有理数乘方及混合运算(乘方)(人教版)
乘方(第1课时 乘方的概念及计算)课件(共34张PPT) 七年级数学上册(人教版2024)

还是负数?
解:(1)-7是底数;8是指数
(2)-10是底数,8是指数, − 是正数
课本练习
2.计算:
(1) −
;(2)
−
(7) −
(8)
;
解:(1)1;(2)-1
;
(3)512;(4)-125
解: 根据题意得,第1次截去后剩下的绳子长为128× 米,第2
次截去后剩下的绳子长为128×
去后剩下的绳子长为128×
米……依此类推,第7次截
=128×
=1(米).
分层练习-巩固
14. x 是有理数,下列各式中成立的是( C
)
A. (- x )2=- x2
B. (- x )3= x3
.
②已知(-3)3=-27,那么(-30)3= -27 000
(-0.3)3= -0.027
.
,
,
.
(2)观察上述计算结果,我们可以看出:
①当底数的小数点向左(右)每移动一位,平方数的小
数点向左(右)移动
两 位.
②当底数的小数点向左(右)每移动一位,立方数的小
数点向左(右)移动
三 位.
19. 【新视角·规律探究题】(1)比较下列各组中两个数的大小:(填“>”“=”
并让他自己提要求,发明者指着棋盘对国王说:“那就在棋盘的第一格中放入
一粒麦粒,第二格中放入二粒麦粒,第三格中放入四粒麦粒,第四格中放入八
粒麦粒……按这样的规律放满64格.”
国王反对说:“不、不、这么一点麦子算不上什么奖赏.”但发明者坚持如此.
人教版数学七年级上册 有理数的乘方及混合运算

有理数的乘方及混合运算(基础)【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power ). 即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数. 要点诠释:(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即 . 要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数.要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用.【典型例题】类型一、有理数乘方1. 把下列各式写成幂的形式:(1)22225555⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (2)(-3.7)×(-3.7)×(-3.7)×(-3.7)×5×5;(3)xxxxxxyy .2.计算:(1)3(4)-(2)(3)(4)(5)⎛⎫⎪⎝⎭335(6)335(7)22×3()(8)22×3举一反三:【变式1】计算:(1)(-4)4(2)23(3)225⎛⎫⎪⎝⎭(4)(-1.5)2【变式2】(2015•长沙模拟)比较(﹣4)3和﹣43,下列说法正确的是()A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.虽然它们底数不同,但运算结果相同类型二、乘方的符号法则3.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫⎪⎝⎭,-(-2)2010 34-4(3)-43-举一反三:【变式】计算:(-1)2009的结果是( ).A .-lB .1C .-2009D .2009类型三、有理数的混合运算4.计算: (1)()⎡⎤⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎣⎦211-1-0.5××2--33(2)()⎡⎤⎣⎦341-1-×2--36 (3)3201111(1+-2.75)×(-24)+(-1)--238(4)33211-+|-2-3|(-0.1)(-0.2)举一反三:【变式1】计算:4211(10.5)[2(3)]3---⨯---【变式2】计算:2421(2)(4)12⎛⎫-÷-⨯- ⎪⎝⎭5. 20032004(2)(2)-+-= ( )(A )2- (B )4007(2)- (C )20032 (D )20032-举一反三: 【变式】计算:7734()()43-⨯-【巩固练习】一、选择题1.(2015•郴州)计算(﹣3)2的结果是( )A .﹣6B . 6C . ﹣9D . 92.下列说法中,正确的是( )A .一个数的平方一定大于这个数;B .一个数的平方一定是正数;C .一个数的平方一定小于这个数;D .一个数的平方不可能是负数.3.下列各组数中,计算结果相等的是 ( ).A .-23与(-2)3B .-22与(-2)2C .22()5与225D .(2)--与2-- 4.式子345-的意义是 ( ) A. 4与5商的立方的相反数 B.4的立方与5的商的相反数 C.4的立方的相反数除5 D.45-的立方 5.计算(-1)2+(-1)3=( )A .-2B .- 1C .0D .26.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649…由此可判断7100的个位数字是( ) .A .7B .9C .3D .17.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第6次后剩下的绳子的长度为( ) .A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米二、填空题8.在(-2)4中,指数是________,底数是________,在-23中,指数是________,底数是________,在225中底数是________,指数是________. 9.(2015•湖州)计算:23×()2= . 10.()3--= ;52-= ;313⎛⎫-- ⎪⎝⎭= ;225= . 11. 3[(3)]_______---=,233(2)_______-⨯-=12.213____+= , 2135_____++=,21357_____+++= ,……,从而猜想:135+++……22005_____+=.13. 21(2)________3-=三、解答题14.(2014秋•渭城区校级期末)﹣23+(﹣3)2﹣32×(﹣2)2.15. 已知x 的倒数和绝对值都是它本身,y 、z 是有理数,并且2|3|(23)0y x z +++=,求32525x yz x y --+-的值.。
2.3.1乘方(第2课时混合运算)(课件)七年级数学上册(人教版2024)

解:(1)(-2)※4=(-2)4+(-2)×4-4=16-8-4=4; (2)(-1)※[(-5)※2] =(-1)※[(-5)2+(-5)×2-2] =(-1)※13 =(-1)13+(-1)×13-13=-27.
(2)原式=×(-2)-(3-9) =-18-(-6) =-18+6 =-12;
1.计算:
(1)(-1)3-3÷(-4)×1;
2
3
(2)(-3)2×(1-3)-(3-32);
(3)(-4)×[(-3)2+2]-(-3)3÷(-2).
(3)解:原式=(-4)×(9+2)-(-27)÷(-2) =(-4)×11-13.5 =-44-13.5 =-57.5.
例2 观察下列三行数:
-2, 4,-8, 16,-32, 64,…;
①
0, 6,-6, 18,-30, 66,…;
②
-1, 2,-4, 8,-16, 32,….
③
(1) 第①行数按什么规律排列? (1) -2,(-2)2,(-2)3,(-2)4,…
(2) 第②③行数与第①行数分别有什么关系?
(3) 取每行数的第10个数,计算这三个数的和?
解: (2) -2+2,(-2)2+2,(-2)3+2,(-2)4+2,… -2×12 ,(-2)2×12 ,(-2)3×12 ,(-2)4×12 ,…
例2 观察下列三行数:
-2, 4,-8, 16,-32, 64,…;
①
0, 6,-6, 18,-30, 66,…;
②
-1, 2,-4, 8,-16, 32,….
93
(4)(-4)3-22-|-1|×(-8)2;
七年级上册数学人教版教案《乘方》

