计算方法简明教程习题解析

合集下载

计算方法各习题及参考答案

计算方法各习题及参考答案

第二章数值分析已知多项式p(x) X1 X3 X2 X 1通过下列点:p(x)试构造一多项式q(x)通过下列点:表中p2(X)的某一个函数值有错误,试找出并校正它•答案:函数值表中P2( 1)错误,应有P2(1)O •利用差分的性质证明12 22n2 n(n 1)(2n1)/6 ・当用等距节点的分段二次插值多项式在区间[1,1]近似函数e x时,使用多少个节点能够保证误差不超过1 1062答案:需要个插值节点・设被插值函数f(x)C4[a,b] 出(叫x)是f(x)矢于等距节点baa Xo X1 Xn b的分段三次艾尔米特插值多项式,步长h •试估计n22I I f (x) H3(h)(x) I I .答案:| |f(x) H3(h) (x) | | M4 hl384第三章函数逼近求f(x) sin x, x [0, 0. 1]在空间span{l, x, x2} ±最佳平方逼近多项式,并给岀平方误差.答案:f (x) sin x的二次最佳平方逼近多项式为-52 sin x p2(x) 0. 832 440 7 10-5 1.000 999 lx 0. 024 985 lx2,二次最佳平方逼近的平方误差为0. 12 2 -12_ (sin x) p2 (x)) dx 0. 989 310 7 10~12・确定参数a, b和c ,使得积分[ax2 bx c 1 ] dx取最小值.l(a,b,c)求多项式f (x) 2x' x3 5x2 1在[1, 1]上的3 次最佳一致逼近多项式p(x) •8 10 a , b 0, c 33答案:f(X)的最佳一致逼近多项式为P(X) ; 7;4用幕级数缩合方法,求f (x) e s ( 1 x 1)上的3次近似多项式p6,3 ( x),并估计I f (x) P6,3(X)I ・答案:23 pe,3 ( x) 0. 994 574 65 0. 997 39583x 0. 542 968 75x2 0. 177 083 33x3,:f (x) P6,3 (x) | | 0. 006 572 327 7J求f (x) e s ( 1 x 1)上的关于权函数(x)的三次最佳平方逼近多1 X"项式S3 ( X),并估计误差I f(X)S3(X)〔2 和I I f(X)S3 (x) I •咎23、口Ss(x) 0. 994 571 0. 997 308x 0. 542 99lx2 0. 177 347 x3,丨丨 f (x) Ss(x) | 12 0. 006 894 83 , | | f (x) Ss( x) | | 0. 006 442 575 ・第四章数值积分与数值微分用梯形公式、辛浦生公式和柯特斯公式分别计算积分x n dx (n 1, 2, 3, 4),并与精确值比较答案:计算结果如下表所示式具有的代数术青度.版权文档,请勿用做商业用途h(1 ) h f (x) dx Aif ( h) Ao f (0) Ai f (h)X1(2 ) if (x) dx [f ( 1) 2f (xi) 3f (x?)]乜11 h 2(3) o f (x)dx 2h[ f (0) f (h)] h2[ f (0) f (h)]答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度. a h xi xo ,确定求积公式X12 31 (x xo) f (x) dx h2EAf (xo) Bf (xi) ] h3[Cf (xo) Df (xi) ] R[f]X中的待定参数A, B, C, D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.2/103)取7个节点处的函数值.用变步长的复化梯形公式和变步长的复化辛浦生公式计算 】山心砥•要求积分13 1610 3和10 6・版权文档,请勿用做商业用途 22 Ts 0. 946满足精度要求;使用复化辛浦生公式时,2 0J 田上述i 公武推导帶修忑项韵営化梯形求积公式K2 其中余域(x)dx= [占(xd 予 CxoH , &b).为 T N h [f po) 2f (xi) 2f (X2) 2f (XN 1) f (XN )],Xi xo in, (i 0, 1, 2, , N), Nh XN XO •$ x 9、用龙贝格方法计算椭圆 / y 2 1的周长,使结果具有五位有效数字. o 4 答案:1 41 9. 6884 .验证高斯型求积公 e f (x) dx Ao f (xo) Ai f (xi)的系数及节点分别为式f<4)()h 6,其中答案:A 3 , B 7 , C 30 20 1440 P2(x)是以 0, h, 口2h •为插值上的二次插值多项式,用3h0 f ( x)dx 的数值积分公式Ih,并用台劳展开法证明:P2 (x)导岀计算积分h 4 f (0) 0(h 5) • 8Ih 0 P2(X )dx°4给定积分Ih[ f(0) 3f (2h)]'sin x dx(2) (3)答5运用复化梯形公式#算上述积分值,使其截断误差不 聲萝改用复化辛浦生公式计算时,截断误差是多少?亠 10 “ •2取同样的求积节 要求的截断误差不超过106,若用复化辛浦生公式,应取多少个节点处的函数值? (1)只需n 7.5,取 9个节点,I 0. 946 ba 4 ⑷"41 6h 1 f ⑷()2) |Rn[f]| |2880 2880 4 5(V 0. 271 10 6 用事后误差估计法时,截断误不超过答案:使用复化梯形公式时,I S4 0. 946 083满足精度要求. f (1) (x) dx插值公式推导带有导数值的求积公式(b i2a )[f (b) f (a)] R[f],其中 确定高斯型求积公式0 xf (x) dx Aof (xo) Aif (xi)闻 xo , xi 及系数Ao,Ai.答案:xo 0. 289 949xi 0. 821 162 , Ao 0. 277 556, Ai 0. 389 111. 利用埃尔米特 b%ba[f(R f 山)]Ao 2: 2S Ao 2: 21x 0 2 2, Xi 2 2 . 第五章解线性方程组的直接法1 11用按列选主元的高斯若当消去法求矩 A 的逆矩阵’其中A21 01 1 0答案:用追赶法求解三对角方程组21 X11 131X22111X3221x4欣X4 2, X3L X2 1, XI 0 .第六章解线性代数方程组的迭代法X! 8X2 7X! 9X2 8作简单调整,使得用高斯一赛得尔迭代法求解时对任9x1 X2 X3 7 意初始向量都收敛,并取初始向量X (O ) [0 0 0]T使(k 1)k ()3||x (k bx k ()|| 10.3版权文档,请勿用做商业用途答案:近似解为X” [1.0000 1. 0000 1. 0000] T . 6 . 2讨论松弛因子1. 25时,用方法求解方程组1020X150101x231243x3170103x4答案: xi 2、X3 2X 21,Xi 1.411XI6 1 4. 25 2. 75X20. 512. 753. 5 X31. 