线性代数总复习及典型例题 (优选.)
线性代数基本复习题
![线性代数基本复习题](https://img.taocdn.com/s3/m/8d28b7d249649b6648d747aa.png)
1.1计算行列式 行列式的求法法一利用定义展开计算:1122111nnni i i i ni ni i i i A a A a A a A =======∑∑∑法二化为三角型行列式:11221122***0**0*0nn nnb b A b b b b ==2323342141344324241332131020102010201020143604560609010330253025301030150311015001523102001033311(5)(3)450053003r r r r r r r r r r r r r r r r r r ↔+↔+-----===+-----=+=⋅⋅⋅-⋅-=---1.2求逆矩阵 逆矩阵的求法法一行变换:()()1A I I A -−−−→ 行变换 法二行列式的方法:*1A A A-=利用初等行变换求下列矩阵的逆矩阵: (1)122212221⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦32322121232313213219221210203312210012210021212010036210012033221001033011009221122100999212010999221001999r r r r r r r r r r r r r r ------+⎡⎤--⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-→---→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦-⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦1122999122212,212999221221999-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥∴-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎢⎥⎣⎦利用行列式的方法求下列矩阵的逆矩阵:*1A A A-=(1)套用公式()10ab d b ad bc cd c a ad bc -⎡⎤⎡⎤=-≠⎢⎥⎢⎥--⎣⎦⎣⎦, 得12525212521211522--⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--⋅-⋅⎣⎦⎣⎦⎣⎦.(2)套用上述公式, 得22cos sin cos sin cos sin 1sin cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦1.3利用逆矩阵定义证明 逆矩阵的定义1,AB BA I AB-==⇒=1.6设方阵A 满足矩阵方程220I --=AA , 证明A 及2I +A 都可逆, 并求1-A 及()12I -+A .由220I --=A A 得()12I I -=A A , 故A 可逆, 且()112I -=-AA . 由220I --=A A 也可得(2)(3)I I I+-=-A A 或1(2)(3)4I I I⎡⎤+--=⎢⎥⎣⎦A A , 故2I+A 可逆, 且()12I -+A 1(3)4I =--A . 1.4行列式与逆矩阵的关系 行列式,逆矩阵的关系**AA A A A I==*1*1A A A A AA--=⇔=*111,n A A A A--==1.21设3阶方阵A 的转置伴随矩阵为adj A 且1det 2=A , 求()1det 32(adj )A A -⎡⎤-⎣⎦.()()()()1*11*1*11133111111323232321222116323212333272A A A A I A A A I A E A A IAA A A --------------=-=-=-⎛⎫⎛⎫⎛⎫⎛⎫=-=-⋅⋅=-=-=-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 或 ()321****1243222...333A A A A A A A -⎛⎫⎛⎫-=-=-=-= ⎪ ⎪⎝⎭⎝⎭1.5矩阵的运算和运算律 矩阵的运算包括1*,,,,,,T B kA AB A A A A -+A注意特殊的运算律()()111TT Tn AB B A AB B A AB A B kA k A---====以下运算率不成立:00AB BAAB A ==⇒=或B=0所以,下面的公式也不成立:()()222222222()()AB A B A B A AB B A B A B A B =+=++-=+-(2)[]123321⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=35649⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,(3)213⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦[]12-=241236-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦1.4讨论下列命题是否正确: (1)若2=A , 则0=A ; (2)若2=AA, 则0=A 或=A E ;(3)若=AB AC 且0≠A , 则=B C .(1)不对. 反例:01000000⎛⎫⎛⎫=≠⎪ ⎪⎝⎭⎝⎭A ,但20000⎛⎫= ⎪⎝⎭A.(2)不对. 反例: 设1000⎛⎫= ⎪⎝⎭A , 则0≠A 且≠A E , 但2=AA.(3)不对. 反例: 设1000⎛⎫=⎪⎝⎭A ,0002⎛⎫= ⎪⎝⎭B ,0003⎛⎫= ⎪⎝⎭C , 则有=AB AC 且0≠A , 但=B C(1)1101n⎛⎫⎪⎝⎭, (2)100100nλλλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,2311111112,0101010111111213,010101011111111.01010101n n n ⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭分块对角矩阵计算AB,1,A A-11112222A O B O A B O OA OB OA B ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭1122A OA A OA =1111122A O A O O A OA ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭2.1判断线性无关或相关方法1:利用线性无关和线性相关的定义 方法2:利用秩和行列式判断 方法3:利用定理证明(1) 123(2,1,0),(1,1,3),(1,0,3)=-=-=ααα(2) 12(1,3,4),(2,0,1)=-=αα (1)()12123131212333211011110,,110110011033000000r r r r T T Tr r r r +↔----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→-→ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα 可见{}123,,23R m =<=ααα, 故向量组线性相关.