1.5 有理数的乘方1.5.1 乘方第1课时乘方的概念及性质一、教学目标1.理解有理数乘方的意义.2.理解乘方、幂、底数等概念.3.有理数乘方的运算及幂的符号法则.二、教学重难点重点理解有理数乘方的意义,会进行有理数乘方的运算.难点有理数乘方的运算及幂的符号法则.重难点解读1.有理数的乘方,是求几个相同因数的积的运算,所以乘方是特殊的有理数的乘法运算,因而乘方结果的符号与有理数乘法中积的符号的确定方法是一样的.2.在乘方运算时,底数是负数或分数,要先用括号将底数括上,再在其右上角写上指数.负号在括号内,参与乘方的运算,负号在括号外,不参与乘方的运算,先保留,到最后再化简.3.有理数乘方的运算:(1)正数的任何次幂都是正数;(2)负数的偶次幂是正数,负数的奇次幂是负数;(3)0的任何正整数次幂都是0;(4)1的任何次幂都是1,-1的偶次幂是1,奇次幂是-1.三、教学过程活动1 旧知回顾1.回顾有理数的乘法法则.2.算式(-2.5)×0.37×1.25×(-4)×(-8)的值为.活动2 探究新知1.教材第41页内容.提出问题:(1)2个2相乘记作22,3个2相乘记作23,n 个2相乘记作多少?(2)引入负数后,4个-2相乘记作多少?-24和(-2)4一样吗?为什么?(3)求n 个相同因数的积的运算,叫做什么?它们的结果又叫做什么?(4)在a n 中,a 和n 分别叫做什么?2.教材第42页 思考.活动3 知识归纳1.一般地,n 个相同的因数a 相乘,即n a aa ⋅⋅个,记作 a n .在a n 中,a 叫做 底数 ,n 叫做 指数 .求n 个相同因数的积的运算,叫做 乘方 ,乘方的结果叫做 幂 .注意:乘方和幂的区别2.负数的奇次幂是 负 数,负数的偶次幂是 正 数;正数的任何次幂都是 正 数,0的任何正整数次幂都是 0 .活动4 典例赏析及练习例1 将下列各式写成乘方(即幂)的形式:(1)(-5)×(-5)×(-5)×(-5)×(-5)= (-5)5 ;(2)(-14)×(-14)×(-14)×(-14)= (14)4. 例2 (-3)4表示( B )A .-3个4相乘B .4个-3相乘C .3个4相乘D .4个3相乘例3 计算:(1)(-2)5;(2)(-0.4)4;(-75)3. 【答案】(-2)5=(-2)×(-2)×(-2)×(-2)×(-2)=-32.(2)(-0.4)4=(-0.4)×(-0.4)×(-0.4)×(-0.4)=0.025 6.(3)(-75)3=(-75)×(-75)×(-75)=-343125. 例4 用计算器计算下列各式:(1)(-11)5= -161 051 ;(2)(-9)6= 531 441 .练习:1.下列运算正确的是( B )A .-24=16B .-(-2)2=-4C .(-31)2=-91D .-(-21)2=-41 2.下列各组数:-52和(-5)2;(-3)3和-33;-(-2)3和-23;323和(32)3;02 022和 02 021;(-1)2n 和(-1)2 020,其中相等的有( B )A .2组B .3组C .4组D .5组3.35 cm 比较接近于( D )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高(2.26 m )D .一张纸的厚度活动5 课堂小结1.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.当把a n 看作a 的n 次方的结果时,也可读作“a 的n 次幂”.2.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0.四、作业布置与教学反思第2课时 有理数的混合运算一、教学目标1.确定有理数混合运算的顺序.2.熟练地进行有理数的混合运算.二、教学重难点重点有理数的混合运算顺序的确定和符号的处理.难点利用运算律进行有理数的混合运算.重难点解读1.进行有理数的混合运算,应注意运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.括号内的运算同样按上述运算顺序进行.算式中有带分数,一般把带分数化为假分数,算式中有小数的,把小数化为分数.2.在进行有理数的混合运算时,若能利用运算律,就利用运算律计算.三、教学过程活动1 旧知回顾1.回顾有理数的加减乘除混合运算的顺序和乘方的相关概念.2.计算:(1)|-512|÷(13-12)×(-111);(2)(-2)3,(-12)3,(-13)3. 活动2 探究新知 观察3+50÷22×(15)-1. 提出问题:(1)式子中有哪几种运算?(2)如何计算这个式子?它的运算顺序是什么?(3)计算过程中,可以运用运算律吗?活动3 知识归纳有理数的混合运算顺序:(1)先 乘方 ,再 乘除 ,最后 加减 ;(2)同级运算,从 左 到 右 进行;(3)如有括号,先做括号内的运算,按 小 括号、 中 括号、 大 括号依次进行.活动4 典例赏析及练习例1 (1)-14-61×[2-(-3)2];(2)(-3)2-(211)3×92-6÷|-32|. 【答案】解:(1)原式=-1-61×(2-9)=-1-61×(-7)=-1+67=61. (2)原式=9-827×92-6÷32=9-43-6×23=9-43-9=-43.例2观察下列等式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62.请你在观察后用你得出的规律填空:(1)48×52+4= 502;(2)n×(n+4)+4= (n+2)2(n为正整数).练习:1.下列计算中:①74-22÷70=70÷70=1;②2×32=(2×3)2=62=36;③-6÷(2×3)=-6÷2×3=-3×3=-9;④223-(-2)×(14-12)=49-(12-1)=49+12=1718.错误的有( D )A.1个B.2个C.3个D.4个2.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中第100个数是( A )A.9 999 B.10 000 C.10 001 D.10 002 3.x,y是有理数,且满足|x-1|=0,|y+3|=0,求x2-3xy+2y2的值.解:因为x,y是有理数,且满足|x-1|=0,|y+3|=0,所以x=1,y=-3.x2-3xy+2y2=12-3×1×(-3)+2×(-3)2=1+9+18=28.活动5 课堂小结1.有理数混合运算的顺序.2.有理数的混合运算.四、作业布置与教学反思。
2.3.1乘方第2课时有理数的混合运算课件 2024-2025学年人教版数学七年级上册