25 答 xi 2X2X3用平方根法(分解法)求解方程组3用矩阵的直接三角分解法解方程组4x1 3x2 16 3xi 4x2 X3 20X2 4x312〔121,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛・12 1 123 0 2 X1bi6・4 设有方程组0 21X2b 2讨论用雅可比方法和咼斯一赛得尔方21 2 X3b3法解此方程组的收敛性•如果收敛,比较哪种方法收敛较 版权文档,请勿用做商业用途为6 . 3给定线性方程组Ax b,其中答案:雅可比方法收敛,高斯一赛得尔方法收敛,且较快.6. 5设矩阵A 非奇异.求证:方程组Ax b 的解总能通过高斯一赛得尔方法得到. …Aaij n n 为对称正定矩阵,对角阵D diag (an, a22 , , ann)・求证:高斯u 一赛得尔方法求解方程组D 2 AD 2x b 时对任意初始向量都收 敛.第七章非线性方程求根例7. 4对方程3x 2 e s 0确定迭代函数(x)及区间[a, b ],使对xo [a, b ],迭代过程 XR i (x), k 0, 1, 2,均收敛,并求解.要求 xk 1 xk | 10x X? 0.458960903 •在[3, 4]上,将原方程改写为e x 3 x 2 ,取对数得性条件,则迭代序列xki In(3 xk 2 ), k 0, 1,2,在[3, 4]中有惟一解.取x 0 3.5 , x xie 3.733067511 •例7 . 6对于迭代函数(x) x c(x 2 3),试讨论:的收敛性・若收敛,则取 x (0)[0 0 0]T迭代求解,使 ||x (I )x (k)1104-X1 1.50001,X2 答案:方程组的近似解3.33333,X32.16667 •答案:若取(X )e 2 ,则在[1,0]中满足收敛性条件,因此迭代法e 2k , k 0,1,2,在(1,0)中有惟一解•取 X0 0. 5, 3取(X )9 e"i,在[0 ,上1满足收敛性条件, 迭代序列1Xk 1 k 1 03k 0, 1, 2,在[0,1]中有惟一解.取 xo 0. 5,X X140.910001967x 2 ) (x)・满足收敛x In (3(1)当c为何值时,x kl (x k)产生的序列{x k}收敛于3;(2)c取何值时收敛最快?顿法收敛,证明牛顿迭代序列{Xk }有下列极限矢系:l k im xk i 2xk xk i第八章矩阵特征值用乘幕法求矩阵A 的按模最大的特征值与对应的特征向量,已矢口 5 5 0 A 0 5. 5 1,要求 x (k)| 10 6,这里 严表示|的第k 次近似值.3 1答案:1 5 ,对应的特征向量为[5,0,0] T :2 5 ,对应的特征向量为[5, 10, T 5 ・]1 1 0>彳 2的按模最小的特征12例7设不动点迭代xki (x)的迭代函数(x)具有二阶连续导数,/是(x)的不动1 1 5取C,力別If 鼻(X 丿旳个动点3 '妥吞| XkiXkl 1U- •3) 223(1 ) c (,0)时矗代收敛•答案: 31c 时收敛最快• O 、 233)分别取c 1,123,并取xo1.5,计算结果如下表7• 7所示yk点,且(X*) 1,证明迭代式(xk ) , Zk (xk )(yk x k )2 , k 0, 1, 2,二阶收敛于x"・版Xk 1 Xk Zk 2yk Xk权文档,请勿用做商业用途 例设(x) x p(x) f (x) q(x)f 2),试确定函数p(x)和q(x),使求解f (x) 0且以(x)为迭代函数的迭代法至少三阶收 敛.案:p(x) f X (x )・ q(x) ;[f f (W]3例7设f (x)在[a, b]上有高阶导数,x* (a, b)是 f(x) 0的m(m 2)重根,且牛知A 的按模较大的特征 值用反幕法求矩阵A的近似值为15,用p 5的原点平移法计算1及其对应的特征向量.版权文档,请勿用做商业用途 答案:0 A 的按模最小的特征值为3 0. 238442812212第九章 微分方程初值问题的数值解法用反复迭代(反复校正)的欧拉预估一校正法求解初值问题y © 0] 0<x 0.2 5 ,要求取步长h 0. 1,每步迭代误差不超过10 5 .答案:Y y(0. 1) yi y 】⑷ 0. 904 762 , y(0. 2) y 2 y?⑷ 0.818 594267 一x y , 0<x 0. 4用二阶中点格式和二阶休恩格式求初值问题"“ “嗜厲汀⑹1长h 0.2,运算过程中保留五位小数). 计算得用平面旋转变换和反射变换将向量X [23 0 5] T 变为与 ei [1 0 0 0]T 平行的向量.2/ 38 3/ 385/ 38答案: T3/ 13 2/ 13 0 00 1 010/ 49415/ 4940 13/4940. 324 442 840 0. 486 664 262 0 0. 811107 1040. 486 664 2620.812 176 0480 0.298 039 922H10.811 107 104 0. 298 039 922 00.530 266 798然后用QR 方法求A 的全部特征值.4 4 5答案:取5 2. 234375即有2位有效数字. 532若A 6 4 4 ,试把A 化为相似的上阵, 值, 21n 0 时,Ki 1.000 00, K2 1. 200 00, y(0. 2) yi=l. 240 00n 1 时,Ki 1. 737 60, 用二阶休恩格式, K 2 2. 298 72, 取初值yo 1计算得y(0. 4) y 2 =1. 699 740 1 5. 1248854 ,对应的特征向量为(8) _设方阵A 的特征值都是实数,且满足 n)时, [0.242 4310, 1 , 0. 320 011 7],为求1而作原1 2 n,点平移'试证:当平移量P 2,(2幕法收敛最快•用二分法求三对角对〈方 A的最小特征 使它至少具有2位有212 答案:用二阶中点格式,取初值yo 1n 0 时,Ki 1.000 00, Ka 1.266 67, y(0.2) yi=1.240 00n 1时,Ki 1.737 60, Ka 2.499 18, y(0.4) y 2 =1.701 76用如下四步四阶阿达姆斯显格式 y n 1 y n h(55f n 59 fn 137fn2 9fn 3)/24求初值问题y x y, y(0) 1在[0,0.5]上的数值解•取步长h 0.1 小数点后保留8位•答 y(0.4) y 40.583 640 216 ‘ y(0.5) y 51.797 421 984 ・ 为使二阶中点公式ym yn hf(Xn h 2h,yn h f(Xn, yn)),求解初值问题2 n nh 的大小应受到的限制条件・hf (Xn,yn)用如下反复迭代的欧拉预估T&榴式 yn (k 11) yn h[f(Xn,y n ) f(Xn1,y n (k)1)]'k 0,1,2,; n 0,1,2,求解初值问题心讪•小时,如何选择步长h ,使上述格式矢于k 的迭y(0) 1代收敛•2答案:h 时上述格式尖于K 的迭代是收敛的・e求系数a,b,c,d ,使求解初值问题y f (x, y), y(xo) a 的如下隐式二步法 yn2aynh(bfn2Cfmdfn)的误差阶尽可能高,并指出其阶数•高'为五阶。