总结:计算秩来判断线性关系,证明题的时候才考虑用定义和定理 (2)()21312321312412020010,3010100141010100r r r T Tr r r r -+--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αα可见{}12,22R m ===αα, 故向量组线性无关.当A 是方阵的时候用行列式来判断线性关系(1) 12123131212333*********,,1101100110033000000r r r r T T Tr r r r A +↔----==-=-=-=ααα可见0A =, 故向量组线性相关(1)设向量组123,,ααα线性无关, 则下列向量组线性相关的是 C . (A)11213,,++ααααα (B)112123,,+++αααααα (C)123123,,+++αααααα (D)121331,,++-αααααα(B)不是线性相关的, 因为()()()()11212312312312323300k k k k k k k k k +++++=+++++=ααααααααα123123233000000k k k k k k k k k ++==⎧⎧⎪⎪⇒+=⇒=⎨⎨⎪⎪==⎩⎩(C)是线性相关的, 因为()()()112233123131232233()0()0k k k k k k k k k +++++=+++++=ααααααααα131232323010110k k k k k k k k k +==⎧⎧⎪⎪⇒+=⇒=⎨⎨⎪⎪=-+=⎩⎩(B)112123,,+++αααααα []112323111,,011001αβββαα⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ ()3R =A(C)123123,,+++αααααα[]112323101101,,011011011000αβββαα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()2R =A2.2求秩定义法和行阶梯形阵方法 2.3方程组有解的条件1111221211222211220(1)0(2)0()n n n n m m mn n a x a x a x a x a x a x a x a x a x m ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 线性方程组齐次方程组有唯一零解()R n ⇔=A当A 是方阵时,0A A ⇔≠⇔可逆A ⇔行向量或者列向量线性无关有无穷多解()R n ⇔<A当A 是方阵时,0A A ⇔=⇔不可逆A ⇔行向量或者列向量线性相关 非齐次方程组有唯一解()()R R B n ⇔==A当A 是方阵时,0()()A R R B n ⇔≠==且A有无穷多解()R(B)R n ⇔<=A 当A 是方阵时,0()()A R R B n ⇔===且A无解()R(B)R ⇔≠A2.4**求最大无关组与线性表示----找出最大无关组,包括利用最大无关组进行线性表示方法:利用列向量组成矩阵进行行变换,目标是行最简形矩阵 例题2.7求下列向量组的最大无关组,并把其他向量用此无关组线性表示。
线性代数复习第1-6章典型例题
![线性代数复习第1-6章典型例题](https://img.taocdn.com/s3/m/17d75351f01dc281e53af00a.png)
按最后一列展开再提取每列的公因子
-8-
Dn = ( −1) n+1 (a1 − a n )(a 2 − a n )⋯(a n−1 − a n ) ×
1 a1
2 a1
1 a2
2 a2
⋯
1
1 a n −1
2 a n −1
⋯ a n− 2
2 ⋯ a n− 2
⋮
n a1 − 2
⋮
⋮
⋮
n− 2 a n −1 ( n −1 )
n
x2 ⋯ xn a2 ⋱ an
xk yk ) = a 2 a 3 ⋯ a n (a1 − ∑ k = 2 ak
-6-
n
例9
范德蒙德(Vandermonde)行列式 行列式 范德蒙德
1 a1 Dn =
2 a1
1 a2
2 a2
⋯
1
2 a n −1
1 an
2 an
− an − an
⋯ a n −1 ⋯ ⋮
n n− 2 a 2 − 2 ⋯ a n− 2
Dn = ( a n − a1 )(a n − a 2 )⋯(a n − a n−1 ) Dn −1
Dn − 1 = (a n − 1 − a1 )(a n − 1 − a 2 ) ⋯ (a n − 1 − a n − 2 ) Dn − 2
⋯⋯
D3 = (a 3 − a1 )(a 3 − a 2 ) D2 D2 = (a 2 − a1 ) D1 = a 2 − a1
-17-
例8
设 n 阶方阵 A 满足 A2 = E ,
证明 r ( E + A) + r ( E − A) = n
证
A 2 = E ⇒ ( A + E )( A − E ) = O
《线性代数》复习要点及练习
![《线性代数》复习要点及练习](https://img.taocdn.com/s3/m/df7d43e30d22590102020740be1e650e52eacfcf.png)
第一章 行列式复习要点:1. 会计算逆序数,余子式,代数余子式2. 熟练掌握行列式的性质,并能利用性质计算行列式3. 掌握克莱姆法则练习题:1. 排列1 6 5 3 4 2的逆序数是( ).A. 8 B .9 C .7 D . 62122.431235-的代数余子式12A 是( ).A 2143-- B2143- C 4125--D4125-3. 排列32514的逆序数是( ).A. 3B. 4C. 5D. 64.关于行列式,下列命题错误的是( ).A. 行列式第一行乘以2,同时第二列除以2,行列式的值不变 B .互换行列式的第一行和第三行,行列式的值不变 C .互换行列式的任意两列,行列式仅仅改变符号 D . 行列式可以按任意一行展开 5. 关于行列式,下列命题正确的是( ).A. 任何一个行列式都与它的转置行列式相等B .互换行列式的任意两行所得到的行列式一定与原行列式相等C .如果行列式有一行的所有元素都是1,则这个行列式等于零D . 以上命题都不对6. 关于行列式,下列正确的是( ).A. 如果行列式有一行的所有元素都是1,则这个行列式等于零.B. 互换行列式的任意两行所得到的行列式一定与原行列式相等.C. 行列式中有两行对应成比例,则此行列式为零.D. 行列式与它的转置行列式互为相反数.7. 下列命题错误的是( ).A. 如果线性方程组的系数行列式不等于零,则该方程组有唯一解 B .如果线性方程组的系数行列式不等于零,则该方程组无解 C .如果齐次线性方程组的系数行列式等于零,则该方程组有非零解 D .如果齐次线性方程组的系数行列式不等于零,则该方程组只有零解8212431235-的余子式32M =————,代数余子式32A =—————— 9. 已知k341k 000k 1-=,则k =__________.10. 若52k 74356=,则k =__________.11. 计算行列式|12345006|=_________ 12. 计算行列式|1111123413610141020| 13.计算行列式53-120172520-23100-4-14002350D =14. 