静电场微分方程及唯一性定理
边值问题和唯一性定理(静电场)
静电场的边值问题
静电场的唯一性定律
目前可解决的静电场问题
电荷在有限区域内,电荷的分布情况已知,并 且介质为线性各向同性均匀介质中的静电场问 题。对于此类问题,一般可以先求出电位,再 计算场中各点的电场强度和电位移矢量。 电荷、介质分布具有某种对称性的问题。由于 电荷和介质的分布具有对称性,因此电位移矢 量的分布必然也具有对称性。在这种情况下, 可以先用高斯通量定理求解电位移矢量,然后 再求电场强度。 已知电场的分布求电荷分布的问题。在这种情 况下,可直接由公式计算电荷的体密度,导体 上的面电荷密度根据分界面条件确定。
2
静电场边值问题的提出
实际中对于很多电磁场的问题通常并不 知道电荷分布,如静电场中导体表面的 感应电荷分布,介质极化后极化电荷的 分布等。对于此类的问题,必须通过求 解满足给定边界条件的电位微分方程 (泊松方程或拉普拉斯方程)的电位函 数,进而再求场域中的电场强度。我们 把这种在给定边界条件下,求解泊松方 程或拉普拉斯方程的问题称为边值问题。
对于各向同性、线性的非均匀媒质,电位 满足的微分方程又是什么形式呢?
D
D E
E
( )
7
边值问题举例-直接积分法
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷 体密度为 ,试用解微分方程的方法求球体内、外的电位 及电场。(同例2-4) 解:采用球坐标系,分区域建立方程
自学)
10
反设满足场的解答有两个相异的解答1和 2,则差
场u= 1 2 满足拉普拉斯方程
2 2
u 1 2 0 根据矢量恒等式
2.6 静电场边值问题 唯一性定理
V/m
CQU
2.6.3 唯一性定理
1、唯一性定理 在静电场中满足给定边界条件的电位微分方程 满足给定边界条件的电位微分方程( 在静电场中满足给定边界条件的电位微分方程(泊松方 程或拉普拉斯方程)的解是唯一的, 程或拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定 理。 2. 唯一性定理的重要意义 可判断静电场问题的解的正确性 解的正确性: • 可判断静电场问题的解的正确性: 唯一性定理为静电场问题的多种解法(试探解、数值解、 • 唯一性定理为静电场问题的多种解法(试探解、数值解、 解析解等)提供了思路及理论根据。 解析解等)提供了思路及理论根据。
S
第三类 边界条件
(ϕ + β ∂ϕ ) = f3 ( s) ∂n S
第四类 边界条件
ϕ S = f1 ( s)
求解边值问题注意事项: 求解边值问题注意事项:
CQU
点电荷的场
1.根据求解场域内是否有 ρ 存在,决定电位满足泊松方程还是拉氏 .根据求解场域 求解场域内是否有 存在,决定电位满足泊松方程还是拉氏 泊松方程还是 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 2.正确表达边界条件,并利用它们确定通解的待定常数。 正确表达边界条件,并利用它们确定通解的待定常数。 3.若所求解的场域内有两个(或以上)的均匀介质区域,应分区求 若所求解的场域内有两个(或以上)的均匀介质区域, 分区求 场域内有两个 不能用一个电位函数表达两个区域的情况。这时会出现4 解。不能用一个电位函数表达两个区域的情况。这时会出现4个积分 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 分界面上的衔接条件来确定积分常数 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 4.对于开域问题,还需给出无限远处的自然边界条件。 4.对于开域问题,还需给出无限远处的自然边界条件。当场域有 对于开域问题 限分布时,应有: 限分布时,应有:
电动力学第二章 郭硕鸿第三版
