2019编辑高中数学人教A版必修1全册导学案及答案).doc

合集下载

新课标高中数学人教A版必修1全册导学案及答案之欧阳道创编

新课标高中数学人教A版必修1全册导学案及答案之欧阳道创编

§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法; 2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1.集合和元素(1)如果a是集合A的元素,就说a属于集合A,记作a A∈;(2)如果a不是集合A的元素,就说a不属于集合A,记作a A∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N,正整数集记作*N,整数集记作Z,有理数集记作Q,实数集记作R.或N+[预习自测]例 1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x+>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例 2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例 3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=.[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

4.3.1 对数的概念-【新教材】人教A版(2019)高中数学必修第一册导学案

4.3.1 对数的概念-【新教材】人教A版(2019)高中数学必修第一册导学案

§4.3.1 对数的概念导学目标:理解对数的概念及运算性质(预习教材P 122~ P 123,回答下列问题) 复习引入:已知底数和幂的值,如何求指数呢? 就是本节要学习的对数.【知识点一】对数的概念一般地,如果xa N = (0a >且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数、 注: ( 1)底数0a >且1a ≠;( 2)真数0N >,即负数和0没有对数;( 3)常用对数:以10为底的对数10log N ,记为lg N .( 4)自然对数:以无理数 2.71828e =为底的对数的对数log e N ,记为ln N .自我检测1:若416x=,则x = .【知识点二】指数式与对数式的互化自我检测2:(1)45625=⇔ .(2)lg0.012=-⇔ .(3) 2.30310e=⇔ .第四章 指数函数与对数函数- 2 -【知识点三】指对恒等式( 1)log a Na N =(0a >且1a ≠,0N >).( 2) log N a a N =(0a >且1a ≠,0N >). 自我检测3:31log 82log 83+= .【知识点四】对数的基本性质( 1)负数和零没有对数;( 2)1的对数等于零,即log 10a =;( 3)底数的对数等于1,即log 1a a =;自我检测4:已知321log 05x -=,则x = .题型一 指数式与对数式的互化【例1】把下列指数式化为对数式,对数式化为指数式( 1) 45625=; ( 2) 61264-=; ( 3) 1 5.733m ⎛⎫= ⎪⎝⎭; ( 4) 12log 164=-;( 5) lg0.0013=-; ( 6) ln10 2.303=.题型二 利用指数式求对数式的值【例2】求下列对数的值、( 1) 9log 27; ( 2) 43log 81;( 3) 1lg 100; ( 4) ()()23log 23+-.(1)log 272x =; (2)1lg210x +=; (3)25log 2x =; (4)()872log log log 0x =⎡⎤⎣⎦;(5)若log 2a m =,log 3a n =,则32m na-= .(6)31log 429=_______.第四章 指数函数与对数函数- 4 -1、对于下列说法:( 1)零和负数没有对数;( 2)任何一个指数式都可以化成对数式; ( 3)以10为底的对数叫做自然对数; ( 4)以e 为底的对数叫做常用对数、 其中错误说法的个数为( )A 、1B 、2C 、3D 、42、将2193-⎛⎫= ⎪⎝⎭写成对数式,正确的是( )A 、91log 23=- B 、13log 92=- C 、()13log 29-= D 、()91log 23-=3、若2log a b c =则( )A 、2bac = B 、2c a b =C 、2cb a = D 、2ac b =4、求下列各式中的x 的值(1)25log 5 (2)1log 4.0 (3)e ln (4)001.0lg5、求下列各式中的x 的值(1)3log 31-=x (2)log 644x =(3)x =00001.0lg (4)x e -=ln(5)31log 213x -+⎛⎫= ⎪⎝⎭(6)3log 2ln lg1223log 16e x ++-=§4.3.1 对数的概念答案导学目标:理解对数的概念及运算性质(预习教材P 122~ P 123,回答下列问题) 复习引入:已知底数和幂的值,如何求指数呢? 就是本节要学习的对数.【知识点一】对数的概念一般地,如果xa N = (0a >且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数、 注: ( 1)底数0a >且1a ≠;( 2)真数0N >,即负数和0没有对数;( 3)常用对数:以10为底的对数10log N ,记为lg N .( 4)自然对数:以无理数 2.71828e =为底的对数的对数log e N ,记为ln N .自我检测1:若416x=,则x = .【知识点二】指数式与对数式的互化第四章 指数函数与对数函数- 6 -自我检测2:(1)45625=⇔ .(2)lg0.012=-⇔ .(3) 2.30310e=⇔ .【知识点三】指对恒等式( 1)log a Na N =(0a >且1a ≠,0N >).( 2) log N a a N =(0a >且1a ≠,0N >). 自我检测3:31log 82log 83+= .【知识点四】对数的基本性质( 1)负数和零没有对数;( 2)1的对数等于零,即log 10a =;( 3)底数的对数等于1,即log 1a a =;自我检测4:已知321log 05x -=,则x = .题型一 指数式与对数式的互化【例1】把下列指数式化为对数式,对数式化为指数式( 1) 45625=; ( 2) 61264-=; ( 3) 1 5.733m ⎛⎫= ⎪⎝⎭; ( 4) 12log 164=-;( 5) lg0.0013=-; ( 6) ln10 2.303=.【答案】( 1) 5log 6254=;( 2) 21log 664=-;( 3) 13log 5.73m =; ( 4) 41162-⎛⎫= ⎪⎝⎭; ( 5) 2100.01-=; ( 6) 2.30310e=.题型二 利用指数式求对数式的值【例2】求下列对数的值、( 1) 9log 27; ( 2) 43log 81;( 3) 1lg100; ( 4) ()()23log 23+-.【答案】(1)32x =;(2)16x =;(3)2x =-;(4)1x =-.题型三 利用对数的运算性质求值 【例3】求下列各式中的x 的值、( 1) ()23log log 0x =; ( 2) ()52log log 1x =; ( 3) ()312log31x +=-.【答案】(1)3x =;(2)32x =;(3)1x =. 题型四 用恰当的方法求值 【例4】求下列各式的值、 (1)3log 272x =; (2)1lg210x +=; (3)25log 2x =; (4)()872log log log 0x =⎡⎤⎣⎦;(5)若log 2a m =,log 3a n =,则32m na-= .(6)31log 429=_______.【答案】(1)9x =;(2)20x =;(3)5x =±;(4)128x =;(5)89;(6)4.1、对于下列说法:( 1)零和负数没有对数;( 2)任何一个指数式都可以化成对数式; ( 3)以10为底的对数叫做自然对数;- 8 -【答案】B4、求下列各式中的x 的值(1)25log 5 (2)1log 4.0 (3)e ln (4)001.0lg【答案】(1)2x =;(2)0x =;(3)1x =;(4)3x =-; 5、求下列各式中的x 的值(1)3log 31-=x (2)log 644x =(3)x =00001.0lg (4)x e -=ln【答案】(1)27x =;(2)4x =;(3)5x =-;(4)2x =-;(5)2;(6)0。

点到直线的距离公式两条平行直线间的距离(导学案) 高二上学期数学人教A版(2019)选择性必修第一册

点到直线的距离公式两条平行直线间的距离(导学案) 高二上学期数学人教A版(2019)选择性必修第一册

2.3.3 点到直线的距离公式2.3.4 两条平行直线间的距离导学案一、明确目标(一)学习目标1.通过阅读课本74-78页,探索并掌握平面上点到直线的距离公式.2.通过同伴互助,会求两条平行直线间的距离.3.通过同伴互助,提升学生的计算能力以及数学运算的核心素养.(二)学习重点点到直线的距离公式、两平行线间的距离公式的应用.(三)学法指导1.自学思考法;2.复习类比法.二、知识梳理自学课本74-78页,并完成下列填空题与思考题.知识点一点到直线的距离公式(1)点P到直线l的距离,就是从点P到直线l的的长度,其中是垂足.(2)点到直线的距离公式:点P(x0,y0)到直线l:Ax+By+C=0的距离d=.知识点二两条平行直线间的距离(1)两条平行直线间的距离是指夹在这两条平行直线间的的长,也就是一条平行直线上任一点到另一直线的.(2)两条平行直线间的距离公式①P(x0,y0)为l1:Ax+By+C1=0上一点,l2:Ax+By+C2=0(C1≠C2),则l1与l2间的距离d=.①两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0(C1≠C2)间的距离d=.思考题1:(1)点(m,n)到直线x+y-1=0的距离是m+n-12.()(2)连接两条平行直线上的两点,即得两条平行直线间的距离.()(3)两条平行直线间的距离是两条平行直线上两点间距离的最小值.()思考题2:(1)已知点A(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a=()A. 2 B.2- 2 C.2-1 D.2+1(2)点P(1,2)到直线2x+y-4=0的距离等于________.(3)若点(4,3)到直线3x-4y+C=0的距离为1,则C=________.(4)两条平行直线4x+6y=16与2x+3y+18=0间的距离等于________.三、典例探究题型一点到直线的距离例1(1)求点P0(-1,2)到下列直线的距离:①2x+y-10=0;①x+y=2;①y-1=0.(2)已知P1(2,3),P2(-4,5)与点A(-1,2),求过点A且与P1,P2距离相等的直线l的方程.题型二求两条平行直线间的距离例2 求与直线2x-y-1=0平行,且与直线2x-y-1=0的距离为2的直线方程.题型三 距离公式的综合应用例3 已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.四、课堂展示1.自由展示:展示“同伴互助”环节本组还没解决的问题,其他组代表给出方案,代表回答不完善的,本组同学优先补充,其他组可以质疑.2.预设展示:例3变式:两条平行直线l 1,l 2分别过P 1(1,0),P 2(0,5),若l 1与l 2间的距离为5,求两条直线的方程.五、总结提升求点到直线的距离: 求两条平行线间的距离:六、达标测评1.P ,Q 分别为直线3x +4y -12=0与6x +8y +6=0上任意的点,则|PQ |的最小值为( ) A .95 B .185C .3D .62.(多选)已知点A (1+t,1+3t )到直线l :y =2x -1的距离为55,则点A 的坐标可以为( ) A .(0,-2)B .(2,4)C .(-1,-5)D .(12,-12)3.若点P 到直线5x -12y +13=0和直线3x -4y +5=0的距离相等,则点P 的坐标应满足的方程是( )A .32x -56y +65=0或7x +4y =0B .x -4y +4=0或4x -8y +9=0C .7x +4y =0D .x -4y +4=04.经过两条直线x +3y -10=0和3x -y =0的交点,且和原点相距为1的直线的条数为________. 5.已知直线l :3x -2y -6=0.(1)若直线l 1过点M (1,-2),且l 1①l ,求直线l 1的方程;(2)若直线l 2①l ,且直线l 2与直线l 之间的距离为 13,求直线l 2的方程.【课上选学】已知三条直线l 1:2x -y +a =0(a >0),l 2:-4x +2y +1=0和l 3:x +y -1=0,且l 1与l 2的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 是第一象限的点;①点P 到l 1的距离是点P 到l 2的距离的12;①点P 到l 1的距离与点P 到l 3的距离之比是2① 5.若能,求点P 的坐标;若不能,请说明理由.附:课上选学答案:(1)因为l 2可化为2x -y -12=0,所以l 1与l 2的距离为221||221a d -=+=7510.因为a >0,所以a =3.(2)设存在点P (x 0,y 0)满足①,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·1||25c +,即c =132或c =116.所以满足条件①的点P 满足2x 0-y 0+132=0或2x 0-y 0+116=0.若点P 满足条件①,由点到直线的距离公式,有|2x 0-y 0+3|5=25·|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|.所以x 0-2y 0+4=0或3x 0+2=0.因为点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得00312x y =-⎧⎪⎨=⎪⎩(舍去),联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得00193718x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P(19,3718)即为同时满足条件的点.。

