高中数学人教版必修第二章数列单元测试卷(A)0
精选高中数学单元测试试题-数列专题完整题库(含答案)
2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为_______ 2.已知等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的第n 项an 等于 A.2n-5 B.2n-3 C.2n-1D.2n+13.某大楼有20层,有19人在第一层上了电梯,他们分别要去第2层到20层,每层一人,而电梯只允许停一次,可只使一人满意,其余18人都要上楼或下楼。
假设乘客每向下走一层不满意度为1,每向上走一层不满意度为2。
所有人不满意之和为S ,为使S 最小,电梯应停在第( )层。
A,15 B,14 C,13 D,12第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4. 已知数列{}n a ,{}n b 满足11a =,22a =,12b =,且对任意的正整数,,,i j k l ,当i j k l +=+时,都有i j k l a b a b +=+,则201011()2010i i i a b =+∑的值是 ▲ .5.1、各校(园):请各单位对照本单位实际,按马校长的要求做好校园安全工作。
马校长强调:近期安全要关注之处1、学生上下学安全,和家长定接送安全责任状,上学的时候有人值班校干带班。
2、校内各个区域的安全值班,重要的是有人带班和检查一下值班情况。
3、食堂食品和学生饮用水情况。
4、传达室的物品摆放情况和值班情况,不可以让人员随意进出学校。
5、进行特异体质学生调查,统计,跟踪分析一下。
6、对学生的安全教育情况,7、带领全体职工学习安全职责。
8、学校的线路情况如何。
9、楼梯口的安全值班情况。
10、保安的管理情况,不可以有超过七十岁的安保人员。
高中数学(人教版)必修五第二章数列综合测试卷
高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
(完整版)数列单元测试卷含答案
数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时, +3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。
《数列》测试卷及答案解析(基础卷)
2019-2020学年高中数学必修五《数列》考试卷姓名: 成绩:一、本卷共12个小题,每题5分,共60分.在每个小题给出的四个选项中,只有一项是最符合题目要求的,请把正确答案填涂在答题卡上.1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 020,则序号n 等于( ).A .672B .673C .674D .675【答案】C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 020=1+3(n -1),∴n =674. 2. 已知数列{a n }的通项公式a n =12[1+(-1)n +1],则该数列的前4项依次是( )A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0【答案】A3. 若{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是 ( )A .39B .20C .19.5D .33 【答案】D4.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.2223【答案】 C.由题意知数列的通项公式是an =2n 2n +1,∴a10=2×102×10+1=2021.故选C.5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .192 【答案】B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120.6.若数列{a n }是等差数列,首项a 1>0,a 2019+a 2020>0,a 2019·a 2020<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4038C .4039D .4 008【答案】B解析:由a 2019+a 2020>0,a 2019·a 2020<0,知a 2019和a 2020两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2019>a 2020,即a 2019>0,a 2020<0.∴S 4038=2+006400641)(a a >0,∴S 4039=20074·(a 1+a 4039)=20074·2a 2020<0, 故4038为S n >0的最大自然数. 选B .7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -10【答案】B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6, 又由a 1,a 3,a 4成等比数列, ∴(a 1+4)2=a 1(a 1+6),解得a 1=-8, ∴a 2=-8+2=-6.8.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21。
第二章数列单元综合测试(人教A版必修5)
第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
精编新版高中数学单元测试试题-数列专题模拟考试题库(含答案)
2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.设,R x ∈记不超过x 的最大整数为[x ],令{x }=x -[x ],则{215+},[215+],215+( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列也不是等比数列(2009湖北文)2.等差数列{an}的通项an=2n+1,则bn=(a1+a2+…+an)/n(n ∈N*)所确定的数列{bn}的前n 项和是A. n(n+2)B. (n+4)C. (n+5)D. (n+7)3.已知等差数列的首项为31,若此数列从第16项开始小于1,则此数列的公差d 的取值范围是 ( )A .(-∞,-2)B .[-715, -2] C .(-2, +∞) D .(—715,-2)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4.n S 为等差数列{}n a 的前n 项和,如果10062a =,那么2011S =5.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于6.已知等比数列{}n a 的首项为1a ,公比为q (1q ≠),若,,i j k +∈N 且1i j k n ≤<<≤(3n ≥),则i j k a a a 不同的值共有 ▲ 种.7.已知数列{}n a 的通项公式是2107n a n n =-++,则这个数列中的第_____项最大,最大值是_______8.在等比数列}{n a 中,若前n 项的和r S nn +=3,则r =______9.已知576*,)}({S S S n N n a d S n n >>∈且项和的前的等差数列是公差为,则下列四个命题:①0<d ;②011>S ;③012<S ;④013>S 中为真命题的序号为 .10.把数列{12n }的所有项按照从大到小,左大右小的原则写成如图所示的数表,第k 行有12k -个数,第k 行的第s 个数(从左数起)记为(k ,s ),则 12010可记为 ▲ .11. 已知等差数列{}n a 首项为a ,公差为b ,等比数列{}n b 首项为b ,公比为a ,其中,a b 都是大于1的正整数,且1123,a b b a <<,对于任意的*n N ∈,总存在*m N ∈,使得3m n a b +=成立,则n a = ▲ .12 14 16 18 110 112 114 116 118 120 122 124 …(第13题图)12.在等差数列{}n a 中,已知前20项之和17020=S ,则=+++161196a a a a 。
(常考题)人教版高中数学选修二第一单元《数列》测试(含答案解析)(4)
一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是( )①若100S =,则280S S +=;②若412S S =,则使0n S >的最大的n 为15;③若150S >,160S <,则{}n S 中8S 最大;④若78S S <,则89S S <.A .1个B .2个C .3个D .4个3.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .1124.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1625.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .1766.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:37.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .51109.设n S 是等差数列{}n a 的前n 项和,若535,9a a =则95S S =( ) A .1B .1-C .2D .1210.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.已知等比数列{}141,1,8n a a a ==,且12231n n a a a a a a k ++++<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭二、填空题13.数列{}n a 满足2121231722222n n a a a a n n -+++⋅⋅⋅+=-,若对任意0λ>,所有的正整数n 都有22n k a λλ-+>成立,则实数k 的取值范围是_________.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.16.计算:111113355720192021++++=⨯⨯⨯⨯__________.17.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.18.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.19.数列{}n a 满足, 123231111212222n na a a a n ++++=+,写出数列{}n a 的通项公式__________.20.正项数列{}n a 的前n 项和为n S ,且()22n nn S a a n N *++∈,设()2112n n n na c S +=-⋅,则数列{}n c 的前2019项的和为___________.三、解答题21.设数列{}n a 的前n 项和为n S ,已知()*214,21n n S a S n N +==+∈.数列{}nb 是首项为1a ,公差不为零的等差数列,且127,,b b b 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)若nn nb c a =,数列{}n c 的前n 项和为n T ,且n T m <恒成立,求m 的取值范围. 22.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3.23.已知正项数列{}n a 满足2220n n a na n --=,数列(){}12n nn aa -⋅+的前n 项和为n S .(1)求数列{}n a 的通项公式; (2)求n S .24.设数列{}n a 的前n 项和为n S ,且12n n S a +=. (1)求数列{}n a 的通项公式; (2)设21nn b a n =+,求数列{}n b 的前n 项和n T . 25.已知数列{}n a 的前n 项和为n S ,点(),n n a s 在直线22y x =-,上n *∈N . (1)求{}n a 的通项公式;(2)若n n b n a =+,求数列{}n b 的前n 项和n T .26.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,*n ∈N . (1)求数列{}n a 的通项公式.(2)设数列{}n b 满足:11b =,()122n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .求证:2n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------, 所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.B解析:B 【分析】①②③根据条件可分析数列是首项为正数,公差小于0的等差数列,所以存在*n N ∈,使10n n a a +≥⎧⎨≤⎩,再结合等差数列的前n 项和公式判断选项;④利用公式1n n n S S a --=()2n ≥,判断选项.【详解】 ①若100S =,则()()110561010022a a a a ++==,因为数列是首项为正数,公差不为0的等差数列,所以50a >,60a <,那么()()()()18281212458402a a S S a a a a a a ++=++=+++>,故①不成立; ②若412S S =,则()124561289...40S S a a a a a -=+++=+=,因为数列是首项为正数,公差不为0的等差数列,所以80a >,90a <,()115158151502a a S a +==>,()()11689161616022a a a a S ++===,则使0n S >的最大的n 为15,故②成立; ③()115158151502a a S a +==>,()()116168916802a a S a a +==+<,则90a <,因为数列是首项为正数,公差不为0的等差数列,所以{}n S 中的最大项是8S ,故③正确; ④若78S S <,则8780S S a -=>,但989S S a -=,不确定9a 的正负,故④不正确. 故选:B 【点睛】方法点睛:一般等差数列前n 项和的最值的常用方法包含:1.单调性法,利用等差数列的单调性,求出其正负转折项,便可求得等差数列前n 项和的最值;2.利用二次函数的性质求最值,公差不为0的等差数列{}n a 的前n 项和2n S An Bn =+(,A B 为常数)为关于n的二次函数,利用二次函数的性质解决最值问题.3.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭,2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-.∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;4.B解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.5.B解析:B 【分析】 由122n n a a n n +=++转化为11121n n a a n n +⎛⎫-=- ⎪+⎝⎭,利用叠加法,求得23na n =-,即可求解. 【详解】 由122n n a a n n +=++,可得12112(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭, 所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+11111111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭122113n n ⎛⎫=-+=- ⎪⎝⎭,所以102143105a =-=. 故选:B. 【点睛】数列的通项公式的常见求法:对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 对于递推关系式形如1n n a pa q +=+的数列,可采用构造法求解数列的通项公式.6.A解析:A由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论.7.A解析:A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.A解析:A 【分析】利用等差数列的前n 项和公式和等差数列的性质可得结果. 【详解】在等差数列{a n }中,由5359a a =,得()()9955115392199555952a a S a a a S a +==⨯=⨯=+ 故选:A 【点睛】本题考查等差数列的性质,考查等差数列的前n 项和,是基础题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.D解析:D 【分析】设等比数列{}n a 的公比为q ,由11a =,418a =,可得318q =,解得q .可得n a .可得1124n n na a +=⨯.利用等比数列的求和公式及其数列的单调性即可得出. 【详解】解:设等比数列{}n a 的公比为q ,11a =,418a =, 318q ∴=,解得12q =. 11111()()22n n n a --=⨯=.12111111()()()22224n n n n n n a a --+∴===⨯.12231211(1)111212442()2(1)144434314n n n n na a a a a a +-∴++⋯+=++⋯⋯+=⨯=-<-. 12231n n a a a a a a k +++⋯+<,23k. k ∴的取值范围是:2,3⎡⎫+∞⎪⎢⎣⎭.故选:D . 【点睛】本题考查了数列递推关系、等比数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】记设根据即可求出从而得到再根据题意可得分参利用基本不等式即可求出实数k 的取值范围【详解】记设当时;当时当时也满足上式所以即显然当时当时因此的最大值若存在必为正值当时因为当且仅当时取等号所以的解析:,2⎛-∞ ⎝⎭【分析】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 根据1112n n n S n b S S n -=⎧=⎨-≥⎩即可求出n b ,从而得到n a ,再根据题意可得()m 2ax 2n k a λλ-+>,分参利用基本不等式即可求出实数k 的取值范围.【详解】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 当1n =时,117322b =-=-; 当2n ≥时,()()21217171142222n n n b S n S n n n n -⎡⎤-----=-⎢⎥⎣⎦=-=. 当1n =时,13b =-也满足上式,所以()*4n b n n N =-∈,即142n n n a --=. 显然当3n ≤时,0n a <,40a =,当5n ≥时,0n a >,因此n a 的最大值若存在,必为正值.当5n ≥时,()1324n n a n a n +-=-,因为()151024n n a na n +--=≤-,当且仅当5n =时取等号. 所以n a 的最大值为116.故()m 2ax 1126n k a λλ>=-+,变形得,3116k λλ<+,而31162λλ+≥=,当且仅当λ=时取等号,所以k <.故答案为:,2⎛-∞ ⎝⎭.【点睛】本题主要考查n S 与n a 的关系1112n nn S n a S S n -=⎧=⎨-≥⎩应用,不等式恒成立问题的解法应用,以及基本不等式的应用,意在考查学生的转化能力和数学运算能力,属于中档题.解题关键是记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-,利用通项n b 与前n 项和n S 的关系1112n nn Sn b S S n -=⎧=⎨-≥⎩求出通项n b ,再利用数列的单调性进而求出数列中的最大值,由基本不等式解出.14.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解. 【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.15.【分析】先根据题意得由于数列是以为首项为公比的等比数列进而利用分组求和法求和即可得答案【详解】解:由等比数列的前项和公式得由于数列是以为首项为公比的等比数列设的前项和则故答案为:【点睛】本题考查等比 解析:3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案. 