2019编辑高中数学人教A版必修1全册导学案及答案).doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1.1集合的含义及其表示
[自学目标]
1.认识并理解集合的含义,知道常用数集及其记法;
2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈;
(2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉.
2.集合中元素的特性:确定性;无序性;互异性.
3.集合的表示方法:列举法;描述法;Venn 图.
4.集合的分类:有限集;无限集;空集.
5.常用数集及其记法:自然数集记作N ,正整数集记作*
N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]
例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;
(5)平面直角坐标系内,第一、三象限的平分线上的所有点.
分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.
例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.等腰三角形
例3.设()()()
{}
2
2
,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的
值.
分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.
例4.已知{}2,,M a b =,{}
22,2,N a b =,且M N =,求实数,a b 的值.
[课内练习]
1.下列说法正确的是( )
(A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭
⎬⎫⎩⎨⎧∈=
=+N n n x x A ,1
是有限集 (D )方程0122
=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是
( )
A .}33|{=+x x
B .},,|),{(2
2
R y x x y y x ∈-= C .}0|{2
≤x x D .}01|{2
=+-x x x 3.方程组2
0{=+=-y x y x 的解构成的集合是
( )
A .)}1,1{(
B .}1,1{
C .(1,1)
D .}1{.
4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =
5.若}4,3,2,2{-=A ,},|{2
A t t x x
B ∈==,用列举法表示B= . [归纳反思]
的三个重要特性的正确使用;
2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。这是解决有关集合问题的一种重要方法;
3.确定的对象才能构成集合.可依据对象的特点或个数的多少来表示集合,如个数较少的有限集合可采用列举法,而其它的一般采用描述法.
4.要特别注意数学语言、符号的规范使用.
[巩固提高]
1.已知下列条件:①小于60的全体有理数;②某校高一年级的所有学生;③与2相差很小的
数;④方程2x=4的所有解。其中不可以表示集合的有--------------------()A.1个B.2个C.3个D.4个
2.下列关系中表述正确的是-----------------------------------------()
A.
{}
2
00
x
∈=
B.
()
{}
00,0
∈
C.0∈∅ D.0N
∈
3.下列表述中正确的是----------------------------------------------()
A.{}0=∅
B.
{}{}
1,22,1
=
C.
{}∅=∅
D.0N
∉
4.已知集合A={}
2
3,21,1
a a a
---
,若3-是集合A的一个元素,则a的取值是()
A.0 B.-1 C.1 D.2
5.方程组
32
54
x y
x y
=+
⎧
⎨
+=
⎩的解的集合是---------------------------------------()
A.
()
{}
1,1-
B.
()
{}
1,1
-
C.
()()
{}
,1,1
x y-
D.
{}
1,1
-
6.用列举法表示不等式组
240
121
x
x x
+>
⎧
⎨
+≥-
⎩的整数解集合为:
7.设
2
15
22
x x ax
⎧⎫
∈--=
⎨⎬
⎩⎭,则集合
2
19
2
x x x a
⎧⎫
--=
⎨⎬
⎩⎭中所有元素的和为:
8、用列举法表示下列集合:
⑴
()
{} ,3,,
x y x y x N y N
+=∈∈
⑵{}
3,,
y x y x N y N +=∈∈