计算行列式1234248737124088D =15.计算行列式x yyxx x y y yx x y+++第二章 矩阵复习要点:1. 掌握矩阵的线性运算,矩阵乘法运算律,转置矩阵的运算律,2. 掌握矩阵的初等变换3. 掌握方阵行列式的性质,转置矩阵的性质,逆矩阵的性质4. 会求逆矩阵.了解待定系数法和伴随矩阵法,掌握用初等变换求解逆矩阵相关问题.能够证明矩阵的可逆性.5. 会用初等行变换求矩阵的秩6. 会求解矩阵方程练习题:1. 设A ,B 均为n 阶可逆阵,则下列公式成立的是( ). A T T T B A AB =)( B T T T B A B A +=+)( C 111)(---=B A AB D 111)(---+=+B A B A2. A,B 均为n 阶方阵,若要22(A B)(A B)A B +-=-不成立,需满足( ).A. A=E B .B=O C .A=B D . AB ≠BA 3. 若方阵2A A,=A 不是单位方阵,则( ).A. A 0= B . A 0≠ C .A O = D .A O ≠4.若矩阵111A 121231⎛⎫ ⎪= ⎪ ⎪λ+⎝⎭的秩为2,则λ=( ). A. 0 B . 2 C .1 D . -15.矩阵⎪⎪⎭⎫⎝⎛=32015431A 的秩是( ) 6. 110201211344⎛⎫⎪-- ⎪ ⎪-⎝⎭ 的秩是( )7. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=321212113A ,⎪⎪⎪⎭⎫ ⎝⎛---=111012111B 求AB 和BA8. 设矩阵,⎪⎪⎭⎫ ⎝⎛=1021A 求32A A ,. 9. 设矩阵521320A ,B 341201--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,求T T T(1)AB ;(2)B A;(3)A A.10.⎪⎪⎪⎭⎫⎝⎛--=210111121A ,求逆矩阵11. 223110121⎛⎫ ⎪- ⎪ ⎪-⎝⎭.,求逆矩阵 12. 求矩阵X , 使B AX =, 其中.341352,343122321⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A13. 求解矩阵方程,X A AX += 其中.010312022⎪⎪⎪⎭⎫⎝⎛=A.B AX X ,B ,A . 132231 11312221414=⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--=使求设15. 已知n 阶方阵A 满足矩阵方程2A 3A 2E O --=,其中A 给定,E 为n 阶单位矩阵,证明A 可逆,并求1A -. 16. 设A 、B 为n 阶矩阵,2A B AB E --=,2A A =,其中E 为n 阶单位矩阵.证明:A B -为可逆矩阵,并求()1A B --.17. 设方阵A 满足22A A E O --=,证明A 及2A E +都可逆.第三章 线性方程组复习要点:1. 熟练掌握方程组解无解/有解/有唯一解/有无穷多解的充要条件2. 会求向量组的秩;能够验证向量组的线性相关性;会求向量组的极大线性无关组,并可以将其他向量用极大无关组线性表示.3. 熟练掌握基础解系的求解3. 会求解齐次线性方程组的通解,会求非齐次线性方程组的通解和特解练习题:1. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 22. 已知n 元线性方程组b Ax =,其增广矩阵为B ,当( )时,线性方程组有解.A. ()n B r =B. ()n B r ≠C. ()()B r A r =D. ()()B r A r ≠3. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 24. 设A 为m×n 矩阵,齐次线性方程组Ax =0仅有零解的充分必要条件是 系数矩阵的秩r (A )( )A. 小于mB. 小于nC. 等于mD. 等于n5. 已知向量组1,,m αα线性相关,则( ).A 、该向量组的任何部分组必线性相关.B 、该向量组的任何部分组必线性无关.C 、该向量组的秩小于m .D 、该向量组的最大线性无关组是唯一的.6. 如果齐次线性方程组有非零解,则它的系数行列式D _____0. ( = 或 ≠)7. 已知线性方程组Ax b =有解,若系数矩阵A 的秩r(A)=4,则增广矩阵B 的r(B)=__________.8. 若线性方程组Ax b =的增广矩阵为B 312400120012⎛⎫⎪→ ⎪ ⎪λ⎝⎭,则当常数λ=__________时,此线性方程组有无穷多解.9. 若线性方程组Ax b =的增广矩阵为B 300200a 11⎛⎫→ ⎪+⎝⎭,则当常数a =__________时,此线性方程组无解.10.λ取何值时,非齐次线性方程组 1231232123+1++x x x x x x x x x λλλλλ⎧+=⎪+=⎨⎪+=⎩(1)有唯一解(2)无解(3)有无穷多解? 取何值时,线性方程组当 11..λ ()()()()⎪⎩⎪⎨⎧=++++=+-+=+++3313123321321321x λλx x λλx x λλx λx x x λ 有唯一解、无解、无穷多解?当方程组有无穷多解时求出它的解.12.求下列方程组的通解.236222323754325432154321⎪⎩⎪⎨⎧=+++-=-+++=++++x x x x x x x x x x x x x x13. 判断下列向量组的线性相关性:(1)1234=-1,3,2,5=3-1,0-4=2,2,2,2=1,5,4,6αααα(),(,,),(),()(2)1234=1,1,3,1=10,00=2,2,7,-1=3,-1,2,4αααα(),(,,),(),() 14. 已知向量组()()()()T4T3T2T13 2 10 0 10 1 11 1 1α-====,,α,,,α,,,α,,,,求向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.15. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---140113*********12211的列向量组()54321α,α,α,α,α的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示.16. 试证若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 17. 已知向量321ααα,,线性无关,证明向量11232βααα=+-,2123312βαααβαα=--=+,也是线性无关的。
线性代数考试题及答案
![线性代数考试题及答案](https://img.taocdn.com/s3/m/98c2376730126edb6f1aff00bed5b9f3f80f724e.png)
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
线性代数总复习题(一)
![线性代数总复习题(一)](https://img.taocdn.com/s3/m/814ac203de80d4d8d15a4f1e.png)
九. 设 A、B 都是 n 阶对称阵,证明 AB 是对称阵的充分必要条件是 AB = BA . 证明:∵ A, B 都是 n 阶对称阵.