圆的一般方程导学案-2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册

圆的一般方程导学案-2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册

2.4.2 圆的一般方程学习目标:1.探索并掌握圆的一般方程.2.能判断圆的一般方程并求圆心及半径.3.会利用待定系数法求圆的一般方程.重难点:重点:求圆的一般方程及其圆心半径难点:圆的一般方程的探究过程探索新知:活动一 探究圆的一般方程复习:圆的标准方程是什么?写出以C(1,-2)为圆心,2为半径的圆的标准方程是什么?思考1►►►将以上圆的标准方程展开后可得到什么式子?那么二元二次方程与圆有着怎样的关系呢?是否所有的二元二次方程表示的就是圆呢?(1) x 2+y 2+2x +2y +8=0;(2) x 2+y 2+2x +2y +2=0;(3) x 2+y 2+2x +2y =0.探究►►►形如022=++++C Ey Dx y x 的方程,它要表示圆,系数D 、E 、F 需要满足什么条件呢?方程022=++++C Ey Dx y x 配方得(1)当 时,方程表示一个点,该点的坐标为 .(2)当 时,方程不表示任何图形.(3)当 时,方程表示的曲线为圆,它的圆心坐标为 ,半径为 .上述方程称为圆的一般方程.思考2►►►圆的标准方程与圆的一般方程各有什么特点?活动二巩固圆的一般方程,能由圆的一般方程确定圆心和半径例1 下列方程是否表示圆?若表示圆,写出其圆心的坐标和半径.(1)x2+2y2-6x+4y-1=0(2)x2+y2-12x+6y+50=0(3)x2+y2-3xy+5x+2y=0(4)2x2+2y2-12x+4y=0(5)x2+y2-2x+4y-4=0活动三能根据已知条件求圆的方程例2 求过三点O(0,0),M1(1,1),M2(4,2)的圆的一般方程,并求这个圆的圆心坐标和半径.思考3►►►确定一个圆的一般方程需要几个独立条件?方法点拨:用待定系数法求圆的方程的步骤:(1) 设:根据题意,设圆的标准方程或一般方程;(2) 列:根据条件列出关于a,b,r或D,E,F的方程组;(3) 解:解方程组得到a,b,r或D,E,F的值;(4) 代:代入圆的标准方程或一般方程,即可得解;练习△ABC的三个顶点分别为A(0,0),B(1,0),C(0,-1)的圆的方程,并求这个圆的圆心坐标和半径.课堂小结这节课你学到了什么?有什么收获?。

高一数学必修第一册2019(A版)_5.2.1_三角函数的概念_导学案(2)

高一数学必修第一册2019(A版)_5.2.1_三角函数的概念_导学案(2)

【新教材】5.2.1 三角函数的概念(人教A版)1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.3.掌握公式一并会应用.1.数学抽象:理解任意角三角函数的定义;2.逻辑推理:利用诱导公式一求三角函数值;3.直观想象:任意角三角函数在各象限的符号;4.数学运算:诱导公式一的运用.重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.一、预习导入阅读课本177-180页,填写。

1.单位圆在直角坐标系中,我们称以原点O为圆心,以__________为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与__________交于点P(x,y),那么:图1­2­1(2)结论①y叫做α的__________,记作__________,即sin α=y;②x叫做α的__________,记作__________,即cos α=x;③yx叫做α的__________,记作__________,即tan α=yx(x≠0).(3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P的坐标是(x,y),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P的坐标是(x,y),它与原点O的距离是r(r=x2+y2>0).三角函数定义名称sinα__________ 正弦cosα__________ 余弦tanα__________ 正切正弦函数、余弦函数、正切函数统称三角函数.3.正弦、余弦、正切函数在弧度制下的定义域三角函数定义域sin α__________cos α__________tan α__________4.正弦、余弦、正切函数值在各象限内的符号(1)图示:图1­2­2(2)口诀:“一全正,二__________,三__________,四__________”.5.诱导公式一1.若角α的终边经过点P (2,3),则有( )A .sin α=21313B .cos α=132C .sin α=31313D .tan α=232.已知sin α>0,cos α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.sin 253π= .4.角α终边与单位圆相交于点M ⎝⎛⎭⎫32,12,则cos α+sin α的值为 .题型一 三角函数的定义及应用例1 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值. 跟踪训练一1.已知角θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 题型二 三角函数值的符号例2 (1)若α是第四象限角,则点P (cos α,tan α)在第________象限.(2)判断下列各式的符号: ①sin 183°;②tan 7π4;③cos 5. 跟踪训练二1.确定下列式子的符号:(1) tan 108°·cos 305°;(2)cos 5π6·tan11π6sin2π3;(3)tan 120°·sin 269°.题型三 诱导公式一的应用例3 求值:(1)tan 405°-sin 450°+cos 750°;(2)sin 7π3cos ⎝⎛⎭⎫-23π6+tan ⎝⎛⎭⎫-15π4cos 13π3.跟踪训练三 1.化简下列各式:(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.1.有下列说法:①终边相同的角的同名三角函数的值相等; ②sin α是“sin”与“α”的乘积;③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-. 其中正确的个数是( ) A .0 B .1 C .2 D .32.如果α的终边过点(2sin 30°,-2cos 30°),那么sin α=( )A. 12B .-12C. 32D .-323.若sin θ·cos θ>0,则θ在( )A .第一或第四象限B .第一或第三象限C .第一或第二象限D .第二或第四象限4.若cos α=-32,且角α的终边经过点P (x ,2),则P 点的横坐标x 是( )A .2B .±2C .-2D .-25.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=51,则sin β= .6.求值:(1)sin 180°+cos 90°+tan 0°;(2)cos 25π3+tan15π4.答案小试牛刀 1.C 2.B 3.324.3+12. 自主探究例1 【答案】当α的终边在第二象限时,sin α=255,cos α=-55,tan α=-2.当α的终边在第四象限时, sin α=-255,cos α=55,tan α=-2.【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12+-22=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.跟踪训练一1.【答案】当x =1时,sin θ=31010,tan θ=3;当x =-1时,此时sin θ=31010,tan θ=-3.【解析】由题意知r =|OP |=x 2+9,由三角函数定义得cos θ=x r =xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x .∵x ≠0,∴x =±1. 当x =1时,P (1,3),此时sin θ=312+32=31010,tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3. 例2 【答案】(1)四; (2) ①sin 183°<0;②tan 7π4<0;③cos 5>0. 【解析】(1)∵α是第四象限角,∴cos α>0,tan α<0,∴点P (cos α,tan α)在第四象限. (2) ①∵180°<183°<270°,∴sin 183°<0; ②∵3π2<7π4<2π,∴tan 7π4<0;③∵3π2<5<2π,∴cos 5>0.跟踪训练二1.【答案】(1) tan 108°·cos 305°<0;(2) cos 5π6·tan11π6sin2π3>0;(3)tan 120°sin 269°>0.【解析】(1)∵108°是第二象限角,∴tan 108°<0.∵305°是第四象限角,∴cos 305°>0.从而tan 108°·cos 305°<0. (2)∵5π6是第二象限角,11π6是第四象限角,2π3是第二象限角,∴cos 5π6<0,tan 11π6<0,sin 2π3>0.从而cos 5π6·tan11π6sin2π3>0.(3)∵120°是第二象限角,∴tan 120°<0,∵269°是第三象限角,∴sin 269°<0.从而tan 120°sin 269°>0.例3 【答案】(1)32;(2)54. 【解析】 (1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°) =tan 45°-sin 90°+cos 30°=1-1+32=32. (2)原式=sin ⎝⎛⎭⎫2π+π3cos ⎝⎛⎭⎫-4π+π6+tan ⎝⎛⎭⎫-4π+π4·cos ⎝⎛⎭⎫4π+π3 =sin π3cos π6+tan π4cos π3=32×32+1×12=54.跟踪训练三1.【答案】(1)(a -b )2 ; (2)12.【解析】(1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0° =a 2+b 2-2ab =(a -b )2. (2)sin ⎝⎛⎭⎫-116π+cos 125π·tan 4π =sin ⎝⎛⎭⎫-2π+π6+cos 125π·tan 0=sin π6+0=12. 当堂检测1-4. BDBD 5.−156.【答案】(1) 0;(2) 32 .【解析】 (1)sin 180°+cos 90°+tan 0°=0+0+0=0.(2) cos25π3+tan15π4=cos π3+tan π4=12+1=32.。

3.1.1 函数的概念第一课时-【新教材】人教A版(2019)高中数学必修第一册导学案

3.1.1 函数的概念第一课时-【新教材】人教A版(2019)高中数学必修第一册导学案

§3.1.1 函数的概念导学目标:1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用。

2.了解构成函数的要素,能求简单函数的定义域.(预习教材P59~ P66,回答下列问题)回忆:初中学习的函数概念是什么?设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,则称x是自变量,y是x的函数;其中自变量x的取值的集合叫做函数的定义域,和自变量x的值对应的y的值叫做函数的值域。

情景:请同学们考虑以下两个问题:①1y=是函数吗?②y x=和2xyx=是同一个函数吗?为了得到函数更准确的定义,我们一起看下面几个函数,回答相应的问题:问题一:某“复兴号”高速列车加速到350km后保持匀速运行半小时,这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为350S t=.①思考1:有人说:“根据对应关系350S t=,这趟列车加速到50/km t后,运行1h就前进了350km.”你认为这个说法正确吗?本题中,t和S是两个变量,而且对于t的每一个确定的值,S都有唯一确定的值与之对应,所以S是t的函数.第二章 一元二次函数、方程和不等式- 2 -问题二:某电气维修公司要求工人每周工作至少1天,至多不超过6天如果公司确定的工资标准是每人每天350元,而且每周付一次工资。

显然,工人一周的工资w (元)和他一周工作天数d (天)的关系可表示为350w d .②思考2:问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?问题三:下图是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻t 的空气质量指数的值I ?思考3:本题中变量I 是变量t 的函数吗?问题四:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高。