【详解】解:由等比数列的前n 项和公式得()13141121818211212n n n n n a q S q -⎡⎤⎛⎫-⎢⎥⎪-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦===-=-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-,由于数列{}32n-是以4为首项,12为公比的等比数列, 设{}n S 的前n 项和n T ,则31412188812881212n nn nT n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-=--=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:3288n n -+- 【点睛】本题考查等比数列求和,分组求和,考查运算能力,是基础题.本题解题的关键是求出382n n S -=-,再结合数列{}32n -是以4为首项,12为公比的等比数列,再次求和即可. 16.【分析】用裂项相消法求和【详解】故答案为:【点睛】本题考查裂项相消法求和数列求和的常用方法:设数列是等差数列是等比数列(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的 解析:10102021【分析】用裂项相消法求和. 【详解】111111111111(1)()()1335572019202123235220192021++++=-+-++-⨯⨯⨯⨯111010(1)220212021=-=. 故答案为:10102021.【点睛】本题考查裂项相消法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.17.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b . 【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 18.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.19.【分析】当时有作差可求出再验证是否成立即可得出答案【详解】当时由所以—可得所以当时所以不满足上式所以故答案为:【点睛】本题主要考查数列通项公式的求法做题的关键是掌握属于中档题解析:16,12,2n n n a n +=⎧=⎨≥⎩【分析】当2n ≥时,有()12312311111211212222n n a a a a n n --+++=-+=+-,作差可求出12n n a +=,再验证1a 是否成立,即可得出答案.【详解】当2n ≥时,由123231111212222n na a a a n ++++=+, 所以()12312311111211212222n n a a a a n n --+++=-+=+-, —可得()1212122n n a n n =+--=,所以1222n n n a +⋅==, 当1n =时,112132a =+=,所以16a =,不满足上式,所以16,12,2n n n a n +=⎧=⎨≥⎩. 故答案为: 16,12,2n n n a n +=⎧=⎨≥⎩【点睛】本题主要考查数列通项公式的求法,做题的关键是掌握1n n n a S S -=-,属于中档题.20.【分析】直接利用递推关系式求出数列的通项公式进一步利用裂项相消法求出数列的和【详解】解:正项数列的前项和为①则②②-①得:整理得:当时解得:所以:数列是以1为首项1为公差的等差数列则所以:则:数列的 解析:20212020-【分析】直接利用递推关系式求出数列的通项公式,进一步利用裂项相消法求出数列的和. 【详解】解:正项数列{}n a 的前n 项和为n S ,22()n nn S a a n N *=+∈①, 则221112n n n n n a a a a a +++=-+-②,②-①得:221112n n n n n a a a a a +++=-+-,整理得:11n n a a +-=,当1n =时,21112S a a =+,解得:11a =,所以:数列{}n a 是以1为首项,1为公差的等差数列. 则11n a n n =+-=,所以:2(1)22n n n n nS ++==. 则:()()21111121nn n n n a c S n n +⎛⎫=-=-+ ⎪+⎝⎭,数列{}n c 的前2019项的和为:201911111122320192020T ⎛⎫⎛⎫⎛⎫=-++++⋅⋅⋅-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112020=--, 20212020=-. 故答案为:20212020- 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,属于中档题.三、解答题21.(1)13-=n n a ,43n b n =-;(2)9+2⎡⎫∞⎪⎢⎣⎭,. 【分析】(1)运用数列的递推式和等比数列的通项公式可得{}n a ,再由等差数列的通项公式以及等比的定义,解方程可得公差,进而得到所求通项公式;(2)利用错位相减法求出()34391223nn n T +⎛⎫=- ⎪⎝⎭,易得92n T <,进而可得结果. 【详解】(1)∵()*121n n a S n N+=+∈,当2n ≥时,121n n a S -=+,两式相减化简可得:13n n a a +=, 即数列{}n a 是以3为公比的等比数列,又∵24S =,∴1134a a +=,解得14a =,即13-=n n a , 设数列{}n b 的公差为d ,111b a ==,∵127,,b b b 成等比数列,∴()()21161d d ⨯+=+, 解得4d =或0d =(舍去),即43n b n =-, ∴数列{}n a 和{}n b 的通项公式为13-=n n a ,43n b n =-. (2)由(1)得1433n n n n b n c a --==, ∴()0121111159433333n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()12311111594333333nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得:()1212111114444333333n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++⨯-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()13433nn ⎛⎫=-+ ⎪⎝⎭∴()34391223nn n T +⎛⎫=- ⎪⎝⎭,即有92n T <恒成立, n T m <恒成立,可得92m ≥, 即m 的范围是9+2⎡⎫∞⎪⎢⎣⎭,. 【点睛】一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 22.证明见解析. 【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可. 【详解】当n =1时,S 1=32-t =9-t , 当n ≥2时,由S n =3n +1-t 得S n -1=3n -t , 两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3, 综上所述:数列{a n }是等比数列的充要条件为t =3. 【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.23.(1)2n a n =;(2)()()123?216n n S n n n +=-+++. 【分析】(1)由已知得()()20n n a n a n -+=且0n a >,即可得通项公式.(2)由(1)有()()122122nnn n a a n n -⋅+=-⋅+,利用分组、错位相减法求n S .【详解】(1)由2220n n a na n --=得()()20n n a n a n -+=,又{}n a 为正项数列,∴2n a n =.(2)由(1)知()()122122nnn n a a n n -⋅+=-⋅+,令n T 为数列(){}212nn -⋅的前n 项和,则()123123252212n nTn =⨯+⨯+⨯+⋅⋅⋅+-⨯,∴()23412123252212n n T n +=⨯+⨯+⨯+⋅⋅⋅+-⨯,两式相减,得()123112222222212nn n T n +-=⨯+⨯+⨯+⋅⋅⋅+⨯--⨯,所以()()2112212221212n n nT n ++⨯⨯--=+--⨯-,所以()12326n n T n +=-⨯+,令n B 为数列{}2n 的前n 项和,则()()1212n n n B n n +=⨯=+, 所以()()123216n n n n S T B n n n +=+=-⨯+++.【点睛】 关键点点睛:(1)由已知方程,将n a 作为未知数求正解,即为数列通项公式. (2)将所得数列分为(){}212nn -⋅、{}2n 两组分别求和,应用错位相减、等差数列前n项和公式求n S . 24.(1)12n n a ;(2)12n n T n +=⋅.【分析】(1)由1(2)n n n a S S n -=-≥得出数列{}n a 是等比数列,(先求出10a ≠),可得通项公式;(2)由(1)得n b ,用错位相减法求和. 【详解】解:(1)当1n =时,1112S a +=,解得11a =. 因为21n n S a =-,①所以当2n ≥时,1121n n S a --=-,②①-②得,1122n n n n S S a a ---=-,所以12n n a a -=. 故数列{}n a 是首项为1,公比为2的等比数列,其通项公式为12n n a .(2)由题知,(1)2nn b n =+⋅,所以123223242(1)2nn T n =⨯+⨯+⨯+⋯++,③23412223242(1)2n n T n +=⨯+⨯+⨯+⋯++,④③-④得,()123122222(1)2nn n T n +-=++++⋯+-+()112122(1)2212n n n n n ++⨯-=+-+=-⋅-.所以12n n T n +=⋅.【点睛】方法点睛:本题考查求等比数列的通项公式,考查错位相减法求和.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.25.(1)2nn a =;(2)1(1)222n n n n T ++=+-. 【分析】(1)利用公式11,1=,2n n n S n a S S n -=⎧⎨-≥⎩求{}n a 的通项公式;(2)由题得2nn b n =+,再利用分组求和求数列{}n b 的前n 项和n T .【详解】解:(1)∵点(),n n a S 在直线22y x =-上,n *∈N , ∴22n n S a =-.当1n =时,1122a a =-,则12a =, 当2n 时,22n n S a =-,1122n n S a --=-. 两式相减,得122n n n a a a -=-,所以12n n a a -=. 所以{}n a 是以首项为2,公比为2等比数列,所以2nn a =.(2)2nn b n =+,()23(123)2222n n T n =+++⋯++++++,所以1(1)222n n n n T ++=+-. 【点睛】方法点睛:数列求和常用的方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法.要根据数列的通项特征选择合适的方法求解. 26.(1)12n a n =;(2)证明见解析. 【分析】(1)212n n n S a a =+,*n N ∈.2n 时,利用1n n n a S S -=-,及其等差数列的通项公式即可得出. (2)11b =,12(2)n n n b b a n n --==,利用112211()()()n n n n n b b b b b b b b ---=-+-+⋯⋯+-+,及其裂项求和方法即可得出n T .进而证明结论.【详解】解:(1)①当1n =时, 得211112S a a =+,211112a a a ∴=+ ∴112a =或0(舍去); ②当2n ≥时,211112n n n S a a ---=+, ∴221111122n n n n n n n a S S a a a a ---=-=+-- 221111022n n n n a a a a --∴---= ()()()111102n n n n n n a a a a a a ---∴-+-+= ()11102n n n n a a a a --⎛⎫∴+--= ⎪⎝⎭. 又∵{}n a 各项为正, ∴1102n n a a ---=,112n n a a -∴-= ∴{}n a 为首项是12,公差是12的等差数列, ∴()1112n a a n d n =+-=. (2)由题得,1n n b b n --=121n n b b n --∴-=-┇323b b ∴-=212b b ∴-=,所有式子相加,得1231n b b n n -=++⋅⋅⋅+-+()()212222n n n n -++-==. 又∵11b =,∴22n n n b +=, ∴()212211211n b n n n n n n ⎛⎫===- ⎪+++⎝⎭, ∴111111212231n T n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1221211n n ⎛⎫=-=- ⎪++⎝⎭. 又∵10n +>,∴2n T <.【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。
17第二章 数列答案
第二章 数列答案第1课时 数列的概念及其通项公式1.(1)21,81(2)6465,89 2.53.(1)n a n n )1(-= (2)n a n 2= (3)2n a n =(4)111+-=n n a n 4. 解:(1) n a =2n +1;(2) n a =)12)(12(2+-n n n;(3) n a =2)1(1n-+;(4) 将数列变形为1+0, 2+1, 3+0, 4+1, 5+0, 6+1, 7+0, 8+1, ……,∴n a =n +2)1(1n-+;(5) 将数列变形为1×2, -2×3, 3×4, -4×5, 5×6,……, ∴ n a =(-1)1+n n(n +1)5.(1)440,80208==a a(2)323是这个数列的第17项 6.(1)21-=a 72-=a 103-=a 114-=a 105-=a (2)当4=n 时,取最小的值11-第2课时 数列的概念及其通项公式1.C2. 25-3.∵13a =,121n n a a +=+,∴27a =,315a =,431a =,563a =, ∴121n na +=-4.解:(1) 1a =0, 2a =1, 3a =4,4a =9, 5a =16,∴ n a =(n -1)2;(2) 1a =1,2a =32,3a =4221=, 4a =52, 5a =6231=,∴ n a =12+n ;5.(1)n n a 2= (2)3n a n =(3)2)1(2ab b a a nn --++=(4)n a n =(5))110(31)1(!--=+n n n a6.设n a kn b =+,则31021k b k b +=⎧⎨+=⎩,解得21k b =⎧⎨=⎩,∴21()n a n n N *=+∈,∴20054011a =,又∵2a ,4a ,6a ,8a ,即为5,9,13,17,…,∴41n b n =+第3课时 等差数列的概念和通项公式1.C2.A3.D4. C5.23n -6.87.108.39.由题意知27na n =-,由2752n -=,得29.5n N *=∉,∴52不是该数列中的项.又由2727n k -=+解得7n k N *=+∈,∴27k +是数列{}n a 中的第7k +项.10. (1)445,2171==d a (2) 179=a第4课时 等差数列的概念和通项公式1. D2.B3. A4. 245. 26. 3:17.218. 解:∵ {a n }是等差数列∴ 1a +6a =4a +3a =9⇒3a =9-4a =9-7=2 ∴ d=4a -3a =7-2=5 ∴ 9a =4a +(9-4)d=7+5*5=32 ∴ 3a =2, 9a =329.解:当n ≥2时, (取数列{}n a 中的任意相邻两项1-n a 与n a (n ≥2))])1([)(1q n p q pn a a n n +--+=--p q p pn q pn =+--+=)(为常数∴{n a }是等差数列,首项q p a +=1,公差为p.10.∵(1)2f =,2()1(1)2f n f n ++=,∴1(1)()2f n f n +-=,∴{}()f n 是以2为首项,12为公差的等差数列,∴13()22f n n =+,∴(101)52f =.第5课时 等差数列的概念和通项公式1.B2.C3.B4.D5.B6. 3:4:57. 1,5,11-或11,5,1-或6,5,16-或16,5,6-8.共40项;9.中间三个齿轮的齿数为16,20,2410.(1)每一行与每一列都成等差数列 (2)100,10020200a =第6课时等差数列的前n 项和(1)1. C2. D3. A4.B 5.6(1)84(1,)n n n n N *=⎧⎨->∈⎩6.0 7.6 8. 8769.∵40.8a =,11 2.2a =,∴由1147a a d =+得0.2d =,∴51114010.2a a d =+=∴5152805130293029303010.20.239322a a a a d ⨯⨯+++=+=⨯+⨯=. 10.0,121,1,n n a n n n N*=⎧=⎨->∈⎩ 第7课时等差数列的前n 项和(2)1. D 2. B 3. A 4. 401003- 5. 6 6.247.1650 8.-110 9. 14710. ①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ⎧=+=+>⎪+>⎧⎪⇔⎨⎨<⎩⎪=+=<⎪⎩,∴111211060212a d a d a d +>⎧⎪+<⎨⎪+=⎩ 解得,2437d -<<-,②由67700a a a +>⎧⎨<⎩6700a a >⎧⇒⎨<⎩, 又∵2437d -<<-∴{}n a 是递减数列,∴1212,,,S S S 中6S 最大.第8课时等差数列的前n 项和(3)1. A2.C3.A4.C5. B6. 113, -227. 208.209.前18、19项和相等且最大;n A 最大值略10. (1)第100行是199个数的和,这些数的和是10000 (2)第n行的值2n第9课时 等比数列的概念和通项公式1.A2.D3. A4. C5.B6.12- 7.102.510⨯ 8. 证明略 9. 9,6,4,2或25,-10,4,18 10. 证明略第10课时 等比数列的概念和通项公式1.D2.B3. A4. C7.5 8.①②③9. 平均每年至多只能减少8公顷 10.(1)A1B1=a 5,A2B2=a 35,A3B3=a 955 (2) An Bn=a n 1)35(5-⋅ 第11课时 等比数列的概念和通项公式1. C2. B3. C4. C5.46.81,4096--或7.3,(1)2,(2)nn n=⎧⎨⎩8. 20%9.∵在等比数列{}n a 中, 12a a +,34a a +,56a a +也成等比数列,∵12324a a +=,3436a a +=∴5636364324a a ⨯+== 10. 解:(1)a n +1 = S n +1 –S n221)2(81)2(81+-+=+n n a a ,∴8 a n +1 =221)2()2(+-++n n a a , ∴0)2()2(221=+--+n n a a , ∴(a n +1 + a n )(a n +1 – a n – 4)=0, ∵a n ∈N *,∴a n +1 + a n ≠0, ∴a n +1 – a n – 4=0,即a n +1 – a n = 4, ∴数列{a n }是等差数列. (2)由a n +1 – a n = 4,由题知 B n +1 = 5B n – 4 B n –1 B n +1 – B n = 4(B n – B n –1) b n +1 = 4b n (n ≥2) 又已知b 1 = 1,b 2 = 4.故{b n }是首项为1,公比为4的等比数列. a n =4n –1 (n ∈N +)第12课时 等比数列的前n 项和(1)1.B2.C3.D4.C5.B6.D7.341128 8.21()12n n -+9.27 10.10,2⎛+ ⎝⎭ 11. 由211128n n a a a a -==,又166n a a +=得, 1,n a a 是方程2661280x x -+=的两根,解这个方程得,1264n a a =⎧⎨=⎩或1642n a a =⎧⎨=⎩,由11n n a a qS q -=-得26q n =⎧⎨=⎩或126q n ⎧=⎪⎨⎪=⎩. 12.∵等比数列中k S ,2k k S S -,32k k S S -,……仍成等比数列,∴4S ,84S S -,128S S -,……也成等比数列,而17181920a a a a +++则是这个等比数列中的第5项,由42S =,86S =得844S S -=∴这个等比数列即是:2,4,8,16,32,……,∴1718192032a a a a +++=.