计算方法课后习题答案

计算方法课后习题答案

计算方法课后习题答案计算方法课后习题答案计算方法是一门重要的学科,它为我们提供了解决数学问题的方法和工具。

在学习这门课程时,我们经常会遇到一些习题,这些习题旨在帮助我们巩固所学的知识并提高我们的计算能力。

然而,习题的解答并非总是容易的,有时候我们可能会遇到困难。

因此,我将在本文中为大家提供一些计算方法课后习题的答案,希望能够帮助大家更好地理解和掌握这门学科。

1. 线性方程组的解法线性方程组是计算方法中的一个重要概念。

解决线性方程组的方法有很多种,其中最常用的方法是高斯消元法。

这种方法通过行变换将线性方程组转化为简化的行阶梯形矩阵,从而求得方程组的解。

下面是一个例子:2x + 3y = 84x - 5y = -7通过高斯消元法,我们可以得到方程组的解为x = 1,y = 2。

2. 数值积分的计算数值积分是计算方法中的另一个重要概念。

它可以用来计算曲线下的面积或者求解定积分。

常用的数值积分方法有梯形法则、辛普森法则等。

下面是一个例子:计算定积分∫[0, 1] (x^2 + 2x)dx。

通过梯形法则,我们可以得到定积分的近似值为1.5。

3. 插值和拟合插值和拟合是计算方法中的重要概念,它们可以用来估计未知数据点的值。

插值是通过已知数据点之间的连线或曲线来估计未知点的值,而拟合是通过已知数据点的函数来估计未知点的值。

下面是一个例子:已知数据点 (1, 3), (2, 5), (3, 8),通过插值和拟合方法来估计点 (4, ?) 的值。

通过线性插值,我们可以得到点 (4, 11) 的值。

通过多项式拟合,我们可以得到点 (4, 10.5) 的值。

4. 数值微分的计算数值微分是计算方法中的另一个重要概念,它可以用来估计函数在某一点的导数值。

常用的数值微分方法有前向差分法、后向差分法和中心差分法。

下面是一个例子:计算函数 f(x) = x^2 在点 x = 2 处的导数值。

通过中心差分法,我们可以得到导数的近似值为 4。

计算方法习题集及解答(总结版)

计算方法习题集及解答(总结版)

左边 ( )- 右边 证明:当 m=0 时
∑∞
= T0 h
T=
∆ i
h
2i
=
i=1
设 时等式成立,即 ( )- m=k
Tk h
∑∞
T=
∆ h (k ) 2k +2i i
i =1
当 时 m=k+1
∑ ∑ Tk+(1 h)-T=
4k
+1Tk
(
h 2
)

Tk
(h)
4k +1 −1
−T=
4k +1[T
+
∞ i =1
0
1
2
3
4
5
6
7
8
1.5 1.44444 1.47929 1.456976 1.47108 1.46209 1.46779 1.4416 1.46647
9 1.4650
10
11
1.46593 1.4653
x* ≈ 1.466
迭代公式(2):
k
0
xk
1.5
12 1.46572
13 1.46548
14 1.46563
xk +1
=
ln(4 − xk ln 2
)
k
0
1
2
3
4
5
6
7
8
9
10
2
xk 1.5 1.322 1.421 1.367 1.397 1.380 1.390 1.384 1.387 1.386 1.386
x* ≈ 1.386
2. 方程 x3 − x2 −1 = 0 在 x = 1.5附近有根,把方程写成三种不同的等价形式:

计算方法_课后习题答案

计算方法_课后习题答案

(4.5)(0.01172)

0.00879
(2)采用 Newton 插值多项式 y x N2(x) 根据题意作差商表:
i
xi
0
4
1
6.25
f (xi ) 2 2.5
一阶差商 2 9
2
9
3
2 11
二阶差商 4 495
N2 (7) 2 29 (7 4) ( 4 495) (7 4) (7 6.25) 2.6484848

1
e2
则根据二次Lagrange插值公式得:
L2 (x)

(x ( x0

x1)(x x2 ) x1)(x0 x2 )
y0

(x ( x1

x0 )(x x2 ) x0 )(x1 x2 )
y1

(x ( x2

x0 )(x x1) x0 )(x2 x1)
y2
2(x 1)(x 0.5) 2x(x 0.5)e1 4x(x 1)e0.5
8. 求作 f x xn1 关于节点 xi i 0,1, , n 的 Lagrange 插值多项式,并利用
插值余项定理证明
n
n
xin1li 0 1n xi
i0
i0
式中 li x 为关于节点 xi i 0,1, , n 的 Lagrange 插值基函数。
2 02 12 4 23 4 04 14 2 3
1 x2 3x 2 x 4 3x x2 6x 8 23 x x2 5x 4 1 x x2 3x 2
8
4
8