[人教A版]高中数学必修一(全册)导学案及答案汇总

[人教A版]高中数学必修一(全册)导学案及答案汇总

§1.1.1 集合的含义与表示(1)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.23讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体. 集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.二、新课导学※ 探索新知探究1:考察几组对象:① 1~20以内所有的质数;② 到定点的距离等于定长的所有点;③ 所有的锐角三角形;④ 2x , 32x +, 35y x -, 22x y +;⑤ 东升高中高一级全体学生;⑥ 方程230x x +=的所有实数根;⑦ 隆成日用品厂2008年8月生产的所有童车;⑧ 2008年8月,广东所有出生婴儿.试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).试试1:探究1中①~⑧都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征. 确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合.试试2:分析下列对象,能否构成集合,并指出元素:①不等式30x->的解;②3的倍数;③方程2210-+=的解;x x④a,b,c,x,y,z;⑤最小的整数;⑥周长为10 cm的三角形;⑦中国古代四大发明;⑧全班每个学生的年龄;⑨地球上的四大洋;⑩地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示.如果a是集合A的元素,就说a属于(belong to)集合A,记作:a∈A;如果a不是集合A的元素,就说a不属于(not belong to)集合A,记作:a∉A.试试3:设B表示“5以内的自然数”组成的集合,则5 B,0.5 B,0 B,-1 B.探究4:常见的数集有哪些,又如何表示呢?新知4:常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N;正整数集:所有正整数的集合,记作N*或N+;整数集:全体整数的集合,记作Z;有理数集:全体有理数的集合,记作Q;实数集:全体实数的集合,记作R.试试4:填∈或∉:0 N,0 R,3.7 N,3.7 Z,. 探究5:探究1中①~⑧分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a与{a}不同.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示.※典型例题例1 用列举法表示下列集合:① 15以内质数的集合;② 方程2(1)0x x -=的所有实数根组成的集合;③ 一次函数y x =与21y x =-的图象的交点组成的集合.变式:用列举法表示“一次函数y x =的图象与二次函数2y x =的图象的交点”组成的集合.三、总结提升※ 学习小结①概念:集合与元素;属于与不属于;②集合中元素三特征;③常见数集及表示;④列举法.※ 知识拓展集合论是德国著名数学家康托尔于19世纪末创立的. 1874年康托尔提出“集合”的概念:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素. 人们把康托尔于1873年12月7日给戴德金的信中.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列说法正确的是( ).A .某个村子里的高个子组成一个集合B .所有小正数组成一个集合C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .1361,0.5,,,224 2. 给出下列关系:① 12R =;② Q ;③3N +-∉;④.Q 其中正确的个数为( ).A .1个B .2个C .3个D .4个3. 直线21y x =+与y 轴的交点所组成的集合为( ).A. {0,1}B. {(0,1)}C. 1{,0}2-D. 1{(,0)}2-4. 设A表示“中国所有省会城市”组成的集合,则:深圳A;广州A. (填∈或∉)5. “方程230-=的所有实数根”组成的集合用列举法表示为____________.x x1. 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程2100-=的所有实数根组成的集合.x x2. 设x∈R,集合2=-.A x x x{3,,2}(1)求元素x所应满足的条件;(2)若2A-∈,求实数x.§1.1.1 集合的含义与表示(2)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.45复习1:一般地,指定的某些对象的全体称为.其中的每个对象叫作.集合中的元素具备、、特征.集合与元素的关系有、.复习2:集合2=++的元素是,若1∈A,则x= .A x x{21}复习3:集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个集合有何关系?二、新课导学※ 学习探究思考:① 你能用自然语言描述集合{2,4,6,8}吗?② 你能用列举法表示不等式13x -<的解集吗?探究:比较如下表示法① {方程210x -=的根};② {1,1}-;③ 2{|10}x R x ∈-=.新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为{|}x A P ∈,其中x 代表元素,P 是确定条件.试试:方程230x -=的所有实数根组成的集合,用描述法表示为 . ※ 典型例题例1 试分别用列举法和描述法表示下列集合:(1)方程2(1)0x x -=的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程340x x +=的所有实数根组成的集合;(2)所有奇数组成的集合.小结:用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如{|21,}x x k k Z =-∈,{|0}x x >.例2 试分别用列举法和描述法表示下列集合:(1)抛物线21y x =-上的所有点组成的集合;(2)方程组3222327x y x y +=⎧⎨+=⎩解集.变式:以下三个集合有什么区别.(1)2{(,)|1}x y y x =-;(2)2{|1}y y x =-;(3)2{|1}x y x =-.反思与小结:① 描述法表示集合时,应特别注意集合的代表元素,如2{(,)|1}x y y x =-与2{|1}y y x =-不同.② 只要不引起误解,集合的代表元素也可省略,例如{|1}x x >,{|3,}x x k k Z =∈.③ 集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z ,所以不必写{全体整数}.下列写法{实数集},{R }也是错误的.④ 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.※ 动手试试练1. 用适当的方法表示集合:大于0的所有奇数.练2. 已知集合{|33,}A x x x Z =-<<∈,集合2{(,)|1,}B x y y x x A ==+∈. 试用列举法分别表示集合A 、B .三、总结提升※ 学习小结1. 集合的三种表示方法(自然语言、列举法、描述法);2. 会用适当的方法表示集合;※ 知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:{|}x x 是直角三角形,也可以写成:{直角三角形};(2)集合2{(,)|1}x y y x =+与集合2{|1}y y x =+是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn 图.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{|16}A x N x =∈≤<,则下列正确的是( ).A. 6A ∈B. 0A ∈C. 3A ∉D. 3.5A ∉2. 下列说法正确的是( ).A.不等式253x -<的解集表示为{4}x <B.所有偶数的集合表示为{|2}x x k =C.全体自然数的集合可表示为{自然数}D. 方程240x -=实数根的集合表示为{(2,2)}-3. 一次函数3y x =-与2y x =-的图象的交点组成的集合是( ).A. {1,2}-B. {1,2}x y ==-C. {(2,1)}-D. 3{(,)|}2y x x y y x =-⎧⎨=-⎩4. 用列举法表示集合{|510}A x Z x =∈≤<为.5.集合A ={x |x =2n 且n ∈N }, 2{|650}B x x x =-+=,用∈或∉填空:4 A ,4 B ,5 A ,5 B .1. (1)设集合{(,)|6,,}A x y x y x N y N =+=∈∈ ,试用列举法表示集合A .(2)设A ={x |x =2n ,n ∈N ,且n <10},B ={3的倍数},求属于A 且属于B 的元素所组成的集合.2. 若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,求实数a 、b .§1.1.2 集合间的基本关系1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义.67复习1:集合的表示方法有 、 、. 请用适当的方法表示下列集合.(1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N ; -1.5 R .(2)设集合2{|(1)(3)0}A x x x =--=,{}B b =,则1 A ;b B ;{1,3} A .思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?二、新课导学※ 学习探究探究:比较下面几个例子,试发现两个集合之间的关系:{3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且;{}C =东升高中学生与{}D =东升高中高一学生;{|(1)(2)0}E x x x x =--=与{0,1,2}F =.新知:子集、相等、真子集、空集的概念.① 如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset ),记作:()A B B A ⊆⊇或,读作:A 包含于(is contained in )B ,或B 包含(contains)A .当集合A 不包含于集合B 时,记作A B .② 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为V enn 图. 用Venn 图表示两个集合间的“包含”关系为:()A B B A ⊆⊇或.③ 集合相等:若A B B A ⊆⊆且A B =.④ 真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset ),记作:A B (或B A ),读作:A 真包含于B (或B 真包含A ).⑤ 空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.试试:用适当的符号填空.(1){,}a b {,,}a b c ,a {,,}a b c ;(2)∅ 2{|30}x x +=,∅ R ;(3)N {0,1},Q N ;(4){0} 2{|0}x x x -=.反思:思考下列问题.(1)符号“a A ∈”与“{}a A ⊆”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论?① 若,,a b b a a b ≥≥=且则;② 若,,a b b c a c ≥≥≥且则.B A※ 典型例题例1 写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.变式:写出集合{0,1,2}的所有真子集组成的集合.例2 判断下列集合间的关系:(1){|32}A x x =->与{|250}B x x =-≥;(2)设集合A ={0,1},集合{|}B x x A =⊆,则A 与B 的关系如何?变式:若集合{|}A x x a =>,{|250}B x x =-≥,且满足A B ⊆,求实数a 的取值范围.※ 动手试试练1. 已知集合2{|320}A x x x =-+=,B ={1,2},{|8,}C x x x N =<∈,用适当符号填空:A B ,A C ,{2} C ,2 C .练 2. 已知集合{|5}A x a x =<<,{|2}B x x =≥,且满足A B ⊆,则实数a 的取值范围为 .三、总结提升※ 学习小结1. 子集、真子集、空集、相等的概念及符号;Venn 图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法.※ 知识拓展 n 个元素,那么它的子集有2n 个,真子集有21n -个.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列结论正确的是( ). A. ∅A B. {0}∅∈ C. {1,2}Z ⊆ D. {0}{0,1}∈2. 设{}{}1,A x x B x x a =>=>,且A B ⊆,则实数a 的取值范围为( ). A. 1a < B. 1a ≤ C. 1a > D. 1a ≥3. 若2{1,2}{|0}x x bx c =++=,则( ). A. 3,2b c =-= B. 3,2b c ==- C. 2,3b c =-= D. 2,3b c ==-4. 满足},,,{},{d c b a A b a ⊂⊆的集合A 有 个.5. 设集合{},{},{}A B C ===四边形平行四边形矩形,{}D =正方形,则它们之间的关系是 ,并用Venn 图表示.课后作业1. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A 表示合格产品的集合,B 表示质量合格的产品的集合,C 表示长度合格的产品的集合.则下列包含关系哪些成立?,,,A B B A A C C A ⊆⊆⊆⊆ 试用Venn 图表示这三个集合的关系.2. 已知2{|0}A x x px q =++=,2{|320}B x x x =-+=且A B ⊆,求实数p 、q 所满足的条件.§1.1.3 集合的基本运算(1)学习目标1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.89 复习1:用适当符号填空.0 {0}; 0 ∅;∅ {x |x 2+1=0,x ∈R }; {0} {x |x <3且x >5};{x |x >-3} {x |x >2}; {x |x >6} {x |x <-2或x >5}.复习2:已知A ={1,2,3}, S ={1,2,3,4,5},则A S , {x |x ∈S 且x ∉A }= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学 ※ 学习探究探究:设集合{4,5,6,8}A =,{3,5,7,8}B =.(1)试用Venn 图表示集合A 、B 后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.① 一般地,由所有属于集合A 且属于集合B 的元素所组成的集合,叫作A 、B 的交集(intersection set ),记作A ∩B ,读“A 交B ”,即: {|,}.A B x x A x B =∈∈且Venn 图如右表示.② 类比说出并集的定义.由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集(union set ),记作:A B ,读作:A 并B ,用描述法表示是:{|,}A B x x A x B =∈∈或.Venn 图如右表示.试试:(1)A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;(2)设A ={等腰三角形},B ={直角三角形},则A ∩B = ; (3)A ={x |x >3},B ={x |x <6},则A ∪B = ,A ∩B = . (4)分别指出A 、B 两个集合下列五种情况的交集部分、并集部分.反思:(1)A ∩B 与A 、B 、B ∩A 有什么关系?(2)A ∪B 与集合A 、B 、B ∪A 有什么关系?(3)A ∩A = ;A ∪A = . A ∩∅= ;A ∪∅= .※ 典型例题例1 设{|18}A x x =-<<,{|45}B x x x =><-或,求A ∩B 、A ∪B .变式:若A ={x |-5≤x ≤8},{|45}B x x x =><-或,则A ∩B = ;A ∪B = .小结:有关不等式解集的运算可以借助数轴来研究.例2 设{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,求A ∩B .变式:(1)若{(,)|46}A x y x y =+=,{(,)|43}B x y x y =+=,则A B = ; (2)若{(,)|46}A x y x y =+=,{(,)|8212}B x y x y =+=,则A B = .反思:例2及变式的结论说明了什么几何意义?※ 动手试试练1. 设集合{|23},{|12}A x x B x x =-<<=<<.求A ∩B 、A ∪B .A练 2. 学校里开运动会,设A ={x |x 是参加跳高的同学},B ={x |x 是参加跳远的同学},C ={x |x 是参加投掷的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释A B 与B C 的含义.三、总结提升 ※ 学习小结1. 交集与并集的概念、符号、图示、性质;2. 求交集、并集的两种方法:数轴、Venn 图.※ 知识拓展A B C A B A C =()()(), A B C A B A C =()()(), A B C A B C =()(), A B C A B C =()(), A A B A A A B A ==(),(). 你能结合V enn 图,分析出上述集合运算的性质吗?学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于( ).A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤2. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ). A. x =3, y =-1 B. (3,-1) C.{3,-1} D.{(3,-1)}3. 设{}0,1,2,3,4,5,{1,3,6,9},{3,7,8}A B C ===,则()A B C 等于( ).A. {0,1,2,6}B. {3,7,8,}C. {1,3,7,8}D. {1,3,6,7,8}4. 设{|}A x x a =>,{|03}B x x =<<,若A B =∅,求实数a 的取值范围是 .5. 设{}{}22230,560A x x x B x x x =--==-+=,则A B = .课后作业1. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系?(1)12{}L L P =点; (2)12L L =∅; (3)1212L L L L ==.2. 若关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B ,且A ∩B ={13-},求A B .§1.1.3 集合的基本运算(2)1. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;2. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.1011 复习1:集合相关概念及运算.① 如果集合A 的任意一个元素都是集合B 的元素,则称集合A 是集合B 的 ,记作 . 若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的 ,记作 . 若A B B A ⊆⊆且,则 .② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为: A B = ; A B = .复习2:已知A ={x |x +3>0},B ={x |x ≤-3},则A 、B 、R 有何关系?二、新课导学 ※ 学习探究探究:设U ={全班同学}、A ={全班参加足球队的同学}、B ={全班没有参加足球队的同学},则U 、A 、B 有何关系?新知:全集、补集.① 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U .② 补集:已知集合U , 集合A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫作A 相对于U 的补集(complementary set ),记作:U C A ,读作:“A 在U 中补集”,即{|,}U C A x x U x A =∈∉且. 补集的Venn 图表示如右:说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制. 试试:(1)U ={2,3,4},A ={4,3},B =∅,则U C A = ,U C B = ;(2)设U ={x |x <8,且x ∈N },A ={x |(x -2)(x -4)(x -5)=0},则U C A = ; (3)设集合{|38}A x x =≤<,则R A = ;(4)设U ={三角形},A ={锐角三角形},则U C A = .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集? (2)Q 的补集如何表示?意为什么?※ 典型例题例1 设U ={x |x <13,且x ∈N },A ={8的正约数},B ={12的正约数},求U C A 、U C B .例2 设U =R ,A ={x |-1<x <2},B ={x |1<x <3},求A ∩B 、A ∪B 、U C A 、U C B .变式:分别求()U C A B 、()()U U C A C B .※ 动手试试练 1. 已知全集I ={小于10的正整数},其子集A 、B 满足()(){1,9}I I C A C B =,(){4,6,8}I C A B =,{2}A B =. 求集合A 、B .练2. 分别用集合A 、B 、C 表示下图的阴影部分.(1) ; (2) ;(3) ; (4) .反思:结合Venn 图分析,如何得到性质:(1)()U A C A = ,()U A C A = ; (2)()U U C C A = .三、总结提升 ※ 学习小结1. 补集、全集的概念;补集、全集的符号.2. 集合运算的两种方法:数轴、Venn 图.※ 知识拓展试结合Venn 图分析,探索如下等式是否成立? (1)()()()U U U C A B C A C B =; (2)()()()U U U C A B C A C B =.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 设全集U =R ,集合2{|1}A x x =≠,则U C A =( ) A. 1 B. -1,1 C. {1} D. {1,1}-2. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ). A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >3. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =( ).A .{0}B .{}3,4--C .{}1,2--D .∅4. 已知U ={x ∈N |x ≤10},A ={小于11的质数},则U C A = .5. 定义A —B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},则N —M = .1. 已知全集I =2{2,3,23}a a +-,若{,2}A b =,{5}I C A =,求实数,a b .2. 已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,试用列举法表示集合A§1.1 集合(复习)1. 掌握集合的交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2. 能使用数轴分析、Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.214复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言? A B = ; A B = ; U C A = .复习2:交、并、补有如下性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;()U A C A = ;()U A C A = ; ()U U C C A = . 你还能写出一些吗?二、新课导学 ※ 典型例题例1 设U =R ,{|55}A x x =-<<,{|07}B x x =≤<.求A ∩B 、A ∪B 、C U A 、C U B 、(C U A )∩(C U B )、(C U A )∪(C U B )、C U (A ∪B )、C U (A ∩B ).小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点; (2)由以上结果,你能得出什么结论吗?例2已知全集{1,2,3,4,5}U =,若A B U =,A B ≠∅,(){1,2}U A C B =,求集合A 、B .小结:列举法表示的数集问题用Venn 图示法、观察法. 例 3 若{}{}22430,10A x x xB x x ax a =-+==-+-=,{}210C x x mx =-+=,A B A A C C ==且,求实数a 、m 的值或取值范围.变式:设2{|8150}A x x x =-+=,{|10}B x ax =-=,若B ⊆A ,求实数a 组成的集合、.※ 动手试试练1. 设2{|60}A x x ax =-+=,2{|0}B x x x c =-+=,且A ∩B ={2},求A ∪B .练2. 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围。