第13课时 等比数列的 前n 项和(2)1.A2.B3.C4.A5.C6.35 7. 88.解: ∵211211n n n n n a n =++⋅⋅⋅++++=)111(82122+-=+⋅=n n n n b n ∴数列{bn}的前n 项和:)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n =)111(8+-n = 18+n n9.解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n a a a S n n 将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn +(分组求和) 当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11nn a a a n -+--- 10.解:设nn n n a n -+=++=111,则 11321211+++⋅⋅⋅++++=n n S n )1()23()12(n n -++⋅⋅⋅+-+-=11-+n第14课时 等比数列的前n 项和(3)1.D2.D3.C4.C5. A6. 31123n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦7. 20468. 12(1)q + 9.【解】∵ ⎩⎨⎧=+=+1854510811d a d a , 解得1a =5, d =3,∴ n a =3n +2, n b =n a 2=3×n 2+2,n S =(3×2+2)+ (3×22+2)+ (3×32+2)+……+(3×n 2+2)=3·12)12(2--n +2n =7·n 2-6.(分组求和法)10. 甲方案的总利润68.161≈S 万元 乙方案的总利润56.162≈S 万元 甲方案优第15课时 数列复习课练习(1)(1)C (2)A (3)B (4)D (5)D (6)-1 (7)120 (8)54 (9)92(10)31nn --(11)① ,不能一次性还清贷款;②617.4万元 (1231[1()]23n n a =-;1311(21)()443n n S n -=-+. 第16课时 数列复习课练习(2)(1)D .(2)C. (3)C. (4)B.(5)A.(6)C.(7)D.(8)3000.(9)10,11,12. (10)25. (11)提示:利用等差中项的概念.(12)提示:设()f x kx b =+求得()21f x x =-,(1)(2)(3)(4)(5)25f f f f f ++++=.第2章数列数列单元测试1、B2、 B3、 C4、 A5、 120°6、 10,37、 11,178、 12,18 3249、13,10(略)11、解:由⎩⎨⎧=++=,28,44322a a a a 得⎩⎨⎧=+=.24)1(,4211q q a q a 由0>n a 解出⎩⎨⎧==.2,21q a 所以833==+q a a nn .12、(1)a n =-2m=10;(2)⎪⎩⎪⎨⎧≥+-≤≤+-=6n 40n 9n 5n 1n9n S 22n ;(3)m=713、A 14、B 15、D 16、C 17、B 18、123n +- 19、12-n20、5421、2 22、(3)63110f =++=;观察图4,不难发现第n 堆最底层(第一层)的乒乓球数123n a n =++++ (1)2n n +=,第n 堆的乒乓球总数相当于n 堆乒乓球的底层数之和,即123()n f n a a a a =++++222211(1)(1)(2)(123)2226n n n n n n +++=+++++⋅=23、解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3. 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2).当a 1=3时,a 3=13,a 15=73. a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3. 24、(I )证明:2132,n n n a a a ++=-21112*2112(),1,3,2().n n n n n n n na a a a a a a a n N a a ++++++∴-=-==-∴=∈-{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列。
人教版高中数学选择性必修第一册-第2章-直线和圆的方程-章末测试卷(含解析)
第二章直线和圆的方程章末测试卷(原卷版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知过点M(-2,a),N(a,4)的直线的斜率为-12,则|MN|=( )A.10 B.180C.63D.652.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x-2)2+(y-3)2=13.过点P(2,3),且与x轴的正半轴、y轴的正半轴围成的三角形的面积等于12的直线的方程是( )A.3x-2y+12=0 B.3x+2y-12=0C.2x+3y-13=0 D.2x-3y+13=04.若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程是( )A.x+y-2=0 B.2x-y-7=0C.2x+y-5=0 D.x-y-4=05.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A.(-22,22) B.(-2,2)C.(-24,24)D.(-18,18)6.已知圆C1:x2+y2-kx-y=0和圆C2:x2+y2-2ky-1=0的公共弦所在的直线恒过定点M,且点M在直线mx+ny=2上,则m2+n2的最小值为( )A.15B.55C.255D.457.已知P,Q分别为圆M:(x-6)2+(y-3)2=4与圆N:(x+4)2+(y-2)2=1上的动点,A 为x轴上的动点,则|AP|+|AQ|的最小值为( )A.55-3 B.101-3C.75-3 D.53-38.我国魏晋时期的数学家刘徽创立的“割圆术”,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆x2+y2=2的一个内接正八边形,使该八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为( )A.x+(2-1)y-2=0 B.(1-2)x-y+2=0C.x-(2+1)y+2=0 D.(2-1)x-y+2=0二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.若直线过点(1,2),且在两坐标轴上截距的绝对值相等,则直线的方程可能为( ) A.x-y+1=0 B.x+y-3=0C.2x-y=0 D.x-y-1=010.已知点M(3,1),圆C:(x-1)2+(y-2)2=4,过点M的圆C的切线方程可能为( ) A.x-3=0 B.x-2=0C.3x-4y-5=0 D.3x+4y-5=011.已知圆C1:x2+y2=r2(r>0),圆C2:(x-a)2+(y-b)2=r2交于不同的A(x1,y1),B(x2,y2)两点,则下列结论正确的是( )A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=a D.y1+y2=2b12.(2021·新高考Ⅰ卷)已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则( ) A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=32D.当∠PBA最大时,|PB|=32三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(a+1)x+2y+1=0与直线(a2-1)x-ay-1=0平行,则a的值为________.14.已知圆C:(x+5)2+y2=r2(r>0)和直线l:3x+y+5=0.若圆C与直线l没有公共点,则r的取值范围是__________.15.已知直线l:y=k(x+4)与圆(x+2)2+y2=4相交于A,B两点,M是线段AB的中点,则点M的轨迹方程为________;点M到直线3x+4y-6=0的距离的最小值为________.(本题第一空2分,第二空3分)16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图,Q(0,-3)是圆Q的圆心,圆Q过坐标原点O,点L,S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l经过直线2x+y-5=0与x-2y=0的交点.(1)若点A(5,0)到直线l的距离为3,求直线l的方程;(2)求点A(5,0)到直线l的距离的最大值.18.(12分)已知①经过直线l1:x-2y=0与直线l2:2x+y-1=0的交点;②圆心在直线2x -y=0上;③被y轴截得弦长|CD|=22.从上面这三个条件中任选一个,补充在下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问:是否存在满足条件的圆Q,使得点A(-2,-1),B(1,-1)均在圆上?19.(12分)求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.20.(12分)已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.(1)求圆C的标准方程;(2)若P (x ,y )是圆C 上的动点,求3x -4y 的最大值与最小值.21.(12分)为更好地了解鲸的生活习性,某动物保护组织在某头鲸身上安装了电子监测设备,从海岸线放归点O 处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点O 的正东方向有一观测站C ,可以对鲸的生活习性进行详细观测.已知OC =15 km ,观测站C 的观测半径为5 km.现以点O 为坐标原点,以由西向东的海岸线所在直线为x 轴建立平面直角坐标系,如图所示,测得鲸的行进路线近似满足曲线y =k x (k >0).(1)若测得鲸的行进路线上一点A (1,1),求k 的值;(2)在(1)问的条件下,则:①当鲸运动到何处时,开始进入观测站C 的观测区域内?(计算结果精确到0.1)②当鲸运动到何处时,离观测站C 最近(观测最便利)?(计算结果精确到0.1)(参考数据:41≈6.4,11.3≈3.4,58≈7.6)22.(12分)已知圆C :x 2+(y -4)2=4,直线l :(3m +1)x +(1-m )y -4=0.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长;(3)如图,已知点M (-3,4),在直线MC 上(C 为圆心),存在一定点N (异于点M ),满足对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及该常数.1.已知A (-2,1),B (1,2),点C 为直线x -3y =0上的动点,则|AC |+|BC |的最小值为( )A .22B .23C .25D .272.圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -3)2+(y -3)2=9B .(x -3)2+(y -1)2=(165)2C .(x -1)2+(y -3)2=(185)2D .(x -2)2+(y -32)2 =93.已知直线l 经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线l 的一个方向向量ν=(-3,2),则直线l 的方程为( )A .-3x +2y +1=0B .3x -2y +1=0C .2x +3y -5=0D .2x -3y +1=04.已知圆C 1:(x +a )2+(y -2)2=1与圆C 2:(x -b )2+(y -2)2=4外切,a ,b 为正实数,则ab 的最大值为( )A .23 B.94C.32D.625.若过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,则实数k 的取值范围是( )A .(0,5)B .(-5,0)C .(0,13)D .(0,5)6.已知在平面直角坐标系中,△ABC 的三个顶点分别是A (0,3),B (3,3),C (2,0),若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值是( )A.3B .1+22C .1+33D .2-227.【多选题】已知两圆方程为x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0),则下列说法正确的是( )A .若两圆外切,则r =1B .若两圆公共弦所在的直线方程为8x -6y -37=0,则r =2C .若两圆在交点处的切线互相垂直,则r =3D .若两圆有三条公切线,则r =28.【多选题】已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( )A .x 2+y 2=1B .x 2+y 2=37C .x 2+y 2=4D .x 2+y 2=1659.已知过点P (4,1)的直线l 与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,当△AOB 的面积最小时,直线l 的方程为________.10.曲线y =1+9-x 2与直线y =k (x -3)+5有两个交点,则实数k 的取值范围是________.11.在平面直角坐标系Oxy 中,已知点A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一的点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为________.12.已知圆C 的圆心在直线l :x +y +1=0上且经过点A (-1,2),B (1,0).(1)求圆C 的方程;(2)若过点D (0,3)的直线l 1被圆C 截得的弦长为23,求直线l 1的方程.13.如图,在平面直角坐标系Oxy 中,过点P (0,1)且互相垂直的两条直线分别与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1)若|AB |=372,求CD 的长;(2)若线段CD 的中点为E ,求△ABE 面积的取值范围.14.已知圆C:x2+y2+2x-4y+m=0与y轴相切,O为坐标原点,动点P在圆外,过P作圆C的切线,切点为M.(1)求圆C的圆心坐标及半径;(2)求满足|PM|=2|PO|的点P的轨迹方程.15.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA,PB,切点分别为A,B.(1)当切线PA的长度为23时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若过定点,求出所有定点的坐标;若不过定点,请说明理由.(3)求线段AB长度的最小值.第二章直线和圆的方程章末测试卷(解析版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知过点M(-2,a),N(a,4)的直线的斜率为-12,则|MN|=( )A.10 B.180 C.63D.65答案 D解析 k MN=a-4-2-a=-12,解得a=10,即M(-2,10),N(10,4),所以|MN|=(-2-10)2+(10-4)2=65.故选D.2.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x-2)2+(y-3)2=1答案 A解析 方法一(直接法):设圆心坐标为(0,b),则由题意知(0-1)2+(b-2)2=1,解得b=2,故圆的方程为x2+(y-2)2=1.故选A.方法二(数形结合法):根据点(1,2)到圆心的距离为1,作图易知圆心为(0,2),故圆的方程为x2+(y-2)2=1.故选A.方法三(验证法):将点(1,2)代入四个选项中,可排除B、D,又圆心在y轴上,所以排除C.故选A.3.过点P(2,3),且与x轴的正半轴、y轴的正半轴围成的三角形的面积等于12的直线的方程是( )A.3x-2y+12=0 B.3x+2y-12=0C.2x+3y-13=0 D.2x-3y+13=0答案 B解析 本题主要考查直线的截距式方程及三角形面积的计算.依题意,设直线方程为xa+yb=1(a>0,b>0),所以{12ab=12,2a+3b=1,所以{a=4,b=6,于是所求直线的方程为x4+y6=1,即3x+2y-12=0.故选B.4.若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程是( )A.x+y-2=0 B.2x-y-7=0C.2x+y-5=0 D.x-y-4=0答案 D解析 设圆心为C(2,0),所以k PC=0+12-3=-1,所以k AB=1,所以l AB:x-y-4=0.故选D.5.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A .(-22,22)B .(-2,2)C.(-24,24)D.(-18,18)答案 C解析 易知圆心坐标是(1,0),半径是1,直线l 的斜率存在.设直线l 的方程为y =k (x +2),即kx -y +2k =0,由点到直线的距离公式,得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.6.已知圆C 1:x 2+y 2-kx -y =0和圆C 2:x 2+y 2-2ky -1=0的公共弦所在的直线恒过定点M ,且点M 在直线mx +ny =2上,则m 2+n 2的最小值为( )A.15 B.55C.255 D.45答案 C解析 由圆C 1:x 2+y 2-kx -y =0和圆C 2:x 2+y 2-2ky -1=0,可得圆C 1和C 2的公共弦所在的直线方程为k (x -2y )+(y -1)=0,联立{x -2y =0,y -1=0,解得{x =2,y =1.即点M (2,1),又因为点M 在直线mx +ny =2上,即2m +n =2,又由原点到直线2x +y =2的距离为d =222+12=255,即m 2+n 2的最小值为255.7.已知P ,Q 分别为圆M :(x -6)2+(y -3)2=4与圆N :(x +4)2+(y -2)2=1上的动点,A 为x 轴上的动点,则|AP |+|AQ |的最小值为( )A .55-3 B.101-3C .75-3D .53-3答案 A解析 圆N :(x +4)2+(y -2)2=1关于x 轴对称的圆N ′:(x +4)2+(y +2)2=1,则|AP |+|AQ |的最小值为|MN ′|-1-2=102+52-3=55-3.故选A.8.我国魏晋时期的数学家刘徽创立的“割圆术”,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆x 2+y 2=2的一个内接正八边形,使该八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为( )A .x +(2-1)y -2=0 B .(1-2)x -y +2=0C .x -(2+1)y +2=0 D .(2-1)x -y +2=0答案 C解析 本题在数学文化背景下考查直线方程.如图所示,可知A (2,0),B (1,1),C (0,2),D (-1,1),E (-2,0),所以AB ,BC ,CD ,DE 所在直线的方程分别为y =1-01-2(x -2),y =(1-2)x +2,y =(2-1)x +2,y =12-1(x +2),整理为一般式即x +(2-1)y -2=0,(1-2)x -y +2=0,(2-1)x -y +2=0,x -(2-1)y +2=0.故选C.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.若直线过点(1,2),且在两坐标轴上截距的绝对值相等,则直线的方程可能为( )A .x -y +1=0B .x +y -3=0C .2x -y =0D .x -y -1=0答案 ABC解析 当直线过原点时,设直线的方程为y =kx ,把点(1,2)代入,得k =2,所以此时直线的方程为2x -y =0;当直线斜率k =1时,设直线的方程为y =x +b ,把点(1,2)代入,得b =1,所以此时直线的方程为x -y +1=0;当直线斜率k =-1时,设直线的方程为y =-x +b ,把点(1,2)代入,得b =3,所以此时直线的方程为x +y -3=0.10.已知点M (3,1),圆C :(x -1)2+(y -2)2=4,过点M 的圆C 的切线方程可能为( )A .x -3=0B .x -2=0C .3x -4y -5=0D .3x +4y -5=0答案 AC解析 由题意得圆心为C (1,2),半径r =2.∵(3-1)2+(1-2)2=5>4,∴点M 在圆C 外部.