计算方法第三章习题答案

计算方法第三章习题答案

计算方法第三章习题答案计算方法第三章习题答案计算方法是一门涵盖了数值计算和计算机编程的学科,它在现代科学和工程中扮演着重要的角色。

第三章是计算方法课程中的重要章节,主要涉及到数值计算中的误差分析和插值方法。

本文将为大家提供第三章习题的详细答案,帮助读者更好地理解和应用这些概念。

1. 误差分析误差分析是计算方法中非常重要的一部分,它帮助我们理解和评估数值计算中的误差来源。

以下是一些常见的误差类型:- 绝对误差:绝对误差是指数值计算结果与真实值之间的差异。

它可以通过计算两者之差来得到。

- 相对误差:相对误差是指绝对误差与真实值之间的比值。

通常以百分比的形式表示。

- 截断误差:截断误差是由于在计算过程中舍入或截断数字而引入的误差。

它通常是由于计算机的有限精度导致的。

- 舍入误差:舍入误差是由于将无限位数的小数截断为有限位数而引入的误差。

它通常是由于计算机的有限精度或计算方法的近似性质导致的。

2. 插值方法插值方法是一种用于通过已知数据点来估计未知数据点的技术。

以下是一些常见的插值方法:- 线性插值:线性插值是一种简单的插值方法,它假设两个已知数据点之间的未知数据点的取值在直线上。

通过已知数据点的斜率和截距,我们可以计算出未知数据点的值。

- 拉格朗日插值:拉格朗日插值是一种使用多项式来逼近已知数据点的方法。

它通过构造一个满足通过已知数据点的多项式来估计未知数据点的值。

- 牛顿插值:牛顿插值是一种使用差商来逼近已知数据点的方法。

它通过构造一个满足通过已知数据点的差商多项式来估计未知数据点的值。

3. 习题答案以下是一些第三章习题的答案,供大家参考:- 习题1:已知函数f(x)在区间[a, b]上连续,且在[a, b]上的导数存在且连续,证明存在一点c∈(a, b),使得f(b) - f(a) = (b - a)f'(c)。

这是拉格朗日中值定理的一个特例,根据定理的条件,我们可以得到上述结论。

- 习题2:已知函数f(x)在区间[a, b]上连续,且在(a, b)内可导,证明存在一点c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)。

计算方法的课后答案解析

计算方法的课后答案解析

《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。

2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。

解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。

5.叙述误差的种类及来源。

答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。

(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。

(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。

(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。

这样引起的误差称为舍入误差。

6.掌握绝对误差(限)和相对误差(限)的定义公式。

答:设*x 是某个量的精确值,x 是其近似值,则称差x x e -=*为近似值x 的绝对误差(简称误差)。

计算方法-刘师少版第三章课后习题完整答案

计算方法-刘师少版第三章课后习题完整答案
解 设系数矩阵 A 的杜利特尔分解为 A=LU,即
⎡2 1 − 1⎤ ⎡ 1 ⎢4 − 1 3 ⎥ = ⎢l ⎢ ⎥ ⎢ 21 ⎢ ⎥ − 6 9 1 ⎣ ⎦ ⎢ ⎣l 31
1 l32
⎤ ⎡u11 ⎥⎢ ⎥⎢ 1⎥ ⎦⎢ ⎣
u12 u 22
u13 ⎤ u 23 ⎥ ⎥ u 33 ⎥ ⎦
将右端两矩阵相乘后比较两端,可得
l 2 = b2 − a 2 u1 = 4 −
1 15 = 4 4
u 2 = c2 / l2 = −

4 , 15
l3 = b3 − a3u 2 = 4 −
4 56 = 15 15
⎤ ⎡ ⎢4 0 0 ⎥ ⎡ y1 ⎤ ⎡ 2 ⎤ ⎥ ⎢ 15 y2 ⎥ =⎢ 0 ⎥⎢ 4⎥ ⎢− 1 ⎥ ⎢ ⎥ ⎢ 4 ⎥ ⎢ y ⎥ ⎢10⎥ ⎢ 56 ⎥⎣ 3 ⎦ ⎣ ⎦ ⎢ −1 ⎢ 15 ⎥ ⎦ ⎣
−1
消元
0 .5 1 .5 2 .5 0 .5 2 .5 1 .5 0 1 0 0 1 0 0 0 1 1 3 2
1 2 3 0 0 1 0 0 1 1
0 1 0
0 .5
− 0 .5 − 0 .5
0.5
0 ⎤ 0 ⎥ ⎥ 1 ⎥ ⎦ 0 ⎤ 1 ⎥ ⎥ 0 ⎥ ⎦
列选主
− 0.5 − 0.5
6
消元
0 .4 1 .2 0 .2
⎡ ⎢ ⎢ ⎢ ⎢ ⎣

3 2 3 3
0 2 3 − 6
0 ⎤ ⎡ y ⎤ ⎡5⎤ ⎥ 1 0 ⎥⎢ 3⎥ y2 ⎥ =⎢ ⎢ ⎥ ⎢ ⎥ ⎥ ⎢ ⎢ ⎥ 7 y ⎦ ⎣ 3⎦ ⎣ ⎥ 3⎥ ⎦ 1 6 1 3
y1 =
再由
5 3
,

数值方法简明教程作业集答案

数值方法简明教程作业集答案

数值计算方法简明教程第一章1 *1x =1.7; *2x =1.73; *3x =1.732 。

2.3. (1) ≤++)(*3*2*1x x x e r 0.00050; (注意:应该用相对误差的定义去求) (2) ≤)(*3*2*1x x x e r 0.50517; (3) ≤)/(*4*2x x e r 0.50002。

4.设6有n 位有效数字,由6≈2.4494……,知6的第一位有效数字1a =2。

令3)1()1(1*1021102211021)(-----⨯≤⨯⨯=⨯=n n r a x ε 可求得满足上述不等式的最小正整数n =4,即至少取四位有效数字,故满足精度要求可取6≈2.449。

5. 答:(1)*x (0>x )的相对误差约是*x 的相对误差的1/2倍;(2)n x )(* 的相对误差约是*x 的相对误差的n 倍。

6. 根据********************sin 21)(cos 21sin 21)(sin 21sin 21)(sin 21)(c b a c e c b a c b a b e c a c b a a e c b S e r ++≤ =******)()()(tgc c e b b e a a e ++ 注意当20*π<<c 时,0**>>c tgc ,即1*1*)()(--<c tgc 。

则有)()()()(****c e b e a e S e r r r r ++<7.设20=y ,41.1*=y ,δ=⨯≤--2*001021y y 由 δ1*001*111010--≤-=-y y y y ,δ2*111*221010--≤-=-y y y yδ10*991*10101010--≤-=-y y y y即当0y 有初始误差δ时,10y 的绝对误差的绝对值将减小1010-倍。

