大功率半导体激光器的寿命及可靠性设计研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大功率半导体激光器的寿命与可靠性研究
组别:11
组员:李硕 11023112
孟晓 11023106
王乐 11023121
李冉 11023111
马云霄 11023117
吴天宇 11023110
目录
一、大功率激光器的应用背景 (3)
二、半导体激光器的可靠性及寿命 (4)
三、大功率半导体激光器寿命的测量方法 (5)
3.1 高功率二极管激光器的寿命测量方法 (5)
3.1.2寿命测试实验 (6)
3.1.3 结论 (7)
3.2 焊接应面力对寿命的影响 (8)
四、提高大功率半导体器件寿命的使用方法 (8)
五、总结 (9)
六、组员分工 (9)
一、大功率激光器的应用背景
随着半导体激光技术的日趋成熟和应用领域的不断扩展,大功率半导体激光器的应用
范围已经覆盖了光电子学的诸多领域,成为当今光电子实用器件的核心技术。由于大功率
半导体激光器具有体积小、质量轻、寿命长等优点,广泛应用于民用生产和军事等领域。
近年来,国外大功率半导体激光器的研究进展非常迅速,单条最大连续输出功率已
经大于600 W,最高电光转换效率高达72%,单条40-120 W 已经商品化。相对而言,
国内在大功率半导体激光器研究和应用方面虽然起步较晚,但也取得了很大的进展。
大功率半导体激光器是一类用途非常广泛的光电子器件,输出功率可以高达百瓦、千瓦,甚至准连续输出功率达万瓦以上,而且这些器件的能量转换效率可高达50%以上。半导体激光器相对于其他类型激光器的最大特点就是波长多样性,随着应用领域的不断拓宽,大功率激光器的研究几乎包括整个650-1 700 nm波段。目前大功率半导体激光器以及大功率半导体激光器泵浦固体激光器在材料加工、激光打标、激光打印、激光扫描、激光测距、激光存储、激光显示,照明、激光医疗等民用领域,以及激光打靶、激光制导、激光夜视、激光武器等军事领域均得到广泛应用。
大功率半导体激光器在材料加工方面的主要应用有:软钎焊、材料表面相变硬化、材料表面熔覆、材料连接、钛合金表面处理、工程材料表面亲润特性改进、激光清洁、辅助机械加工等。北京工业大学研制了光束整形l 000 W 大功率半导体激光器,用于U74钢轨表面淬火试验。
军事方面的主要应用为:
(1)半导体激光制导跟踪。从制导站激光发射系统按一定规律向空间发射经编码调制的激光束,且光束中心线对准目标;在波束中飞行的导弹,当其位置偏离波束中心时,装在导弹尾部的激光探测器接受到激光信号,经信号处理后,调整导弹的飞行方向,从而实现制导跟踪。
(2)半导体激光雷达。半导体激光雷达体积小,精度高,具有多种成像功能和实时图像处理功能。可用于检测目标,测量大气水汽,云层,空气污染等。
(3)半导体激光引信。通过对激光目标进行探测,对激光回波信息进行处理和计算,判断目标,计算炸点,在最佳位置进行引爆。
(4)激光测距。半导体激光光源具有隐蔽性,广泛应用在激光夜视仪和激光夜视监测仪。
(5)激光通信光源。半导体激光器是一种理想光源,具有抗干扰,保密性好等优点。蓝绿光可用于潜艇和卫星以及航空母舰的通信。(6)半导体激光武器模拟。可用于新型军训和演习技术。此外,半导体激光器还广泛应用在激光瞄准和报警、军用光纤陀螺等方面【1】。
二、半导体激光器的可靠性及寿命
为了研究激光器的可靠性,我们采用了恒流老化的方法实验前先将封装好的器件固定在散热片上,放在老化台上进行恒流电老化。驱动电流为400mA,温度保持在40℃左右,老化期间连续地观测光功率,断电并冷却到25℃进行电导数测试。测得的大功率半导体激光器的典型曲线如图1.2所示。