当过点M 的直线的斜率不存在时,直线方程为x =3,即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r ,∴直线x -3=0是圆C 的切线;当过点M 的圆C 的切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0,则圆心C 到切线的距离d =|k -2+1-3k |k 2+12=2,解得k =34,∴切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.故选AC.11.已知圆C 1:x 2+y 2=r 2(r >0),圆C 2:(x -a )2+(y -b )2=r 2交于不同的A (x 1,y 1),B (x 2,y 2)两点,则下列结论正确的是( )A .a (x 1-x 2)+b (y 1-y 2)=0B .2ax 1+2by 1=a 2+b 2C .x 1+x 2=aD .y 1+y 2=2b答案 ABC解析 因为圆C 1:x 2+y 2=r 2①,圆C 2:(x -a )2+(y -b )2=r 2②,交于不同的A (x 1,y 1),B (x 2,y 2)两点,所以①-②得到直线AB 的方程为2ax +2by =a 2+b 2,分别把A (x 1,y 1),B (x 2,y 2)两点代入直线AB 的方程可得2ax 1+2by 1=a 2+b 2③,2ax 2+2by 2=a 2+b 2④,故B 正确;③-④得到2a (x 1-x 2)+2b (y 1-y 2)=0,即a (x 1-x 2)+b (y 1-y 2)=0,故A 正确;由圆的性质可知,线段AB 与线段C 1C 2互相平分,所以x 1+x 22=0+a 2,y 1+y 22=0+b2,即x 1+x 2=a ,y 1+y 2=b ,故C 正确,D 错误.故选ABC.12.(2021·新高考Ⅰ卷)已知点P 在圆(x -5)2+(y -5)2=16上,点A (4,0),B (0,2),则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当∠PBA 最小时,|PB |=32D .当∠PBA 最大时,|PB |=32答案 ACD解析 设圆(x -5)2+(y -5)2=16的圆心为M (5,5),由题易知直线AB 的方程为x 4+y2=1,即x +2y -4=0,则圆心M 到直线AB 的距离d =|5+2×5-4|5=115>4,所以直线AB 与圆M 相离,所以点P 到直线AB 的距离的最大值为4+d =4+115,而4+115<5+1255=10,故A 正确.易知点P 到直线AB 的距离的最小值为d -4=115-4,而115-4<1255-4=1,故B 不正确.过点B 作圆M 的两条切线,切点分别为N ,Q ,如图所示,连接MB ,MN ,MQ ,则当∠PBA 最小时,点P 与N 重合,此时|PB |=|MB |2-|MN |2=52+(5-2)2-42=32,当∠PBA 最大时,点P 与Q 重合,此时|PB |=32,故C 、D 都正确.综上,选ACD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(a +1)x +2y +1=0与直线(a 2-1)x -ay -1=0平行,则a 的值为________.答案 23或-1解析 本题主要考查两直线的平行关系.当a =-1时,两直线方程分别为2y +1=0,y -1=0,显然两直线平行;当a ≠-1时,由a 2-1a +1=-a 2≠-11,得a =23.故a 的值为23或-1.14.已知圆C :(x +5)2+y 2=r 2(r >0)和直线l :3x +y +5=0.若圆C 与直线l 没有公共点,则r 的取值范围是__________.答案 0<r <10解析 因为圆心C (-5,0)到直线l :3x +y +5=0的距离为|-15+5|32+12=1010=10,所以要使圆C 与直线l 没有公共点,则r 的取值范围是0<r <10.15.已知直线l :y =k (x +4)与圆(x +2)2+y 2=4相交于A ,B 两点,M 是线段AB 的中点,则点M 的轨迹方程为________;点M 到直线3x +4y -6=0的距离的最小值为________.(本题第一空2分,第二空3分)答案 (x +3)2+y 2=1(x ≠-4) 2解析 直线l :y =k (x +4)过定点(-4,0),且点(-4,0)在圆(x +2)2+y 2=4上,不妨设A (-4,0),M (x ,y )(x ≠-4),B (x 1,y 1),则{x 1=2x +4,y 1=2y ,将(2x +4,2y )代入(x +2)2+y 2=4,得(x +3)2+y 2=1(x ≠-4),所以点M 的轨迹是以(-3,0)为圆心,以1为半径的圆(除去点A (-4,0)),则点M 到直线3x +4y -6=0的距离的最小值为|-3×3-6|5-1=2.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图,Q (0,-3)是圆Q 的圆心,圆Q 过坐标原点O ,点L ,S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =________.答案 125解析 由题意圆L 与圆S 关于原点对称,设S (a ,0),a >0,则a 2+32=2+3,解得a =4,即S (4,0),所以L (-4,0).由题意知直线l 的斜率存在,设直线l 的方程为y =kx (k ≠0),则三个圆心到该直线的距离分别为:d 1=|-4k |1+k 2,d 2=|4k |1+k 2,d 3=|3|1+k2,则d 2=4(4-d 12)=4(4-d 22)=4(9-d 32),即有4-(-4k 1+k 2)2 =4-(4k 1+k 2)2 =9-(31+k 2)2,解得k 2=421.则d 2=4(4-16×4211+421)=14425,即d =125.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知直线l 经过直线2x +y -5=0与x -2y =0的交点.(1)若点A (5,0)到直线l 的距离为3,求直线l 的方程;(2)求点A (5,0)到直线l 的距离的最大值.解析 (1)由{2x +y -5=0,x -2y =0得{x =2,y =1,所以交点坐标为(2,1).当直线l 的斜率存在时,设l 的方程为y -1=k (x -2),即kx -y +1-2k =0,则点A 到直线l 的距离为|5k +1-2k |k 2+1=3,解得k =43,所以l 的方程为4x -3y -5=0;当直线l 的斜率不存在时,直线l 的方程为x =2,符合题意.故直线l 的方程为4x -3y -5=0或x =2.(2)设直线2x +y -5=0与x -2y =0的交点为P ,由(1)可知P (2,1),过点P 任意作直线l (如图所示),设d 为点A 到直线l 的距离,则d ≤|PA |(当l ⊥PA 时,等号成立),由两点间的距离公式可知|PA |=10.即所求的距离的最大值为10.18.(12分)已知①经过直线l 1:x -2y =0与直线l 2:2x +y -1=0的交点;②圆心在直线2x-y =0上;③被y 轴截得弦长|CD |=22.从上面这三个条件中任选一个,补充在下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问:是否存在满足条件的圆Q ,使得点A (-2,-1),B (1,-1)均在圆上?思路分析 由点A (-2,-1),B (1,-1)均在圆上,可知圆心在线段AB 的垂直平分线x =-12上,设圆心坐标为(-12,b ),半径为r ,若选①,求出直线l 1和l 2的交点为(25,15),再利用两点之间的距离公式求出半径,即可求得圆的方程;若选②,由已知圆心(-12,-1),再利用两点之间的距离公式求出半径,即可求得圆的方程;若选③,由弦长|CD |=22,可得半径及圆心,即可求出圆的方程.解析 因为点A (-2,-1),B (1,-1)均在圆上,所以圆心在线段AB 的垂直平分线上,又线段AB 的垂直平分线所在直线方程为x =-2+12=-12,则可设圆心坐标为(-12,b ),圆的半径为r ,若选①,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.由{x -2y =0,2x +y -1=0,解得{x =25,y =15.即直线l 1和l 2的交点为(25,15),则圆Q 过点(25,15),所以r 2=(-12-25)2 +(b -15)2=(-12-1)2+(b +1)2,解得b =-1,则r 2=94.即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.若选②,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.由圆心在直线2x -y =0上可得2×(-12)-b =0,则b =-1,所以r 2=(-12-1)2 +(-1+1)2=94,即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.若选③,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.若圆被y 轴截得弦长|CD |=22,根据圆的性质可得,r 2=(12)2+(|CD |2)2 =94,由r 2=(-12-1)2 +(b +1)2=94,解得b =-1.即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.19.(12分)求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆的方程.解析 因为圆C 1可化为(x -6)2+(y -1)2=50,所以C 1的坐标为(6,1),半径r 1=52,同理可得C 2的坐标为(-6,-8),半径r 2=55.所以C 1,C 2所在的直线方程为3x -4y -14=0.又因为公共弦所在直线的方程为4x +3y -2=0,由{3x -4y -14=0,4x +3y -2=0,得{x =2,y =-2,即所求圆的圆心为C (2,-2),半径r =(52)2-|C 1C |2=5.所以圆的方程为(x -2)2+(y +2)2=25.20.(12分)已知圆心为C 的圆经过点A (0,2)和B (1,1),且圆心C 在直线l :x +y +5=0上.(1)求圆C 的标准方程;(2)若P (x ,y )是圆C 上的动点,求3x -4y 的最大值与最小值.解析 (1)线段AB 的中点为(12,32),又k AB =-1,所以线段AB 的垂直平分线方程为y -32=1×(x -12),即x -y +1=0.由{x -y +1=0,x +y +5=0解得{x =-3,y =-2,所以圆心C (-3,-2).圆C 的半径r =|AC |=(0+3)2+(2+2)2=5,故圆C 的标准方程为(x +3)2+(y +2)2=25.(2)令z =3x -4y ,即3x -4y -z =0.当直线3x -4y -z =0与圆C 相切于点P 时,z 取得最值,圆心C (-3,-2)到直线3x -4y -z =0的距离d =|-9+8-z |32+(-4)2=5,解得z =-26或z =24.故3x -4y 的最大值为24,最小值为-26.21.(12分)为更好地了解鲸的生活习性,某动物保护组织在某头鲸身上安装了电子监测设备,从海岸线放归点O 处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点O 的正东方向有一观测站C ,可以对鲸的生活习性进行详细观测.已知OC =15 km ,观测站C 的观测半径为5 km.现以点O 为坐标原点,以由西向东的海岸线所在直线为x 轴建立平面直角坐标系,如图所示,测得鲸的行进路线近似满足曲线y =k x (k >0).(1)若测得鲸的行进路线上一点A (1,1),求k 的值;(2)在(1)问的条件下,则:①当鲸运动到何处时,开始进入观测站C 的观测区域内?(计算结果精确到0.1)②当鲸运动到何处时,离观测站C 最近(观测最便利)?(计算结果精确到0.1)(参考数据:41≈6.4,11.3≈3.4,58≈7.6)解析 (1)将A (1,1)代入y =k x ,可得k =1.(2)①以C 为圆心,5为半径的圆的方程为(x -15)2+y 2=25,由{y =x ,(x -15)2+y 2=25,得x 2-29x +200=0,∴x =29±412,∴x 1≈11.3,x 2≈17.7,∴当鲸运动到点(11.3,11.3)即(11.3,3.4)处时,开始进入观测站C 的观测区域内.②鲸与点C 的距离为:d =(x -15)2+y 2=(x -15)2+x=x 2-29x +225=(x -292)2+225-(292)2,∴当x =292时d 最小.故当鲸运动到点(292,582)即(14.5,3.8)处时,鲸离观测站C 最近.22.(12分)已知圆C :x 2+(y -4)2=4,直线l :(3m +1)x +(1-m )y -4=0.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长;(3)如图,已知点M (-3,4),在直线MC 上(C 为圆心),存在一定点N (异于点M ),满足对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及该常数.解析 (1)依题意,得m (3x -y )+(x +y -4)=0,令{3x -y =0,x +y -4=0,解得{x =1,y =3,∴直线l 过定点A (1,3).(2)当AC ⊥l 时,所截得的弦长最短.由题知C (0,4),圆C 的半径r =2,∴k AC =4-30-1=-1,∴k l =1,∴3m +1m -1=1,∴m =-1.∵圆心C 到直线l 的距离为d =|AC |=2,∴最短弦长为2r 2-d 2=22.(3)由题意知直线MC 的方程为y =4.设定点N (t ,4)(t ≠-3),P (x ,y ),|PM ||PN |=λ(λ>0),则|PM |2=λ2|PN |2,∴(x +3)2+(y -4)2=λ2(x -t )2+λ2(y -4)2,∴(x +3)2+4-x 2=λ2(x -t )2+λ2(4-x 2),整理得(6+2tλ2)x -(λ2t 2+4λ2-13)=0,此式对任意的x ∈[-2,2]恒成立,∴{6+2t λ2=0,λ2t 2+4λ2-13=0,∴{t=-43,λ=32或{t =-43,λ=-32(舍去)或{t =-3,λ=±1(舍去).综上,满足条件的点N 的坐标为(-43,4),且|PM ||PN |为常数32.1.已知A (-2,1),B (1,2),点C 为直线x -3y =0上的动点,则|AC |+|BC |的最小值为( )A .22B .23C .25D .27答案 C解析 设点A (-2,1)关于直线x -3y =0的对称点为D (a ,b ),则{b -1a +2=-3,a -22-3×b +12=0,解得{a =-1,b =-2,所以D (-1,-2),所以|AC |+|BC |=|DC |+|BC |,当B ,D ,C 共线时,|AC |+|BC |取最小值,最小值为|DB |=(1+1)2+(2+2)2=25.2.圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -3)2+(y -3)2=9B .(x -3)2+(y -1)2=(165)2C .(x -1)2+(y -3)2=(185)2D .(x -2)2+(y -32)2=9答案 D解析 设圆心为(a ,b ),半径为r ,则满足条件的圆面积最小即r 最小,r =|3a +4b +3|32+42=|3a +4b +3|5≥23a ×4b +35,因为圆心(a ,b )在y =3x (x >0)上,所以b =3a ,即ab =3,所以r min =212×3+35=3,当且仅当3a =4b ,即a =2,b =32时取等号,所以此时圆的方程为(x-2)2+(y -32)2=9.3.已知直线l 经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线l 的一个方向向量ν=(-3,2),则直线l 的方程为( )A .-3x +2y +1=0 B .3x -2y +1=0C .2x +3y -5=0 D .2x -3y +1=0答案 C解析 方法一:由{x +y =2,2x -y =1,得{x =1,y =1,由题意,知直线l 的斜率k =-23,所以直线l 的方程为y -1=-23(x -1),即2x +3y -5=0.故选C.方法二:由题意设直线l :x +y -2+λ(2x -y -1)=0(λ∈R ),即(1+2λ)x +(1-λ)y -2-λ=0,又直线l 的一个方向向量ν=(-3,2),所以3(1+2λ)=2(1-λ),解得λ=-18,所以直线l的方程为2x +3y -5=0.故选C.4.已知圆C 1:(x +a )2+(y -2)2=1与圆C 2:(x -b )2+(y -2)2=4外切,a ,b 为正实数,则ab 的最大值为( )A .23 B.94C.32D.62答案 B解析 因为圆C 1:(x +a )2+(y -2)2=1的圆心为C 1(-a ,2),半径r 1=1,圆C 2:(x -b )2+(y -2)2=4的圆心为C 2(b ,2),半径r 2=2,所以|C 1C 2|=(-a -b )2+(2-2)2=|a +b |=1+2,所以a 2+b 2+2ab =9,所以(a -b )2+4ab =9,所以ab =94-(a -b )24≤94,即当a =b 时,ab 取得最大值,最大值为94.5.若过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,则实数k 的取值范围是( )A .(0,5) B .(-5,0)C .(0,13) D .(0,5)答案 A解析 圆C 的方程x 2+4x +y 2-5=0可化为(x +2)2+y 2=9,则圆C 与x 轴正半轴交于点A (1,0),与y 轴正半轴交于点B (0,5),如图所示,因为过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,所以k MA <k <k MB ,所以0<k <5.6.已知在平面直角坐标系中,△ABC 的三个顶点分别是A (0,3),B (3,3),C (2,0),若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值是( )A.3 B .1+22C .1+33D .2-22答案 A解析 如图所示,易知直线AB 的方程是y =3,直线AC 的方程是x2+y3=1,即3x +2y -6=0,且直线x =a 只与边AB ,AC 相交.设直线x =a 与AB 交于点D ,与AC 交于点E ,则点D ,E 的坐标分别为(a ,3),(a ,6-3a2),从而|DE |=3-6-3a 2=32a ,S △ADE =12|AD ||DE |=12a ×32a =34a 2①.又S △ABC =12×3×3=92,所以S △ADE =12S △ABC=94②,由①②得34a 2=94,解得a =3或a =-3(舍去).故选A.7.【多选题】已知两圆方程为x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0),则下列说法正确的是( )A .若两圆外切,则r =1B .若两圆公共弦所在的直线方程为8x -6y -37=0,则r =2C .若两圆在交点处的切线互相垂直,则r =3D .若两圆有三条公切线,则r =2答案 ABC解析 由圆的方程可知,两圆圆心分别为(0,0),(4,-3),半径分别为4,r ,所以圆心距为5,若两圆外切,则4+r =5,即r =1,故A 正确;此时两圆有三条公切线,故D 错误;当两圆相交时,两圆公共弦所在的直线方程可由两圆方程相减得到,所以公共弦所在的直线方程为8x -6y -41+r 2=0,所以-41+r 2=-37,解得r =2,故B 正确;因为两圆在交点处的切线互相垂直,则一个圆的切线必过另一个圆的圆心,所以两圆圆心距与两圆半径必构成一个直角三角形,故52=42+r 2,解得r =3,故C 正确.8.【多选题】已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( )A .x 2+y 2=1 B .x 2+y 2=37C .x 2+y 2=4 D .x 2+y 2=165答案 AB解析 过点A ,C 的直线方程为y +13+1=x -6-2-6,化为一般式为x +2y -4=0,过点A ,B 的直线方程为x =-2,过点B ,C 的直线方程为y =-1,所以原点O 到直线x +2y -4=0的距离d AC =455,原点O 到直线x =-2的距离d AB =2,原点O 到直线y =-1的距离d BC =1,所以d AB >d AC >d BC ,又|OA |=(-2)2+32=13,|OB |=(-2)2+(-1)2=5,且|OC |=62+(-1)2=37.