新课标高中数学人教A版必修1全册导学案及答案之欧阳体创编

新课标高中数学人教A版必修1全册导学案及答案之欧阳体创编

§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1.集合和元素(1)如果a是集合A的元素,就说a属于集合A,记作a A∈;(2)如果a不是集合A的元素,就说a不属于集合A,记作a A∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn图.4.集合的分类:有限集;无限集;空集.,整5.常用数集及其记法:自然数集记作N,正整数集记作*N或N+数集记作Z,有理数集记作Q,实数集记作R.[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x+>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{}=中的三个元素可构成某一个三角形的三,,M a b c边的长,那么此三角形一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A. 例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=.[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

新课标高中数学人教A版必修1全册导学案及答案(145页).doc

新课标高中数学人教A版必修1全册导学案及答案(145页).doc

§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈;(2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn 图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

1.5全称量词与存在量词-【新教材】人教A版(2019)高中数学必修第一册导学案

1.5全称量词与存在量词-【新教材】人教A版(2019)高中数学必修第一册导学案

1.5全称量词与存在量词【学习目标】1.能够记住全称量词和存在量词的概念.2.学会用符号语言表达全称量词命题和存在量词命题,并判断真假.3.理解全称量词命题、存在量词命题与其否定的关系,能正确对含有一个量词的命题进行否定.【学习重点】1、用符号语言表达全称量词命题和存在量词命题2、能正确对全称量词命题和存在量词命题进行否定【学习过程】一全称量词与存在量词概念1:全称量词下列语句是命题吗?比较(1)和(3),(2)和(4),它们之间有什么关系?(1)x>3;(2)2x+1是整数;(3)对所有的x∈R,x>3;(4)对任意一个x∈Z,2x+1是整数.短语“所有的”“任意一个”在逻辑中通常叫做全称量词并用符号“∀”表示.含有全称量词的命题,叫做全称量词命题形式:“对M中任意一个x,有p(x)成立”,可简记为“∀x∈M,p(x)”练习1 下列命题中全称量词命题的个数是()①任意一个自然数都是正整数;②所有的素数都是奇数;③有的正方形不是菱形;④三角形的内角和是180°.练习2 判断下列全称量词命题的真假:(1)所有的素数都是奇数;(2)∀x∈R,|x|+1≥1;(3)对任意一个无理数x,x2也是无理数.概念2存在量词下列语句是命题吗?比较(1)和(3),(2)和(4),它们之间有什么关系?(1)2x+1=3;(2)x能被2和3整除;(3)存在一个x∈R,使2x+1=3;(4)至少有一个x∈Z,x能被2和3整除短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做存在量词命题“存在M中的一个x,使p(x)成立”,可用符号记为“∃x∈M,p(x)”练习3下列命题中存在量词命题的个数是()①至少有一个偶数是质数;②∃x∈R,x2≤0;③有的奇数能被2整除.探究一判断下列命题哪些是全称量词命题,哪些是存在量词命题,并判断其真假.(1)对任意x∈R,x2>0;(2)有些无理数的平方也是无理数;(3)对顶角相等;(4)存在x=1,使方程x2+x-2=0;(5)对任意x∈{x|x>-1},使3x+4>0;(6)存在a=1且b=2,使a+b=3成立.(7)有一个实数狓,使x2+2x+3=0;(8)平面内存在两条相交直线垂直于同一条直线;(9)有些平行四边形是菱形变式1.用全称量词或存在量词表示下列语句(1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x2+12x +1也是有理数; (3)方程3x -2y =10有整数解;(4)若一个四边形是菱形,则这个四边形的对角线互相垂直概念3思考:写出下列命题的否定:(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x ∈R ,x +|x |≥0.它们与原命题在形式上有什么变化?从命题形式看,这三个全称量词命题的否定都变成了存在量词命题.一般来说,对含有一个量词的全称量词命题进行否定,我们只需把 “所有的”“任意 一个”等全称量词,变成 “并非所有的”“并非任意一个”等短语即可.也就是说,假定 全称量词命题为 “∀x∈M ,p(x)”,则它的否定为 “并非∀x∈M ,p(x)”,也就是 “∃x∈M ,使p(x )不成立”.通常用符号 “﹁p(x )”表示 “p(x )不成立”全称量词命题:∀x∈M ,p(x), 它的否定:∃x∈M ,﹁p(x)练习4写出下列全称量词命题的否定:(1)所有能被3整除的整数都是奇数;(2)每一个四边形的四个顶点在同一个圆上;(3)对任意x∈Z ,x 2的个位数字不等于3.概念4思考:写出下列命题的否定:(1)存在一个实数的绝对值是正数;(2)有些平行四边形是菱形;(3)∃x∈R,x2-2x+3=0.它们与原命题在形式上有什么变化?从命题形式看,这三个存在量词命题的否定都变成了全称量词命题一般来说,对含有一个量词的存在量词命题进行否定,我们只需把“存在一个”“至少有一个” “有些”等存在量词,变成“不存在一个” “没有一个”等短语即可.也就是说,假定存在量词命题为“∃x∈M,p(x)”,则它的否定为“不存在x∈M,使p(x)成立”,也就是“∀x∈M,p(x)不成立”.存在量词命题:∃x∈M,p(x),它的否定:∀x∈M,﹁p(x)探究二写出下列命题的否定,并判断其真假.(1)所有的方程都有实数解;(2)∀x∈R,4x2-4x+1≥0;(3)∃x∈R,x2+2x+2≤0;(4)某些平行四边形是菱形.(5)任意两个等边三角形都相似;(6)∃x∈R,x2-x+1=0.(7)正方形都是菱形;(8)∃x∈R,使4x-3>x;(9)∀x∈R,有x+1=2x;探究三已知命题“∀1≤x≤2,x2-m≥0”为真命题,求实数m的取值范围.变式3是否存在实数m,使不等式m+x2-2x+5>0对于任意x∈R恒成立,并说明理由【当堂检测】1.下列命题中,不是全称量词命题的是()A.任何一个实数乘0都等于0B.自然数都是正整数C.对于任意x∈Z,2x+1是奇数D.一定存在没有最大值的二次函数2.下列命题中,存在量词命题的个数是()①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④任意x∈R,y∈R,都有x2+|y|>0.A.0B.1C.2D.33.下列命题是“∀x∈R,x2>3”的另一种表述方法的是()A.有一个x∈R,使得x2>3B.对有些x∈R,使得x2>3C.任选一个x∈R,使得x2>3D.至少有一个x∈R,使得x2>34.对任意x>8,x>a恒成立,则实数a的取值范围是________.5.判断下列命题是全称量词命题还是存在量词命题?并判断其真假.(1)∃x∈R,|x|+2≤0;(2)存在一个实数,使等式x2+x+8=0成立;(3)在平面直角坐标系中,任意有序实数对(x,y)都对应一点.答案解析一全称量词与存在量词概念1:全称量词练习1 下列命题中全称量词命题的个数是(3)①任意一个自然数都是正整数;②所有的素数都是奇数;③有的正方形不是菱形;④三角形的内角和是180°.练习2 判断下列全称量词命题的真假:(1)所有的素数都是奇数;假(2)∀x∈R,|x|+1≥1;真(3)对任意一个无理数x,x2也是无理数.假概念2存在量词练习3下列命题中存在量词命题的个数是(3)①至少有一个偶数是质数;②∃x∈R,x2≤0;③有的奇数能被2整除.探究一(1) 全称量词命题,假;(2);存在量词命题,真;(3)全称量词命题,假;(4)存在量词命题,真;(5)全称量词命题,真;(6)存在量词命题,真;(7)存在量词命题,假;(8)存在量词命题,假;(9)有些平行四边形是菱形存在量词命题,真;概念3 思考:写出下列命题的否定:(1)有的矩形不是平行四边形(2)有的素数不是奇数(3)∃x∈R,x+|x|<0练习4写出下列全称量词命题的否定:(1)有的能被3整除的数不是奇数(2)有些四边形的四个顶点不在同一个圆上(3)存在x∈Z,x2的个位数字等于3概念4 思考:写出下列命题的否定:(1)所有实数的绝对值不是正数(2)所有平行四边形不是菱形(3)∀x∈R,x2-2x+3≠0探究二写出下列命题的否定,并判断其真假.(1)有的方程没有实数解,真(2)∃x∈R,4x2-4x+10<0,假(3)∀x∈R,x2+2x+2>0;真(4)所有平行四边形不是菱形,假(5)有些等边三角形不相似,假(6)∀.x∈R,x2-x+1≠0,真(7)有的正方形不是菱形,假(8);∀x∈R,4x-3<x,假(9)∃x∈R,使x+1≠2x,真探究三m≤1变式3 m>-4【当堂检测】1.D2.B3.C4.a≤85.(1)存在量词命题,假(2)存在量词命题,假(3).全称量词命题,真。