而11010<<-δ,故计算过程稳定。

计算方法8

计算方法8
矩阵三角分解原理 解线性方程组的三角分解法 平方根法 追赶法 向量的范数 矩阵的范数
3.3 矩阵三角分解法
3.4 向量和矩阵的范数
3.1.4 计算量
定理:高斯消去法求解n阶线性方程组共需 n 2 1 3 乘除法次数 (n 3n 1) n 3 3 1 加减法次数 n(n 1)(2n 5) 6 证明:消元过程
( ( mik a ikk ) / a kkk )
( ( ( aijk 1) aijk ) mik akjk ) k 1, 2,, n 1 i, j k 1,, n ( k 1) (k ) (k ) bi bi mik bk
1 除法次数 n k n(n 1) 2 k 1 1 (n k )(n k 1) n(n 2 1) 乘法次数 3 k 1 1 (n k )(n k 1) n(n 2 1) 加减法次数 3 k 1
0.50 x1 1.1x2 3.1x3 6.0 2.0 x1 4.5 x2 0.36 x3 0.020 5.0 x 0.96 x 6.5 x 0.96 1 2 3
设 解: 其 系 数 均 有 两 位 有 效 数 字 , 为 了 减 小 舍 入 误
(k 且严格对角占优,则akk ) ( k 1, 2, , n)
全是列主元。 证明: 因为A (aij )n 对称且严格对角占优,故有
a11 ai1 max ai1
i2 2i n
n
(2) aij
所以a11是主元。由消元过程和对称可得 ai1a1 j a1i a j1 , a (2) i, j 2,3, n aij a ji ji a11 a11
回代解出x1 x2 1

计算方法简明教程分章习题参考答案

计算方法简明教程分章习题参考答案

参考答案习题一1、解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2、解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3、解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4、解:3位5、解:习题二1、解使用二分法先要确定有根区间。

本题f(x)=x2-x-1=0,因f(1)=-1,f(2)=1,故区间[1,2]为有根区间。

另一根在[-1,0]内,故正根在[1,2]内。

用二分法计算各次迭代值如表。

其误差2、解:(1)取区间且,在且,在中,则L<1,满足收敛定理条件,故迭代收敛。

(2),在中,且,在中有,故迭代收敛。

(3),在附近,故迭代法发散。

在迭代(1)及(2)中,因为(2)的迭代因子L较小,故它比(1)收敛快。

用(2)迭代,取,则3、解:(1)迭代函数,对有,(2)取,则有各次迭代值取,其误差不超过(3)故此迭代为线性收敛。

4、解:由于,为单调增函数,故方程的根是唯一的(假定方程有根)。

迭代函数,。

令,则,由递推有,即5、解:在(2)中,令,,则有令,得,与第2题中(2)的结果一致,可取,则满足精度要求.原迭代不收敛.现令对(3)有,令6、解:(1)Newton迭代法取,则,取(2)令,则,取7、解:方程的根为,用Newton迭代法此公式迭代函数,则,故迭代法2阶收敛。

还可证明迭代法整体收敛性。

设,对一般的,当时有这是因为当时成立。

从而,即,表明序列单调递减。

故对,迭代序列收敛于习题三1、解本题是Gauss消去法解具体方程组,只要直接用消元公式(3.2)及回代公式(3.4)直接计算即可。

故2、解:先选列主元,2行与1行交换得消元3行与2行交换消元回代得解行列式得3、解:由矩阵乘法得再由求得由解得4、解:A中,若A能分解,一步分解后,,相互矛盾,故A不能分解,但,若A中1行与2行交换,则可分解为LU对B ,显然,但它仍可分解为分解不唯一,为一任意常数,且U奇异。

计算方法简明教程数值积分与数值微分习题解析

计算方法简明教程数值积分与数值微分习题解析

第四章 数值积分和数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:10121012112120(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];hhhh hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。

(1)若101(1)()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+ 从而解得011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=故101()()(0)()hhf x dx A f h A f A f h --=-++⎰成立。

令4()f x x =,则4551012()52()(0)()3hhhhf x dx x dx h A f h A f A f h h ---==-++=⎰⎰故此时,101()()(0)()hhf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。

计算方法第二版课后练习题含答案

计算方法第二版课后练习题含答案

计算方法第二版课后练习题含答案前言本文将为大家提供计算方法第二版课后练习题的答案,旨在帮助读者更好地学习和掌握计算方法的知识。

本文全部内容均为作者整理,尽可能保证每一题的答案正确性。

读者可以借助本文的答案,检验自己的练习成果,加强对计算方法知识的理解和掌握程度。

同时,读者也应该注意切勿直接复制答案,本文的答案仅供参考,希望读者能够通过自己的思考和探索,获得更深层次的学习感悟。

第一章引论1.1 计算方法的基本概念和思想练习题 1写出计算方法的三要素,并分别简要解释。

答案计算方法的三要素为:模型、算法、误差分析。

•模型:计算方法所涉及的实际问题所对应的数学模型,是解决问题的基础;•算法:根据模型,构造相应的计算程序,即算法;•误差分析:计算结果与实际应用中所需的精度之间的差异,称为误差。

误差分析是对计算结果质量的保障。

1.2 算法的误差练习题 2写出二分法算法,并解释其误差。

答案算法:function binarySearch(a, target) {let low = 0;let high = a.length - 1;while (low <= high) {let midIndex = Math.floor((low + high) / 2);let midValue = a[midIndex];if (midValue === target) {return midIndex;} else if (midValue < target) {low = midIndex + 1;} else {high = midIndex - 1;}}return -1;}误差:二分法算法的误差上界为O(2−k),其中k为迭代次数。

在二分法被成功应用时,k取决于与目标值x的距离,即 $k=\\log _{2}(\\frac{b-a}{\\epsilon})$,其中[a,b]是区间,$\\epsilon$ 是目标值的精度。