+
1 6
-8;
(2) 112×[3×(-23 )2 -1]- 14÷(-4)2 ;
(3)
(
5 8
-
2 3
)×24+
1 4
÷(-
12)3
+|-22|
;
(4)
|-
5 7
|×
(
4 5
-
1 3
)÷(-
23)2
–(
1 2
)2
;
(5) -23÷[214×(-113)2]×(-0.25)2 ;
(6)
|-1+
8 9
5 8
)
×16-0.25×(-5)×(-64)
= -10 -80
= -90
随堂检测
5.计算:
(4) {1+[14 -(-34 ) 3 ]×(-2) 4 } ÷ (-110 -34 -0.5)
解:原式=
{1+[14
+
27 64
]×16
}
÷
(0.1
-0.75-0.5)
={1+4643 ×16 } ÷ (-1.35)
|÷(
5 9
-
3 4
+
1 12
)-32×(-34)3
.
(5)原式= -8÷(49×196 )×116
=
-8×
1× 1
4 16
=
-
1 8
(6)原式=
1 9
÷(-
1 9
)-
32×(-
27 64
)
=
-1+
27 2
= 1212
典例解析
二、有理数的运算规律问题
例4 观察下面三行数: -2, 4, -8, 16, -32, 64,…;①
人教版七年级数学上册1.有理数的乘方——有理数的混合运算

总结
知1-讲
利用相反数、绝对值及倒数的概念求出字母单 个的取值及整体之间关系的取值,然后再求出式子 的值.
知1-练
1 计算:
(1)(-1)10×2+(-2)3÷4;
(2)
(-5)3-3×
1 2
4;
(3)
11 5
1 3
1 2
3 11
5 4
;
(4) (-10)4+[(-4)2-(3+32)×2].
为( B )
A.-4 B.4 C.12
D.-12
知识点 2 混合运算中的数字规律
例4 视察下面三行数:
知2-讲
-2 ,4,-8,16,-32,64,…;
0 ,6,-6,18,-30,66,…;
-1,2,-4,8,-16,32, ….
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
对照①③两行中位置对应的数,可以发现:
第③行数是第①行相应的数的0.5倍,即
-2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,…. (3)每行数中的第10个数的和是
Hale Waihona Puke (-2)10+[(-2)10+2]+(-2)10×0. 5 =1 024+(1 024+2)-1 024×0. 5
第一章 有理数
1.5 有理数的乘方
第2课时 有理数的乘方——有 理数的混合运算
1 课堂讲授 2 课时流程
有理数的混合运算 混合运算中的数字规律
逐点 导讲练
课堂 小结
作业 提升
回顾旧知
有理数的乘法法则 1)两数相乘同号得正,异号得负,并把绝对值相乘; 2)零与任何数相乘都得零. 有理数的除法法则 1)除以一个数就是乘以这个数的倒数; 2)两数相除同号得正,异号得负;并把绝对值相除; 3)零除以任何非零的数为零.
2.3.1 乘方(第2课时 有理数的混合运算)(课件)七年级数学上册(人教版2024)

解:原式
4 9
2 3
1 3
42 9
14 . 9
4 2 99
2. 9
×
有理数混合运算,首先要分清运
算顺序,确定每一步运算的符号
能力提升
2. 计算:(1) 14 (1 0 4) 1 [(2)2 6]
3
(2) 32 3 (1 2) 12 (1)2024
23
运算过程中要注意 运算顺序和符号
(3) 14 (1 0.5) 1 [2 (3)2 ]
3
(4) (1 7 ) 1 4
3 25 3 25
(5) (3)4 [2 (7)] 6 (1 1)
2
答案:(1)5;(2) -6;(3) 1 ;(4)2;(5)6. 6
感受中考
1.(2024•广西)计算:(-3)×4+(-2)2. 解:原式=-12+4 =-8.
(1)第①行中的数可以看成按什么规律排列? (2)第②③行中的数与第①行中的数分别有什么关系? (3)取每行中的第10个数,计算这三个数的和.
你还能提出哪些问题?
典例分析
-2, 4, -8, 16, -32, 64,…;①
-2, (-2)2, (-2)3, (-2)4, (-2)5, (-2)6…
1 2 22 23 24 1;
…… …
猜想: (1) 1 2 22 23 263
.
(2)若n是正整数,那么
1 2 22 2n
.
当堂巩固
1.
计算
3
2
1 3
1 2
的结果是(
B
)
A.5
6
B.2 2
3
C.4 2
3
D.1 2
3
〖数学〗乘方第2课时有理数的混合运算课件 2024—-2025学年人教版数学七年级上册