高中数学人教A版必修1学案:2.1指数函数知识导学案及答案

高中数学人教A版必修1学案:2.1指数函数知识导学案及答案

2.1 指数函数知识导学在初中代数的学习过程中,我们接触过平方根和立方根的概念.对于平方根的定义我们在上面复习时已经提到了.立方根的定义是:如果x 3=a,那么x 就叫a 的立方根.如此类推,我们便得出了n 次实数方根的定义.当根式的被开方数的指数能被根指数整除时,根式可以写成分数指数幂的形式,并由此引出了正数的正分数指数幂的意义,然后依照负整数指数幂的意义规定了负分数指数幂的意义,从而将指数幂的概念推广到有理数.除此之外,还可将有理数指数幂推广到实数指数幂,有理数指数幂的运算性质对实数指数幂同样适用.比较大小是指数函数性质应用的常见题型.当底数相同时,直接比较指数即可;当底数和指数不同时,要借助于中间量进行比较.不同类的函数值的大小常借助中间量0、1等进行比较.指数函数的图象和性质分别从形和数两个方面对指数函数加以剖析,因此在考查指数函数的题目中有关数形结合的思想有着广泛的应用.关于函数的图象和性质,需注意的几个问题:(1)单调性是指数函数的重要性质,特别是由函数图象的无限伸展,x 轴是函数图象的渐近线.当0<a<1时,x →+∞,y →0;当a>1时,x →-∞,y →0.当a>1时,a 的值越大,图象越靠近y 轴,递增速度越快;当0<a<1时,a 的值越小,图象越靠近y 轴,递减的速度越快.(2)熟悉指数函数y=10x ,y=2x ,y=(21)x ,y=(101)x 在同一直角坐标系中的图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.记忆口诀:(1)方根口诀正数开方要分清,根指奇偶大不同,根指为奇根一个,根指为偶双胞生.负数只有奇次根,算术方根零或正,正数若求偶次根,符号相反值相同.负数开方要慎重,根指为奇才可行,根指为偶无意义,零取方根仍为零.(2)指数函数性质口诀指数增减要看清,抓住底数不放松,反正底数大于0,不等于1已表明;底数若是大于1,图象从下往上增;底数0到1之间,图象从上往下减.无论函数增和减,图象都过(0,1)点.疑难导析用语言叙述这三个公式:(1)非负实数a 的n 次方根的n 次幂是它本身.(2)n 为奇数时,实数a 的n 次幂的n 次方根是a 本身;n 为偶数时,实数a 的n 次幂的n 次方根是a 的绝对值.(3)若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变.在指数函数的定义中我们限定底数的范围为a>0,且a ≠1,这主要是使函数的定义域为实数集,且具有单调性.判断一个函数是否是指数函数,关键是看它是否能写成y=a x (a>0,a ≠1)的形式.问题导思指数函数是同学们完全陌生的一类函数,也是一类非常重要的函数,对指数函数的性质的理解和掌握是学习的关键,找出函数的共同特征,把共同的特点和性质归纳和总结出来. 另外,底数a 对图象特征的影响也可这样来叙述:当a>1时,底数越大,函数图象就越靠近y 轴;当0<a<1时,底数越小,函数图象就越靠近y 轴.一定要注意底数a 对函数值变化的影响. 典题导考绿色通道根据第(1)题的思考,在这里把计算中的不同运算形式统一成分数指数幂更方便些. 第(1)题能把式中的数化成3的指数幂的形式来做吗?黑色陷阱做这类带有指数幂和根式的混合运算,容易发生解答过程中的形式混乱,从而影响解题. 典题变式1.计算下列各式(式中字母都是正数): (1)(232a 21b )(-621a 31b )÷(-361a 65b ); (2)(41m 83-n )8. 答案:(1)4a;(2)32nm . 2.已知21a +21-a =3,求a 2+a -2的值. 答案:47.3.已知函数f(x)=a x +a -x (a>0且a ≠1),f(1)=3,则f(0)+f(1)+f(2)的值为_________.答案:12绿色通道比较而言,还是第二种方法更简便些.但对学生的思维要求较高,不仅要求迅速画出略图,而且能对m 、n 的定位进行判断.黑色陷阱如果不注意原题中的条件:1>n>m>0,而取m=2,n=3,将会出现误选B 的情形.典题变式 如图2-1-5,曲线C 1、C 2、C 3、C 4分别是指数函数y=a x 、y=b x 、y=c x 和y=d x 的图象,则a 、b 、c 、d 与1的大小关系是( )图2-1-5A.a<b<1<c<dB.a<b<1<d<cC.b<a<1<c<dD.b<a<1<d<c 答案:D绿色通道1.对同底数幂大小的比较用的是指数函数的单调性.首先,必须要明确所给的两个值是哪个指数函数的两个函数值;其次,必须要明确所给指数函数的底与1的大小关系;再根据指数函数图象的性质来判断.2.对不同底数幂的大小的比较可以与中间值1进行比较.典题变式1.设y 1=40.9,y 2=80.44,y 3=(21)-1.5,则( ) A.y 3>y 1>y 2 B.y 2>y 1>y 3 C.y 1>y 2>y 3 D.y 1>y 3>y 2答案:D2.当x>0时,函数f(x)=(a 2-1)x 的值总大于1,则实数a 的取值范围是( )A.1<|a|<2B.|a|<1C.|a|>1D.|a|>2 答案:D绿色通道本题实际上是一个平均增长率的问题,求解非常简单,但是该题从科学家富兰克林的介绍入手设置了一个情景.这是一个比较典型的模型,背景也可以更换为增长率问题.典题变式1.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A.增加7.84%B.减少7.84%C.减少9.5%D.不增不减答案:B2.某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩留量是原来的一半(结果保留1个有效数字).答案:约经过4年,剩留量是原来的一半.黑色陷阱解这类题容易出现的问题是,对于个体问题生搬硬套公式,从而导致解题失误.典题变式 家用电器(如冰箱)使用的氟化物的释放破坏了大气上层的臭氧层.臭氧含量Q 呈指数函数型变化,满足关系式Q=Q 0e -0.002 5t ,其中Q 0是臭氧的初始量,t 的单位是年.(1)随时间的增加,臭氧的含量是增加了还是减少了?(2)多少年以后将会有一半的臭氧消失?答案:(1)减少;(2)用计算器完成,大约277年.。