计算方法教程(第2版)习题答案

计算方法教程(第2版)习题答案

《计算方法教程(第二版)》习题答案第一章 习题答案1、浮点数系),,,(U L t F β共有 1)1()1(21++---L U t ββ 个数。

3、a .4097b .62211101110.0,211101000.0⨯⨯c .6211111101.0⨯ 4、设实数R x ∈,则按β进制可表达为:,1,,,3,2,011)11221(+=<≤<≤⨯++++++±=t t j jd d l t t d t t d dd x βββββββ按四舍五入的原则,当它进入浮点数系),,,(U L t F β时,若β211<+t d ,则 l tt d dd x fl ββββ⨯++±=)221()(若 β211≥+t d ,则 l tt d d d x fl ββββ⨯+++±=)1221()(对第一种情况:t l lt l t t d x fl x -++=⨯≤⨯+=-βββββ21)21(1)()(11对第二种情况:t l lt l t t d x fl x -++=⨯≤⨯--=-ββββββ21)21(1)(11就是说总有: tl x fl x -≤-β21)( 另一方面,浮点数要求 β<≤11d , 故有l x ββ1≥,将此两者相除,便得t x x fl x -≤-121)(β 5、a . 5960.1 b . 5962.1 后一种准确6、最后一个计算式:00025509.0原因:避免相近数相减,避免大数相乘,减少运算次数7、a .]!3)2(!2)2(2[2132 +++=x x x yb .)21)(1(22x x x y ++=c .)11(222-++=x x x yd . +-+-=!2)2(!6)2(!4)2(!2)2(2642x x x x y e .222qp p q y ++=8、01786.098.5521==x x9、 m )10(m f - 1 233406.0- 3 20757.0- 5 8.07 710计算宜采用:])!42151()!32141()!22131[()(2432+⨯-+⨯-+⨯--=x x x f第二章 习题答案1、a .Tx )2,1,3(= b .Tx )1,2,1,2(--= c .无法解 2、a .与 b .同上, c .T T x )2188.1,3125.0,2188.1,5312.0()39,10,39,17(321---≈---=7、a .⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---14112111473123247212122123211231321213122 b . ⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛----333211212110211221213231532223522121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=111211212130213221219、T x )3415.46,3659.85,1220.95,1220.95,3659.85,3415.46(1= T x )8293.26,3171.7,4390.2,4390.2,3171.7,8293.26(2= 10、T LDL 分解:)015.0,579.3,9.1,10(diag D =⎪⎪⎪⎪⎪⎭⎫⎝⎛=16030.07895.05.018947.07.019.01L Cholesky 分解⎪⎪⎪⎪⎪⎭⎫⎝⎛=1225.01408.10833.15811.18918.12333.12136.23784.18460.21623.3G 解:)1,1,2,2(--=x 12、16,12,1612111===∞A A A611,4083.1,61122212===∞A A A2)(940)()(12111===∞A Cond A Cond A Cond524)(748)()(22221===∞A C o n d A C o n d A C o n d⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=--180.0000180.0000- 30.0000 180.0000- 192.0000 36.0000- 30.0000 36.0000- 9.0000,0.0139 0.1111- 0.0694- 0.1111- 0.0556 0.1111- 0.0694- 0.1111- 0.0139 1211A A1151.372,1666.0212211==--A A15、 1A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 2A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 3A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代收敛;第三章 习题答案1、Lagrange 插值多项式:)80.466.5)(20.366.5)(70.266.5)(00.166.5()80.4)(20.3)(70.2)(00.1(7.51)66.580.4)(20.380.4)(70.280.4)(00.180.4()66.5)(20.3)(70.2)(00.1(3.38)66.520.3)(80.420.3)(70.220.3)(00.120.3()66.5)(80.4)(70.2)(00.1(0.22)66.570.2)(80.470.2)(20.370.2)(00.170.2()66.5)(80.4)(20.3)(00.1(8.17)66.500.1)(80.400.1)(20.300.1)(70.200.1()66.5)(80.4)(20.3)(70.2(2.14)(4--------⨯+--------⨯+--------⨯+--------⨯+--------⨯=x x x x x x x x x x x x x x x x x x x x x L Newton 插值多项式:)80.4)(20.3)(70.2)(00.1(21444779.0)20.3)(70.2)(00.1(527480131.0)70.2)(00.1(855614973.2)00.1(117647059.22.14)(4----+------+-+=x x x x x x x x x x x N2、设)(x y y =,其反函数是以y 为自变量的函数)(y x x =,对)(y x 作插值多项式:)1744.0)(1081.0)(4016.0)(7001.0(01253.0)1081.0)(4016.0)(7001.0(01531.0)4016.0)(7001.0(009640.0)7001.0(3350.01000.0)(----+---+--+--=y y y y y y y y y y y N 3376.0)0(=N 是0)(=x y 在]4.0,3.0[中的近似根。

计算方法 课后习题答案

计算方法 课后习题答案

计算方法课后习题答案计算方法课后习题答案计算方法是一门重要的学科,它涉及到数值计算、算法设计和数据处理等方面的内容。

在学习计算方法的过程中,课后习题是不可或缺的一部分。

通过解答习题,我们可以巩固所学的知识,提高自己的计算能力。

下面是一些计算方法课后习题的答案,希望对大家的学习有所帮助。

1. 矩阵的转置矩阵的转置是将矩阵的行和列互换得到的新矩阵。

对于一个m×n的矩阵A,它的转置记作A^T。

转置后的矩阵A^T的行数和列数分别为原矩阵A的列数和行数。

例如,对于一个3×2的矩阵A,它的转置A^T是一个2×3的矩阵。

2. 矩阵的加法和减法矩阵的加法和减法是对应位置上的元素进行相加或相减得到的新矩阵。

对于两个相同大小的矩阵A和B,它们的和记作A+B,差记作A-B。

加法和减法的运算规则是相同位置上的元素进行相应的运算。

3. 矩阵的乘法矩阵的乘法是指将两个矩阵相乘得到一个新矩阵的运算。

对于两个矩阵A和B,它们的乘积记作AB。

矩阵乘法的运算规则是矩阵A的行与矩阵B的列进行相乘,并将结果相加得到新矩阵的对应位置上的元素。

4. 矩阵的逆矩阵的逆是指对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。

如果一个矩阵A存在逆矩阵,则称其为可逆矩阵或非奇异矩阵。

求解矩阵的逆可以使用伴随矩阵和行列式的方法。

5. 线性方程组的求解线性方程组是指由一组线性方程组成的方程组。

求解线性方程组的方法有很多,包括高斯消元法、LU分解法、迭代法等。

其中,高斯消元法是一种常用的求解线性方程组的方法,它通过消元和回代的过程,将线性方程组转化为上三角形矩阵或对角矩阵,从而求解出方程组的解。

6. 数值积分的方法数值积分是指通过数值计算的方法来求解定积分的近似值。

常用的数值积分方法包括梯形法则、辛普森法则和龙贝格法则等。

这些方法都是基于将定积分转化为离散求和的形式,通过计算离散点上的函数值来估计定积分的近似值。

计算方法简明教程

计算方法简明教程

只与积分区间[ a , b ]的节点x j的划分有关, 与函数f ( x )无关
其值可以精确给定 因此用Newton-Cotes公式计算积分的舍入误差主要由
函数值f ( xk )的计算引起
只需讨论f ( xk )的舍入误差对公式的影响
假设f ( xk )为精确值, 而以f ( xk )作为f ( xk )的近似 值(计算值 )
k =0 n
( I n − I n = (b − a )∑ Ck n )ε k k =0
( I n − I n ≤ (b − a ) ∑ Ck n ) ε k k =0 n
n
≤ (b − a )ε
若 ∀k ≤ n , Ck( n ) > 0 , 有