∴ AT = A , B T = B .
∴ AB 是对称阵 ⇔ ( AB ) = AB
T
⇔ B T AT = AB ⇔ BA = AB
十. 求下面矩阵的特征值和特征向量:
1. 设 D1 =
a11 a21 an1
a12 a22 an 2
a1n a2 n ann
, D2 =
an1 an −1,1 a11
an 2 an −1,2 a12
ann an −1, n a1n
,则 D1 与 D2 的关系是(
C
) .
(A) D2 = D1 分析: rn 依次与 rn −1 , rn − 2 ,
∴ i = 2 , k = 5 ;或 i = 5 , k = 2 .
. 若 i = 2 , k = 5 ,则列标排列 32145 的逆序数为 3,这一项的符号为“ − ” . 若 i = 5 , k = 2 ,则列标排列 35142 的逆序数为 6,这一项的符号为“ + ”
∴ i =5,k = 2.
(2) R ( A ) = 2 ; (3) R ( A ) = 3 . (1) R ( A ) = 1 ;
−2 3k ⎞ ⎛ 1 −2 3k ⎞ ⎛ 1 ⎟ ⎜ ⎟ ⎜ 3 ( k − 1) 解: A = ⎜ −1 2k −3 ⎟ ∼ ⎜ 0 2 ( k − 1) ⎟. ⎜ k −2 3 ⎟ ⎜ 0 0 −3 ( k + 2 )( k − 1) ⎟ ⎝ ⎠ ⎝ ⎠ ∴ (1)当 k ≠ −2 且 k ≠ 1 时, 2 ( k − 1) ≠ 0 , −3 ( k + 2 )( k − 1) ≠ 0 , R ( A ) = 3 . ⎛ 1 −2 −6 ⎞ ⎜ ⎟ (2)当 k = −2 时, A ∼ ⎜ 0 −6 −9 ⎟ , R ( A ) = 2 . ⎜0 0 0 ⎟ ⎝ ⎠ ⎛ 1 −2 3 ⎞ ⎜ ⎟ (3)当 k = 1 使, A ∼ ⎜ 0 0 0 ⎟ , R ( A ) = 1 . ⎜0 0 0⎟ ⎝ ⎠
线性代数总复习及典型例题共63页文档
![线性代数总复习及典型例题共63页文档](https://img.taocdn.com/s3/m/dec7ddddc5da50e2534d7f50.png)
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
线性代数总复习及典型例题
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留Байду номын сангаас的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
线性代数考前必做50题
![线性代数考前必做50题](https://img.taocdn.com/s3/m/6be8427c27d3240c8447efb2.png)
2 1 0 * * * 27、(公式考查)设矩阵 A 1 2 0 ,矩阵 B 满足 ABA 2 BA E ,其中 A 为 A 的伴随矩阵, E 是单位矩阵, 0 0 1
则B 28、 (概念考查)设 A, B 为满足 AB 0 的任意两个非零矩阵,则必有 ( )
线性代数考前必做 50 题
一、解答题部分:
1 2 3 1、设矩阵 A 1 4 3 的特征方程有一个二重根,求 a 的值,并讨论 A 是否可相似对角化. 1 a 5
2、已知二次型 f ( x1 , x 2 , x3 ) (1 a ) x1 (1 a ) x 2 2 x3 2(1 a ) x1 x 2 的秩为 2. (I) 求 a 的值; (II) 求正交变换 x Qy ,把 f ( x1 , x 2 , x3 ) 化成标准形; (III) 求方程 f ( x1 , x 2 , x3 ) =0 的解.
(A) A 的列向量组线性相关, B 的行向量组线性相关.(B) A 的列向量组线性相关, B 的列向量组线性相关. (C) A 的行向量组线性相关, B 的行向量组线性相关. (D) A 的行向量组线性相关, B 的列向量组线性相关. 29、(向量组与行列式考查) 设 1 , 2 , 3 均为 3 维列向量,记矩阵 A ( 1 , 2 , 3 ) , B ( 1 2 3 , 1 2 2 4 3 , 1 3 2 9 3 ) , 如果 A 1 ,那么 B . )
20、设行列式|A|=
唯一解 、无
解 时时求其通解
2 2 1 1
2 2 3 1 3 4 1 5 M 31 M 32 M 33 M 34 2
线性代数重要知识点和典型例题答案
![线性代数重要知识点和典型例题答案](https://img.taocdn.com/s3/m/3b3e8e08dd36a32d737581ae.png)
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TTTB A B A +=+)( TTkA kA =)( TTTA B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
(完整)线性代数习题集(带答案)
![(完整)线性代数习题集(带答案)](https://img.taocdn.com/s3/m/9b50419c58fafab068dc0245.png)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。
(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。
(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。
(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。
(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。
若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。
线性代数试题(完整试题与详细答案)
![线性代数试题(完整试题与详细答案)](https://img.taocdn.com/s3/m/843f5821b6360b4c2e3f5727a5e9856a57122658.png)
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数重要知识点及典型例题答案
![线性代数重要知识点及典型例题答案](https://img.taocdn.com/s3/m/5fb59410a9956bec0975f46527d3240c8447a1ce.png)
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。