=0
(2)(5)3 3 ( 1 )4 2
解:原式
=
125
3
1 16
= 125 3 16
= 125 3 16
(3) ( )
解:原式 =
-
4
-
36
()
= - 4 - 36 1 36
= -4-1
= -5
新知探究 知识点 2 有理数的规律探究
探究2 观察下面三行数: -2, 4, -8, 16, -32, 64,…;① 0, 6, -6, 18, -30, 66,…;② -1, 2, -4, 8, -16, 32,…. ③
(1)第①行中的数可以看成按什么规律排列? 分析:观察①,发现各数均为2的倍数.联系数的乘方, 从符号和绝对值两方面考虑,可发现排列的规律.
解:(1)第①行中的数可以看成按如下规律排列:
新知探究
(2)第②③行中的数与第①行中的数分别有什么关系?
解:对比第①②两行中位置对应的数,可以发现:第
②行中的数是第①行中相应的数加2,即 −2 + 2, −2 2 + 2, −2 3 + 2, −2 4 + 2, ⋯ ; 对比第①③两行中位置对应的数,可以发现:第③行 中的数是第①行中相应数的1,即
第二章 有理数的运算
2.3 有理数的乘方
2.3.1 乘 方
第2课时 有理数的混合运算
人教版-数学-七年级上册
学习目标
1.进一步掌握有理数的运算法则和运算律. 2.熟练地按有理数运算顺序进行混和运算.【重 点、难点】
新课导入
小意思, 我会算!
圆形花坛的半径为3m, 中间雕塑的底面是边
长为1m的正方形.
新知探究
人教版七年级数学上《有理数的乘方》知识全解

《有理数的乘方》知识全解【课标要求】理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).能运用有理数的运算解决简单的问题.【知识结构】有理数乘方的意义及相关概念有理数乘方的符号法则有理数的混合运算【内容解析】1.有理数乘方的意义:求n个相同因数的积的运算,叫做乘方.2.底数、指数、幂:在a n中,a叫做底数,n叫做指数,a n的结果叫幂.3.a n的读法:a n读作“a的n次方”或“a的n次幂”.4.有理数乘方的书写:底数与同行中其它数字一样大小,指数写在底数的右上角,写小些.负数、分数做底数时,负数、分数要带括号.5.有理数乘方的符号法则:负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.注意:1的任何次幂都是1,(–1)的奇数次幂等于–1,(–1)的偶数次幂等于1.6.用计算器计算乘方时,指数的转换键是“∧”.7.有理数混合运算的运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减是第一级运算,乘除是第二级运算,乘方与开方是第三级运算,运算时,先算高级运算,再算低一级的运算.【重点难点】有理数乘方的意义及运算是本节课的教学重点,本小节的另一个重点是依据运算法则和运算顺序进行有理数的混合运算,教师要精选适量的练习以提升学生的运算能力.有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点.可以实施通过补充一些计算问题和提高题,帮助学生突破难点.【教法导引】1.教师教学应该以学生的认知发展水平和已有的经验为基础,根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念,力求“自主探索、动手实践、合作交流”成为学生学习的主要方式.在小学已学的正方形面积,正方体体积的基础上进一步探究棋盘、拉面、细胞分裂等实际问题,在师生的互动中生成对乘方的理解.2.在引入例1之前,创设与例题有关的问题,让学生讨论交流,教师鼓励学生积极发言,为学生提供表现的机会,使学生在这个环节中弄清底数与指数之间的相互关系,认识到“a n等于多少的问题”是可以通过转化为乘法运算来实现的,从中体会转化的思想,为引入例题的学习做好铺垫.3.教师要预设学生的易错点,应强调指出.如–32与(–3)2的区别;底数为负数或分数时的书写要明了;“–1”的幂的特征可以进行归纳;及时纠正学生在运算顺序上的错误等.4.课程标准强调“学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程”.教师在进行本节教学时,要放手学生自己去领悟、归纳、熟练.教师放手学生操作,把课堂还给学生,如在寻找“–2,4,–8,16,–32…的规律是千万让学生自主探索.【学法建议】1.“自主探索、动手实践、合作交流”为学生学习的主要方式.2.要认真观察,仔细比较,善于发现,正确归纳.像–42与(–4)2的区别要细细领悟.3.多动手计算,不能盲目依赖计算器.4.正确理解概念.乘方是一种运算,幂是乘方的结果,底数是相乘时的因数,指数是相乘时因数的个数,指数是1就是指只有一个因数,所以一个数可以看作这个数本身的一次方.5.练习时,要紧扣运算顺序与意义、法则,出现负号时千万多加小心.在进行混合运算时,可以采取多种方法来检验自己的运算结果的正确性.对于比较复杂的运算,先笔算,再用计算器进行验证.。
人教版七年级上册数学第一章1.5.1乘方