第二章 静 电 场静电场:静止电荷或电荷分布不随时间变化产生的电场一.主要内容:应用电磁场基本理论解决最简单的问题:电荷静止或电荷分布不随时间变化,产生的场不随时间变化的静电场问题。
本章研究的主要问题是:在给定自由电荷分布及介质和导体分布的情况下如何求解静电场。
由于静电场的基本方程是矢量方程,求解很难,并不直接求解静电场的场强,而是通过静电场的标势来求解。
首先根据静电场满足的麦克斯韦方程,引入标势,讨论其满足的微分方程和边值关系。
在后面几节中陆续研究求解:分离变量法、镜像法和格林函数法。
最后讨论局部范围内的电荷分布所激发的电势在远处的展开式。
知 识 体 系:1.静电场的微分方程:0=⨯∇ED ρ∇⋅= 边值关系:()12=-⨯E E n()21n D D σ⋅-= 静电场的能量:12W E DdV ∞=⋅⎰ 12V W dV ρϕ=⎰2.静电边值问题的构成:21122121S S S S S S n n n ρϕεϕϕϕϕεεσϕϕ⎧∇=-⎪⎪=⎪⎪∂∂⎨-=-⎪∂∂⎪∂⎪⎪∂⎩或 3.静电边值问题的基本解法: (1)镜像法 (2)分离变量法条件:电势满足拉普拉斯方程:20ϕ∇= (3)电多极矩引入电势:E ϕ=-∇ 122121SSSSnnϕϕϕϕεεσ⎧=⎪⎨∂∂-=-⎪∂∂⎩——微分方程 ——边界条件(由唯一性定理给出)(4) 格林函数法二.内容提要:1.静电场的电势及其微分方程: (1)电势和电势梯度因为静电场为无旋场,即0=⨯∇E,所以可以引入标量函数ϕ,引入后ϕ-∇=E电势差:空间某点电势无物理意义,但两点间电势差有意义选空间有限两点Q P →⎰⋅-=-QPP Q l d E ϕϕ参考点:(1)电荷分布在有限区域,通常选无穷远为电势参考点 )(0∞→=∞Q ϕ⎰∞⋅=PP l d E ϕ(2)电荷分布在无限区域不能选无穷远点作参考点,否则积分将无穷大。
电荷分布在有限区域时的几种情况的电势 (1) 真空中点电荷300()44PQr QP dl r rϕπεπε∞'=⋅='⎰无限大均匀线性介质中点电荷 : rQ πεϕ4=(2) 电荷组 : ∑==ni ii r Q P 104)(πεϕ(3) 连续分布电荷:无穷远处为参考点⎰''=VrV d x P 04)()(περϕ(2)电势满足的微分方程和边值关系泊松方程:ερϕ-=∇2 ○1 其中ρ仅为自由电荷分布,适用于均匀各向同性线性介质。
1.8 静电场的唯一性定理
ρ ∇ U = − →泊 方 , 松 程 ε0
2
静电场 +边界条件 的边值 2 问题 or ∇ U 0 →拉 拉 方 = 普 斯 程
物理系:杨友昌 编
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
唯一性定理
• 对于静电场,给定一组边界条件,空间能否存在不同的恒 对于静电场,给定一组边界条件, 定电场分布?——回答:否! 电场分布? 回答: 回答 • 边界条件可将空间里电场的分布唯一地确定下来 边界条件可将空间里电场的分布唯一地确定下来 电场的分布唯一 • 该定理对包括静电屏蔽在内的许多静电问题的正确解释至 关重要 • 理论证明在电动力学中给出,p67 给出普物方式的论证 理论证明在电动力学中给出, • 论证分三步:引理 论证分三步:引理——叠加原理 叠加原理——证明 叠加原理 证明
§8 静电场边值问题的唯一性定理
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
物理系:杨友昌
编
一. 典型的静电问题
–给定导体系中各导体的电量或电势 给定导体系中各导体的电量或电势 给定导体系中各导体的 以及各导体的形状、相对位置( 以及各导体的形状、相对位置(统 称边界条件),求空间电场分布, ),求空间电场分布 称边界条件),求空间电场分布, 即在一定边界条件下求解 泛 定 方 程
Q Q ' r' Q ' + = 0⇒ = ⇒r'Q= −rQ' r r' r Q