结合图形可知,若以原点为圆心的圆与△ABC 有唯一公共点,则公共点为(0,-1)或(6,-1),所以圆的半径为1或37.故选AB.9.已知过点P (4,1)的直线l 与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,当△AOB 的面积最小时,直线l 的方程为________.答案 x +4y -8=0解析 设直线l :x a +y b =1(a >0,b >0),因为直线l 过点P (4,1),所以4a +1b =1≥24a ×1b =4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立.所以当a =8,b =2时,△AOB 的面积S =12ab 取得最小值,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.10.曲线y =1+9-x 2与直线y =k (x -3)+5有两个交点,则实数k 的取值范围是________.答案 (724,23]解析 由题可知,y =1+9-x 2,即x 2+(y -1)2=9(y ≥1),其图象如图所示:又直线y =k (x -3)+5即kx -y -3k +5=0过定点A (3,5).当直线与半圆相切时,则|-1-3k +5|k 2+1=3,解得k =724.当直线过点B (-3,1)时,k =5-13-(-3)=23.所以k ∈(724,23].11.在平面直角坐标系Oxy 中,已知点A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一的点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为________.答案 ±21解析 根据题意,设点P 的坐标为(a ,b ),则直线PA 的方程为y =b a +1(x +1),其在y 轴上的截距为b a +1,直线PB 的方程为y =b a -5(x -5),其在y 轴上的截距为-5ba -5.若点P 满足使直线PA ,PB 在y 轴上的截距之积为5,则有ba +1×(-5ba -5)=5,变形可得b 2+(a -2)2=9,则点P 在圆(x -2)2+y 2=9上.若圆M :(x -4)2+(y -m )2=4上存在唯一的点P 满足题意,则圆M 与圆(x -2)2+y 2=9有且只有一个公共点,即两圆内切或外切.又两圆的圆心距为(4-2)2+m 2≥2,所以两圆外切,所以4+m 2=25,解得m =±21.12.已知圆C 的圆心在直线l :x +y +1=0上且经过点A (-1,2),B (1,0).(1)求圆C 的方程;(2)若过点D (0,3)的直线l 1被圆C 截得的弦长为23,求直线l 1的方程.解析 (1)由题意得,圆心C 一定在线段AB 的垂直平分线上,k AB =0-21-(-1)=-1,线段AB 中点为(0,1),所以直线AB 的垂直平分线为x -y +1=0.所以直线l :x +y +1=0与x -y +1=0的交点即为圆心C ,即C 的坐标为(-1,0),半径r =|CA |=2.所以圆C 的方程为(x +1)2+y 2=4.(2)当直线l 1斜率不存在时,方程为x =0,此时圆心到l 1距离为1,截得的弦长为23,满足题意;当直线l 1斜率存在时,设为k ,则l 1:kx -y +3=0,圆心(-1,0)到l 1的距离d =|-k +3|k 2+1=4-(232)2=1,所以k =43,则直线l 1的方程为4x -3y +9=0.综上,直线l 1的方程为x =0或4x -3y +9=0.13.如图,在平面直角坐标系Oxy 中,过点P (0,1)且互相垂直的两条直线分别与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1)若|AB |=372,求CD 的长;(2)若线段CD 的中点为E ,求△ABE 面积的取值范围.解析 (1)直线AB 的斜率显然存在,设为k ,则直线AB 的方程为y =kx +1.因为(|AB |2)2 +(1k 2+1)2=4,所以|AB |=24k 2+3k 2+1,由24k 2+3k 2+1=372,得k 2=15,因为直线CD 的方程为y =-1kx +1,所以(|CD |2)2=1-(-2k+1-11+(-1k)2)2,所以|CD |=21-4k 2+1=21-415+1=3.(2)当直线AB 的斜率不存在时,△ABE 的面积S =12×4×2=4;当直线AB 的斜率存在时,设其斜率为k ,则直线AB 的方程为y =kx +1,显然k ≠0,则直线CD 的方程为y =-1kx +1,由|-1k·2-1+1|(-1k )2+1<1,得k 2>3,因为(|AB |2)2+(1k 2+1)2=4,所以|AB |=24k 2+3k 2+1,易知E 到直线AB 的距离即M 到AB 的距离,设为d ,则d =|2k -1+1|k 2+1=|2k |k 2+1,所以△ABE 的面积S =12|AB |·d =2(4k 2+3)k 2(k 2+1)2,令k 2+1=t >4,则S =2(4t -1)(t -1)t 2=21t 2-5t +4=2(1t -52)2-94,易知1t ∈(0,14),所以S∈(352,4).综上,△ABE面积的取值范围为(352,4].14.已知圆C:x2+y2+2x-4y+m=0与y轴相切,O为坐标原点,动点P在圆外,过P作圆C的切线,切点为M.(1)求圆C的圆心坐标及半径;(2)求满足|PM|=2|PO|的点P的轨迹方程.解析 (1)圆C:x2+y2+2x-4y+m=0可化为(x+1)2+(y-2)2=5-m,所以圆C的圆心坐标为(-1,2).又圆C与y轴相切,所以5-m=1,即m=4,故圆C的半径为1.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-1,|PO|2=x2+y2.由于|PM|=2|PO|,则(x+1)2+(y-2)2-1=4(x2+y2),整理得点P的轨迹方程为(x-13)2+(y+23)2=179.15.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA,PB,切点分别为A,B.(1)当切线PA的长度为23时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若过定点,求出所有定点的坐标;若不过定点,请说明理由.(3)求线段AB长度的最小值.解析 由题意知,圆M的半径r=2,M(0,4),设P(2b,b).(1)∵PA是圆M的一条切线,∴∠MAP=90°,∴|MP|=(0-2b)2+(4-b)2=|AM|2+|AP|2=22+(23)2=4,解得b=0或8 5,∴点P的坐标为(0,0)或(165,85).(2)圆N过定点(0,4),(85,45).理由如下:∵∠MAP=90°,∴经过A,P,M三点的圆N 以MP为直径,其方程为(x-b)2+(y-b+42)2=4b2+(b-4)24,即(2x+y-4)b-(x2+y2-4y)=0.由{2x+y-4=0,x2+y2-4y=0,解得{x=0,y=4或{x=85,y=45.∴圆N过定点(0,4),(85,45).(3)由(2)得圆N的方程为(x-b)2+(y-b+42)2=4b2+(b-4)24,即x2+y2-2bx-(b+4)y+4b=0,①又圆M:x2+(y-4)2=4,即x2+y2-8y+12=0,②②-①,得圆M与圆N的相交弦AB所在直线的方程为2bx+(b-4)y+12-4b=0,∴点M到直线AB的距离d=45b2-8b+16,∴|AB|=24-d2=41-45b2-8b+16=41-45(b-45)2+645,∴当b=45时,|AB|有最小值,为11.。
高考数学 数列单元测试卷及答案 试题
(文)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函数y=log x的图象上.
(1)假设数列{bn}是等差数列,求证数列{an}是等比数列;
三、解答题(本大题一一共6小题,一共70分)
17.(本小题满分是10分)数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2|an|,Tn为数列{ }的前n项和,求Tn.
解:(1)当q=1时,S3=12,S2=8,S4=16,不成等差数列.
∴n0=2021或者(huòzhě)2021.
(文)(1)∵an+1-2an=0,
∴a3=2a2,a4=2a3,又a3+2是a2、a4的等差中项,
∴a1=2,a2=4,
∴数列(shùliè){an}是以2为首项,2为公比的等比数列(děnɡ bǐ shù liè),那么
an=2n.
(2)∵Sn=2n+1-2,又bn=log2(Sn+2),∴bn=n+1.
12.数列{an}满足an+1= + ,且a1= ,那么该数列的前2021项的和等于()
A. B.3015
C.1005D.2021
答案:A
解析:因为a1= ,又an+1= + ,所以a2=1,
从而(cóng ér)a3= ,a4=1,
即得an= ,故数列(shùliè)的前2021项的和等于S2021=1005(1+ )= .应选(yīnɡ xuǎn)A.
3.设Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,那么 等于()
新人教版高中数学选修二第一单元《数列》测试题(包含答案解析)
一、选择题1.若数列{}n a 满足12a =,23a =,12n n n a a a --=(3n ≥且*N n ∈),则2018a 等于( ) A .12B .2C .3D .232.我国古代著名的数学专著《九章算术》里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢.问:齐去长安多少里?( ) A .1125B .1250C .2250D .25003.已知数列{}n a 的前n 项和为n S ,且11a =,1n n a S +=,若(0,2020)n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的平方和为( ) A .1111433⨯- B .1211433⨯- C .1012433⨯+D .1112433⨯+4.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( )A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭5.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ6.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a 7.已知函数()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n *=∈N 得数列{}n a ,若数列{}n a 为递增数列,则实数a 的取值范围为( )A .()1,3B .()2,3C .9,34⎛⎫ ⎪⎝⎭D .92,4⎛⎫ ⎪⎝⎭8.等差数列{}n a 的前n 项和为n S ,已知1210,a a =为整数,且4n S S ≤,设11n n n b a a +=,则数列{}n b 的前项和n T 为( ) A .310(103)nn -B .10(103)nn -C .103nn-D .10(133)nn -9.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66(S a = ) A .6332B .3116C .12364 D .12712810.在等差数列{}n a 中,若12336a a a ++=,11121384a a a ++=,则59a a +=( ) A .30B .35C .40D .4511.已知数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =.数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对一切n ∈+N 都有21n m T +>恒成立,则m 能取到的最小整数为( )A .1-B .0C .1D .212.定义12...nnp p p +++为n 个正数12,,......n p p p 的“均倒数”,若已知正整数数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231920111b b b b b b +++=( ) A .1920 B .120C .1011 D .111二、填空题13.在数列{}n a 中,若121,(1)2nn n a a a +=+-=,记n S 是数列{}n a 的前n 项和,则100S =__________.14.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.15.已知数列{}n a 的前n 项和2231n S n n =-+,则n a =__________.16.设等差数列{}n a 的前n 项和为n S ,且10a >,149S S =,则满足0n S >的最大自然数n 的值为_____________.17.已知数列{}n a 中,11a =,()132,n n a a n n N *-=+≥∈,数列{}n b 满足11n n n b a a +=,*n N ∈,则()12lim n n b b b →∞++⋅⋅⋅+=________.18.等比数列{}n a 中,11a =,且2436a a a +=,则5a =________. 19.已知函数()31xf x x =+,对于数列{}n a 有()1n n a f a -=(*n N ∈且2n ≥),如果11a =,那么n a =______.20.数列{}n a 中,n S 为{}n a 的前n 项和,()()*1n n n n a a a n N+-=∈,且3aπ=,则4tan S 等于______.三、解答题21.设等差数列}{n a 的公差为0d >,n *∈N .且满足3616a a +=,4563a a ⋅=. (1)求数列}{n a 的通项公式. (2)记数列11n n n b a a +=,求}{n b 的前n 项和n T . 22.已知定义在R 上的函数()f x ,对任意实数1x ,2x 都有()()()12121f x x f x f x +=++,且()11f =.(1)若对任意正整数n ,有112n n a f ⎛⎫=+⎪⎝⎭,求{}n a 的通项公式; (2)若31n b n =+,求数列{}n n a b 前n 项和n S . 23.在数列{}n a 中,已知114a =,(),m t m t a a a m t +++=⋅∈∈N N ,1423log n nb a +=,(n ∈+N )(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 满足n n n c a b =⋅,求{}n c 的前n 项和n S . 24.设数列{}n a 满足10a =且112n n a a +=-,n *∈N .记11n nb a =-,n *∈N .(1)求证:数列{}n b 为等差数列;(2)设32nna n c ⎛⎫= ⎪⎝⎭,求满足不等式12312311113n n c c c c c c c c ⎛⎫++++>++++ ⎪⎝⎭的正整数n 的集合.25.已知正项数列{}n a 满足2220n n a na n --=,数列(){}12n nn aa -⋅+的前n 项和为n S .(1)求数列{}n a 的通项公式; (2)求n S .26.已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 通项公式为21n b n =+,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先由题设求得数列{}n a 的前几项,然后得到数列{}n a 的周期,进而求得结果. 【详解】因为12a =,23a =,12n n n a a a --=(3n ≥且*N n ∈), 所以23132a a a ==,34231232a a a ===, 453112332a a a ===, 564123132a a a ===,67523213a a a ===,7862323a a a ===,,所以数列{}n a 是周期为6的周期数列, 所以20183366223a a a ⨯+===, 故选:C. 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下: (1)根据题中所给的前两项以及递推公式,逐项写出数列的前几项; (2)根据规律判断出数列的周期;(3)根据所求的数列的周期,求得20182a a =,进而求得结果.2.A解析:A 【分析】由题意可知,良马每日行的距离{}n a 以及驽马每日行的距离{}n b 均为等差数列,确定这两个数列的首项和公差,利用等差数列的求和公式可求得结果.【详解】由题意可知,良马每日行的距离成等差数列,记为{}n a ,其中1103a =,公差113d =. 驽马每日行的距离成等差数列,记为{}n b ,其中197b =,公差20.5d =-. 设长安至齐为x 里,则1291292a a a b b b x +++++++=,即9813980.521039979225022x ⨯⨯⨯⨯=⨯++⨯-=,解得1125x =. 故选:A. 【点睛】关键点点睛:解本题的关键在于得出长安至齐的距离等于良马和驽马九日所行的距离之和的 2倍,并结合题意得知两匹马所行的距离成等差数列,解题时要充分抓住题中信息进行分析,将实际问题转化为数学问题来求解.3.D解析:D 【分析】 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,得到12n n a a +=,求得22,2n n a n -=≥,得到数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,结合等比数列的求和公式,即可求解. 【详解】由11a =,1n n a S +=,可得1211a S a ===, 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,可得11n n n n n a a S S a +--=-=,即12n n a a +=,即12n na a +=, 则数列{}n a 从第二项起是公比为2的等比数列,即22,2n n a n -=≥,又由(0,2020)n a ∈,即222020n -<,可得13,n n N +<∈,所以“和谐项”共有12项,则数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,可得数列{}n a 的所有“和谐项”的平方和为111110(11244)11416413431-+++++=+=⨯+-.故选:D. 【点睛】与数列的新定义有关的问题的求解策略:通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.4.A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 5.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭. ∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 6.C解析:C 【分析】令n n b na =,由已知得121n n b b n +-=+运用累加法得2+12n b n =,从而可得12+n a n n=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<<,由此可得选项. 【详解】令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-,所以累加得()()213+2113++122nn n b n --==,所以2+1212+n nb n a n n n n===, 所以()()()()+13+41212+1+++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,故选:C. 【点睛】本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.7.B解析:B 【分析】 由()()633,7,,7.x a x x f x ax -⎧--≤=⎨>⎩,()()n a f n n N *=∈得数列{}n a ,根据数列{}n a 为递增数列,联立方程组,即可求得答案. 【详解】()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩ 令()()n a f n n N *=∈得数列{}n a∴()633,7,7n n a n n a a n -⎧--≤=⎨>⎩()n N *∈且数列{}na 为递增数列,得()230,1,733,a a a a ⎧->⎪>⎨⎪--<⎩解得23a <<. 即:()2,3a ∈ 故选:B. 【点睛】本题主要考查了根据递增数列求参数范围问题,解题关键是掌握递增数列的定义,考查了分析能力和计算能力,属于中档题.8.B解析:B 【分析】根据已知条件求得{}n a 的通项公式,利用裂项求和法求得n T .