1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方【知识与技能】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【过程与方法】1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.【情感态度】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.【教学重点】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【教学难点】准确建立底数、指数和幂三个概念,并能求幂的运算.一、情境导入,初步认识提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,……,5小时后要分裂10次,分裂成1024个.为了简便可将记作210.二、思考探究,获取新知一般地,n个相同的因数a相乘,即a·a·……·a,记作a n,读作a的n 次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.【教学说明】(1)举例56说明概念及读法;(2)一个数可以看作这个数本身的一次方,通常省略指数1不写;(3)因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;(4)乘方是一种运算,幂是乘方运算的结果.试一试(1)(-4)3;(2)(-2)4;(3)-24.【教学说明】教师教学时应强调:(1)计算时仍然是要先确定符号,再确定绝对值;(2)注意(-2)4与-24的区别.【归纳结论】根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何次幂都是0.三、典例精析,掌握新知例1 计算:【教学说明】注意观察,分清符号、底数以及指数.试一试教材第42~43页练习第1、2题.例2用计算器计算.(-8)5和(-3)6(教材第42页例2)【教学说明】教师让学生用计算器计算上面的题,注意让学生知道算乘方时的按键为∧.试一试教材第42~43页练习第3题.四、运用新知,深化理解1.在(-2)6中,指数为______,底数为______.2.在-26中,指数为______,底数为_______.3.若a 2=16,则a=______.4.平方等于本身的数为______,立方等于本身的数为______.5.计算(-151)×461=________. 6.在(-2)5,(-3)5,(-21)5,(-31)5中,最大的数是_______. 7.下列说法正确的是( )A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数8.下列运算正确的是( )A.-24=16B.-(-2)+=-4C. (-31)2=-91D.(- 21)2=-41 9.下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.丨-23丨与丨-23丨10.下列各式计算不正确的是( )A.(-1)2013=-1B.-12012=1C.(-1)2n =1(n 为正整数)D.(-1)2n+1=-1(n 为正整数)【教学说明】以上题目均较简单,可由学生独立完成后再由教师评讲,边评讲边点学生口答.【答案】1.6 -22.6 23.±44.1、0 -1、0、15.-56.(-31) 5 7.D8.B9.A10.B五、师生互动,课堂小结1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:首先,有理数的乘方就是几个相同因数的积的运算,可以运用有理数乘法法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.乘方的读法:①当a n 表示运算时,读作a 的n 次方;②当a n 表示运算结果时,读作a 的n 次幂.乘方的符号法则:①正数的任何次幂都是正数;②零的任何次幂都是零;③负数的偶次幂是正数,奇次幂是负数.注意(-a )n 与-a n 及(a b )n 与a nb 的区别和联系.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.3.选做题.本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.第2课时 有理数的混合运算【知识与技能】了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.【过程与方法】能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【情感态度】培养学生对数的感觉,提高学生正确运算的能力,培养学生思维的逻辑性和灵活性,进一步发展学生的思维能力.【教学重点】有理数的混合运算顺序是确定的.【教学难点】根据有理数的混合运算顺序,正确地进行有理数的混合运算.一、情境导入,初步认识计算:3-(-2)3×6.这个式子先算什么,后算什么?【教学说明】教师引导学生做这道题,让学生说一说运算顺序,接着师生共同归纳出下面的结论.【归纳结论】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.二、典例精析,掌握新知例1计算下列各题:【分析】按照有理数混合运算的顺序——先算括号,再乘方,然后算乘除,最后算加减进行计算,每步计算先确定符号再计算结果.【教学说明】有理数的计算要遵循先观察,后计算,先确定符号,再计算结果的原则;观察时,先看每个算式可以用括号和“+、-”号分成几个部分(如第(1)题可分为三部分,第(2)题可分为两部分),再看每个部分能否进行简算(如\[21×317-713×722÷312\]2及(0.12510×89)均可进行简算),乘除法中带分数一般化为假分数进行计算.完成此例题后,教师让学生自行阅读教材第43~44页例3、例4.试一试教材第44页练习.例2观察下面三行数:1,4,9,16,25,…;①0,3,8,15,24,…;②4,7,12,19,28,…;③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第12个,计算这三个数的和.分析通过比较可以发现,第②③行数据都是在①的基础上进行加减后得到的,所以根据这个思路很容易知道怎么解题.解:(1)第①行数是12,22,32,42,52,….(2)对比①②两行中的数据,可以发现:第②行数是第①行相应数减1,即12-1,22-1,32-1,42-1,52-1,….对比①③两行中的数据,可以发现,第③行数是第①行相应数加3,即12+3,22+3,32+3,42+3,52+3,….(3)每行第12个数是122,122-1,122+3,其和是122+122-1+122+3=434.【教学说明】这道例题与课本上的例题比较类似,教师可事先让学生学习教材例4后再解这道题.例3已知y=ax5+bx3+cx-5,当x=-3时,y=7;求x=3的y的值.解:当x=-3时,y=a·(-3)5+b·(-3)3+c·(-3)-5=-35a-33b-3c-5=7,∴35a+33b+3c=-12那么,当x=3时,y=35a+33b+3c-5=-12-5=-17【教学说明】本题重在让学生体会整体思想的运用.三、运用新知,深化理解1.计算下列各题.2.根据下表,探索规律:根据规律写出37与320的个位数字.【教学说明】第1题中的几道题都是有关混合运算的题,教师先让学生思考,再让学生在黑板上解答,然后全体学生共同订正,总结规律与注意事项.第2题为探索题,教师可与学生共同探索,提示学生注意看个位数字的变化规律.2.解:由表格知,3n中,当n是连续自然数变化时,幂3n的个位数字是3,9,7,1,3,9,7,1,…周期变化,且四个数为一个周期,易知37的个位数字为7,20 ÷4=5,则320的个位数字与第四个数的个位数字相同,即320的个位数字与34的个位数字相同,为1.四、师生互动,课堂小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算;2.在运算中要注意像-72与(-7)2等这类式子的区别.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.本课时教学重在培养学生计算能力,要求学生先通过交流,正确归纳出有理数混合运算顺序,再在实际解题过程中寻找规律,发现问题,学生间互相辨析指正.教师在指导过程中,强调学生对易错点特别警醒,解题时仔细分析问题结构特征,合理选择步骤和运算律.。
七年级上册第二章有理数的运算2-3有理数的乘方第1课时乘方新版新人教版

题 型 5 利用乘方的意义进行循环规律探究
例 10 探索规律:31=3,个位数字是3;32=9,个位数字是 9;33=27,个位数字是7;34=81,个位数字是1;35 =243,个位数字是3;36=729,个位数字是9;则37 的个位数字是________,32024的个位数字是________.
思路引导 解:因为|x+1|+(y-12)2=0,|x+1|≥0,(y-12)2≥0,所 以x+1=0,y-12=0,解得x=-1,y=12.当输入x=-1, y=12时,输出的值为[(-1)2+(2×12+1)]÷2=[1+2]÷2= 32,故输出的结果为32.
技巧点拨 任何数的偶次幂都是非负数,即a2n≥0(n为正整数);
加与减是第一级运算; ••• 乘与除是第二级运算; ••• 乘• 方• 与• 开• 方• 是第三级运算.
知3-讲
2. 有理数混合运算的顺序 (1)先算高级运算,再算低级运算,即:先乘方,再乘除,
最后加减; (2)同级运算,按从左到右的顺序进行; (3)若有括号,先做括号内的运算,一般按小括号、中括号、
思路引导
解:由题意可知,对于3的正整数幂,个位数字只出现3, 9,7,1,且按这一顺序每4个一循环,因此,求37,32024的 个位数字是多少,关键看共有几个循环,余数是几. 因为 7÷4=1……3,所以37的个位数字是7. 因为2 024÷4=506 ,所以32024的个位数字是1.
答案:7;1
思路点拨 关于循环规律的探究,先根据特殊数探究出循环的规
律,关键是看清几个一循环,然后利用余数与循环规律 相比较,找出对应的结果.
易 错 点 不理解乘方中底数的括号意义而出错
新人教版七年级数学(上)——有理数的乘方