【人教A版】高中数学必修一:第1章《集合与函数概念》导学案设计(含答案) 1.3.1 第2课时

【人教A版】高中数学必修一:第1章《集合与函数概念》导学案设计(含答案) 1.3.1 第2课时

第2课时 函数的最值[学习目标] 1.理解函数的最大(小)值及其几何意义.2.会求简单函数的最大值或最小值.知识点 函数的最大(小)值及几何意义答 不一定.函数的最值首先是一个函数值,它是值域的一个元素.若仅有对定义域内的任意实数x ,都有f (x )≤M ,但M 不在函数值域内,则M 不能称为函数的最值.例如函数y =1x (0<x <1),对于任意x ∈(0,1),0<y <1成立,由于0,1不在值域(0,1)内,因此0,1都不是这个函数的最值,这个函数既没有最大值也没有最小值.题型一 利用函数的图象求最值例1 已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x,x >1.求f (x )的最大值、最小值.解 作出函数f (x )的图象(如图).由图象可知,当x =±1时,f (x )取最大值为f (±1)=1.当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.反思与感悟 1.分段函数的最大值为各段上最大值的最大者,最小值为各段上最小值的最小者,故求分段函数的最大值或最小值,应先求各段上的最值,再比较即得函数的最大值、最小值.2.如果函数的图象容易作出,画出分段函数的图象,观察图象的最高点与最低点,并求其纵坐标即得函数的最大值、最小值.跟踪训练1 (1)函数f (x )的部分图象如图所示,则该函数在[-2,2]上的最小值、最大值分别是( )A.f (-2),f (3)B.0,2C.f (-2),2D.f (2),2答案 C解析 由图象可知,x =-2时,f (x )取得最小值为f (-2)=-1, x =1时,f (x )取得最大值为f (1)=2.(2)画出函数f (x )=⎩⎪⎨⎪⎧-2x ,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间及函数的最小值.解 f (x )的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.题型二 利用单调性求函数的最值例2 求函数f (x )=xx -1在区间[2,5]上的最大值与最小值.解 任取2≤x 1<x 2≤5, 则f (x 1)=x 1x 1-1,f (x 2)=x 2x 2-1,f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1),∵2≤x 1<x 2≤5,∴x 1-x 2<0,x 2-1>0,x 1-1>0, ∴f (x 2)-f (x 1)<0.∴f (x 2)<f (x 1).∴f (x )=xx -1在区间[2,5]上是单调减函数.∴f (x )max =f (2)=22-1=2,f (x )min =f (5)=55-1=54. 反思与感悟 1.当函数图象不易作或无法作出时,往往运用函数单调性求最值. 2.函数的最值与单调性的关系:(1)若函数在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b );(2)若函数在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a );(3)求最值时一定要注意所给区间的开闭,若是开区间,则不一定有最大(小)值. 跟踪训练2 已知函数f (x )=x +1x .(1)求证:f (x )在[1,+∞)上是增函数; (2)求f (x )在[1,4]上的最大值及最小值. (1)证明 设1≤x 1<x 2, 则f (x 1)-f (x 2)=(x 1+1x 1)-(x 2+1x 2)=(x 1-x 2)·x 1x 2-1x 1x 2.∵1≤x 1<x 2,∴x 1-x 2<0,x 1x 2>1, ∴x 1x 2-1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[1,+∞)上是增函数. (2)解 由(1)可知,f (x )在[1,4]上递增, ∴当x =1时,f (x )min =f (1)=2, 当x =4时,f (x )max =f (4)=174. 综上所述,f (x )在[1,4]上的最大值是174,最小值是2.题型三 闭区间上二次函数的最值问题 例3 已知函数f (x )=x 2+ax +3,x ∈[-1,1]. (1)若a =1,求函数f (x )的最值; (2)若a ∈R ,求函数f (x )的最小值.解 (1)当a =1时,f (x )=x 2+x +3=(x +12)2+114,故函数在[-1,-12]上单调递减,在[-12,1]上单调递增,又f (-1)=3,f (-12)=114,f (1)=5,∴函数f (x )的最大值为5,最小值为114.(2)∵f (x )的对称轴为x =-a2.当-a2<-1,即a >2时,函数f (x )=x 2+ax +3在[-1,1]上单调递增,f (x )min =f (-1)=4-a .当-1≤-a 2≤1,即-2≤a ≤2时,f (x )min =f (-a 2)=a 24-a 22+3=3-a 24.当-a2>1,即a <-2时,f (x )=x 2+ax +3在[-1,1]上单调递减,f (x )min =f (1)=4+a .综上可知,f (x )min=⎩⎪⎨⎪⎧4-a ,a >2,3-a24,-2≤a ≤2,4+a ,a <-2.反思与感悟 1.二次函数在闭区间上必定有最大值和最小值,且它们只能在区间的端点或二次函数图象的对称轴上取到.2.解决含参数的二次函数的最值问题,首先将二次函数化为y =a (x +h )2+k 的形式,再依a 的符号确定抛物线开口的方向,依对称轴x =-h 得出顶点的位置,再根据x 的定义区间结合大致图象确定最大或最小值.对于含参数的二次函数的最值问题,一般有如下几种类型: (1)区间固定,对称轴变动(含参数),求最值; (2)对称轴固定,区间变动(含参数),求最值; (3)区间固定,最值也固定,对称轴变动,求参数. 通常都是根据区间端点和对称轴的相对位置进行分类讨论.3.对于二次函数f (x )=a (x -h )2+k (a >0)在区间[p ,q ]上的最值问题可作如下讨论: (1)对称轴x =h 在区间[p ,q ]的左侧,即当h <p 时,f (x )max =f (q ),f (x )min =f (p ). (2)对称轴x =h 在区间[p ,q ]之间,即当p ≤h ≤q 时,f (x )min =f (h )=k . 当p ≤h <p +q2时,f (x )max =f (q );当h =p +q 2时,f (x )max =f (p )=f (q );当p +q 2<h ≤q 时,f (x )max =f (p ).(3)对称轴x =h 在区间[p ,q ]的右侧,即当h >q 时, f (x )max =f (p ),f (x )min =f (q ). 当a <0时,可类似得到结论.跟踪训练3 已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1, ∵x ∈[-5,5],故当x =1时,f (x )的最小值为1. 当x =-5时,f (x )的最大值为37.(2)函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a . ∵f (x )在[-5,5]上是单调函数, 故-a ≤-5,或-a ≥5.即实数a 的取值范围是{a |a ≤-5,或a ≥5}. 题型四 函数最值的实际应用例4 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400.其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润) 解 (1)设月产量为x 台,则总成本为20 000+100x , 从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000;∴当x =300时,f (x )max =25 000,当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时 ,f (x )max =25 000. 即每月生产300台仪器时利润最大, 最大利润为25 000元.反思与感悟 1.解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.2.实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决,本题转化为二次函数求最值,利用配方法和分类讨论思想使问题得到解决.跟踪训练4 将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润是多少? 解 设售价为x 元,利润为y 元,单个涨价(x -50)元,销售量减少10(x -50)个.∴y =(x -40)(1 000-10x ) =-10(x -70)2+9 000≤9 000. 故当x =70时,y max =9 000.答 售价为70元时,利润最大为9 000元.利用函数最值或分离参数求解恒成立问题例5 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x+2.设1≤x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)(1-12x 1x 2),∵1≤x 1<x 2,∴x 2-x 1>0,2x 1x 2>2, ∴0<12x 1x 2<12,1-12x 1x 2>0, ∴f (x 2)-f (x 1)>0,f (x 1)<f (x 2). ∴f (x )在区间[1,+∞)上为增函数, ∴f (x )在区间[1,+∞)上的最小值为f (1)=72.(2)在区间[1,+∞)上f (x )>0恒成立 ⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞),则函数y =x 2+2x +a =(x +1)2+a -1在区间[1,+∞)上是增函数.所以当x =1时,y 取最小值,即y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )>0恒成立, 故a >-3.反思与感悟 在解决不等式恒成立问题时,最为常见和重要的方法是从函数最值的角度或分离参数的角度去处理,在分离参数后常使用以下结论: a >f (x )恒成立⇔a >f (x )max a <f (x )恒成立⇔a <f (x )min .跟踪训练5 设f (x )=x 2+4x +3,不等式f (x )≥a 对x ∈R 恒成立,则实数a 的取值范围是________.答案 (-∞,-1]解析 ∵f (x )=x 2+4x +3=(x +2)2-1, 由f (x )≥a 恒成立,知f (x )min ≥a , ∴a ≤-1.1.函数f (x )(-2≤x ≤2)的图象如图所示,则函数的最大值和最小值分别为( ) A.f (2),f (-2) B.f (12),f (-1)C.f (12),f (-32)D.f (12),f (0)答案 C解析 由图象可知最大值为f (12),最小值为f (-32).2.已知函数f (x )=1x 在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( )A.12B.-12 C.1 D.-1 答案 A解析 可知函数f (x )=1x 在[1,2]上单调递减.∴A =f (1)=1,B =f (2)=12,∴A -B =12.3.函数y =x -1x 在[1,2]上的最大值为( )A.0B.32 C.2 D.3答案 B解析 函数y =x 在[1,2]上是增函数, 函数y =-1x 在[1,2]上是增函数,∴函数y =x -1x在[1,2]上是增函数.当x =2时,y max =2-12=32.4.f (x )=x 2+2x +1,x ∈[-2,2]的最大值是________. 答案 9解析 f (x )=x 2+2x +1=(x +1)2,∴f (x )在[-2,-1]上递减,在[-1,2]上递增, ∴f (x )max =f (2)=9.5.记min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案 6解析 由题意,知f (x )=⎩⎪⎨⎪⎧x +2,0≤x ≤410-x ,x >4,作出函数f (x )的图象如图所示.易知f (x )max =f (4)=6.1.函数的最值与值域、单调性之间的联系(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y =1x .如果有最值,则最值一定是值域中的一个元素.(2)若函数f (x )在闭区间[a ,b ]上单调,则f (x )的最值必在区间端点处取得.即最大值是f (a )或f (b ),最小值是f (b )或f (a ). 2.二次函数在闭区间上的最值探求二次函数在给定区间上的最值问题,一般要先作出y =f (x )的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.一、选择题1.设定义在R 上的函数f (x )=x |x |,则f (x )( ) A.只有最大值 B.只有最小值C.既有最大值,又有最小值D.既无最大值,又无最小值 答案 D解析 f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,画出图象(图略)可知,既无最大值,又无最小值.2.已知函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1],则f (x )的最大值与最小值分别为( )A.10,6B.10,8C.8,6D.以上都不对答案 A解析 ∵x ∈[1,2]时,f (x )max =2×2+6=10, f (x )min =2×1+6=8.又x ∈[-1,1]时,f (x )max =1+7=8, f (x )min =-1+7=6,∴f (x )max =10,f (x )min =6.3.函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A.10,5 B.10,1 C.5,1 D.以上都不对答案 B解析 因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3],所以当x =1时,y min =1,当x =-2时,y max =(-2-1)2+1=10.故选B. 4.函数f (x )=11-x (1-x )的最大值是( )A.54B.45C.43D.34 答案 C解析 因为1-x (1-x )=x 2-x +1=(x -12)2+34≥34,所以11-x (1-x )≤43.故f (x )的最大值为43.5.函数y =f (x )的图象关于原点对称,且函数y =f (x )在区间[3,7]上是增函数,最小值为5,那么函数y =f (x )在区间[-7,-3]上( ) A.为增函数,且最小值为-5 B.为增函数,且最大值为-5 C.为减函数,且最小值为-5 D.为减函数,且最大值为-5 答案 B解析 由题意画出示意图,如图所示,可以发现函数y =f (x )在区间[-7,-3]上仍是增函数,且最大值为-5.6.已知关于x 的不等式x 2-x +a -1≥0在R 上恒成立,则实数a 的取值范围是( ) A.(-∞,54)B.(-∞,54]C.(54,+∞) D.[54,+∞) 答案 D解析 设f (x )=x 2-x +a -1,问题等价于f (x )的最小值大于或等于0,∵f (x )=(x -12)2+a -54,当x =12时,f (x )min =a -54,所以a -54≥0,解得a ≥54.故选D.二、填空题7.函数y =1x -2,x ∈[3,4]的最大值为________.答案 1解析 函数y =1x -2在[3,4]上是单调减函数,故y 的最大值为13-2=1.8.函数y =-x 2+x +2的最大值为________,最小值为________. 答案 32解析 令u =-x 2+x +2,则u ≥0,且u =-(x -12)2+94.所以当x =12时,u max =94,即y max =32.又因为u ≥0,所以y min =0. 9.函数y =⎩⎪⎨⎪⎧x +1,x ∈[-3,-1],-x -1,x ∈(-1,4]的最小值为________,最大值为________.答案 -5 0解析 由题意可知,当x ∈[-3,-1]时,y min =-2;当x ∈(-1,4]时,y min =-5,故最小值为-5.同理可得,最大值为0.10.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上有最大值3和最小值2,则m 的取值范围是________. 答案 [1,2]解析 因为f (x )=x 2-2x +3=(x -1)2+2, 所以f (0)=f (2)=3.又因为m >0,所以m ∈[1,2].三、解答题11.求函数f (x )=x 2-2ax +2在[-1,1]上的最小值.解 函数f (x )图象的对称轴方程为x =a ,且函数图象开口向上,如图所示:①当a >1时,f (x )在[-1,1]上单调递减,故f (x )min =f (1)=3-2a ;②当-1≤a ≤1时,f (x )在[-1,1]上先减后增,故f (x )min =f (a )=2-a 2;③当a <-1时,f (x )在[-1,1]上单调递增,故f (x )min =f (-1)=3+2a .综上可知,f (x )的最小值为f (x )min =⎩⎪⎨⎪⎧ 3-2a ,a >1,2-a 2,-1≤a ≤1,3+2a ,a <-1.12.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,∴c =1,∴f (x )=ax 2+bx +1.∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,∴⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=x 2-x +1. (2)由题意知x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =⎝⎛⎭⎫x -322-54-m , 其对称轴为x =32, ∴g (x )在区间[-1,1]上是减函数,∴g (x )min =g (1)=1-3+1-m >0,∴m <-1.13.为了保护环境,实现城市绿化,某房地产公司要在拆迁地(如图所示的长方形ABCD )上规划出一块长方形地面建小区公园(公园的一边落在CD 上),但不超过文物保护区△AEF 的边EF .如何设计才能使公园占地面积最大?并求出最大面积(已知AB =CD =200 m ,BC =AD =160 m ,AE =60 m ,AF =40 m).解 如图所示,设P 为EF 上一点,矩形CGPH 为规划出的公园,PH =x ,则PN =200-x . 又因为AE =60,AF =40,所以由△FNP ∽△F AE ,得FN AF =PN AE, 所以FN =PN AE ·AF =200-x 60·40=23(200-x ), 所以AN =AF -NF =40-23(200-x ), 所以PG =160-AN =120+23(200-x ). 故矩形CGPH 的面积为S =x [120+23(200-x )] =-23(x -190)2+23×1902(140≤x ≤200). 所以当x =190时,S max =23×1902=24 06623(m 2). 答 当PH =190 m ,PG =126 23m 时,公园的面积最大,最大面积为24 066 23m 2.。

[精品]新人教A版必修1高中数学全册导学案及答案(105页)

[精品]新人教A版必修1高中数学全册导学案及答案(105页)

课题:1.1.1集合的含义与表示(1)一、三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。

过程与方法:通过实例了解,体会元素与集合的属于关系。

情感态度与价值观:培养学生的应用意识。

二、学习重、难点:重点:掌握集合的基本概念。

难点:元素与集合的关系。

三、学法指导:认真阅读教材P1-P3,对照学习目标,完成导学案,适当总结。

四、知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合”这一词?(试举几例)五、学习过程:1、阅读教材P2页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子。

2、集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。

问题5:元素与集合之间的关系?A例1:设A表示“1----20以内的所有质数”组成的集合,则3、4与A的关系?问题6:常用数集及其记法:B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A1.判断以下元素的全体是否组成集合:(1)大于3小于11的偶数; ( ) (2)我国的小河流;( )(3)非负奇数; ( ) (4)本校2009级新生; ( )(5)血压很高的人; ( ) (6)著名的数学家;( )(7)平面直角坐标系内所有第三象限的点 ( )A2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4);(5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉-,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3B4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A锐角三角形 B直角三角形 C钝角三角形 D等腰三角形B5. 已知集合A含有三个元素2,4,6,且当Aa ,有6-a∈A,那么a为()A.2 B.2或4 C.4 D.0B6. 设双元素集合A是方程x2-4x+m=0的解集,求实数m的取值范围。