2
R b R ' - 有b = ⇒Q = ± Q= ± Q 取 ? a a a cos θ的系数 三角形
相似
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
电动力学第2章郭硕鸿版ppt
第二章静电场本章我们把电磁场的基本理论应用到最简单的情况:电荷静止,相应的电场不随时间而变化的情况本章研究的主要问题是:在给定的自由电荷分布以及周围空间介质和导体分布的情况下,求解静电场本章内容:1.静电场的标势及其微分方程2. 唯一性定理3. 分离变量法4. 镜像法5. 格林函数法6. 电多级矩⎩⎨⎧=⋅∇=×∇ρD E 0麦克斯韦方程组的电场部分为:(1.1)(1.2)这两个方程连同介质的电磁性质方程是解决静电问题的基础●静电场的无旋性是它的一个重要特性●由于无旋性,电场强度E 可以用一个标量场的梯度来表示,和力学中用势函数描述保守力场的方法一样讨论:(a) 只有两点的电势差才有物理意义(b) 在实际计算中,常常选取某个点为参考点,规定其上的电势为零,这样全空间的电势就完全确定了(d) 一个具体问题中只能选一个零势点∫∞⋅=PP l E d )(ϕ(c) 零势点的选择是任意的,在电荷分布于有限区域的情况下,常常选取无穷远的电势为零0)(=∞ϕ(2)给定电荷分布所激发的电势根据电势和电场强度的关系:●当已知电场强度时,可以由积分公式求出电势●已知电势时,通过求梯度就可以求出电场强度由以上讨论可知:①若空间中所有电荷分布都给定,则电场强度和电势均可求出②但实际情况往往并不是所有电荷都能预先给定,因此,必须找出电荷与电场相互作用的微分方程P 2,由于电场强度时,将电荷从P 1 移到P 2,电场σ−§2.2 唯一性定理一、静电问题的唯一性定理下面研究可以均匀分区的区域V :iV iε电容率2314L)(x ρ自由电荷分布2 1342 134二、有导体存在时的唯一性定理当有导体存在时,为了确定电场,所需条件有两种类型:①一类是给定每个导体上的电势ϕi②另一类是给定每个导体上的总电荷Qi给定时,即给出了V’所有值,因而由唯一性定理可设区域V 内有一些导体,给定导体之外的电荷分布,给定各导体上的总电荷Q i 以及V 的边界S 上的ϕ或∂ϕ/∂n 值,则V 内的电场唯一地确定.对于第二种类型的问题,唯一性定理表述如下:)∫′∇+V V V d d 2ϕϕ例:两同心导体球壳之间充以两种介质,左半部电容率为ε1,右半部电容率为ε2,设内球壳带总电荷Q ,外球壳接地,求电场和球壳上的电荷分布.解:设两介质内的电势、电场强度和电位移矢量分别为由于左右两半是不同介质,因此一般不同于只有一种均匀介质时的球对称解,,,,,,222111D E D E ϕϕ§2.3 拉普拉斯方程分离变量法静电学的基本问题是求满足给定边界条件的泊松方程只有在界面形状是比轻简单的几何曲面时,这类问题的解才能以解析形式给出本节和以下几节我们研究几种求解的解析方法一、拉普拉斯方程在许多实际问题中,静电场是由带电导体决定的例如:①电容器内部的电场是由作为电极的两个导体板上所带电荷决定的②电子光学系统的静电透镜内部,电场是由分布于电极上的自由电荷决定的这些问题的特点是:自由电荷只出现在一些导体的表面上,在空间中没有其他自由电荷分布二、分离变量法①将场量的函数表达式中不同坐标相互分离,即将场量分解为单一坐标函数的乘积的形式,求出通解不同坐标系中拉普拉斯方程的通解不同分离变量法就是:②然后再根据给定的边界条件求出实际问题的解)()()(y x y x,υψu =。
电磁场与微波技术-静电场唯一性定理ch3
因为 0 y b 范围内取任意值上式恒成立,得出 A0 An 0。
于是通解简化为
( x, y ) B0 x C0 D0 y Bn sin(kn x ) C ch k y D sh k y n n n n
n 1
y b, U 0
(0 x a)