第一部分:知识精讲知识点一、乘方的有关概念(1)求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂.a 叫底数,n 叫指数,a n 读作:a 的n 次幂(a 的n 次方).(2)乘方的意义:a n 表示________.n an a a a a a =⨯⨯⨯⨯个(3)写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了. 如:(32-)2=(32-)×(32-),表示两个32-相乘. 而322-=322⨯-,表示2个2相乘的积除以3的相反数.2.知识点二、a n 与-a n 的区别.(1)a n 表示___________,底数是 ,指数是 ,读作:___________. (2)-a n 表示___________,底数是 ,指数是 ,读作:___________. 如:(-2)3底数是 ,指数是 ,读作___________,表示___________.有理数的乘方(-2)3=(-2)×(-2)×(-2)=.-23底数是,指数是,读作___________.-23=-(2×2×2)=.注:(-2)3与-23的结果虽然都是-8,但表示的含义并不同.知识点三、乘方运算的符号规律.(1)正数的任何次幂都是数.(2)负数的奇次幂是数.(3)负数的偶次幂是数.(4)0的奇数次幂,偶次幂都是.所以,任何数的偶次幂都是或.知识点四、有理数混合运算法则①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.注意:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
第二部分:例题精讲例1.计算:(1) ()32-; (2) ()42-; (3) ()52-例2.把下列各式写成乘方运算的形式,并指出底数,指数各是多少? ①(-2.3)×(-2.3)×(-2.3)×(-2.3) ②(-14)×(-14)×(-14)×(-14)③ x ·x ·x ·……·x(1999个)④(-6)×(-6)×(-6)⑤ 23 ×23 ×23 ×23例3、把5)21( 写成几个相同因数相乘的形式。
人教版七年级上册数学《乘方》有理数研讨说课复习课件

新知探究 知识点1 有理数的乘方的意义
某种细胞每30分钟便由一个分裂成两个. 经过3小时这 种细胞由1个能分裂成多少个?
分裂方式为:
第一次 第二次
第三次
这个细胞分裂一次可得多少个细胞? 分裂两次呢? 分裂三次呢?四次呢? 那么,3小时共分裂了多少次?有多少个细胞? 解:一次: 2个;
两次: 2×2个; 三次: 2×2×2个;
胞分裂六次后的个数式子: 2×2×2×2×2×2. 这两个式子有什么相同点? 它们都是乘法,并且它们各自的因数都相同.
【想一想】这样的运算能像平方、立方那样简写吗?
探究新知
一般地,n个相同的因数a相乘,记作an,读作“a的 n次幂(或a的n次方)”,即
a·a·a·…·a = an n个
例如:2×2×2×2 记作 24 读作2的4次方(幂). 2×2×2×2×2×2 记作 26 读作2的6次方(幂).
例如:2×2×2×2,记作24,读作 2 的 4 次方(幂). 2×2×2×2×2×2,记作26,读作 2 的 6 次方(幂).
这种求 n 个相同因数的积的运算叫做乘方,乘方的结 果叫做幂. 在an中,a叫做底数,n叫做指数.
幂
a n 指数 因数的个数
底数 因数
注意:1.一个数可以看作这个数本身的一次方, 例如,5就是51,指数 1 通常省略不写. 2.指数是 2 时读作平方(或二次方),指数是 3 时读作立方 (或三次方).例如,n2 读作“n 的平方”(或“n 的二次方”), n3 读作“n的立方”(或“n的三次方”).
乘,读作__–_5__的2次方,也读作–5的_平__方__.
2.
1 2
6
表示
6
个 1 相乘,读作1 的
人教版七年级数学上册1.乘方——有理数的乘方运算

计算器显示的结果为-410 338 673. (4)按键顺序为 2 3 × 6 ÷ 5 = ,
计算器显示的结果为27.6.
总结
知3-讲
用计算器计算时,要弄清计算器的每个按键 的作用,结合有理数运算的顺序,进行计算.
A.1
B.-1
C.2 016
D.-2 016
知2-练
4 下列等式成立的是( B )
A.(-3)2=-32
B.-23=(-2)3
C.23=(-2)3
D.32=-32
5 计算: (1)(-4)3;
(2) (-2)4;
(3) (- 2 )3.
3
(1)-64;(2)16;(3) 8 .
27
知识点 3 利用计算器计算有理数的乘方
第一章 有理数
1.5 有理数的乘方
第1课时 乘方——有理数 的乘方运算
1 课堂讲授 有理数的乘方的意义
有理数的乘方运算
利用计算器计算有理数的乘方
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 1.如图,边长为a厘米的正方形的面积为_a_×__a_平方厘米. 2.如图,一正方体的棱长为a厘米, 则它的体积 为
(1)-(-3)3;
(2)
3 42 ;(3)源自2 33 ;
(4)
1
2 3
2
.
解:(1)-(-3)3=-(-33)=33=3×3×3=27.
(2)
3 4
2
3 4
3 4
9 16
.
(3)
2 3
3
2 3
七年级上册数学第一章1.5有理数的乘方(人教版)