依题意等差数列{}n a 的前n 项和为n S ,已知1210,a a =为整数,且4n S S ≤,所以4151030040a a d a a d ≥+≥⎧⎧⇒⎨⎨<+<⎩⎩,即10301040d d +≥⎧⎨+<⎩,解得10532d -≤<-,由于2a 为整数,1a 为整数,所以d 为整数,所以3d =-.所以()11313n a a n d n =+-=-+. 所以()13113310n a n n +=-++=-+,()()1111113133103310313n n n b a a n n n n +⎛⎫===⨯- ⎪-+-+-+-+⎝⎭, 所以1111111371047310313n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎣⎦()()()10310111133101031010310103n n n n n --+⎡⎤=-=⨯=⎢⎥-+--⎣⎦. 故选:B 【点睛】本小题主要考查裂项求和法,属于中档题.9.A解析:A 【分析】利用数列递推关系:1n =时,1121a a =-,解得1a ;2n 时,1n n n a S S -=-.再利用等比数列的通项公式与求和公式即可得出. 【详解】21n n S a =-,1n ∴=时,1121a a =-,解得11a =;2n 时,1121(21)n n n n n a S S a a --=-=---,化为:12n n a a -=.∴数列{}n a 是等比数列,公比为2.56232a ∴==,66216321S -==-.则666332S a =. 故选:A . 【点睛】本题考查数列递推关系、等比数列的通项公式与求和公式,考查推理能力与计算能力,属于中档题.10.C【分析】利用等差数列性质,若++m n p q =,则++m n p q a a a a =及等差中项公式可求. 【详解】因为 12336a a a ++=,由等差中项公式,得2336a =, 同理11121384a a a ++=,得12384a =,2123+3=81036+42a a ∴=.212+=40a a ∴ 21529+=40a a a a ∴+=故选:C . 【点睛】本题考查等差数列性质与等差中项公式.(1)如果{}n a 为等差数列,若++m n p q =,则++m n p q a a a a = ()*m n p q N ∈,,,. (2){}n a 为等差数列,则有11n n n a a a =2-++.11.B解析:B 【分析】根据25a =,535S =求出数列的通项公式,再利用裂项相消法求出数列的和,然后由21n m T +>恒成立求解.【详解】因为数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =. 设首项为1a ,公差为d ,所以115545352a d a d +=⎧⎪⎨⨯+=⎪⎩,解得132a d =⎧⎨=⎩,故32(1)21n a n n =+-=+, 所以111111()·(21)(23)22123n n a a n n n n +==-++++, 所以11111111111()()23557212323236n T n n n =-+-+⋯+-=-<+++. 因为对于一切n ∈+N 都有21n m T +>恒成立,所以1216+m ,解得512≥-m , 故m 的最小整数为0.【点睛】本题主要考查数列的通项公式,裂项相消法求数列的和,还考查了运算和求解的能力,属于中档题.12.A解析:A 【分析】首先根据新定义求得()21n S n n =+,再求数列{}n a 的通项公式,以及求得n b n =,最后利用裂项相消法求和. 【详解】由已知可得数列{}n a 的前n 项的“均倒数”为1211..21n n n a a a S n ==++++,可得()21n S n n =+,则2n ≥时,()()212111231n S n n n n -=-+-=-+⎡⎤⎣⎦,∴ 141n n n a S S n -=-=-,当1n =时,113a S ==,满足41n a n =-,41n a n ∴=-,又14n n a b +=,故n b n =, 12231920111111 (12231920)b b b b b b ∴+++=+++⨯⨯⨯ 111111191..122319202020⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A 【点睛】本题考查新定义数列的理解,考查裂项相消法求和,以及已知n S 求n a ,属于基础题型,本题的关键是理解新定义.,并能抽象为121n n S n =+. 二、填空题13.【分析】当为奇数时可得数列的奇数项为公差为2的等差数列当为偶数时可得偶数项的特征将所求问题转化为奇数项和偶数项求和即可【详解】∵∴当为奇数时即数列的奇数项为公差为2的等差数列当为偶数时∴∴故答案为: 解析:2550【分析】当n 为奇数时,可得数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,可得偶数项的特征,将所求问题转化为奇数项和偶数项求和即可.∵121,(1)2nn n a a a +=+-=,∴当n 为奇数时,22n n a a +-=,即数列{}n a 的奇数项为公差为2的等差数列, 当n 为偶数时,22n n a a ++=, ∴135995049501225002a a a a ⨯++++=⨯+⨯=, ()()()()24681012485022550a a a a a a a a ++++++++=⨯=,∴1002500502550S =+=, 故答案为:2550. 【点睛】 关键点点睛:(1)得到数列{}n a 的奇数项为公差是2的等差数列; (2)得到数列{}n a 的偶数项满足22n n a a ++=.14.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.15.【解析】分析:当时求得;当时类比写出由求出再将代入检验即可求出答案详解:当时当时由得两式相减将代入上式通项公式为故答案为点睛:本题主要考查已知数列的前项和求数列的通项公式的方法其求解过程分为三步:(解析:0,145,2n n a n n =⎧=⎨-≥⎩【解析】分析:当1n =时,求得11a S =;当2n ≥时,类比写出1n S -,由1n n n a S S -=-求出n a ,再将1n =代入n a 检验,即可求出答案.详解:当1n =时,110a S ==当2n ≥时,由2231n S n n =-+,得212(1)3(1)1n S n n -=---+,两式相减,145n n n a S S n -=-=-, 将1n =代入上式,110a =-≠, ∴通项公式为0,145,2n n a n n =⎧=⎨-≥⎩故答案为0,145,2n n a n n =⎧=⎨-≥⎩.点睛:本题主要考查已知数列{}n a 的前n 项和n S ,求数列的通项公式的方法.其求解过程分为三步:(1)当1n =时, 11a S =求出1a ;(2)当2n ≥时,用1n -替换n S 中的n 得到一个新的关系,利用1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式;(3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.16.22【分析】由等差数列的前项和的公式求解解出、的关系式再求出的临界条件最后得解【详解】解:等差数列的前项和为所以所以其中所以当时解得所以的最大自然数的值为22故答案为:22【点睛】本题应用公式等差数解析:22 【分析】由等差数列{}n a 的前n 项和的公式求解149S S =,解出1a 、d 的关系式,再求出0n S =的临界条件,最后得解. 【详解】解:等差数列{}n a 的前n 项和为n S ,149S S =,所以()114579a a a +=,1117(13)9(4)a a d a d ++=+,111a d =-, 所以()12n a n d =-,其中10a >,所以0d <,当0n a =时,解得12n =,()2312312232302S a a a =+==, 1222222()1102a a S d +==->, 所以0n S >的最大自然数n 的值为22.故答案为:22. 【点睛】本题应用公式()12n n n a a S +=,等差数列的性质:若m n p q +=+,则m n p q a a a a +=+.对数列的公式要灵活应用是快速解题的关键,解出1a 、d 的关系式,再求出0n S =的临界条件,判断满足0n S >的最大自然数n 的值.17.【分析】求出数列的通项公式利用裂项求和法求出利用极限的运算法则可得出所求极限值【详解】且则数列是以为首项以为公差的等差数列所以因此故答案为:【点睛】本题考查数列前项和的极限值的求法是中档题解题时要认解析:13【分析】求出数列{}n a 的通项公式,利用裂项求和法求出12n b b b ++⋅⋅⋅+,利用极限的运算法则可得出所求极限值. 【详解】()132,n n a a n n N *-=+≥∈且11a =,则数列{}n a 是以1为首项,以3为公差的等差数列,所以,()13132n a n n =+-=-,()()111111323133231n n n b a a n n n n +⎛⎫∴===- ⎪-+-+⎝⎭, 1211111111134473231393n b b b n n n ⎛⎫∴++⋅⋅⋅+=-+-++-=- ⎪-++⎝⎭, 因此,()12111lim lim 3933n n n b b b n →∞→∞⎛⎫++⋅⋅⋅+=-=⎪+⎝⎭. 故答案为:13. 【点睛】本题考查数列前n 项和的极限值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.18.4【分析】在等比数列中将已知转化为首项和公比求得再将其带入通项公式中求得答案【详解】因为所以在等比数列中所以或-3(舍)故故答案为:4【点睛】本题考查等比数列中知三求二由已知转化为首项和公比进而表示解析:4 【分析】在等比数列中,将已知转化为首项和公比求得2q ,再将其带入通项公式中,求得答案. 【详解】因为11a =,所以在等比数列中32422431116a a a a q a q a q q q +=⋅+=+=所以22q =或-3(舍),故425124a a q === 故答案为:4 【点睛】本题考查等比数列中知三求二,由已知转化为首项和公比,进而表示所求问题,属于简单题.19.【分析】由已知条件得出变形为可知数列为等差数列确定该数列的首项和公差求出进而可得出【详解】且(且)在等式两边取倒数得且所以数列是以为首项以为公差的等差数列因此故答案为:【点睛】本题考查利用构造法求数解析:132n - 【分析】由已知条件得出()11231n n n a a n a --=≥+,变形为1113n n a a --=,可知数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,求出1na ,进而可得出n a .【详解】()31x f x x =+,且()11131n n n n a a f a a ---==+(*n N ∈且2n ≥), 在等式1131n n n a a a --=+两边取倒数得11113113n n n n a a a a ---+==+,1113n n a a -∴-=且111a ,所以,数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,以3为公差的等差数列,()113132nn n a ∴=+-=-, 因此,132n a n =-. 故答案为:132n -. 【点睛】本题考查利用构造法求数列的通项公式,涉及等差数列定义的应用,考查计算能力,属于中等题.20.【分析】将变形为利用累乘法求出数列的通项公式求出的值再利用诱导公式可求出的值【详解】则所以因此故答案为:【点睛】本题考查利用累乘法求数列通项同时也考查了数列求和以及正切值的计算考查计算能力属于中等题【分析】将()1n n n n a a a +-=变形为11n n a n a n++=,利用累乘法求出数列{}n a 的通项公式,求出4S的值,再利用诱导公式可求出4tan S 的值. 【详解】()()*1n n n n a a a n N +-=∈,()11n n na n a +∴=+,11n n a n a n++∴=, 3211112123121n n n a a a na a a na a a a n -∴=⋅⋅⋅⋅=⨯⨯⨯⨯=-,313a a π==,13a π∴=, 则3n a nπ=,所以,424103333S πππππ=+++=,因此,410tan tan tan 3tan 333S ππππ⎛⎫==+== ⎪⎝⎭, 【点睛】本题考查利用累乘法求数列通项,同时也考查了数列求和以及正切值的计算,考查计算能力,属于中等题.三、解答题21.(1)21n a n =-,n *∈N ;(2)21nn +. 【分析】(1)根据等差数列性质,结合方程解的定义,可知4a ,5a 是方程216630x x -+=的两根.根据公差0d >,即可求得4a ,5a .进而求得公差d .结合等差数列通项公式求法即可得解. (2)由(1)中所得数列{}n a 的通项公式,代入可得数列{}n b 的通项公式,利用裂项求和法即可得数列{}n b 的前n 项和. 【详解】(1)由364516a a a a +=+=,4563a a ⋅=,则4a ,5a 是方程216630x x -+=的两根,由0d >,则47a =,59a =,则542d a a =-=,则)(4421n a a n d n =+-⋅=-,n *∈N .(2)将21n a n =-代入可得)()(1111221212121n b n n n n ⎛⎫==-⎪-+-+⎭⎝,则1211111111112135721212121n n T b b b n n n ⎛⎛⎫⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+-=-⎪⎪ -++⎭⎭⎝⎝ 11122121nn n ⎛⎫=-=⎪++⎭⎝. 【点睛】结论点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法. 22.(1)()*112n n a n -=∈N ;(2)137142n n n S -+=-. 【分析】 (1)令1212x x ==,求出102f ⎛⎫= ⎪⎝⎭,从而可得11a =,再有112n n a f ⎛⎫=+ ⎪⎝⎭,求得12n n a a +=,利用等比数列的通项公式即可求解.(2)由1312n n n n a b -+=,利用错位相减法即可求解. 【详解】解:(1)令1212x x ==,则()111122f f ⎛⎫==+ ⎪⎝⎭,∴102f ⎛⎫= ⎪⎝⎭,11112a f ⎛⎫=+= ⎪⎝⎭. ∵1111111111112221222222n n n n n n n a f f f f a +++++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+=⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∴112n n a a +=,∴{}n a 为以1为首项,12为公比的等比数列,∴()*112n n a n -=∈N . (2)∵1312n n n n a b -+=, ∴21471031S 1222n n n -+=++++①, 由①12⨯,得23147103122222n nn S +=++++②, 由①-②,得21133331422222n n n n S -+=++++- 1131374317222n n n n n -++⎛⎫=+--=- ⎪⎝⎭,∴137142n n n S -+=-.【点睛】关键点点睛:本题考查了函数与数列的综合,解题的关键是根据关系式求出()*112n n a n -=∈N ,考查了计算能力. 23.(1)14nn a ⎛⎫= ⎪⎝⎭,32n b n =-;(2)232334n n n s +=-⨯.【分析】(1)令,m n =1t =,可得数列{}n a 是等比数列,即可求出通项公式,进而求出n b ; (2)利用错位相减法可求出. 【详解】(1)令,m n =1t =,则11n n a a a +=⋅,114n n a a +∴=,114a =,∴数列{}n a 是首项为14,公比为14的等比数列, ∴1111444n nn a -⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭, ∴1413log 2324nn b n ⎛⎫=-=- ⎪⎝⎭;(2)由(Ⅰ)知,14nn a ⎛⎫= ⎪⎝⎭,()*32nb n n N=-∈,则()1324nn c n ⎛⎫=⋅- ⎪⎝⎭, ()2311111+4+7++324444nn S n ⎛⎫⎛⎫⎛⎫=⨯⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()234+1111111+4+7++3244444n n S n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得()234+13111111+3+3+3++3324444444nn n S n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯--⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()1+1+131116411132+321442414n n n n n -⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=--⨯=- ⎪⎝⎭-, 232334n nn S +∴=-⨯. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和;(3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 24.(1)证明见解析;(2){}1,2,3. 【分析】 (1)利用112n na a +=-证明出1n n b b +-是常数,进而可证明出数列{}n b 为等差数列; (2)求得132n n c -⎛⎫= ⎪⎝⎭,利用等比数列的求和公式结合已知条件可得出33291122nn⎛⎫⎛⎫⋅+⋅< ⎪ ⎪⎝⎭⎝⎭,设3322nt ⎛⎫=≥ ⎪⎝⎭,可得出不等式221190t t -+<,解出t 的取值范围,由此可得出符合条件的正整数n 的值.【详解】(1)数列{}n a 满足10a =且112n n a a +=-,则211122a a ==-,321223a a ==-, 依次类推可知,对任意的n *∈N ,2n a ≠,()1121111111112111111122n n n n n n n n nn na b b a a a a a a a a ++--∴-=-=-=-==----------, 所以,数列{}n b 是等差数列,且首项为11111b a ==-,公差为1, ()11111n n b n n a ∴==+-⨯=-,解得1n n a n-=; (2)132n n c -⎛⎫= ⎪⎝⎭,则1123n n c -⎛⎫= ⎪⎝⎭,所以,11332232nn n n c c +-⎛⎫ ⎪⎝⎭==⎛⎫ ⎪⎝⎭,则数列{}n c 为等比数列,同理可知,数列1n c ⎧⎫⎨⎬⎩⎭也为等比数列,则1233132223212nnn c c c c ⎛⎫- ⎪⎛⎫⎝⎭++++==⋅- ⎪⎝⎭-,12321111123332313nnn c c c c ⎛⎫- ⎪⎛⎫⎝⎭++++==-⋅ ⎪⎝⎭-,由12312311113n n c c c c c c c c ⎛⎫++++>++++ ⎪⎝⎭可得23912232n n⎡⎤⎛⎫⎛⎫⋅->⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,所以,32291123nn⎛⎫⎛⎫⋅+⋅< ⎪ ⎪⎝⎭⎝⎭,设32nt ⎛⎫= ⎪⎝⎭,n N *∈,则32t ≥,可得9211t t +<,整理可得221190t t -+<,解得912t <<,即39122n⎛⎫<< ⎪⎝⎭,n N *∈,所以,正整数n 的集合为{}1,2,3.【点睛】方法点睛:证明等比数列常用以下几种方法: (1)定义法:证明1n n a a +-为常数;(2)等差中项法:对任意的n *∈N ,证明出122n n n a a a ++=+.25.(1)2n a n =;(2)()()123?216n n S n n n +=-+++. 【分析】(1)由已知得()()20n n a n a n -+=且0n a >,即可得通项公式.(2)由(1)有()()122122nnn n a a n n -⋅+=-⋅+,利用分组、错位相减法求n S .【详解】(1)由2220n n a na n --=得()()20n n a n a n -+=,又{}n a 为正项数列,∴2n a n =.(2)由(1)知()()122122nnn n a a n n -⋅+=-⋅+,令n T 为数列(){}212nn -⋅的前n 项和,则()123123252212n nTn =⨯+⨯+⨯+⋅⋅⋅+-⨯,∴()23412123252212n n T n +=⨯+⨯+⨯+⋅⋅⋅+-⨯,两式相减,得()123112222222212nn n T n +-=⨯+⨯+⨯+⋅⋅⋅+⨯--⨯,所以()()2112212221212n n nT n ++⨯⨯--=+--⨯-,所以()12326n n T n +=-⨯+,令n B 为数列{}2n 的前n 项和,则()()1212n n n B n n +=⨯=+, 所以()()123216n n n n S T B n n n +=+=-⨯+++.【点睛】关键点点睛:(1)由已知方程,将n a 作为未知数求正解,即为数列通项公式.(2)将所得数列分为(){}212n n -⋅、{}2n 两组分别求和,应用错位相减、等差数列前n 项和公式求n S .26.(1)2n n a =;(2)2552n n n T +=-. 【分析】(1)设{}n a 的公比为q ,利用基本量运算求出公比,可得数列{}n a 的通项公式; (2)利用错位相减法计算出数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【详解】(1)设{}n a 的公比为q ,由题意知:()116a q +=,2211a q a q =. 又0n a >,解得12a =,2q,所以2n n a =. (2)21n b n =+.令n n n b c a =,则212n n n c +=, 因此12231357212122222n n n n n n T c c c --+=+++=+++++, 又234113572121222222n n n n n T +-+=+++++, 两式相减得12111113111213121525122222222222n n n n n n n n n T --++++++⎛⎫⎛⎫=++++-=+--=- ⎪ ⎪⎝⎭⎝⎭ 所以2552n nn T +=-. 【点睛】 方法点睛:本题考查等比数列的通项公式,考查数列的求和,数列求和的方法总结如下: 公式法,利用等差数列和等比数列的求和公式进行计算即可;裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.。