0 ,因此,通解应取如下形式 因为 x 0 和 a 时, ( x, y ) A0 B0 x C0 D0 y
An cos kn x Bn sin kn x Cnch kn y Dnsh kn y
研究生课程
电磁场与微波技术
Electromagnetic Fields and Microwave Technology 教师: 孙 保华 学时: 46学时 学分: 3.0学分
西安电子科技大学·电子工程学院
2
第三章 静电场问题的解法
1. 引言
静电场问题的基本方程就是拉普拉斯方程和泊松方程 泊松方程(有源) 2 拉普拉斯方程(无源) 0 在给定边界条件后,上述方程为定解问题。 求解方法可分为两类,即解析法和数值法。解析法常 用的有分离变量法、镜像法和复变函数法等,数值法有 有限差分法等。 静电场问题的求解方法具有一定的代表性,对其它电 磁场问题求解具有一定的借鉴意义…
西安电子科技大学·电子工程学院
15
静电场问题的解法—分离变量法
当 kn 0 时, 和
Yn Cnch kn y Dnsh kn y
X n An cos kn x Bn sin kn x
最终,方程的解为 k n 取各种可能的值时的线性组合
静电场边值问题的唯一性定理
静电场边值问题的唯一性定理摘要:静电场边值问题及其唯一性定理是一重要知识点,定理的表述和证明都涉及较多的数学知识。
由于唯一性定理的概念对于许多问题(如静电屏蔽)的确切理解有很大帮助,所以我们将给此定理一个物理上的论证,期待大家能从中有所受益. 关键词:静电场;边值;唯一性;静电屏蔽1、问题的提出实际中提出的静电学问题,大多不是已知电荷分布求电场分布,而是通过一定的电极来控制或实现某种电场分布。
这里问题的出发点(已知的前提),除给定各带电体的几何形状、相互位置外,往往是在给定下列条件之一;(1) 每个导体的电势U K ; (2) 每个导体上的总能量Q K ;其中K=1,2,……为导体的编号。
寻求的答案则是在上述条件(称为边界条件)下电场的恒定分布。
这类问题称为静电场的边值问题。
这里不谈静电场边值问题如何解决,而我们要问:给定一组边界条件,空间能否存在不同的恒定电场分布?唯一性定理对此的回答是否定的,换句话说,定理宣称:边界条件可将空间里电场的恒定分布唯一地确定下来。
2、几个引理在证明唯一性定理之前,先作些准备工作——证明几个引理。
为简单起见,我们暂把研究的问题限定为一组导体,除此之外的空间里没有电荷。
(1)引理一 在无电荷的空间里电势不可能有极大值和极小值。
用反证法。
设电势U 在空间某点P 极大,则在P 点周围的所有邻近点上梯度U ∇ρ必都指向P 点,即场强U E ∇-=ρρ的方向都是背离P 点的(见图1-1a 。
)这时若我们作一个很小的闭合面S 把P 点包围起来,穿过S 的电通量为0)(>⋅=⎰S d E S E ρρϕ (1)根据高斯定理,S 面内必然包含正电荷。
然而这违背了我们的前提。
因此,U 不可能有极大值。
用同样的方法可以证明,U 不可能有极小值(参见图1-1b )。
(2)引理二 若所有导体的电势为0,则导体以外空间的电势处处为0。
因为电势在无电荷空间里的分布是连续变化的,若空间有电势大于0(或小于0)的点,而边界上又处处等于0,在空间必然出现电势的极大(或极小)值,这违背引理一。
电动力学uniquenesstheorem唯一性定理完全解读
引入标量函数Φ ,令Φ = '- ″
2 , 2 , 2 0
i
i
在区域边界面S 上
S
S
0 S
(给定第一类边界条件)
或 ,
n S n S
0
n S
(给定第二类边界条件)
下面需要证明旳是,满足以上方程和边界条件旳'和
1) 绝缘介质静电问题旳唯一性定理及证明 在有限旳边界区域V 内有几种均匀旳绝缘介质Vi 、εi
(i = 1、2、3 …) ,V 中旳自由电荷分布(ρ或σ) 为已知,那
么,当V 旳边界面S 上旳电势 给 定(或电势旳法向导数边
界条件) ,则V 内旳电场有唯一拟定旳解。