七年级上册数学第一章1.5有理数的乘方(人教版)1.5 有理数的乘方1.5.1 乘方第1课时乘方1.理解有理数乘方的意义.2.理解乘方运算、幂、底数等概念的意义.3.正确进行有理数乘方运算.阅读教材P41~42,思考下列问题.1.某种细胞每过30分钟便由1个分裂成2个,经过5小时后,这种细胞1个能分裂成多少个?(1)细胞每30分钟分裂一次,则5个小时共分裂10次;(2)5个小时后,细胞的个数一共有2×2×2×…×2,sd4(( 10 )个2))=1__024个,为了简便,可以记作210个.2.(1)边长为a的正方形的面积为:a2;(2)棱长为a的正方体的体积为:a3;(3)把一张纸对折1次可裁成两张,对折2次可裁成4张,问对折3次可裁成几张?用算式如何表示?如果对折10次、100次,用算式如何表示?知识探究1.求n个相同因数a的积的运算叫乘方,乘方的结果叫幂,a叫底数,n叫指数.乘方an有双重含义:(1)表示一种运算,这时读作“a的n次方”;(2)表示乘方运算的结果,这时读作“a的n次幂”.2.正数的任何次幂都是正数,0的任何正整数次幂都是0;负数的奇次幂是负数,偶次幂是正数.自学反馈1.在(-2)6中,底数是-2,指数是6,运算结果是64;在-26中,底数是2,指数是6,运算结果是-64.2.底数是-12,指数是3的幂是__-18.3.(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.在书写乘方时,若底数为负数或分数时,一定要加括号.活动1 小组讨论例1 计算:(1)(-4)3;(2)(-2)4;(3)(-23)3.解:(1)(-4)3=(-4)×(-4)×(-4)=-64.(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16.(3)(-23)3=(-23)×(-23)×(-23)=-827.例2 用计算器计算(-8)5和(-3)6.解:用带符号键(—)的计算器.((—)8)∧5=显示:(-8)∧5-32768.((—)3)∧6=显示:(-3)∧6729.所以(-8)5=-32 768,(-3)6=729.活动2 跟踪训练1.(-12)4表示的意义是4个-12相乘,23×23×23×23可写成(23)4.2.计算:(-25)3=-8125;3×23=24;(3×2)3=216;(-3) 3×(-42)=432;(-324)2-324=4516.3.计算(-2)3,(-3)3,(-12)3,(-13)3,并找出其中最大的数和最小的数.解:(-2)3=-8,(-3)3=-27,(-12)3=-18,(-13)3=-127.其中最大的数为-127,最小的数为-27.4.平方得64的数是±8;立方得64的数是4.5.若a满足(2 006-a)2 008=1,则a=2__005或2__007.活动3 课堂小结1.乘方.2.乘方的计算:3.乘方的性质.第2课时有理数的混合运算1.能确定有理数加、减、乘、除、乘方混合运算的顺序.2.会进行有理数的混合运算.阅读教材P43~44,思考并回答下列问题.讨论:2×(-3)3-4÷(-13)+15中有哪几种运算?可以分几类?试着计算出结果.知识探究有理数混合运算的顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.自学反馈1.下列运算结果是正数的是(B)A.1+(-2)3 B.-22×(1-22).(-2)3÷(-3)2 D.-32-(-2)22.计算13×(-3)÷(-13)×3等于(B)A.1 B.9 .-3 D.273.计算(-1)2 016+(-1)2 017-(-1)2 018+02 019等于(B)A.0 B.-1 .1 D.2(1)(-1)10×2+(-2)3÷4;(2)(-5)3-3×(-12)4.解:(1)0. (2)-125316.活动1 小组讨论例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).解:(1)-27.(2)-5712.例2 探究规律.观察下面三行数:-2,4,16,-8,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.解:略.提示学生从乘方出发,在符号和绝对值两个方面研究,同时注意引导学生探究规律时要依次递进,在递进中总结规律,激励学生拿起笔大胆计算.活动2 跟踪训练(1)-0.752÷(-112)3+(-1)12×(12-13)2;(2)[(-3)2-(-5)2]÷(-2);(3)-10+8÷(-2)2-3×(-4)-15.解:(1)736.(2)8.(3)3.2.观察下列各式:1=21-1,1+2=22-1,1+2+22=23-1,….猜想:(1)1+2+22+23+…+263=264-1;(2)若n是正整数,则1+2+ 22+23+…+2n=2n+1-1.活动3 课堂小结1.运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.2.探究规律.1.5.2 科学记数法1.认识比较大的数据.2.掌握科学记数法的写法.3.能用科学记数法表示比较大的数据.阅读教材P44~45,思考如何表示一些比较大的数.知识探究把一个大于10的数用科学记数法可以表示为a×10n的形式(其中a是大于或等于1且小于10的数,即1≤a<10;n等于原整数的位数减去1).自学反馈用科学记数法表示下列各数:(1)1 000 000=1×106;(2)57 000 000=5.7×107;(3)-123 000 000 000=-1.23×1011;在上面的计算中,等号左边整数的位数与右边10的指数有什么关系?用科学记数法表示一个n位整数,其中10的指数是n -1.活动1 小组讨论例用科学记数法表示下列各数:(1)中国森林面积有128 630 000公顷;(2)2008年临沂市总人口达1 022.7万人;(3)地球到太阳的距离大约是150 000 000千米;(4)光年是天学中的距离单位,1光年大约是950 000 000 000千米;(5)2008年北京奥运会门票预算收入为140 000 000美元;(6)一只苍蝇腹内的细菌多达2 800万个.(在使用科学记数法时要注意单位的转换,如1万=104,1亿=108)解:(1)1.286 3×108.(2)1.022 7×103万.(3)1.5×108.(4)9.5×1011.(5)1.4×108.(6)2.8×103万.活动2 跟踪训练1.将0.36×45×105的计算结果用科学记数法表示,正确的是(B)A.16.2×105 B.1.62×106.16.2×106 D.16.2×100 0002.1纳米相当于1根头发丝直径的六万分之一,用科学记数法表示头发丝的半径是(D)A.6×103纳米 B.6×104纳米.3×103纳米 D.3×104纳米3.若-59 600 000用科学记数法表示为a×10n,则a =-5.96,n=7.4.用科学记数法表示下列各数:(1)700 900;(2)-50 090 000;(3)人体中约有25 000 000 000 000个细胞;(4)地球离太阳约有一亿五千万米;(5)在1∶50 000 000的地图上量得两地的距离是1.3厘米,则两地的实际距离为多少米?解:(1)7.009×105.(2)-5.009×107.(3)2.5×1013.(4)1.5×108.(5)6.5×105.活动3 课堂小结1.现实生活中的大数据.2.科学记数法:1.了解近似数的概念.2.能按要求取近似数.3.体会近似数的意义及在生活中的作用.阅读教材P45~46,思考下列问题.什么样的数是近似数?近似数与准确数有哪些区别?分别试举出几个例子.知识探究近似数与准确数的接近程度可以用精确度表示.一般地,一个近似数,四舍五入到某一位,就说这个近似数精确到哪一位.自学反馈下列由四舍五入得到的近似数,各精确到哪一位?(1)0.025;(2)0.404 0;(3)1.8;(4)1.80;(5)103万; (6)1.60×104; (7)10亿; (8)10.解:(1)千分位.(2)万分位. (3)十分位.(4)百分位. (5)万位.(6)百位. (7)亿位.(8)个位.精确度的一般表示形式是精确到哪一位.活动1 小组讨论例按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01).解:(1)0.015 8≈0.016.(2)304.35≈304.(3)1.804≈1.8.(4)1.804≈1.80.活动2 跟踪训练1.1.90精确到百分位.2.用四舍五入法对60 340取近似值(精确到千位):60 340≈6.0×104.3.近似数6.00×103精确到十位.4.0.020 76保留四位小数约为0.020__8.5.对3.04×104精确到千位约是3.0×104.6.圆周率π=3.141 592…,精确到百分位是3.14.活动3 课堂小结精品文档1.准确数与近似数.2.按要求取近似值.11/ 11。
1.5.1 乘方(第2课时有理数的混合运算2023-2024学年七年级数学上册同步备课系列(人教版)