推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。
③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。
推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。
④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。
化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。
线性代数必考参考例题
![线性代数必考参考例题](https://img.taocdn.com/s3/m/b16d920bde80d4d8d15a4f43.png)
各大题可能考到的知识点:证明题:(3选1)1.对称矩阵、反对称矩阵、正交矩阵参考习题(下同):P50例11、12,P52 15、16,P145 182.矩阵可逆P57 例8 P58 5、6、83.线性相关性P99 例3 P102 5计算题:1.求行列式(三角法、降阶法)P15-16 例3、4、5、6 ,P25例6 ,P23 例2、32.求逆矩阵(伴随矩阵法、初等变换法)P54 例3 P70 例4、53.求极大无关组P104 例2,P107 例34.基础解系及通解P118-122 1、2、4、5、65.讨论方程组的解P88 4, P135 16.对角化P162 1、2,P160 7、87.证明一组积并求某向量的坐标:P111 9,P114 4、58.解矩阵方程P71-72 6、79求特征值与特征向量P146 1、2,P170 15、16填空、选择:1.排列的逆序数P6 1、2,P11 12.行列式的性质P11-153.矩阵转置的性质(4个)P474.方阵行列式的性质(3个)P495.逆矩阵与伴随矩阵性质(5个)P54-556.初等矩阵与可逆矩阵的关系P70 定理37.矩阵的秩的性质P75、78(共8个,主要是1、2)8.方程组有解的条件P869.向量组的线性相关性P97-10110.向量组之间的关系P100-101(定理5、推论5、6)11.过渡矩阵P11312.由向量的长度与正交求未知参数P139-14113.正交矩阵的性质P14314.矩阵的特征值的性质P147-149 615.相似矩阵的性质P152-153,P170 18,P160 2, 616.特征值多项式和特征方程P14517.行列式按列展开的性质P21 ,P22 ,P27 718.分块对角矩阵的性质P62 性质1、2。
线性代数总复习带例题
![线性代数总复习带例题](https://img.taocdn.com/s3/m/41b087795acfa1c7ab00cc00.png)
(2) 若矩阵A有一个r阶子式不为零,则R(A)≥r (3) 若矩阵A有一个r+1阶子式不为零,则R(A)≤r
• 3规定掌零握矩阵线的性秩方为程零组。的判定方法
• 对n阶方阵 A (aij ) , 若 aij 0,则R(A)=n,称A为满秩矩阵; 若 aij 0,则R(A)<n,称A为降秩矩阵。
把方程组1化成
容易求解的同
会用高斯消元法解线它简性元称方都最为简程零形组的。梯矩阵,称为最简梯矩阵,
解方程组,
即得到能直接
求出解或者能
够直接判2断其 掌握矩阵的秩的概念并求矩阵的秩
无解的同解方
程组
矩阵的初等变换
3 掌握线性方程组的判定方法
ri rj ci c j ,kri kci
L
a0 xn a1xn1 L an
本课程的内容
1
行列式
2
线性方程组
3
矩阵
4
向量空间
5
相似矩阵
6
二次型
线性方程组
本章的知识点 1.满足下列两个条件的矩阵称梯矩阵。 (1)若有零行则零行位于非零行下方;
(2)每个首非零元前面零的个数逐行增
基本思想是通
加。
过消元变形,
2.首非零元为1,且首非零元所在列的其
2 掌握行列式按行(列)展开定理
n阶行列式任一行(列)的各元素与另一行(列)的对 应元素的代数余子式乘积之和等于零,即
ai1 Aj1 ai2 Aj2 L ain Ajn 0, i j;
a1i A1 j a2i A2 j L ani Anj 0,
线性代数总结汇总+经典例题
![线性代数总结汇总+经典例题](https://img.taocdn.com/s3/m/2b6f3e024531b90d6c85ec3a87c24028915f85d8.png)
线性代数总结汇总+经典例题(⼀)⾏列式概念和性质线性代数知识点总结1 ⾏列式1、逆序数:所有的逆序的总数2、⾏列式定义:不同⾏不同列元素乘积代数和3、⾏列式性质:(⽤于化简⾏列式)(1))⾏列互换(转置),⾏列式的值不变(2))两⾏(列)互换,⾏列式变号(3))提公因式:⾏列式的某⼀⾏(列)的所有元素都乘以同⼀数k,等于⽤数k 乘此⾏列式(4))拆列分配:⾏列式中如果某⼀⾏(列)的元素都是两组数之和,那么这个⾏列式就等于两个⾏列式之和。
(5))⼀⾏(列)乘k加到另⼀⾏(列),⾏列式的值不变。
(6))两⾏成⽐例,⾏列式的值为0。
(⼆)重要⾏列式4、上(下)三⾓(主对⾓线)⾏列式的值等于主对⾓线元素的乘积5、副对⾓线⾏列式的值等于副对⾓线元素的乘积乘6、Laplace展开式:(A 是m 阶矩阵,B 是n 阶矩阵),则7、n 阶(n≥2)范德蒙德⾏列式数学归纳法证明★8、对⾓线的元素为a,其余元素为 b 的⾏列式的值:(三)按⾏(列)展开9、按⾏展开定理:(1))任⼀⾏(列)的各元素与其对应的代数余⼦式乘积之和等于⾏列式的值(2))⾏列式中某⼀⾏(列)各个元素与另⼀⾏(列)对应元素的代数余⼦式乘积之和等于0(四)⾏列式公式10、⾏列式七⼤公式:(1)|kA|=k n|A|(2)|AB|=|A| ·|B|(3)|A T|=|A|(4)|A -1|=|A| -1(5)|A*|=|A| n-1(6))若A 的特征值λ1、λ2、,, λn ,则(7))若 A 与B 相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1 )⾮齐次线性⽅程组的系数⾏列式不为0 ,那么⽅程为唯⼀解(2))如果⾮齐次线性⽅程组⽆解或有两个不同解,则它的系数⾏列式必为0 (3))若齐次线性⽅程组的系数⾏列式不为0,则齐次线性⽅程组只有0 解;如果⽅程组有⾮零解,那么必有D=0。
2 矩阵(⼀)矩阵的运算1、矩阵乘法注意事项:(1))矩阵乘法要求前列后⾏⼀致;(2))矩阵乘法不满⾜交换律;(因式分解的公式对矩阵不适⽤,但若B=E,O,A-1,A*,f(A)时,可以⽤交换律)(3))AB=O不能推出A=O 或B=O。
线性代数大二期末考试重点复习、题目,不可不看哦!