数学表述如下:
2 i
i
(在每个小区Vi)
V′旳全部内、外表面上都有一定旳值或 值,应用有关绝缘介
质旳唯一性定理,则V′内旳电场必有唯一解. n
b)区域V 内有若干导体,假设除导体以外旳区域V′内旳自由电荷分
布ρ已知,V′旳外表面S 上有已知旳值或 值,另外,若每个导
n 体所带旳总电量Qi 为已知,则区域V′内旳电场有唯一解。
数学表达为:
场有唯一解。这么,有导体存在时静电问题旳唯一性定理 也得到证明。
最终需要强调一点,尽管唯一性定理并不给出求解泊松方程旳详细措 施与环节,但它对于处理实际旳边值问题有着主要旳意义. 首先,它明 确了在哪些条件下能够唯一地拟定一种静电场,即给出了求解静电场 旳根据;其次,它使我们能够灵活地选用最简朴、最合适旳解题措施, 甚至能够猜一种解(即提出尝试解) . 只要这个解确实满足了问题中 旳场方程和全部定解条件,那么,根据唯一性定理我们就能够肯 定地说,它就是该问题中旳唯一正确旳解.
静电场的边值问题
2
该方程称为泊松方程。 对于无源区,上式变为
2 0
上式称为拉普拉斯方程。 2.边值问题 静电场的场量与时间无关,因此电位所满足的泊松方程及 拉普拉斯方程的解仅决定于边界条件。根据给定的边界条件求 解空间任一点的电位就是静电场的边值问题。
边界条件不变,从而保证原来区域中静电场没有改变,这是确定
等效电荷的大小及其位置的依据。这些等效电荷通常处于镜像位 置,因此称为镜像电荷,而这种方法称为镜像法。 关键:确定镜像电荷的大小及其位置。 局限性:边界必须是封闭的,才有可能确定其镜像电荷。
4
1. 点电荷与无限大的导体平面。
r q P r q h h q P(x,y,z)
P a r q O d
r
q
f
q aq 4π r 4π r f
在球坐标系下考虑,球心为原点,z 轴与oq重
合,则可求得球外任一点的电场强度
同样的,总的感应电荷等于镜像电荷。
10
若导体球不接地,则位于点电荷一侧的导体球表面上的感应电 荷为负值,而另一侧表面上的感应电荷为正值。导体球表面上总的 感应电荷应为零值。因此,对于不接地的导体球,若引入上述的镜 像电荷 q' 后,为了满足电荷守恒原理,必须再引入一个镜像电荷q", 且必须令
q q
5
电场线与等位面的分布特性与第二章所述的电偶极子的上半
部分完全相同。
z
电场线
等位线
由此可见,电场线处处垂直于导体平面,而零电位面与导体
表面吻合。
6
电荷守恒:当点电荷 q 位于无限大的导体平面附近时,导体表 面将产生异性的感应电荷,因此,上半空间的电场取决于原先的点 电荷及导体表面上的感应电荷。可见,上述镜像法的实质是以一个 异性的镜像点电荷代替导体表面上异性的感应电荷的作用。根据电 荷守恒原理,镜像点电荷的电量应该等于这些感应电荷的总电量。 半空间等效:上述等效性仅对于导体平面的上半空间成立,因 为在上半空间中,源及边界条件未变。
26静电场边值问题唯一性定理
场域边界条件
1)第一类边界条件(狄里赫利条件Dirichlet)
已知边界上的电位分布 |s f1(s)
2)第二类边界条件(诺依曼条件 Neumann)
已知边界上电位的法向导数(对于导体,即电荷面密度
,或电力线)
n
S
f2 (s)
3)第三类边界条件(若宾条件 Robin)
已知边界上电位及电位法向导数的线性组合
(2)利用边界条件求得积分常数,得到电位的解
(3)再由 E 得到电场强度 E 的分布。
2.6.2 唯一性定理 1、唯一性定理
在静电场中满足给定边界条件的电位微分方程(泊松方程或 拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定理。
2. 唯一性定理的重要意义 • 可判断静电场问题的解的正确性: • 唯一性定理为静电场问题的多种解法(试探解、数值解、 解析解等)提供了思路及理论根据。
例2.6.3 图示平板电容器的电位,哪一个解答正确?