月份 用水量/立方米 水费/元
4
16
33.60
5
25
65.00
(1)请你算一算,这个地区水费的“调节价”为每立方米多少钱? (2)若该用户6月用水量为30立方米,请你算一算,他6月的水费是多 少元?
【详解】(1)“基本价”:33.6÷16=2.1(元) “调节价”:[65-(20×2.1)]÷(25-20)=4.6(元) (2)20×2.1+(30-20)×4.6=88(元)
【详解】解∶根据题意得:4个队一共要比场4×(42−1) = 6比赛,每个 队都要进行3场比赛,∵各队的总得分恰好是四个连续奇数,甲、乙、丙、 丁四队的得分情况只能是7,5,3,1 所以,甲队胜2场,平1场,负0场. 乙队胜1场,平2场,负0场. 丙队胜1场,平0场,负2场. 丁队胜0场,平1场,负2场. 战胜丁的球队是甲和丙, 故选D.
在这些数中加上适当的运算符号就能得到100.
1+1+3×4+5×6+7×8+100
问题1 小学的四则混合运算的顺序是怎样的? 先乘除,后加减,同级运算从左至右,有括号先算括号内,再算括号 外,括号计算顺序:先小括号,再中括号,最后大括号.
问题2 我们目前都学习了哪些运算? 加法、减法、乘法、除法、乘方. 一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有 理数的混合运算.
练一练
1.如图是一个运算程序:若第一次输入a的值为8,则2022次輸出的结 果是 . 【详解】解:由题意得:当第一次输入a的值为8时, 则第二次输出的结果为4; ∴第三次输出的结果为2, 第四次输出的结果为1, 第五次输出的结果为4, 第六次输出的结果为2, 第七次输出的结果为1,…..; ∴从第二次开始,按照4、2、1循环输出结果, ∴(2022-1)÷=673······2, ∴第2022次输出的结果为2.故答案为:2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数乘方及混合运算(乘方)(人教版)
有理数乘方及混合运算(乘方)(人教版)
一、单选题(共16道,每道6分)
1.213000 000用科学记数法可表示为( )
A. B.
C. D.
2.某年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )
A. B.
C. D.
3.我国是缺水国家,目前可利用淡水资源总量仅约为,则所表示的原数是( )
A.8990
B.899000
C.89900
D.8990 000
4.表示( )
A.-3与4的积
B.4个-3的积
C.4个-3的和
D.3个-4的积
5.表示( )
A.5个-3的积的相反数
B.5个3的积
C.5个-3的和的相反数
D.5与-3的积的相反数
6.计算:=______;=______.( )
A.-25;49
B.10;14
C.-10;-14
D.25;-49
7.计算:=______;=______.( )
A. B.
C. D.
8.下列各数中,互为相反数的一对是( )
A. B.
C. D.
9.计算的结果为( )
A. B.
C. D.
10.计算的结果为( )
A.2
B.0
C.32
D.24
11.计算的结果为( )
A.27
B.-25
C.-29
D.
12.计算的结果为( )
A. B.
C. D.
13.计算的结果为( )
A.2
B.
C. D.
14.计算的结果为( )
A.-72
B.18
C.24
D.72
15.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记水位比前一日下降数).则本周星期( )水位最低.
A.二
B.三
C.五
D.六
16.某市客运管理部门对“十一”国庆假期七天客流变化量进行了不完全统计,数据如下(用正数表示客流量比前一天上升数,用负数表示比前一天下降数):
则七天内游客人数最多的是( )日.
A.1
B.5
C.6
D.7。