![线性代数大二期末考试重点复习、题目,不可不看哦!](https://img.taocdn.com/s3/m/6a31f94f852458fb770b56e3.png)
(3)若只有当 λ1 , λ2 ,L , λm , 全为 时, ) 全为0时
λ1a1 + L + λm am + λ1b1 + L + λmbm = o 才成立
⇔ λ1 (a1 + b1 ) + λ2 (a2 + b2 ) + L + λm (am + bm = , a2 = , b1 = , b2 = 满足 a 0 0 1 0
练习: 练习:设
2 1 8 2 −3 0 A= 3 −2 5 1 0 3 7 7 −5 8 0 2 0 3
(1)判定 的列向量组的线性相关性 )判定A的列向量组的线性相关性
(2)判定 的行向量组的线性相关性 )判定A的行向量组的线性相关性 (3) 求A的秩 的秩R(A) 的秩 3 9 1 − 0 0 (4) 求A的一个最高阶子式 2 的一个最高阶子式 2 1 1 0 (5)求A的列向量组的一个最大无关组, 的列向量组的一个最大无关组, 求 的列向量组的一个最大无关组 0 1 − 2 2 并将其它向量用这个最大无关组表示 1 0 0 0 0 0 0 0 0 0 解 (1)A的列向量组的线性相关 维数<个数 ) 的列向量组的线性相关 维数< 的行向量组的线性相关性? (2)A的行向量组的线性相关性? 相关 ) 的行向量组的线性相关性 (3)R(A)=3 =
复习: 复习:最大无关组与秩
1. 最大无关组 无关性 最大性 不唯一,但所含 不唯一, 向量个数唯一 2. 秩
任r+1个线性相关 个线性相关 再添一个就线性相关 A 能由 0 线性表示 能由A
A
B ⇔ A0
简单性质
线性代数总复习
![线性代数总复习](https://img.taocdn.com/s3/m/04e34b8183d049649b6658f2.png)
性质1
例5---相似矩阵 设3阶矩阵A、B相似,A-1的特征值分别为1,2,3, 求 (1)A的特征值; (2) 解 (1)因为A-1的特征值分别为1,2,3,所以A的特征值
分别为 (2) 因为A、B相似,所以A,B的特征值相同,所以B的 特征值分别为 所以6B-E的特征值为
3---特征向量的性质 1)方阵A的不同特征值所对应的特征向量必线性无关。
1、定义 由m×n个数
排成的m行n列数表
(i=1,2, …,m ; j=1,2, …,n)
称为一个m行n列矩阵, 简称为m×n矩阵,
矩阵的秩(续) 3、关于秩的重要结论:
例题2 ---(矩阵3)
解
例题3---(逆阵2)
解
2)
例题3---(逆阵3) 3、设方阵 A满足2A2-5A-8E = 0,证明 A-2E 可逆,
6---例8(1)---几个证明1 1、设A~B,证明: A2~B2; tA-E~tB-E, t是实数
2. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1, 2必线性无关;
3. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1 2 必不是 A的特征向量
3)正交向量组必是线性无关组。
4---n阶方阵A可对角化的条件、方法 1、一个充分必要条件: n阶方阵A可对角化 A有n个线性无关的特征向量 2、两个充分条件: 1)如果A有n个互不相同的特征值,则A必可对角化 2)如果A是实对称矩阵,则A必可用正交矩阵对角化。
3、对角化方法:
4、正交对角化
5---例6---对角化 分别求可逆矩阵P、正交矩阵Q, 将矩阵A对角化。 解 1)
向量4---例题4
大一线性代数考试题库及答案解析
![大一线性代数考试题库及答案解析](https://img.taocdn.com/s3/m/1ab1584ab5daa58da0116c175f0e7cd1842518a6.png)
大一线性代数考试题库及答案解析一、选择题1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为多少?A. 1/2B. 2C. 1/4D. 1答案:C解析:根据行列式的性质,一个矩阵的逆矩阵的行列式等于原矩阵行列式的倒数。
因此,|A^(-1)| = 1/|A| = 1/2。
2. 向量α=(1,2,3)和β=(-1,0,1)是否共线?A. 是B. 否答案:A解析:若向量α和β共线,则存在一个实数k使得β=kα。
将向量α和β的对应分量相除,得到-1/1=0/2=1/3,显然不存在这样的实数k,因此向量α和β不共线。
二、填空题3. 设矩阵B是一个3×3的矩阵,且B的秩为2,则矩阵B的零空间的维数为____。
答案:1解析:矩阵B的零空间的维数等于矩阵的列数减去矩阵的秩,即3-2=1。
4. 若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于____。
答案:n解析:若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于未知数的个数n。
三、解答题5. 给定向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),求证向量组α1,α2,α3线性相关。
答案:证明:首先计算向量组α1,α2,α3的行列式:|α1 α2 α3| = |1 2 3||4 5 6||7 8 9| = 0由于行列式为0,根据行列式的性质,向量组α1,α2,α3线性相关。
6. 设矩阵C为3×3的矩阵,且C的行列式为0,求证矩阵C不可逆。
答案:证明:根据矩阵的逆矩阵的定义,若矩阵C可逆,则存在矩阵C^(-1)使得CC^(-1)=I。
但是,由于|C|=0,根据行列式的性质,不存在矩阵C^(-1)使得CC^(-1)=I,因此矩阵C不可逆。
四、计算题7. 计算矩阵D=\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 &9\end{bmatrix}的行列式。
线性代数总复习及典型例题
![线性代数总复习及典型例题](https://img.taocdn.com/s3/m/bc41120ca216147917112898.png)
线性代数总复习
第一章
行列式
第一节 n阶行列式的定义
当m = n 时,n元非齐次线性方程组 Ann x b 有惟一解的充分必要条件是系数矩阵A的行列式
A0
齐次线性方程组 Ax 0 一定有解: (1) R(A) = n (2) R(A) < n
Ax 0 只有零解
Ax 0 有非零解
并且通解中有n-r个自由未知量.