图 2.6.7 平板电容器外加电源U0
思路:将边界条件代 入,看是否满足
A、
1
U0 d
x2
B、
2
U0 d
x U0
C、
3
U0 d
x U0
答案:( C )
作业: 2.12,2.15,2.17,2.19
导体之间接有电源 U0,试写出该电缆中静电场的边值问题。
解:根据场分布对称性,确定场域。
场的边值问题
2
2
x 2
2
y 2
0
(阴影区域, 1/4原区域)
( xb,0 yb及yb,0xb) U0
图 2.6.4 缆心为正方形的同轴电缆横截面
0 x2 y2 a2 ,x0, y0
静电场唯一性定理
静电场唯一性定理
静电场唯一性定理是指:在相同的静电场中,对任意一点,总的电场强度和电场的方向唯一确定,其相应的力场强度和力场方向也唯一确定。
一、定理内容
1、静电场唯一性定理指出:在同一个静电场中,总的电场强度以及它的方向,是唯一确定的。
2、电场强度和方向唯一确定,则相应的力场方向及强度也唯一确定。
3、对于任何一点,在同一个静电场中,电场强度和力场强度(方向)都是唯一确定的,而不用管附近是否有其它电荷存在。
二、定理的严谨性
静电场唯一性定理可以从两个层面上来说明它的严谨性:
1、在相同静电场中,总电场强度和电场方向是唯一确定的,这样在相同的静电场中,不管电荷位置以及大小如何变化,都会得到相同的电场结果。
2、只要电荷总量不变,就可以确定电场强度,而不用考虑附近有没有
其它电荷的存在,所以,电场的强度和方向都是唯一确定的。
三、定理的应用
1、用来研究静电场:静电场唯一性定理是用来研究电场的重要定理,
可以用来评估复杂的电场结构,也可以用来求解各类电力学问题,如:电场及电动势分布,电容电感等问题。
2、在分析电场结构时有重要作用:静电场唯一性定理在分析电场结构
时有重要作用,它可以把电场潜力和电场强度根据电荷分布范围与数量,用一种抽象的模型来简化整个计算过程,以达到某种理想的数值
结果。
3、研究电场特性时也有用:静电场唯一性定理也用在研究电场特性时,由于电场强度和方向都是唯一确定的,所以,在研究电场物理学时,
可以从多种不同的角度出发,以简化分析,缩小计算空间,这样可以
得出更加准确的结果。
第二章第二节 唯一性定理
ϕi ' = ϕ j '
∂ϕ j ' ∂ϕ i ' εi =εj ∂n ∂n
ϕi ' ' = ϕ j ' '
∂ϕ j ' ' ∂ϕ i ' ' εi =εj ∂n ∂n
Vj
因此,在介质分界面上, 因此,在介质分界面上,ϕ也满足
Vi
ϕi = ϕ j
∂ϕ j ∂ϕ i εi =εj ∂n ∂n
——(2.5)
运用唯一性定理讨论几个问题
例一: 例一:有一个中性的导体球壳 A,在此球壳内放 置一带电体 M,其荷电为 Q。证明: 1) 球壳外的电场只与 Q有关, 与 M在球壳内的位置无关; 2) 球壳 A的外表面上的电荷为 均匀分布,与 M在球壳内的 位置无关。