老化前1.1 老化后1.2
老化96小时1.3 老化320小时1.4 在老化320小时后,光导数曲线和电导数曲线上不仅出现了反向峰爹而且出现了向下的同向峰,反向峰与器件的可靠性关不不大,反向峰主要是由侧向模术智暇孪引起的,我们老化的器件是增益导引型器件,侧向模式的不稳定性会导致,P-I区曲线上出现扭曲。但如果侧向模
式跳变是由激光器的内部缺陷和均匀性差引起起的,那么由此形成的光导数曲线和电导数曲线上的峰将会对器件的可靠性产生影响。
导数曲线上由同向峰的高功率半导体激光器通常是不可靠性器件,主要是由内部缺陷、载流子泄漏和电流泄漏引起的非线性电阻通路作用的结果。它们对舞件甲-可靠性影响很大,如图1.4所示,这个器件是一只快速退化的器件。大功率宽条形半导体激光器结面积大,工作电流较高,器件的节温升高大,引起导数曲片上出现峰的因素会因此而加剧,因此,高功率半导体激光器的导数曲线上常有峰出现。
因此,我们可以得出这样一个结论,导数曲线上峰增多以及出现同向峰反映了高功率半导体激光器的退化,老化后,器件在较低的驱动电流下就有峰出现也是器件老化后退化的反映【2】。
高功率半导体激光器的寿命评价面临的难点产品的寿命评价来自于大量的统计数据,然而由于高功率半导体激光器的制作成本相当高,同一批次的器件也相当有限,这就限制了寿命数据的来源。目前进行的寿命试验大部分都是单条封装的器件,这种试验方案考察不到阵列器件中条与条之间的相互影响,不能反映多条阵列封装器件寿命。由于高功率半导体激光器热负载非常大,所以要保证其工作温度的稳定性也较困难,产品的寿命和温度是密切相关的,即使有很小的温度波动都会影响试验结果。目前高功率阵列器件都采用微通道板的主动冷却方式。在上千小时的寿命试验过程中进行数据的精确测量必须保证测量仪器稳定在0. 1% /1 000 h以内。大部分情况下,在数千小时的试验中出现断电不可避免,而对高功率激光器来说电池组又不切实际,所以整个系统要保证断电不对激光器造成损伤,而且能够在短时间内继续运行。高功率半导体激光器寿命评价方面还没有具体可行的标准,有关标准只有ISO17526-2003,且只规定了概念框架。目前还没有切实可行的较短时间寿命评价方法,较常用的是利用功率-时间试验曲线进行寿命外推,但外推寿命通常不能超过实际试验时间的5倍,这对于寿命大约为10 000 h的器件,利用外推法进行寿命试验的最短时间也要在2 000 h甚至更高,这对实际试验来说显得非常长,因此寻求切实可行的加速寿命试验非常重要【3】。
三、大功率半导体激光器寿命的测量方法
3.1 高功率二极管激光器的寿命测量方法
3.1.1 理论方法
对于高功率二极管激光器还没有标准的方法对其寿命进行测试,根据器件的退化率外推和加速老化寿命测试是电子器件进行可靠性鉴定的两种不同的模式。目前,国际上普遍采用两种外推方法进行寿命检测:一种方法是固定电源的驱动电流,测量功率随时间的变化情况,规定激光输出功率下降20 的时间作为激光器的有效使用寿命∞;另一种方法是激光输出功率一定的情况下,电流随时间的变化情况,规定工作电流上升20的时间作为激光器的寿命。
退化率外推法测试寿命是微电子产品常用的方法,激光二极管的退化与其类似,国外许多大公司也采用这种方法测试寿命,根据使用情况和需要,我们主要采用恒定电流外推的模式。工作时间为t时的激光输出功率与工作电流间的关系为
式中:P(t)为t时刻的激光输出功率;η(t)为斜效率;Ith为阈值电流;I是工作电流;α为