齐次线性方程组 Ax 0 的具体解法: (1)对系数矩阵施行初等行变换化为行阶梯形矩阵, 比较 R A与n之间的大小关系,从而判断方程组解 的情况:唯一解(零解),无穷解(非零解)。
第三章 线性方程组
其中 B A b
非齐次线性方程组 Ax b
(1) R A R B (2) R(A) = R(B ) R(A ) < n R(A ) = n
无解 有解:
Ax b有唯一解 ;
Ax = b 有无穷多解.
并且通解中有n-r个自由未知量.
非齐次线性方程组 Ax b 的具体解法: (1)对增广矩阵施行初等行变换化为行阶梯形矩阵, 比较 R A 、 R B 以及n之间的大小关系,从而判断 方程组解的情况:无解,唯一解,无穷解。 (2)在判断有解的情况下,继续对行阶梯形矩阵施 行初等行变换,将其化为行最简形,并写出最简形 对应的线性方程组进行求解。如果方程组有无穷多 个解,需写出通解形式。
Er O O O m n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行列式按行(列)展开法则是把高阶行 列式的计算化为低阶行列式计算的重要 工具.
n
aki Akj
k 1
D ,当i
0
,当 i
j, j;
n aik Ajk
k 1
D ,当i
0
,当 i
j, j;
第二章 矩阵及其运算
一、矩阵的概念
1. 矩阵的基本概念
由 m n 个数 aij i 1,2, , m; j 1,2, , n
a11a23a32 a12a21a33 a13a22a31 .
一些常用的行列式结果:
a11 a12 0 a22
a1n a2n a11a22 ann
00
ann
1 2
1
2
n( n1)
(1) 2 12 n
n
12 n n
a11 L M D am1 L *L M *L
a11 L M
am1 L
非齐次线性方程组 Ax b 的具体解法:
(1)对增广矩阵施行初等行变换化为行阶梯形矩阵,
比较 RA、RB 以及n之间的大小关系,从而判断
方程组解的情况:无解,唯一解,无穷解。
(2)在判断有解的情况下,继续对行阶梯形矩阵施 行初等行变换,将其化为行最简形,并写出最简形 对应的线性方程组进行求解。如果方程组有无穷多 个解,需写出通解形式。
A可逆
A 0,
且
A1
1 A
A ,
其中A是A的伴随阵 .
BA E ) , 则B A1.
若 AB E (或
3. 可逆矩阵的性质
1 若A可逆,则A1也可逆 ,且 A1 1 A.
2
若A可逆 , 数
0, 则A可逆 , 且
A1
1
A1 .
3 若A, B为同阶可逆矩阵 ,则AB也可逆,且AB 1 B 1 A 1
设A是一个m n非零矩阵,那么A一定 可以通过有限次初等行变换化为行阶梯形及行最 简形,再进行初等列变换化为如下标准形:
Er O O O mn 其中r 就是行阶梯形矩阵中非零行的行数.
注意:初等变换不改变矩阵的可逆性。
对于任何一个非零矩阵,都可以先进行初等行变换化 为行阶梯形及行最简形,再进行初等列变换化为标准形.
六、矩阵的秩
求矩阵秩的方法 (1)利用定义:寻找矩阵中非零子式的 最高阶数 (2)初等变换法:把矩阵用初等行变换 变成为行阶梯形矩阵,行阶梯形矩阵 中非零行的行数就是矩阵的秩
对于n阶方阵A,如果A的秩等于n,则称A
为满秩矩阵,否则称为降秩矩阵.
对于n阶方阵A,下列命题等价: (1) A为满秩矩阵;
对称及反对陈矩阵 方阵的行列式
2. 矩阵的运算规律:
加法:
1交换律:A B B A; 2 结合律:A B C A B C .
数乘:
1 结合律 : A A;
2分配律 : A A A; A B A B.
乘法:
1 ABC ABC ; 2 AB AB AB (其中 为数); 3 AB C AB AC , B C A BA CA;
当m = n 时,n元非齐次线性方程组 Ann x b 有惟一解的充分必要条件是系数矩阵A的行列式
A0
齐次线性方程组 Ax 0一定有解:
(1) R(A) = n
Ax 0 只有零解
(2) R(A) < n
Ax 0 有非零解
并且通解中有n-r个自由未知量.
齐次线性方程组 Ax 0 的具体解法:
方阵的幂运算:
(1) (2)
Ak Al Akl ( Ak )l Akl
注意:ABk AkBk.