S
M
证明: 证明: 所研究的区域为球壳外的区域, 其界面为 S∞ 和 S 。 边界 S∞ 上的电势为零; 而对于界面S,由于感应使得 S的内表面的电量为 -Q,则界面 S上的总电量为 +Q,这一结论不 论M在球壳内何处,只要在球壳 内即成立。
∫
Si
ϕ∇ϕ ⋅ dS = −ϕ i ∫ ∇ϕ ⋅ dS
Si
V V’
=0
而对于外边界面 S,根据(2.13) 外边界面 可知,
i
Si
∫ ϕ ∇ ϕ ⋅ dS = 0
S
n S
对于区域 V 的外表面 S
ϕ S = 0 或者 ∂ϕ ∂n S = 0 ——(2.13)
V
因此,对 V’ 的整个界面
V’
∫ ϕ ∇ ϕ ⋅ dS = 0
2 i Vi i
Vj
但是被积函数始终满足
Vi
静电场唯一性定理
王向斌 静电场唯一性定理的部分内容表述
若真空区域所有边界面的条件确定了,则该真空区域的静电场 就唯一确定了. 根据此定理,不论真空区域以外(含边界)的电荷分布如何变化, 只要边界条件维持不变,则真空区域电场维持不变. (但是区域 以外的电场可能会发生变化.) 换言之,不论真空区域以外的实 际点荷分布如何,我们可以在真空区域之外构造一种简单的电 荷分布,只要它能够满足给定的真空区域边界面条件,我们就可 以按这种人为构造的电荷分布计算真空区域内的电场. (但不能 用此法计算真空区域以外的电场.) 根据此定理,只要找到一个电势函数, 能满足区域真空条件和 边界条件的要求,则真空区域内的电场可由该函数算出. (真空区域以外的电场不可以.)
思考题: 上述封闭面S在引理和定理中,是否必需是导体面? 还是任何满足面上电势要求的数学面都可以? 思考题: 在哪里用到或者隐含用到了势函数满足区域真空条件?
应用
静电屏蔽,电像法, 其他计算问题 思考题: 电像法中,像电荷为什么必需在真空区域以外? 思考题: 课本的电像法例题中,利用了唯一性定理.究竟是怎样与 唯一性定理的边界条件一一对应的? 即,接地的无限大金属板以及 题中的点电荷应该理解成唯一性定理的哪一个边界面?
引理2: 引理1中,若封闭面S是带电量为0的等势面,结论依然成立.
唯一性定理的部分内容的证明
条件: 静电场情况; 封闭面S, 该面电势函数确定;S面内部最多有3类区域: 真空区域, 电势确定的的导体区域,和带电量确定的导体区域.
依据唯一性定理, 上述真空区域的电场唯一确定. 思路: 真空区域若有两个势函数,函数1和函数2都满足边界条件 和区域真空条件, 把这两个势函数之差看成第三个势函数,由于 每个势函数边界条件都一样, 第三个势函数的边界条件必然是 引理1中的边界条件,因而第三个势函数在真空区域是等势区域, 此即说明函数1和函数2在真空区域最多只相差一个常数,因此给 出相同的电场. 思考题: 为什么两个电势函数之差这样一个数学函数一定可以 看成一个电势函数?