直线与圆大单元整体学习导学案 高二上学期数学人教A版(2019)选择性必修第一册

直线与圆大单元整体学习导学案 高二上学期数学人教A版(2019)选择性必修第一册

【学科大概念】本单元的学科大概念是解析几何,以直线与圆为例,从直线和圆的概念出发,逐步得到直线和圆的方程,利用直线和圆的方程表示直线和圆的位置关系,从而构成研究解析几何的逻辑体系.【课程大概念】基于直线和圆的学科大概念和学生的学习基础,融合社会生活实际和老师、学生已有的学习经验,以学生的学科素养生成为目的,用坐标法去研究几何的学习过程.整体感知整体感知设计思路:通过类比向量的坐标表示,探索出平面直角坐标系中的两点间的距离公式和中点坐标公式,体会到坐标法解决平面几何问题的简便性.经历对直线、圆两种几何图形的直观感知到坐标刻画的过程,能用代数方程表示直线与圆.活动任务(设计意图)具体实施步骤学时学习活动1回顾平面直角坐标系中的几何坐标表示回顾向量的坐标表示,利用坐标法解决几何问题学生:对比几何法,感受坐标法解决几何问题的便捷一、课前预习:45分钟1.回顾必修二平面向量的坐标表示,初中所学一次函数的图象与性质、圆的定义(学习活动1,2)2.通读教材一遍,结合目录,初步构建本单元的思维导图(学习活动3)二、课堂设计1.自主学习:10分钟对学程中出现的问题进行自主纠错,标记存在的疑问2.合作探究:10分钟(1)讨论交流:①坐标法解决几何问题的思路;②影响直线和圆图形的几何要素,及其代数方程;(2)小组展示:前黑板:活动3单元思维导图后黑板:活动1的2个几何问题、活动2作出直线与圆的图形及分析3.学生点评:15分钟(1)应用坐标法解决几何问题的思路;(2)对比三个一次函数的图象,分析坐标系中直线的特征、代数方程的表示(3)对比三个圆的大小和位置,说出决定的几何要素,由定义推导圆的标准方程;(4)以直线和圆的概念与方程为核心,梳理本单元的思维导图,其他同学补充完善;4.教师点拨提升:5分钟(1)对比几何法,坐标法在解决几何问题时的便捷性;(2)解析几何的实质就是在坐标系中,应用代数的方法来研究几何图形的性质,之后学习的重心要从直线与圆的方程出发来研究问题;5.整理落实:5分钟(1)完善坐标法解决几何问题的思路与步骤;(2)完善本单元的思维导图;1 学习活动2感知直线与圆的直观形象,用代数方程表示直线与圆动手作出直线和圆,分析直线与圆的几何要素,初步用方程表示直线与圆学生:体会几何图形与代数方程的统一学习活动3以直线和圆的概念与方程为主线,构建思维导图通读教材,初步构建思维导图的框架学生:初步了解本单元的核心内容和逻辑结构探究建构探究建构设计思路:理解直线的倾斜角和斜率的概念与关系,掌握过两点的直线斜率的计算公式,探索并掌握直线方程的五种形式(点斜式、斜截式、两点式、截距式、一般式).从直线方程的斜截式与一般式两个方面判定两条直线的位置关系,推导并掌握点到直线的距离公式、两条平行直线间的距离.根据圆的定义推导圆的标准方程与一般方程,从代数运算与几何图形两个角度判断直线与圆、圆与圆的位置关系.活动任务(设计意图)具体实施步骤学时学习活动1探究直线方程的五种形式用斜率、方向向量、法向量刻画直线,借助斜率推导并探索直线方程的五种形式.学生:掌握直线方程的五种形式,熟练选择合适的形式求直线方程一、课前预习:45分钟1.研读教材P71-77:回顾确定直线的要素,说出倾斜角与斜率的概念,以及二者的关系;理解直线方向向量与法向量的定义,能用坐标准确表示直线的方向向量与法向量(问题1,2);2.研读教材P78-84:借助斜率公式推导直线方程的五种形式,并分析他们之间的关系与适用范围(问题3,4,5,6、归纳生成);3.完成【学习评测】;二、课堂设计1.自主学习:5分钟对学程中出现的问题进行自主纠错,标记存在的疑问2.合作探究:15分钟(1)讨论交流:①直线的斜率、方向向量、法向量如何求解?②如何选择合适的形式来求解直线方程?(2)小组展示:前黑板:①【归纳】直线方程的表格;②问题6一般式中的斜率与截距;后黑板:【评测】1、2(1)(2)、2(3)(4)、33.学生点评:10分钟(1)直线方程的五种形式及其适用范围(表格、评测2(1)(2)、3)(2)如何在直线方程中找方向向量与法向量?(问题6、评测1、2(3)(4))4.教师点拨提升:10分钟(1)直线方程的五种形式可以相互转化、一题多解;(2)直线方向向量与法向量的概念与意义,引导学生能够从直线方程中准确找出方向向量与法向量,为之后的学习打下基础;5.整理落实:5分钟(1)理顺斜率、倾斜角、方向向量、法向量的关系;(2)灵活直线方程五种形式求直线方程的思路;1一、课前预习:45分钟1.研读教材P86-91:以斜截式与一般式两种形式,借助方程组解的个数来判定两直线的位置关系,得出判定条件;借助法向量推导两直线垂直的判定条件;(问题1学习活动2 探究两条直线的位置关系从斜截式和一般式两种形式探索两条直线的位置关系学生:将两直线位置关系的直观感受转化为代数条件,学会用代数方法判定两直线的位置关系1,2)2.完成【学习评测】二、课堂设计1.自主学习:10分钟对学程中出现的问题进行自主纠错,标记存在的疑问2.合作探究:15分钟(1)讨论交流:①以斜截式和一般式两种形式推得两直线位置关系的条件有何不同之处?②如何根据平行与垂直关系求解直线方程?(2)小组展示:前黑板:①【归纳】判定两直线位置关系的方法;②【评测】1(1)(3)、1(2)(4)后黑板:【评测】2、3、43.学生点评:10分钟(1)怎样选择方法判定两直线的位置关系?(问题1、2、【评测】1、2)(2)已知两直线的平行或垂直关系,怎样设方程求直线的方程?(【评测】3、4)4.教师点拨提升:5分钟(1)以斜截式判定两直线位置关系时,一定要注意斜率不存在的直线;(2)补充:利用交点个数来判定两条直线位置关系,为之后直线与圆位置关系的代数判定方法做铺垫;5.整理落实:5分钟(1)斜截式与一般式两种形式判定两直线位置关系的条件;(2)利用平行与垂直关系求直线方程的思路;学习活动3 探究点到直线的距离多种方法推导点到直线的距离公式学生:推导并掌握点到直线的距离公式,会求点到直线的距离一、课前预习:45分钟1.回顾两直线相交求交点的思路,先求出垂线段所在直线的方程,联立方程组求出交点,即垂足,在应用两点间距离公式求解垂线段长度(问题1);2.研读教材P54例2:类比空间中点到直线的距离求解思路,借助直线的方向向量求解点到直线的距离.(问题2)3.研读教材P92-95:借助直线的法向量、两直线相交求解点到直线的距离,任选一种方法推导点到直线的距离公式,进一步得到两平行线间的距离公式(问题3);4.完成【学习评测】;二、课堂设计1.自主学习:5分钟对学程中出现的问题进行自主纠错,标记存在的疑问1(1)讨论交流:①点到直线的距离公式的推导思路与过程;②两平行线间距如何转化为点到直线的距离?(2)小组展示:前黑板:问题1、问题2、问题2思考后黑板:【评测】1、2、33.学生点评:10分钟(1)点到直线的距离公式的推导思路(问题1、2、【评测】1、2)(2)两平行线间距如何转化为点到直线的距离?(问题3思考、【评测】3)4.教师点拨提升:10分钟(1)梳理点到直线距离公式的推导过程;(2)引导学生理解距离的实质是两点距离的最小值;5.整理落实:5分钟(1)牢记两点距、点线距、两平行线距的公式;(2)求解距离的思路;学习活动4 探究圆的标准方程与一般方程由定义推导圆的标准方程与一般方程,分析二者的关系学生:熟练掌握圆的标准方程与一般方程、选择合适的形式求圆的方程一、课前预习:45分钟1.研读教材P98-101:由圆的定义推导出圆的标准方程,分析其结构特征(问题1);2.研读教材P102-104:展开标准方程得到圆的一般方程,找出与标准方程的联系,分析其结构特征及限制条件.(问题2)3.完成【学习评测】;二、课堂设计1.自主学习:10分钟对学程中出现的问题进行自主纠错,标记存在的疑问2.合作探究:15分钟(1)讨论交流:①圆的一般方程的限制条件,与标准方程的关系;②如何判定点与圆的位置关系?(2)小组展示:前黑板:问题2思考、【评测】1后黑板:【评测】2(1)、2(2)、33.学生点评:10分钟(1)圆的一般方程的限制条件,如何从一般方程中找出圆的圆心和半径(两种思路)?(问题2思考、【评测】1)(2)如何判定点与圆的位置关系?(【评测】3)4.教师点拨提升:5分钟(1)强调一般方程的限制条件,建议利用配方法将一般方程转化为标准方程找圆心和半径;(2)引导学生认识判定点与圆位置关系的方法,为之后学习几何法判定直线与圆的位置关系做铺垫;1(1)在一般方程中找圆心和半径的两类方法;(2)待定系数法求圆的方程的计算训练;(3)几何法判定点与圆位置关系的思路.学习活动5 探究直线与圆的位置关系从代数和几何两个方面判定直线与圆的位置关系学生:掌握两种方法判定直线与圆的位置关系,会去切线方程和弦长一、课前预习:45分钟1.研读教材P105-108:类比两直线位置关系的判定方法,应用代数法判断直线与圆的位置关系;类比点与圆位置关系的判定方法,应用几何法判断直线与圆的位置关系(问题1,2);2.研读教材P108-109例2例3:梳理求切线方程和弦长的思路,完成【学习评测】;二、课堂设计1.自主学习:5分钟对学程中出现的问题进行自主纠错,标记存在的疑问2.合作探究:15分钟(1)讨论交流:①代数法和几何法判定直线与圆位置关系的思路;②直线与圆相切求切线方程、相交求弦长的思路;(2)小组展示:前黑板:问题1、2、【评测】1后黑板:问题2思考、【评测】2、3、43.学生点评:10分钟(1)代数法和几何法判定直线与圆位置关系的思路;(问题1、2、【评测】1)(2)直线与圆相切求切线方程、相交求弦长的思路;(教材P108例2、【评测】2、3、4)4.教师点拨提升:10分钟(1)直线与圆相切求切线方程时,要区分已知点在圆上和在圆外两种情况的求解思路;(2)作图分析问题2思考中三个问题,为之后应用迁移中的最值问题做铺垫;5.整理落实:5分钟(1)代数法和几何法判定直线与圆位置关系的思路;(2)直线与圆相切求切线方程、相交求弦长的思路;(3)问题2思考中三个问题.1学习活动6 探究圆与圆的位置关系从代数和几何两个方面判定圆与圆的位置关系学生:掌握判定圆与圆位置关系的两种方法,会求两圆相交公共弦的直线方程和弦长一、课前预习:45分钟1.借助生活中的实例,直观感受圆与圆不同位置关系的形象(问题1);2.研读教材P111-114:类比直线与圆位置关系的判定方法,分别应用代数法和几何法判定圆与圆的位置关系(问题2、3);3.完成【学习评测】;二、课堂设计1.自主学习:10分钟对学程中出现的问题进行自主纠错,标记存在的疑问2.合作探究:15分钟1(1)讨论交流:①代数法和几何法判定圆与圆位置关系的思路;②直线与圆相交求公共弦所在直线方程和弦长的思路;(2)小组展示:前黑板:问题2代数法、问题2几何法、【评测】1后黑板:问题3、【评测】2、33.学生点评:10分钟(1)代数法和几何法判定圆与圆位置关系的思路;(问题2代数法、问题2几何法、【评测】1)(2)圆与圆相交求公共弦直线方程和弦长的思路;(【评测】3)4.教师点拨提升:5分钟(1)代数法判定圆与圆位置关系时的处理过程,为之后学习直线与圆锥曲线位置关系的判定做铺垫;(2)解释两圆相交求公共弦所在方程思路的原理;5.整理落实:5分钟(1)代数法和几何法判定直线与圆位置关系的思路;(2)圆与圆相交求公共弦直线方程和弦长的思路;应用迁移应用迁移设计思路:回顾直线与圆的方程、位置关系的判定方法,结合几何图形分析问题,应用代数方法解决直线与圆的定点、最值等综合问题;引导学生从实际问题中抽象出直线与圆的模型,建立合适的坐标系求解直线与圆的方程,将几何问题转化为代数问题,应用坐标法求解平面几何问题,提升学生数学抽象、数学建模、数学运算的学科素养.活动任务(设计意图)具体实施步骤学时学习活动1探索直线与圆的综合问题结合几何图形分析定点、最值问题,并应用代数方法求解综合问题学生:掌握作图分析直线与圆综合问题中取得最值时的情况的方法,理解常见代数式表示的几何意义一、课前预习:45分钟1.回顾探究建构阶段各活动学习的核心内容,补充完善整体感知构建的思维导图,重点梳理直线与圆的方程的求解、位置关系的判定方法(10分钟);2.限时完成活动1(35分钟);二、课堂设计1.自主学习:10分钟对学程中出现的问题进行自主纠错,标记存在的疑问2.合作探究:25分钟(1)讨论交流:①直线过定点、点到直线距离的最值问题;②圆上动点最值问题的求解思路;③常见代数式表示的几何意义;(2)小组展示:前黑板:问题2、【评测】1、2后黑板:【评测】3、4(1)、4(2)、4(3)3.学生点评:25分钟(1)分析直线过定点问题、点到直线距离的最值问题;(【评测】1、2)(2)作图分析圆上的动点在哪个位置时取得最值;(【评测】3、4(1))(3)理解常见代数式表示的几何意义,求式子的最值;(【评测】4(1)(2))24.教师点拨提升:15分钟(1)从点斜式的形式分析直线过定点问题,直线围绕定点进行旋转;(2)作图分析动点在哪个位置取得最值时,一定要“化动为定”,从不变的量入手分析变化情况;(3)常见代数式表示的几何意义有两点间距(的平方)、直线斜率与截距,对式子进行变形后转化为熟悉的形式5.整理落实:15分钟(1)将直线方程整理成点斜式,解决直线过定点问题;(2)作图分析动点怎样运动才能取得最值的过程;(3)常见代数式表示的几何意义;学习活动2 探索直线与圆在实际生活中的应用从实际问题中抽象出直线与圆的模型,建立坐标系将几何问题转化为代数问题,通过代数运算解决几何问题学生:运用代数方法解决生活实际问题中有关直线与圆的几何问题一、课前预习:45分钟1.借助活动2情境设计的问题,感受并总结出生活实际问题的解决思路(15分钟);2.限时完成活动2的【学习评测】(30分钟);二、课堂设计1.自主学习:10分钟对学程中出现的问题进行自主纠错,标记存在的疑问2.合作探究:15分钟(1)讨论交流:①如何从实际问题中提取有效信息、抽象出直线与圆的模型?;②理解问题的意义将实际问题转化为数学几何问题,建立合适的坐标系解决几何问题;(2)小组展示:前黑板:问题1、2后黑板:【评测】1、23.学生点评:15分钟(1)情境问题转化为直线与圆位置关系的判定;(2)【评测】1转化为直线与圆相交求弦长;(3)【评测】2转化为直线与圆相切求切线;4.教师点拨提升:5分钟(1)学习解析几何的意义就在于将生活问题抽象出几何图形,建立合适的坐标系,应用代数的方法解决问题;(2)规范学生的求解思路和组织部洲;5.整理落实:5分钟(1)利用直线与圆方程解决实际问题的思路;(2)规范书写实际问题的解决步骤;1重构拓展重构拓展设计思路:结合前三个阶段所学内容和271BAY资源,重新梳理核心内容之间的逻辑关系,重构本单元的思维导图;针对直线与圆的方程的求解、位置关系的判定进行单元过关,纠错反思总结提升,进一步梳理直线与圆的研究路径,为之后学习圆锥曲线做铺垫.活动任务(设计意图)具体实施步骤学时重构思维导图从直线与圆的方程、位置关系两个方面重构本单元的思维导图一、课前预习:45分钟1.根据271BAY资源,结合前三个阶段构建的思维导图,重新梳理核心内容之间的逻辑关系,重构本单元的思维2单元过关限时训练、查缺补漏纠错反思、总结提升导图(20分钟);2.限时训练,单元过关();二、课堂设计1.自主学习:分钟对单元过关中出现的问题自主纠错,标记存在的疑问;2.合作探究:分钟(1)讨论交流:(2)小组展示:前黑板:后黑板:3.学生点评:分钟4.教师点拨提升:分钟5.整理落实:分钟单元拓展参照教材P66本章导语,通过圆锥的截面初步了解椭圆、双曲线、抛物线的形状学生:回顾研究直线与圆的路径,预设研究圆锥曲线的研究过程与方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈;(2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn 图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