转置运算:
1 AT T A;
2 A BT AT BT ; 3 AT AT ; 4 ABT BT AT .
3. 方阵的行列式及其性质
由n阶方阵A的元素按原相对位置所构成 的行列式,称为方阵A的行列式,记作 A 或 det A. 方阵的行列式满足下列规律:
若 s n ,则n 个n 维向量 α1,α2, ,αn 线性相关
的充分必要条件是它所构成的矩阵 A α1, α2 , , αn
的行列式等于零,即 A 0 ; 向量组线性无关的充分必 要条件是 A 0.
若 s n ,即向量组中向量个数大于向量维数时,
向量组必线性相关.
事实上,记 A α1,α2 ,
四、分块矩阵
分块对角矩阵的性质
A1
设方阵
A
A2
O
2. 如果 Ai 0i 1,2,
O
则
1. A A1 A2
At .
At
, t ,则 A 0,即矩阵 A可逆,且
A11
A1
A21
o .
A1k
3.
Ak
A2 k
O
o
At 1
O
At k
特殊地,如果 是对角矩阵
11 0
(1)对系数矩阵施行初等行变换化为行阶梯形矩阵,
比较 RA与n之间的大小关系,从而判断方程组解
的情况:唯一解(零解),无穷解(非零解)。
(2) 继续对行阶梯形矩阵施行初等行变换,将其化为 行最简形,并写出最简形对应的线性方程组进行求解。 如果方程组有无穷多个解,需写出通解形式。
当m = n 时, (1)齐次线性方程组(3.2)只有零解 A 0 ; (2)齐次线性方程组(3.2)有非零解 A 0 .
a1m
M
0
amm *
MM
b1k M bkk
b1k M.
amm bk1 L bkk
第二节 行列式的性质
性质1.1 行列式与它的转置行列式相等. 性质1.2 行列式的某一行(列)中所有元素的 公因子可以提到行列式符号的外面.
行列式的某一行(列)中的所有元素都 乘以同一数 k ,等于用数 k 乘此行列式.
故 α1,α2 , ,αs 线性相关.
,αs , 因为RA n s,
三、相关定理
(1) 向量组 A : α1,α2, ,αs s 2线性相关
的充分必要条件是:(A)中至少有一个向量能由其余 向量线性表示.
线性代数总复习
第一章 行列式
第一节 n阶行列式的定义
二阶行列式的计算方法
a11 a21
a12 a22
a11a22 a12a21 .
三阶行列式的计算方法——沙路法
a11 a12 a13 a11 a12 D a21 a22 a23 a 21 a 22
a31 a32 a33 a 31 a 32
D a11a22a33 a12a23a31 a13a21a32
向量组 1,2 , ,s线性相关的充分必要 条件是它所构成的 矩阵 A (1,2 , ,s )的秩小于 向量个数 s ,即R( A) s;向量组线性无关的充分 必要 条件是 R( A) s.
于是判断某向量组的线性相关性,可归结为齐次线 性方程组是否有非零解,从而取决于方程组系数矩 阵的秩,所以该问题最终可利用初等行变换化系数 矩阵为阶梯形矩阵来解决.
设A是一个mn 矩阵,对A 施行一次
初等行变换,相当于在A的左边乘以相应的m阶 初等矩阵;对A施行一次初等列变换,相当于在 A的右边乘以相应的n阶初等矩阵.
R1R2 Rs AC1C2 Ct E
A ( R1R2 Rs )1 E(C1C2 Ct )1
Rs1
R21 R11C t1
C
C 1 1
21
n阶方阵A可逆的充要条件是存在有限 个初等矩阵 P1, P2 , , Pl , 使得 A P1P2 Pl .
A
设有n阶方阵 A (aij )nn , 由行列式 A 中
各元素aij 的代数余子式Aij 构成如下n阶方阵
A11 A21
A
A12
A22
A1n A2n
An1 An2
Ann
称为矩阵A的伴随矩阵.
注意:伴随阵A* 与原矩阵A元素位置的对应关系.
2. 基本定理
设A为n阶方阵,A*为其伴随矩阵,则 AA A A A E .
4 若A可逆,则AT 也可逆 ,且 AT 1 A1 T.
推广 A1 A2
A A Am 1
1
m
A21
1
1.
5 若A可逆,则有 A1 A 1.
4. 逆矩阵的计算方法
(⑴)利用定义(一般适用于证明题)
2利用公式 A1 A ;
A (3)待定系数法 (4) 初等变换法:步骤如下
(1) 构造矩阵( A E ); (2) 对( A E )施行初等行变换 ,将A化为 单位矩阵E后, 右边E对应部分即为 A1
如果行列式中有一行(列)为零,那么行列 式为零。
性质1.3 对换行列式的两行(列),行列式变号. 如果行列式有两行(列)完全相同,
则此行列式为零. 性质1.4 如果行列式中有两行(列)对应成 比例,那么行列式为零.
性质1.5 如果行列式的某一行(列)的元素都是
两数之和,例如第i 行的元素都是两数之和
0
22
0 0
当且仅当 11,22 ,
0
k 11
0
0
nn
则
k
0
0
k 22 0
0
0
k nn
nn 都不为零时, 是可逆矩阵,且
1 11
0
0
1
0
1 22
0
0 0
1 nn
五、矩阵的初等变换.与列初标 等矩阵 1.初等变换与初等矩阵
矩阵的初等变换包括3种:对换变换、数乘变换 和倍加变换。这三种初等变换的过程都是可逆的,
a11
a12
a1n
D bi1 ci1 bi 2 ci 2
bin cin
an1
an2
ann
则D等于下列两个行列式之和: