4.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A. 45°B. 60°C. 72°D. 90°5.有下列四个命题:①各边相等的圆内接多边形是正多边形;②各边相等的圆外切多边形是正多边形;③各角相等的圆内接多边形是正多边形;④各角相等的圆外切多边形是正多边形.其中正确的个数为()A. 1B. 2C. 3D. 46.下列正多边形,通过直尺和圆规不能作出的是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.正六边形的半径与边心距之比为()A. 1:√3B. √3:1C. √3:2D. 2:√38.若正六边形的边长为4,则它的外接圆的半径为().A. 4√3B. 4C. 2√3D. 29.正四边形的边心距为1,则它的半径是A. 2√2B. √2C. 2D. 110.如图,五边形ABCDE是⊙O的内接正五边形,则∠OCD的度数是()A. 60°B. 54∘C. 76°D. 72°二、填空题(本大题共10小题,共30.0分)11.若点O是正六边形ABCDEF的中心,∠MON=120°且角的两边分别交六边形的边AB、EF于M、N两点。
若多边形AMONF的面积为2√3,则正六边形ABCDEF的边长是____.12.半径为2的圆内接正六边形的边心距等于_____.13.圆内接正六边形的边长为10cm,它的边心距等于__________cm.14.正六边形的半径为1,则正六边形的面积为____________________;15.如图,点O为正六边形ABCDEF的中心,连接EA,则∠AED=____度;若OA=4,则该正六边形的面积为__________.16.半径为4的正n边形边心距为2√3,则此正n边形的边数为_____.17.已知一个正六边形的外接圆半径为2,则这个正六边形的周长为________.18.如图,⊙O是正五边形ABCDE的外接圆,则∠ADC的度数是________.19.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是______°.20.半径为3的圆的内接正方形的边长是________.答案和解析1.【答案】A【解析】【分析】此题主要考查了正多边形和圆的性质,解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.根据三角函数即可求解.【解答】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=12R.四边形的边心距为b=R×cos45°=√22R,正六边形的边心距为c=R×cos30°=√32R.∵12R<√22R<√32R,∴a<b<c,故选:A.2.【答案】A【解析】【分析】本题考查的是正方形和圆、等腰直角三角形的性质等知识,解题的关键是根据题意画出图形,属于中考常考题型.根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,AE2+OE2=AO2,∴OE=√22OA=√2.故选:A.3.【答案】B【解析】【分析】本题考查了正多边形与圆的关系,知道正方形的内切圆的直径等于正方形的边长是解题的关键.根据正方形的内切圆的直径等于正方形的边长求得圆的半径,最后再求出圆的面积即可.【解答】解:因为正方形的内切圆的直径等于正方形的边长,所以r=a2,所以正方形的内切圆的面积为πr2=π(a2)2=14a2π,故选B.4.【答案】B【解析】【分析】本题考查正多边形与圆的关系、等边三角形的判定与性质;解题的关键是作辅助线,灵活运用等边三角形的判定与性质来分析、解答.如图,作辅助线,由题意可得OA=OB= AB,从而得出△OAB是等边三角形,进而求出∠AOB的度数,问题即可解决.【解答】解:如图,连接OA、OB;AB为⊙O的内接正多边形的一边,∵正多边形的边长与半径相等,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,即这个正多边形的中心角为60°.故选B.5.【答案】B【解析】【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.根据命题的“真”“假”进行判断即可.【解答】解:①各边相等的圆内接多边形是正多边形,正确;②各边相等的圆外切多边形不一定正多边形,比如菱形,所以错误;③各角相等的圆内接多边形不一定是正多边形,比如长方形,所以错误;④各角相等的圆外切多边形是正多边形,正确.故选B.6.【答案】C【解析】【分析】本题主要考查作图−复杂作图,解题的关键是熟练掌握圆上等分点的尺规作图.根据尺规作图取圆的等分点的作法即可得出答案.【解答】解:取圆上一点为圆心,相同的长度为半径画弧,重复此种作法可得到圆的六等分点,据此可得圆的内接正六边形;在以上所得六等分点中,间隔取点,首尾连接可得圆的内接正三角形;由于圆的直径可以将圆二等分、两条互相垂直的直径可以将圆四等分,据此可作出圆的内接正四边形;综上可知,不可以用尺规作图作出的是圆的内接正五边形,故选C.7.【答案】D【解析】【试题解析】【分析】此题主要考查正多边形与圆的知识,等边三角形高的计算,要求学生熟练掌握应用.可设正六边形的半径为R,欲求半径与边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.解:如图所示,设正六边形的半径为R,又该多边形为正六边形,故∠OBA=60°,R,在Rt△BOG中,OG=√32∴边心距r=√3R2即半径与边心距之比2:√3,故选D.8.【答案】B【解析】【分析】本题考查正多边形与圆,用到的知识点为:n边形的中心角为360÷n,有一个角是60°的等腰三角形是等边三角形.根据正六边形的边长等于正六边形的半径,即可求解.【解答】解:正六边形的中心角为360°÷6=60°.那么外接圆的半径和正六边形的边长将组成一个等边三角形.∴它的外接圆半径是4.故选B.9.【答案】B【解析】【分析】本题考查了正多边形和圆的知识,解题的关键是正确的构造如图所示的直角三角形并求解.利用正四边形的外接圆的半径是边心距的√2倍计算.【解答】解:如图,∵正四边形的边心距为1,∴OB=1,∵∠OAB=45°,∴OA=√2OB=√2,故选:B.10.【答案】B【解析】【分析】是解题的关键.本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°n根据正多边形的中心角的计算公式:360°计算出∠COD,再由等腰三角形的性质可得.n【解答】解:∵五边形ABCDE是⊙O的内接正五边形,=72°,∴五边形ABCDE的中心角∠COD的度数为360°5∵OC=OD,∴∠OCD=∠ODC,∴∠OCD=(180°−72°)÷2=54°.故选B.11.【答案】2【解析】略12.【答案】√3【解析】【分析】此题主要考查了正多边形和圆、解直角三角形,正确掌握正六边形的性质是解题关键.构建直角三角形,利用直角三角形的边角关系即可求出.【解答】解:连接OA,作OM⊥AB,得到∠AOM=30°,AB=2,则AM=1,∴OM=OA⋅cos30°=√3∴正六边形的边心距是√3.故答案为√3.13.【答案】5√3【解析】【分析】本题考查的是正多边形与圆,熟知正六边形的性质是解答此题的关键.根据题意画出图形,利用等边三角形的性质及勾股定理直接计算即可.【解答】解:如图所示,连接OB、OC,过O作OG⊥BC于G,∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴BG=5cm,OB=10cm,根据勾股定理可得:边心距OG=5√3cm;故答案为:5√3.14.【答案】3√32【解析】略15.【答案】90°;24√3【解析】【试题解析】【分析】本题考查了正多边形的性质,勾股定理的应用,等腰三角形的性质,属于中档题.六边形ABCDEF为正六边形,可得出∠AFE和∠FED的度数,进而得出∠AEF的度数,从而得出∠AED;连接OA,OF,过O作OG⊥AF于点G,先得出△AOF的面积,再乘以6,即可得出该正六边形的面积.【解答】解:∵六边形ABCDEF为正六边形,∴AF=FE,且∠AFE=∠FED=(6−2)×180°=120°,6=30°,则∠AEF=180°−120°2∴∠AED=∠FED−∠AEF=120°−30°=90°,连接OA,OF,过O作OG⊥AF于点G,∵点O为正六边形ABCDEF的中心,∴∠OAF=60°,则△AOF为等边三角形,∠AOG=30°,(三线合一)在Rt△OGA中,GA=12OA=12×4=2,则OG=√OA2−AG2=√42−22=2√3,故该正六边形的面积为:6S△AOF=6×12×4×2√3=24√3.故答案为90°;24√3.16.【答案】6【解析】【分析】此题主要考查了正多边形和圆的有关计算,根据已知得出中心角∠AOB=60°是解题关键.由三角函数求出∠DAO=60°,得出∠AOD=30°,求出中心角∠AOB=60°,即可得出答案.【解答】解:如图所示AB为正n边形的边长,OA为半径,OD为边心距,∵半径为4的正n边形边心距为2√3,∴sin∠DAO=DO AO =2√34=√32,∴∠DAO=60°,∴∠AOD=30°,∴∠AOB=60°,∴n=360°60°=6故答案为6.17.【答案】12【解析】解:∵l正六边形的半径等于边长,∴正六边形的边长a=2,正六边形的周长=6a=12,故答案为12.根据正六边形的半径等于边长进行解答即可.本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.18.【答案】72°【解析】【分析】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用由正五边形的性质得出∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,得出AE⏜= AB⏜=BC⏜,由圆周角定理即可得出答案.【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,∴AE⏜=AB⏜=BC⏜,×108°=72°;∴∠ADC=23故答案为72°.19.【答案】54【解析】【分析】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C= 108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF 是⊙O 的直径,∴∠ADF =90°,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠ABC =∠C =108°,∵BC =CD ,,∴∠ABD =72°,∴∠F =∠ABD =72°,∴∠FAD =18°,∴∠CDF =∠DAF =18°,∴∠BDF =36°+18°=54°,故答案为54.20.【答案】3√2 【解析】 【分析】该题主要考查了正多边形和圆,解直角三角形,正方形的性质,正确的理解题意是解题的关键.画出图形,先根据题意首先求出BE 的长,即可解决问题.【解答】解:如图,∵四边形ABCD 是⊙O 的内接正方形,∴∠OBE =45°;∵OE ⊥BC ,∴BE =CE ;又OB =3,∴sin45°=OE OB ,cos45°=BE OB ,∴OE =3√22,即BE =3√22,∴BC=3√2,故答案为3√2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6 正多边形与圆
知识点1正多边形的相关概念
1.如图2-6-1,⊙O是正五边形ABCDE的外接圆,则∠AOB的度数是() A.72°B.60°C.54°D.36°
图2-6-1
图2-6-2
2.教材例题变式如图2-6-2,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为________.
3.如图2-6-3,在正五边形ABCDE中,点F,G分别是BC,CD的中点.求证:△ABF≌△BCG.
图2-6-3
知识点2画正多边形
4.画正六边形.
5.[2016·淮安]如图2-6-4,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.
图2-6-4
图2-6-5
6.[2017·凉山]如图2-6-5,P,Q分别是⊙O的内接正五边形的边AB,BC上的点,BP=CQ,则∠POQ=________°.
7.如图2-6-6①②③,等边三角形ABC、正方形ABCD、正五边形ABCDE 分别是⊙O的内接三角形、内接四边形、内接五边形,点M,N分别从点B,C 开始,以相同的速度在圆周上逆时针运动,AM,BN相交于点P.
图2-6-6
(1)求图①中∠APB的度数.
(2)图②中,∠APB的度数是________,图③中∠APB的度数是________.
(3)根据前面的探索,你能否将本题推广到一般的正n边形的情况?若能,写出推广问题和结论;若不能,请说明理由.
详解详析
1.A[解析] ∵⊙O是正五边形ABCDE的外接圆,∴∠AOB=360°÷5=72°.
2.3 3
3.证明:∵五边形ABCDE是正五边形,
∴AB=BC=CD,∠ABC=∠BCD.
∵F,G分别是BC,CD的中点,
∴BF=1
2BC,CG=
1
2CD,∴BF=CG.
在△ABF和△BCG中,
∵AB=BC,∠ABF=∠BCG,BF=CG,
∴△ABF≌△BCG.
4.[解析] 画正六边形的途径有两种,一种是用量角器将圆六等分;另一种
是用圆规和直尺将圆六等分.
解:(方法一)用量角器将圆六等分(略).
(方法二)用直尺和圆规将圆六等分.
作法:1.在⊙O中任意作一条直径AD;
2.分别以点A,D为圆心,⊙O的半径为半径画弧,与⊙O相交于B,F和C,E;
3.依次连接AB,BC,CD,DE,EF,F A,六边形ABCDEF就是所求作的正六边形.
5.75[解析] 设该正十二边形外接圆的圆心为O,如图,连接A10O和A3O.
由题意知,的长度=5
12⊙O的周长,
∴∠A3OA10=5
12×360°=150°,∴∠A3A7A10=75°.
6.72
7..解:(1)∵点M,N分别从点B,C开始以相同的速度在圆周上逆时针运动,
∴∠BAM=∠CBN.
又∵∠APN=∠BPM,
∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°,
∴∠APB=120°.
(2)90°72°
(3)能推广到一般的正n边形的情况.
问题:正n边形ABCD…内接于⊙O,点M,N分别从点B,C开始,以相同的速度在圆周上逆时针运动,AM,BN相交于点P,求∠APB的度数.
结论:∠APB的度数为所在多边形的外角度数,即∠APB=360°n.。