精选最新版高中数学单元测试试题-数列专题模拟题库(含答案)
2019年高中数学单元测试试题数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.已知正项数列{na}中,22212111222n n na,a,a a a(n)+-===+≥,则9a等于( ) (A) 25 (B)第II卷(非选择题)请点击修改第II卷的文字说明二、填空题2.对于数列{na},定义数列{nnaa-+1}为数列{na}的“差数列”,若21=a,{na}的“差数列”的通项公式为n2,则数列{n a}的前n项和n S= ________;3.若数列}{na满足211n nn na aka a++++=(k为常数),则称数列}{na为等比和数列,k称为公比和.已知数列}{na是以3为公比和的等比和数列,其中2,121==aa,则=2009a.4.若数列}{na前8项的值各异,且n8naa=+对任意的*Nn∈都成立,则下列数列中可取遍}{n a前8项值的数列为( ) A.}{12+k aB.}{13+k aC.}{14+k aD.}{16+k a5.已知数列{a n }满足a 1=1,当n ≥2时,a n 2-(n +2)a n -1a n +2na n -12=0. 求数列{a n }的一个通项公式.6.在等差数列||,0,0}{10111110a a a a a n >><且中,则在S n 中最大的负数为_________7.已知等比数列{}n a 及等差数列{}n b ,其中10b =,公差0d ≠.将这两个数列的对应项相加,得一新数列1,1,2,…,则这个新数列的前10项之和为 .8.若成等差数列的四个数之和为26,且第二个数与第三个数之积为40,求这四个数。
9.已知}{},{n n b a 都是等差数列,且100,15,510010011=+==b a b a ,则数列}{n n b a +的前100项之和100S =________10.在数列}{n a 中,4,2111-==+n n a a a ,则前n 项和n S 的最大值为______11.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形, 第四件首饰是由28颗珠宝构成如图3所示的正六边形, 第五件首饰是由45颗珠宝构成如图4所示的正六边形, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有___________颗珠宝;则前n 件首饰所用珠宝总数为___________________颗。
数列单元测试卷
第二章单元测验A 卷一、填空题(每题5分,共25分)1. 等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________.2. 在等比数列{}n a 中, 若,75,393==a a 则10a =___________3. 两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________.4.计算3log n=__________________________.5. 在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则=⋅74a a ___________.二、选择题(每题4分,共28分)6.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于 ( ) A. 11 B. 12 C. 13 D. 147.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 ( ) A. 66 B. 99 C. 144 D. 2978.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第 ( ) A. 2项 B. 4项 C. 6项 D. 8项9.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则=2a ( ) A. 4- B. 6- C. 8- D. 10-10.12+与12-,两数的等比中项是 ( ) A. 1 B. 1- C. 1± D. 2111.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为A. 81B. 120C. 168D. 192 12.设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则 ( ) A. 1 B. 1- C. 2 D.21三、解答题(共47分)13.(8分) 成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数. 【设四数为3,,,3a d a d a d a d --++,则22426,40a a d =-=即1333,222a d ==-或,当32d =时,四数为2,5,8,11当32d =-时,四数为11,8,5,2】14.(9分)设等比数列{}n a 前n 项和为n S ,若9632S S S =+,求数列的公比q .【解:显然1q ≠,若1q =则3619,S S a +=而91218,S a =与9632S S S =+矛盾由369111369(1)(1)2(1)2111a q a q a q S S S q q q---+=⇒+=---96332333120,2()10,,1,2q q q q q q q --=--==-=得或而1q ≠,∴243-=q 】15.(10分)求和:)0(),(...)2()1(2≠-++-+-a n a a a n【原式=2(...)(12...)n a a a n +++-+++2(1)( (2)n n a a a +=+++-2(1)(1)(1)12(1)22n a a n n a a n n a ⎧-+-≠⎪⎪-=⎨⎪-=⎪⎩】 16.(10分)在等比数列{}n a 中,,400,60,364231>=+=n S a a a a 求n 的范围. 【22213222236,(1)60,0,6,110,3,a a a a q a a q q ==+=>=+==±当3q =时,12(13)2,400,3401,6,13n n n a S n n N-==>>≥∈-;当3q =-时,12[1(3)]2,400,(3)801,8,1(3)n n n a S n n ---=-=>->≥--为偶数;∴为偶数且n n ,8≥】17.(10分) 已知数列{}n a 的通项公式112+-=n a n ,如果)(N n a b n n ∈=,求数列{}n b 的前n 项和. 【解:112,5211,6n n n n b a n n -≤⎧==⎨-≥⎩,当5n ≤时,2(9112)102n n S n n n =+-=-当6n ≥时,255525(1211)10502n n n S S S n n n --=+=++-=-+∴⎪⎩⎪⎨⎧≥+-≤+-=)6(,5010)5(,1022n n n n n n S n 】第二章单元测验B 卷一、填空题(每题5分,共25分)1.等差数列{}n a 中, ,33,562==a a 则=+53a a _________.2.在正项等比数列{}n a 中,252735351=++a a a a a a ,则=+53a a _______.3.已知数列{}n a 中,11-=a ,n n n n a a a a -=⋅++11,则数列通项=n a ___________.4.等比数列{}n a 前n 项的和为12-n,则数列{}2n a 前n 项的和为______________.5.已知数列{}n a 是等差数列,若171074=++a a a ,77141312654=++++++a a a a a a 且13=k a ,则=k _____.二、选择题(每题4分,共28分) 6.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9A. 98B. 99C. 96D. 977.在等比数列{}n a 中,若62=a ,且0122345=+--a a a 则n a 为 ( ) A. 6 B. ()216--⋅n C. 226-⋅n D. ()2226166--⋅-⋅n n 或或8.在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为 ( ) A. 9 B. 12 C. 16 D. 17 9.A.B.C.D.10.在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a ,则1a 为 ( ) A. 5.22- B. 5.21- C. 5.20- D. 20-11.等比数列{}n a 的各项均为正数,且187465=+a a a a ,则=+++1032313log log log a a a ( ) A. 12 B. 10 C. 5l o g 13+ D. 5l o g 23+ 12.等差数列{}{}n n b a ,的前n 项和分别为n n T S ,,若,132+=n n T S n n 则=nn b a( ) A.32 B. 1312--n n C. 1312++n n D. 4312+-n n 三、解答题(共47分)13.(8分)三个数成等差数列,其比为3:4:5,如果最小数加上1,则三数成等比数列,那么原三数为什么?【设原三数为3,4,5,(0)t t t t ≠,不妨设0,t >则2(31)516,5t t t t +==,315,420,525,t t t ===∴原三数为15,20,25】14.(9分) 求和:12...321-++++n nxx x .【记21123...,n n S x x nx -=++++当1x =时,1123...(1)2n S n n n =++++=+当1x ≠时,23123...(1),n n n xS x x x n xnx -=++++-+231(1)1...,n nn x S x x x xnx --=+++++-11nn n x S nx x-=-- ∴原式=⎪⎪⎩⎪⎪⎨⎧=+≠---)1(2)1()1(11x n n x nx xx n n】15.(10分) 已知数列{}n a 的前n 项和n n S 23+=,求n a .【解:111132,32,2(2)nn n n n n n n S S a S S n ----=+=+=-=≥而115a S ==,∴⎩⎨⎧≥==-)2(,2)1(,51n n a n n 】16.(10分) 一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,求此数列的公比和项数. 【解:设此数列的公比为,(1)q q ≠,项数为2n,则22222(1)1()85,170,11n n a q q S S q q --====--奇偶2221122,85,2256,28,14n nS a q n S a -======-偶奇∴,2=q 项数为8】17.(10分) 已知数列{}n a 的前n 项和)34()1(...139511--++-+-=-n S n n ,求312215S S S -+的值.【解:(4),2,2121,(4)43,2n n nn n n S S n n n n n ⎧⨯-⎪-⎧⎪==⎨⎨--⎩⎪⨯-+-⎪⎩为偶数为偶数,,为奇数为奇数15223129,44,61,S S S ==-=15223176S S S +-=-】第三章单元测验A 卷一、填空题(每题5分,共25分)1. 若方程()024*******=++++++n mn m x m x 有实根,则实数=m ________;且实数=n ______.2.原点和点()1,1在直线0=-+a y x 的两侧,则a 的取值范围是_________________.3. 当=x ______时,函数)2(22x x y -=有最_______值,且最值是_________.4.设实数y x ,满足⎪⎩⎪⎨⎧≤->-+≥--,032,042,02y y x y x 则x y 的最大值是____________________.5.设+∈R y x ,且191=+yx ,则y x +的最小值为________. 二、选择题(每题4分,共28分)6.下列各对不等式中同解的是 ( )A. 72<x 与x x x +<+72B. 0)1(2>+x 与 01≠+xC. 13>-x 与13>-xD. 33)1(x x >+与xx 111<+ 7.已知点()2,a P 在直线0432:=-+y x l 右上方(不包括边界)则a 的取值范围为 ( ) A. 1->a B. 1-<a C. 1-≤a D. 1-≥a8.设11->>>b a ,则下列不等式中恒成立的是 ( ) A.b a 11< B. ba 11> C. 2b a > D. b a 22> 9.不等式x x 22lg lg <的解集是 ( ) A. ⎪⎭⎫⎝⎛1,1001 B. ()+∞,100 C. ()+∞⋃⎪⎭⎫⎝⎛,1001,1001 D. ()()+∞⋃,1001,0 10.若214122-+⎪⎭⎫⎝⎛≤x x ,则函数xy 2=的值域是 ( )A. ⎪⎭⎫⎢⎣⎡2,81B. ⎥⎦⎤⎢⎣⎡2,81C. ⎥⎦⎤⎝⎛∞-81, D. [)+∞,211.下面结论正确的是A. ba b a 11,<>则有若 B. c b c a b a >>则有若, C. b a b a >>,则有若 D. 1,>>bab a 则有若12.由不等式组⎩⎨⎧≤≤≤≤9020x y x表示的平面区域内的整点(横、纵坐标都是整数的点)个数为 ( )A. 个55B. 个1024C. 个1023D. 个1033 三、解答题(共47分)13.(8分) 解不等式(1) ()()03log 232>--x x (2) 2232142-<---<-x x ; 14.(9分) 已知1)1()(2++-=x aa x x f , (1)当21=a 时,解不等式0)(≤x f ;(2)若0>a ,解关于x 的不等式0)(≤x f ; 【已知1)1()(2++-=x a a x x f ,(I )当21=a 时,解不等式0)(≤x f ;(II )若0>a ,解关于x 的不等式0)(≤x f 。
人教版高中数学选择性必修第二册第四章-数列-章末测试卷A(含答案)
第四章数列章末测试卷(A)【原卷版】[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n}:-2,0,2,…的第15项为()A.112B.122C.132D.1422.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.83.等差数列{a n}的前n项和为S n,若S2=2,S4=10,则S6=()A.12B.18C.24D.424.若等差数列{a n}满足a n>0,且a3+a4+a5+a6=8,则a2a7的最大值为()A.4B.6C.8D.105.《九章算术》是我国古代的一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节、第3节、第8节竹子的容积之和为()A.176升 B.72升C.11366升 D.109 33升6.已知等比数列{a n}的前n项和为S n,若S2n=4(a1+a3+…+a2n-1),a1·a2·a3=27,则a6=()A.27B.81C.243D.7297.数列{a n}中,a1=1,对所有n≥2,都有a1a2a3…a n=n2,则a3+a5=()A.61 16B.25 9C.25 16D.31 158.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为p ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,则每年应还()A.M10万元 B.Mp (1+p )10(1+p )10-1万元C.p (1+p )1010万元D.Mp (1+p )9(1+p )9-1万元二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题不正确的是()A .若数列{a n }的前n 项和为S n =n 2+2n -1,则数列{a n }是等差数列B .若等差数列{a n }的公差d >0,则{a n }是递增数列C .常数列{a n }既是等差数列,又是等比数列D .若等比数列{a n }是递增数列,则{a n }的公比q <110.将等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则()A .d <0B .a 16<0C .S n ≤S 15D .当且仅当n ≥32时,S n <011.设数列{a n }的前n 项和为S n ,已知S n =2a n -1,则下列结论正确的是()A .S 2=2B .数列{a n }为等比数列C .a n =2nD .若b n =1log 2a n +1log 2a n +2,则数列{b n }的前10项和为101112.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则()A .a n =-12n -1B .a n n =1,-1n,n ≥2,n ∈N *C D.1S 1+1S 2+…+1S 100=-5050三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知数列{a n }为等比数列,若a 1+a 3=5,a 2+a 4=10,则公比q =________.14.(2019·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.15.已知数列{a n },若点(n ,a n )(n ∈N *)在直线y -3=k (x -6)上,则数列{a n }的前11项和S 11=________.16.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则an n的最小值为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)在等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .18.(12分)在新城大道一侧A 处,运来20棵新树苗.一名工人从A 处起沿大道一侧路边每隔10m 栽一棵树苗,这名工人每次只能运一棵.要栽完这20棵树苗,并返回A 处,植树工人共走了多少路程?19.(12分)已知{a n }是公比为q 的无穷等比数列,其前n 项和为S n ,满足a 3=12,________.是否存在正整数k ,使得S k >2020?若存在,求k 的最小值;若不存在,说明理由.从①q =2;②q =12;③q =-2这三个条件中任选一个,补充在上面问题中并作答.20.(12分)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项公式;(2)求{nS n }的前n 项和T n .21.(12分)已知数列{a n }的首项a 1=53,且3a n +1=a n +2,n ∈N *.(1)求证:数列{a n -1}为等比数列;(2)若a 1+a 2+…+a n <100,求最大的正整数n .22.(12分)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n }:b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前4n +3项和T 4n +3.第四章数列章末测试卷(A)【解析版】[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n}:-2,0,2,…的第15项为()A.112B.122C.132D.142答案C解析∵a1=-2,d=2,∴a n=-2+(n-1)×2=2n-22.∴a15=152-22=132.2.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.8答案A解析因为a3a11=a72=16,又数列{a n}的各项都是正数,所以解得a7=4,由a7=a5·22=4a5,得a5=1.故选A.3.等差数列{a n}的前n项和为S n,若S2=2,S4=10,则S6=()A.12B.18C.24D.42答案C解析方法一:设数列{a n}的公差为d a1+d=2,a1+6d=10,解得a1=14,d=32.则S6=6a1+15d=24.方法二:S2,S4-S2,S6-S4也成等差数列,则2(S4-S2)=S6-S4+S2,所以S6=3S4-3S2=24.故选C.4.若等差数列{a n}满足a n>0,且a3+a4+a5+a6=8,则a2a7的最大值为()A.4B.6C.8D.10答案A解析已知等差数列{a n}满足a n>0,且a3+a4+a5+a6=2(a2+a7)=8,所以a2+a7=4.又因为a2+a7≥2a2a7,所以a2a7≤4,当且仅当a2=a7=2时,等号成立.故选A.5.《九章算术》是我国古代的一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节、第3节、第8节竹子的容积之和为()A.176升 B.72升C.11366升 D.10933升答案A解析设自上而下各节竹子的容积依次为a 1,a 2,…,a 91+a 2+a 3+a 4=3,7+a 8+a 9=4,因为a 2+a 3=a 1+a 4,a 7+a 9=2a 8,所以a 2+a 3+a 8=32+43=176.故选A.6.已知等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+…+a 2n -1),a 1·a 2·a 3=27,则a 6=()A .27B .81C .243D .729答案C解析∵数列{a n }为等比数列,∴a 1a 2a 3=a 23=27,∴a 2=3.又∵S 2=4a 1,∴a 1+a 2=4a 1,∴3a 1=a 2,∴a 1=1,即公比q =3,首项a 1=1,∴a 6=a 1·q 6-1=1×35=35=243.故选C.7.数列{a n }中,a 1=1,对所有n ≥2,都有a 1a 2a 3…a n =n 2,则a 3+a 5=()A.6116B.259C.2516D.3115答案A解析a 1a 2a 3…a n =n 2,则a 1a 2a 3…a n -1=(n -1)2,n ≥3,∴a n =n 2(n -1)2,n ≥3,∴a 3=94,a 5=2516,∴a 3+a 5=6116.故选A.8.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为p ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,则每年应还()A.M10万元 B.Mp (1+p )10(1+p )10-1万元C.p (1+p )1010万元D.Mp (1+p )9(1+p )9-1万元答案B二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题不正确的是()A .若数列{a n }的前n 项和为S n =n 2+2n -1,则数列{a n }是等差数列B .若等差数列{a n }的公差d >0,则{a n }是递增数列C .常数列{a n }既是等差数列,又是等比数列D .若等比数列{a n }是递增数列,则{a n }的公比q <1答案ACD解析对于A ,等差数列{a n }的前n 项和S n =An 2+Bn ,故错误;对于B ,若d >0,则a n +1>a n ,故正确;对于C ,当a n =0时,该常数列不是等比数列,故错误;对于D ,若等比数列{a n }是递增数列,则当a 1>0时,q >1,故错误.故选ACD.10.将等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则()A .d <0B .a 16<0C .S n ≤S 15D .当且仅当n ≥32时,S n <0答案ABC解析由题意得,S 10=S 20,则a 11+a 12+…+a 20=0,即a 15+a 16=0,也即2a 1+29d =0(d为公差),因为a 1>0,所以d <0,所以a 16<0,S n ≤S 15.所以A 、B 、C 正确.由于S 2n =n (a n +a n +1),S 2n -1=(2n -1)a n ,故S 30=15(a 15+a 16)=0,S 31=31a 16<0,所以D 不正确.11.设数列{a n }的前n 项和为S n ,已知S n =2a n -1,则下列结论正确的是()A .S 2=2B .数列{a n }为等比数列C .a n =2nD .若b n =1log 2a n +1log 2a n +2,则数列{b n }的前10项和为1011答案BD解析因为S n =2a n -1,①所以当n =1时,a 1=S 1=2a 1-1,得a 1=1;当n ≥2时,S n -1=2a n -1-1,②①②两式相减得a n =2a n -2a n -1,所以a na n -1=2(n ≥2),所以数列{a n }是以a 1=1为首项,q =2为公比的等比数列.所以a n =a 1q n -1=1×2n -1=2n -1,a 2=2,所以S 2=3,所以A 、C 错误,B 正确;因为b n =1log 2a n +1log 2a n +2=1n (n +1)=1n -1n +1,设T n 为{b n }的前n 项和,则T 10…=1011,故D 正确.故选BD.12.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则()A .a n =-12n-1B .a n n =1,-1n,n ≥2,n ∈N *C D.1S 1+1S 2+…+1S 100=-5050答案BCD解析由S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,得S n +1-S n =S n S n +1,又a 1=-1,∴S 1=a 1=-1,从而S 2-S 1=S 1S 2,即S 2+1=-S 2,得S 2=-12,∴S 1S 2≠0,从而S n S n +1≠0,∴S n +1-S n S n S n +1=1,整理得1S n +1-1S n =-1(常数),所以数是以1S 1=-1为首项,-1为公差的等差数列,故C 正确;所以1S n =-1-(n -1)=-n ,所以1S 1+1S 2+…+1S 100=-(1+2+3+…+100)=-5050,故D正确;由1S n =-n 得S n =-1n .所以当n ≥2时,a n =S n -S n -1=1n -1-1n(首项不符合此式),故a n n =1,-1n,n ≥2,n ∈N *,故B 正确,A 错误.故选BCD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知数列{a n }为等比数列,若a 1+a 3=5,a 2+a 4=10,则公比q =________.答案2解析因为数列{a n }为等比数列,且a 1+a 3=5,a 2+a 4=10,所以由等比数列的通项公式可得a 2+a 4=(a 1+a 3)q ,即10=5q ,∴q =2.14.(2019·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.答案16解析方法一:设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )(a 1+4d )+a 1+7d =a 12+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,将以上两式联立,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.方法二:设等差数列{a n }的公差为d .由S 9=9(a 1+a 9)2=9a 5=27,得a 5=3,又a 2a 5+a 8=0,则3(3-3d )+3+3d =0,得d =2,a 4=1,则S 8=8(a 1+a 8)2=4(a 4+a 5)=4×(1+3)=16.15.已知数列{a n },若点(n ,a n )(n ∈N *)在直线y -3=k (x -6)上,则数列{a n }的前11项和S 11=________.答案33解析∵点(n ,a n )在直线y -3=k (x -6)上,∴a n =3+k (n -6).∴a n +a 12-n =[3+k (n -6)]+[3+k (6-n )]=6,n =1,2,3,…,6,∴S 11=a 1+a 2+…+a 11=5(a 1+a 11)+a 6=5×6+3=33.16.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________.答案212解析在a n +1-a n =2n 中,令n =1,得a 2-a 1=2;令n =2,得a 3-a 2=4,…,a n -a n -1=2(n -1).把上面n -1个式子相加,得a n -a 1=2+4+6+…+2(n -1)=(2+2n -2)(n -1)2=n 2-n ,∴a n =n 2-n +33.∴a n n =n 2-n +33n =n +33n -1≥233-1,当且仅当n =33n ,即n =33时取等号,而n ∈N *,∴“=”取不到.∵5<33<6,∴当n =5时,a n n =5-1+335=535,当n=6时,a n n =6-1+336=636=212,∵535>212,∴a n n 的最小值是212.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)在等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解析(1)设数列{a n }的公比为q ,由已知得16=2q 3,解得q =2,所以a n =2×2n -1=2n ,n ∈N *.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设数列{b n }的公差为d ,1+2d =8,1+4d =32,1=-16,=12,所以b n =-16+12(n -1)=12n -28,n ∈N *.所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n ,n ∈N *.18.(12分)在新城大道一侧A 处,运来20棵新树苗.一名工人从A 处起沿大道一侧路边每隔10m 栽一棵树苗,这名工人每次只能运一棵.要栽完这20棵树苗,并返回A 处,植树工人共走了多少路程?解析植树工人每种一棵树并返回A 处所要走的路程(单位:m)组成了一个数列0,20,40,60, (380)这是首项a 1=0,公差d =20,项数n =20的等差数列,其和S 20=20a 1+20×(20-1)2d =0+20×(20-1)2×20=3800(m).因此,植树工人共走了3800m 的路程.19.(12分)已知{a n }是公比为q 的无穷等比数列,其前n 项和为S n ,满足a 3=12,________.是否存在正整数k ,使得S k >2020?若存在,求k 的最小值;若不存在,说明理由.从①q =2;②q =12;③q =-2这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,则按第一个解答评分.解析若选①,因为a 3=12,q =2,所以a 1=3.所以S n =3(1-2n )1-2=3(2n -1).S k >2020,即3(2k -1)>2020,即2k >20233.当k =9时,29=512<20233,当k =10时,210=1024>20233,所以存在正整数k ,使得S k >2020,k 的最小值为10.若选②,因为a 3=12,q =12,所以a 1=48.所以S n1-12因为S n <96<2020,所以不存在满足条件的正整数k .若选③,因为a 3=12,q =-2,所以a 1=3.所以S n =3×[1-(-2)n ]1-(-2)=1-(-2)n .S k >2020,即1-(-2)k >2020,整理得(-2)k <-2019.当k 为偶数时,原不等式无解;当k 为奇数时,原不等式等价于2k >2019,当k =9时,29=512<2019,当k =11时,211=2048>2019,所以存在正整数k ,使得S k >2020,k 的最小值为11.20.(12分)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项公式;(2)求{nS n }的前n 项和T n .解析(1)设数列{a n }的公比为q .由210S 30-(210+1)S 20+S 10=0,得210(S 30-S 20)=S 20-S 10.∵S 10,S 20-S 10,S 30-S 20成等比数列,∴S 30-S 20S 20-S 10=q 10.∵a n >0,∴q =12,∴a n =a 1q n -1=12n (n ∈N *).(2)∵{a n }是首项a 1=12,公比q =12的等比数列,∴S n =12×1-12=1-12n ,nS n =n -n 2n .则数列{nS n }的前n 项和为T n =(1+2+…+n )+222+…①则T n 2=12(1+2+…+n )+223+…+n -12n +①-②,得T n 2=12(1+2+…+n )+122+…+n 2n +1=n (n +1)4-21-12+n 2n +1,即T n =n (n +1)2+12n -1+n 2n -2.21.(12分)已知数列{a n }的首项a 1=53,且3a n +1=a n +2,n ∈N *.(1)求证:数列{a n -1}为等比数列;(2)若a 1+a 2+…+a n <100,求最大的正整数n .解析(1)证明:∵3a n +1=a n +2,∴a n +1-1=13(a n -1),又a 1-1=23,∴数列{a n -1}是以23为首项,13为公比的等比数列.(2)由(1)可得a n -1=23×-1,∴a n =2+1.则a 1+a 2+…+a n =n ++132+…n +2×13-13n +11-13=n +1-13n ,若n +1-13n <100,n ∈N *,则n max =99.22.(12分)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n }:b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前4n +3项和T 4n +3.解析(1)由题意,设数列{a n }的公差为d ,由a 3=5,a 1a 2=2a 4,1+2d =5,1·(a 1+d )=2(a 1+3d ),整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1,因为{a n }为整数数列,所以d =1,又a 1+2d =5,所以a 1=3,所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又数列{b n }的通项公式为b n =2n ,根据题意,新数列{c n }:b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2=(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2)=2×(1-22n +1)1-2+(a 1+a 2n +2)(2n +2)2=4n +1+2n 2+9n +5.。
(完整版)数列单元测试题(含答案)
《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。
精选新版2019年高中数学单元测试试题-数列专题考试题库(含参考答案)
2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知点(1,0),(1,0),(0,1)A B C -,直线(0)y ax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是 ( )A .(0,1)B .1(1)2 ( C) 1(1]3 D . 11[,)322.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,则20a 等于( )A .-1B . 1C . 3 (D 7 (2009安徽文)3.设,R x ∈记不超过x 的最大整数为[x ],令{x }=x -[x ],则{215+},[215+],215+( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列也不是等比数列(2009湖北文)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4.设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f (a 3)]2-a 1a 5= 1316π25.已知函数()xf x e =,对于曲线()y f x =上横坐标成等差数列的三个点A 、B 、C ,给出以下四个判断:①△ABC 一定是钝角三角形;②△ABC 可能是直角三角形;③△ABC 可能是等腰三角形;④△ABC 不可能是等腰三角形,其中正确的判断是 ①④6.设数列{}n a 是以2为首项,1为公差的等差数列,数列{}n b 是以1为首项,2为公比的等比数列, 则129...b b b a a a +++ = 。
精编新版高中数学单元测试试题-数列专题模拟考核题库(含标准答案)
2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.1 .(2013年高考课标Ⅰ卷(文))设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 ( )A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-2.已知{}n a 为等比数列,S n 是它的前n 项和。
若2312a a a ⋅=, 且4a 与27a 的等差中项为54,则5S =( ) A .35 B.33 C.31 D.29(2010广东理4)设{n a }的公比为q ,则由等比数列的性质知,231412a a a a a ⋅=⋅=,即42a =。
由4a 与27a 的等差中项为54知,475224a a +=⨯,即7415151(2)(22)24244a a =⨯-=⨯-=. ∴37418a q a ==,即12q =.3411128a a q a ==⨯=,即116a=. 3.已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =( )A .B .7C .6D .(2004)4.在等比数列{a n }中,若a 3 、a 9是方程3x 2-11x+9=0的两个根,则a 6 等于 ( )A . 3B .±3C .3±D .3第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题 5.设Sn 是等比数列的前n 项和,若的值是____6.在等差数列中,若已知两项a p 和a q ,则等差数列的通项公式a n =a p +(n -p ).类似的,在等比数列中,若已知两项a p 和a q (假设p q ),则等比数列的通项公式a n =▲ .7.已知各项不为0的等差数列{}n a ,满足23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则=86b b .8.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=9. 已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为 .10.在等差数列{}n a 中,若345612,2,a a a a ++==则28a a +=________。