2019编辑高中数学人教A版必修1全册导学案及答案).doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1.1集合的含义及其表示

[自学目标]

1.认识并理解集合的含义,知道常用数集及其记法;

2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈;

(2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉.

2.集合中元素的特性:确定性;无序性;互异性.

3.集合的表示方法:列举法;描述法;Venn 图.

4.集合的分类:有限集;无限集;空集.

5.常用数集及其记法:自然数集记作N ,正整数集记作*

N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]

例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;

(5)平面直角坐标系内,第一、三象限的平分线上的所有点.

分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.

例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )

A.直角三角形

B.锐角三角形

C.钝角三角形

D.等腰三角形

例3.设()()()

{}

2

2

,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的

值.

分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.

例4.已知{}2,,M a b =,{}

22,2,N a b =,且M N =,求实数,a b 的值.

[课内练习]

1.下列说法正确的是( )

(A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭

⎬⎫⎩⎨⎧∈=

=+N n n x x A ,1

是有限集 (D )方程0122

=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是

( )

A .}33|{=+x x

B .},,|),{(2

2

R y x x y y x ∈-= C .}0|{2

≤x x D .}01|{2

=+-x x x 3.方程组2

0{=+=-y x y x 的解构成的集合是

( )

A .)}1,1{(

B .}1,1{

C .(1,1)

D .}1{.

4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =

5.若}4,3,2,2{-=A ,},|{2

A t t x x

B ∈==,用列举法表示B= . [归纳反思]

的三个重要特性的正确使用;

2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。这是解决有关集合问题的一种重要方法;

3.确定的对象才能构成集合.可依据对象的特点或个数的多少来表示集合,如个数较少的有限集合可采用列举法,而其它的一般采用描述法.

4.要特别注意数学语言、符号的规范使用.

[巩固提高]

1.已知下列条件:①小于60的全体有理数;②某校高一年级的所有学生;③与2相差很小的

数;④方程2x=4的所有解。其中不可以表示集合的有--------------------()A.1个B.2个C.3个D.4个

2.下列关系中表述正确的是-----------------------------------------()

A.

{}

2

00

x

∈=

B.

()

{}

00,0

C.0∈∅ D.0N

3.下列表述中正确的是----------------------------------------------()

A.{}0=∅

B.

{}{}

1,22,1

=

C.

{}∅=∅

D.0N

4.已知集合A={}

2

3,21,1

a a a

---

,若3-是集合A的一个元素,则a的取值是()

A.0 B.-1 C.1 D.2

5.方程组

32

54

x y

x y

=+

+=

⎩的解的集合是---------------------------------------()

A.

()

{}

1,1-

B.

()

{}

1,1

-

C.

()()

{}

,1,1

x y-

D.

{}

1,1

-

6.用列举法表示不等式组

240

121

x

x x

+>

+≥-

⎩的整数解集合为:

7.设

2

15

22

x x ax

⎧⎫

∈--=

⎨⎬

⎩⎭,则集合

2

19

2

x x x a

⎧⎫

--=

⎨⎬

⎩⎭中所有元素的和为:

8、用列举法表示下列集合:

()

{} ,3,,

x y x y x N y N

+=∈∈

⑵{}

3,,

y x y x N y N +=∈∈

相关文档
最新文档