k =0
n
n
Ck( n )
ε = max{|ε k |}
( Ck n ) = (b − a )ε ∑ k =0
n
此时,公式的稳定性将无法保证 因此,在实际应用中一般不使用高阶Newton-Cotes公式
In − In
≤ (b − a )ε
∑C
k =0 n k =0
(n) k
= (b − a )ε
Ck( n ) ⋅ 1 ∑
k =0
n
= (b − a )ε
Ck( n ) ⋅ g ( xk ) ∑
b
( g ( x ) ≡ 1)

∫ g( x)dx
a
b
= ε ∫ dx = (b − a )ε
a

I n − I n ≤ (b − a )ε
b+a b−a 取n = 2 , 则x0 = a , x1 = , x2 = b , h = 2 2

计算方法_习题第一、二章答案

计算方法_习题第一、二章答案

第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。

解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。

由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。

由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。

2 已知近似数x*有两位有效数字,试求其相对误差限。

分析 本题显然应利用有效数字与相对误差的关系。

解 利用有效数字与相对误差的关系。

这里n=2,a 1是1到9之间的数字。

%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。

解 a 1是1到9间的数字。

1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。

4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。

分析 本题应利用有效数字与相对误差的关系。

解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。

411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。

计算方法课后习题答案

计算方法课后习题答案

计算方法课后习题答案在计算方法课程中,学生通常会接触到各种数学问题的求解方法,包括但不限于数值分析、线性代数、微分方程等。

以下是一些课后习题的解答示例:习题一:求解线性方程组设线性方程组为:\[ \begin{align*}a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\\vdots \quad \quad & \ \vdots \\a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m,\end{align*} \]解答:使用高斯消元法或矩阵分解法求解上述方程组。

首先将系数矩阵转换为行简化阶梯形式,然后回代求解未知数 \( x_1, x_2,\ldots, x_n \)。

习题二:数值积分给定函数 \( f(x) \),需要在区间 \( [a, b] \) 上进行数值积分。

解答:可以使用梯形法、辛普森法等数值积分方法。

例如,使用梯形法的公式为:\[ \int_a^b f(x)dx \approx \frac{h}{2} \left( f(a) + 2f(a+h) + 2f(a+2h) + \cdots + 2f(b-h) + f(b) \right), \]其中 \( h = \frac{b-a}{n} \) 是区间的等分宽度,\( n \) 是等分数。

习题三:常微分方程的数值解给定一个常微分方程 \( y' = f(x, y) \),初始条件为 \( y(x_0) = y_0 \)。

解答:使用欧拉法或龙格-库塔法求解。

以欧拉法为例,其迭代公式为:\[ y_{n+1} = y_n + h f(x_n, y_n), \]其中 \( h \) 是步长,\( x_{n+1} = x_n + h \)。

计算方法习题及答案

计算方法习题及答案

第一章 绪论一.填空题1.*x 为精确值x 的近似值;()**x f y=为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***rx x e x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅ ()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。

3、 分别用2.718281,2.718282作数e的近似值,则其有效数字分别有 6 位和 7 位;又取1.73≈(三位有效数字),则-211.73 10 2≤⨯。

4、设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。

5、设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。

6、已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.000021 .7、递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 .8、精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。

9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。

10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n 二、计算题1. 有一个长方形水池,由测量知长为(50±0.01)米,宽为(25±0.01)米,深为(20±0.01)米,试按所给数据求出该水池的容积,并分析所得近似值的绝对误差和相对误差公式,并求出绝对误差限和相对误差限. 解:设长方形水池的长为L ,宽为W,深为H ,则该水池的面积为V=LWH当L=50,W=25,H=20时,有 V=50*25*20=25000(米3) 此时,该近似值的绝对误差可估计为()()()()()()()=V V VV L W H L W HWH L HL W LW H ∂∂∂∆≈∆+∆+∆∂∂∂∆+∆+∆ 相对误差可估计为:()()r V V V∆∆=而已知该水池的长、宽和高的数据的绝对误差满足()()()0.01,0.01,0.01L W H ∆≤∆≤∆≤故求得该水池容积的绝对误差限和相对误差限分别为()()()()()()325*20*0.0150*20*0.0150*25*0.0127.5027.501.1*1025000r V WH L HL W LW H V V V -∆≤∆+∆+∆≤++=∆∆=≤=2.已知测量某长方形场地的长a=110米,宽b=80米.若()()**0.1 0.1a a b b -≤-≤米,米试求其面积的绝对误差限和相对误差限. 解:设长方形的面积为s=ab当a=110,b=80时,有 s==110*80=8800(米2) 此时,该近似值的绝对误差可估计为()()()()()=b s ss a b a ba ab ∂∂∆≈∆+∆∂∂∆+∆ 相对误差可估计为:()()r s s s∆∆=而已知长方形长、宽的数据的绝对误差满足()()0.1,0.1a b ∆≤∆≤故求得该长方形的绝对误差限和相对误差限分别为()()()()() 80*0.1110*0.119.019.00.0021598800r s b a a b s s s ∆≤∆+∆≤+=∆∆=≤= 绝对误差限为19.0;相对误差限为0.002159。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。

解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx -=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字;*3385.6x =是四位有效数字;*456.430x =是五位有效数字;*57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯ ***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π= 则何种函数的条件数为 23'4343p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =,27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯ 100Y ∴的误差限为31102-⨯。