这是解决有关集合问题的一种重要方法;3.确定的对象才能构成集合.可依据对象的特点或个数的多少来表示集合,如个数较少的有限集合可采用列举法,而其它的一般采用描述法.4.要特别注意数学语言、符号的规范使用.[巩固提高]1.已知下列条件:①小于60的全体有理数;②某校高一年级的所有学生;③与2相差很小的数;④方程2x=4的所有解。

其中不可以表示集合的有--------------------()A.1个B.2个C.3个D.4个2.下列关系中表述正确的是-----------------------------------------()A.{}200x∈=B.(){}00,0∈C.0∈∅ D.0N∈3.下列表述中正确的是----------------------------------------------()A.{}0=∅B.{}{}1,22,1=C.{}∅=∅D.0N∉4.已知集合A={}23,21,1a a a---,若3-是集合A的一个元素,则a的取值是()A.0 B.-1 C.1 D.25.方程组3254x yx y=+⎧⎨+=⎩的解的集合是---------------------------------------()A.(){}1,1-B.(){}1,1-C.()(){},1,1x y-D.{}1,1-6.用列举法表示不等式组240121xx x+>⎧⎨+≥-⎩的整数解集合为:7.设21522x x ax⎧⎫∈--=⎨⎬⎩⎭,则集合2192x x x a⎧⎫--=⎨⎬⎩⎭中所有元素的和为:8、用列举法表示下列集合:⑴(){} ,3,,x y x y x N y N+=∈∈⑵{}3,,y x y x N y N +=∈∈9.已知A ={1,2,x 2-5x +9},B ={3,x 2+ax +a },如果A ={1,2,3},2 ∈B ,求实数a 的值. 10.设集合{},3A n n Z n =∈≤,集合{}21,B y y x x A ==-∈,集合,试用列举法分别写出集合A 、B 、C.1.1.2子集、全集、补集[自学目标]1.了解集合之间包含关系的意义.2.理解子集、真子集的概念.3.了解全集的意义,理解补集的概念. [知识要点](){}2,1,C x y y xx A==-∈么称集合A 为集合B 的子集(subset ),记作B A ⊆或A B ⊇,.B A ⊆还可以用Venn 图表示.我们规定:A ∅⊆.即空集是任何集合的子集. 根据子集的定义,容易得到:⑴任何一个集合是它本身的子集,即A A ⊆. ⑵子集具有传递性,即若B A ⊆且B C ⊆,则A C ⊆.2.真子集:如果B A ⊆且A B ≠,这时集合A 称为集合B 的真子集(proper subset ). 记作:A B⑴规定:空集是任何非空集合的真子集. ⑵如果AC ,那么A C3.B A ⊆与B A ⊆同时成立,那么,A B 中的元素是一样的,即A B =. 4.全集:如果集合S 包含有我们所要研究的各个集合,这时S 可以看作一个全集(Universal set ),全集通常记作U.5.补集:设A S ⊆,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集 (complementary set ), 记作:S A ð(读作A 在S 中的补集),即{,}.S A x x S x A =∈∉且ð补集的Venn 图表示:[预习自测]例1.判断以下关系是否正确: ⑴{}{}a a ⊆;⑵{}{}1,2,33,2,1=;⑶{}0∅⊆;⑷{}00∈;⑸{}0∅∈;⑹{}0∅=;例2.设{}13,A x x x Z =-<<∈,写出A 的所有子集.例 3.已知集合{},,2M a a d a d =++,{}2,,N a aq aq =,其中0a ≠且M N =,求q 和d 的值(用a 表示).例4.设全集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,求实数a 的值.例5.已知{}3A x x =<,{}B x x a =<. ⑴若B A ⊆,求a 的取值范围; ⑵若A B ⊆,求a 的取值范围; ⑶若R C A R C B ,求a 的取值范围.[课内练习]1. 下列关系中正确的个数为( )①0∈{0},②Φ{0},③{0,1}⊆{(0,1)},④{(a ,b )}={(b ,a )}A )1 (B )2 (C )3 (D )42.集合{}8,6,4,2的真子集的个数是( )(A )16 (B)15 (C)14 (D) 133.集合{}正方形=A ,{}矩形=B ,{}平行四边形=C ,{}梯形=D ,则下面包含关系中不正确的是( )(A )B A ⊆ (B) C B ⊆ (C) D C ⊆ (D) C A ⊆ 4.若集合 ,则_____=b .5.已知M={x| -2≤x ≤5}, N={x| a+1≤x ≤2a -1}.(Ⅰ)若M ⊆N ,求实数a 的取值范围; (Ⅱ)若M ⊇N ,求实数a 的取值范围.[归纳反思]1. 这节课我们学习了集合之间包含关系及补集的概念,重点理解子集、真子集,补集的概念,注意空集与全集的相关知识,学会数轴表示数集.2. 深刻理解用集合语言叙述的数学命题,并能准确地把它翻译成相关的代数语言或几何语言,抓住集合语言向文字语言或图形语言转化是打开解题大门的钥匙,解决集合问题时要注意充分运用数轴和韦恩图,发挥数形结合的思想方法的巨大威力。

[巩固提高]1.四个关系式:①∅}0{⊂;②0}0{∈;③}0{∈∅;④}0{=∅.其中表述正确的是[ ] A .①,②B .①,③C . ①,④D . ②,④2.若U={x ∣x 是三角形},P={ x ∣x 是直角三角形},则=P CU----------------------[ ]A .{x ∣x 是直角三角形}B .{x ∣x 是锐角三角形}C .{x ∣x 是钝角三角形}D .{x ∣x 是锐角三角形或钝角三角形}3.下列四个命题:①{}0∅=;②空集没有子集;③任何一个集合必有两个子集;④空集是任何一个集合的子集.其中正确的有---------------------------------------------------[ ] A.0个 B.1个 C.2个 D.3个 4.满足关系{}1,2A⊆{}1,2,3,4,5的集合A的个数是--------------------------[ ]A.5 B.6 C.7 D.8 5.若,x y R ∈,(){},A x y y x ==,(),1y B x y x ⎧⎫==⎨⎬⎩⎭,则,A B 的关系是---[ ]A.A B B.A B C.A =B D.A ⊆B6.设A={}5,x x x N ≤∈,B={x ∣1< x <6,x }N ∈,则=B CA7.U={x ∣},01582R x x x ∈=+-,则U 的所有子集是 8.已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,求实数a 的取值范围.9.已知集合P={x ∣},062R x x x ∈=-+,S={x ∣},01R x ax ∈=+, 若S ⊆P ,求实数a 的取值集合.10.已知M={x ∣x ,0>R x ∈},N={x ∣x ,a >R x ∈} (1)若M N ⊆,求a 得取值范围; (2)若M N ⊇,求a 得取值范围; (3)若M CRN CR,求a 得取值范围.交集、并集[自学目标]1.理解交集、并集的概念和意义 2.掌握了解区间的概念和表示方法 3.掌握有关集合的术语和符号 [知识要点]1.交集定义:A ∩B={x|x ∈A 且x ∈B}运算性质:(1)A ∩B ⊆A ,A ∩B ⊆B (2) A ∩A=A ,A ∩φ=φ (3) A ∩B= B ∩A (4) A ⊆ B ⇔ A ∩B=A 2.并集定义:A ∪B={x| x ∈A 或x ∈B }运算性质:(1) A ⊆ (A ∪B ),B ⊆ (A ∪B ) (2) A ∪A=A ,A ∪φ=A (3) A ∪B= B ∪A (4) A ⊆ B ⇔ A ∪B=B [预习自测]2.已知全集U={x|x取不大于30的质数},A、B是U的两个子集,且A∩C U B= {5,13,23},C U A∩B={11,19,29},C U A∩C U B={3,7},求A,B.3.设集合A={|a+1|,3,5},集合B={2a+1,a2+2a,a2+2a—1}当A∩B={2,3}时,求A∪B[课内练习]1.设A=(]3,1-,B=[)4,2,求A∩B2.设A=(]1,0,B={0},求A∪B3.在平面内,设A、B、O为定点,P为动点,则下列集合表示什么图形(1){P|PA=PB} (2) {P|PO=1}4.设A={(x,y)|y=—4x+b},B={(x,y)|y=5x—3 },求A∩B5.设A={x|x=2k+1,k ∈Z},B={x|x=2k —1,k ∈Z},C= {x|x=2k ,k ∈Z}, 求A ∩B ,A ∪C ,A ∪B[归纳反思]1.集合的交、并、补运算,可以借助数轴,还可以借助文氏图,它们都是数形结合思想的体现2.分类讨论是一种重要的数学思想法,明确分类讨论思想,掌握分类讨论思想方法。

相关文档
最新文档