7.求方程25610x x -+=的两个根,使它至少具有427.982=)。

解:25610x x -+=,故方程的根应为1,228x =故 1282827.98255.982x =≈+=1x ∴具有5位有效数字211280.0178632827.98255.982x =-=≈=≈+ 2x 具有5位有效数字8.当N 充分大时,怎样求1211N N dx x++⎰?解 121arctan(1)arctan 1N N dx N N x +=+-+⎰ 设arctan(1),arctan N N αβ=+=。

则tan 1,tan .N N αβ=+=12211arctan(tan())tan tan arctan 1tan tan 1arctan 1(1)1arctan 1N N dxx N N N NN N αβαβαβαβ++=-=--=++-=++=++⎰ 9.正方形的边长大约为了100cm ,应怎样测量才能使其面积误差不超过21cm ? 解:正方形的面积函数为2()A x x = (*)2*(*)A A x εε∴=.当*100x =时,若(*)1A ε≤, 则21(*)102x ε-≤⨯ 故测量中边长误差限不超过0.005cm 时,才能使其面积误差不超过21cm10.设212S gt =,假定g 是准确的,而对t 的测量有0.1±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减少。

解:21,02S gt t => 2(*)(*)S g t t εε∴= 当*t 增加时,*S 的绝对误差增加2*2*(*)(*)*(*)1()2(*)2r S S S gt t g t t tεεεε===当*t 增加时,(*)t ε保持不变,则*S 的相对误差减少。

11.序列{}n y 满足递推关系1101n n y y -=- (n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗? 解:02 1.41y =≈201(*)102y ε-∴=⨯ 又1101n n y y -=-10101y y ∴=-10(*)10(*)y y εε∴=又21101y y =-21(*)10(*)y y εε∴=220(*)10(*)......y y εε∴=101001028(*)10(*)1101021102y y εε-∴==⨯⨯=⨯计算到10y 时误差为81102⨯,这个计算过程不稳定。

12.计算61)f =≈1.4,利用下列等式计算,哪一个得到的结果最好?, 3(3-,, 99- 解:设6(1)y x =-,若x =* 1.4x =,则*11102x -ε()=⨯。

计算y 值,则***7***7**1(1)6(1)y x x y x x y x ε()=--6⨯ε()+ =ε()+ =2.53ε()若通过3(3-计算y 值,则**2******(32)632y x x y x xy x ε()=-3⨯2⨯-ε()=ε()- =30ε()计算y 值,则 ***4***7**1(32)1(32)y x x y x x y x ε()=--3⨯ε()+ =6⨯ε()+ =1.0345ε()计算后得到的结果最好。

13.()ln(f x x =,求(30)f 的值。

若开平方用6位函数表,问求对数时误差有多大?若改用另一等价公式。

ln(ln(x x =-计算,求对数时误差有多大?解()ln(f x x =, (30)ln(30f ∴=-设(30)u y f ==则*u =29.9833 *412u -∴ε()=⨯10 故****310.0167y u u u -1ε()≈-ε()30- =ε() ≈3⨯10 若改用等价公式ln(ln(x x =-则(30)ln(30f =-此时,****7159.9833y u u u -1ε()=∣-∣ε()30+ =⋅ε() ≈8⨯10第一章 误差1. 试举例,说明什么是模型误差,什么是方法误差.解: 例如,把地球近似看为一个标准球体,利用公式24A r π=计算其表面积,这个近似看为球体的过程产生的误差即为模型误差.在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12222...q q π=⋅⋅⋅ 其中11 2,3,...n q q n +⎧=⎪⎨==⎪⎩ 我们取前9项的乘积作为π的近似值,得3.141587725...π≈这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差.2. 按照四舍五入的原则,将下列各数舍成五位有效数字:816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 2363. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字?81.897 0.008 13 6.320 05 0.180 0解: 五位 三位 六位 四位4. 若1/4用0.25表示,问有多少位有效数字?解: 两位5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +⨯各有几位有效数字?解: 已知4311d 10,d 1022a b --<⨯<⨯, 又0.2053210a b +=⨯,()433211110100.551010222d a b da db da db ----+=+≤+=⨯+⨯=⨯<⨯, 所以a b +有三位有效数字;因为0.1047571410a b ⨯=⨯,()43321110.94710 1.1062100.600451010222d a b b da a db ----⨯=+=⋅⨯+⋅⨯=⨯<⨯ 所以a b ⨯有三位有效数字.6. 设120.9863,0.0062y y ==,是经过舍入后作为12,x x 的近似值.求1211,y y 的计算值与真值的相对误差限及12y y ⋅与真值的相对误差限.解: 已知-4-41112221211d ,d ,d =10,d 1022x y x x y x x x =+=+⨯=⨯, ()44111111110d d 12dr dr 0.50100.9863x x x x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭; ()42222222110d d 12dr dr 0.81100.0062x x x x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭; ()()()4221212dr dr dr 0.50100.81100.8210x x x x ---⋅=+≈⨯+⨯≈⨯.7. 正方形的边长约为100cm,应该怎样测量,才能使其面积的误差不超过1cm 2.解: 设正方形面积为S,边长为a,则S=a 2.所以要使:2d d 2d 1s a a a ==≤,则要求211d 0.5102200a a -≤==⨯.所以边长的误差不能超过20.510-⨯cm.8. 用观测恒星的方法求得某地维度为4502'''(读到秒),试问:计算sin ϕ将有多大误差?解: ()()1d sin cos d cos 45022ϕϕϕ*''⎛⎫'''== ⎪⎝⎭.9 . 真空中自由落体运动距离s 与时间的关系由公式212s gt =确定,g 是重力加速度.现在假设g 是准确的,而对t 的测量有0.1s ±的误差,证明t 增加时,距离的绝对误差增加而相对误差却减小.证明: 因为:221d d d d d d d ;2.122s gt t gt t t s gt gt t s s t gt ⎛⎫===== ⎪⎝⎭ d s 与t 成正比, d s s 与t 成反比,所以当d t 固定的时候, t 增加时,距离的绝对误差增加而相对误差却减小.10. 设0x >,x 的相对误差为δ,求ln x 的绝对误差.解: 已知d x x δ=,所以ln x 的绝对误差()d d ln x x xδ==.11. 设x 的相对误差为%α,求n x 的相对误差. 解: 1d d d %n n n n x nx x n x n x x xα-===.12. 计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何? 解: 已知343V R π=,设()d dr R R a R ==,则要使得 ()()3d dr dln d ln 3d ln 3d ln 3dr 31%V V V R R R R a V ========,则11%3a =⋅.。

相关文档
最新文档