电磁学8 静电场的唯一性定理
U=a UⅠ+b UⅡ必满足条件3: 3:给定每个导体的电势Uk=a UⅠk+b UⅡ k
(或总电量Qk= QⅠk a k+b QⅡ k) 特例 : 取UⅠk= UⅡ k,则U=UⅠ-UⅡ(a=1,b=-1)满足
势处处为0
证明(反证)
在无电荷空间里电势分布连续 变化,若空间有电势大于0 (或小于0)的点,而边界上 电势又处处等于零——必出现 极大值或极小值——矛盾
推广:若完全由导体所包围的空间里各导体 的电势都相等(设为U0),则空间电势等于 常量U0
引理三:若所有导体都不带电, 则各导体的电势都相等
证明(反证)
4:给定每个导体的电势为0
唯一性定理
给定每个导体电势的情形
设对应同一组边值 Uk (k 1,2) 有两种恒定的电势分布U I和U II
相当于所有导 体上电势为0时 的恒定电势分
布
UI UII EI EII
说明场分布是唯一的
给定每个导体上总电量的情形
电量与场 强、电势
第k个导体上的电量
静电场边值问题的 唯一性定理
典型的静电问题
给定导体系中各导体的电量或电势以及各导体 的形状、相对位置(统称边界条件),求空间 电场分布,即在一定边界条件下求解
唯一性定理
对于静电场,给定一组边界条件,空间能否 存在不同的恒定电场分布?——回答:否!
边界条件可将空间里电场的分布唯一地确定 下来
图中是根据导体内场强处处为零判断存在两种实 在的电荷分布的迭加就是唯一的分布
电像法——解静电问题的一种特殊方法
静电场的唯一性定理
静电场若干关系
电场的若干关系
U 2 0
当 0
U 2 0
E U
(1)
Laplace equation
静电场若干关系
对静电场E
Ò
Eds
2Udv
如果
E F
则有
E F E • gradΒιβλιοθήκη 静电场若干关系 Green函数
当E为一数函数之梯度
E grad
由Gauss定理有
grad 2 •
静电场边界条件的唯一性定理
魏国华
0710261
南开大学物理学院
2008年6月
静电场边界条件的唯一性定理
所谓唯一性定理,就是在一个空间内,导体的 带电量或者电势给定以后,空间电场分布恒定、 唯一。边界条件可以是各导体电势,各导体电 量或部分导体电量与部分导体电势之混合,这 样根据高斯公式,泊松方程、拉普拉斯方程可 证明空间电场分布。
Ò grad • ds (2 • )dv
s
v
Ò grad • ds (2 • )dv
s
v
静电场边界条件定理1
因此
(2 2)dv
v
( grad grad) • ds s
静电场边界条件定理1
定理一: 有函数U满足(1)且满足空间边界面S上
所确定的U值,则该函数唯一。 证:若有U1,U2都 满足,则在S面上,
y
A
r a 1•
r
OO c
b
B•
x
一球接地,半径a,球外距球心b 处有电荷e,求球外电势之分布
唯一性定理之应用2
易知电势分布关于OB对称,如图,
只需求X-Y面,再将y 2变y 2 z 2即可
设C c,0 是(b, 0)的像点,其关系
唯一性定理
的电势ϕ i 也已知,则区域V′内的
电场有唯一解。
这种类型的唯一性定理和前面关于绝缘介质的唯一性定理 的证明过程完全相同(只不过这里只有一种介质) ,区别仅在于 这面里的电V′势的给边定界,则面V有′两的个所(有外内表、面外S 和表内面表上面都S有i )一,定只的要ϕ导值体或表∂∂ϕn 值,应用关于绝缘介质的唯一性定理,则V′内的电场必有唯 一解.
▲自由电荷分布
在导体球(r = a)表面上:
⎪⎪⎧σ1 f ⎨ ⎪⎪⎩σ 2 f
=
nrˆ
⋅
r D1
r=a
=
D1r
r=a
=
ε1Q 2πa2 (ε1 + ε 2 )
=
nrˆ
⋅
r D2
r=a
=
D2r
r=a
=
ε 2Q 2πa2 (ε1 + ε 2 )
D2n − D1n =σ ∴σ1 f ≠ σ 2 f
在导体球壳内(r = b)处:
=
−ε1∇ ϕ1
=
−ε1
∂ϕ1 ∂r
erˆ r
=
Aε 1 r2
err
r D2
=
ε
2
r E2
=
−ε 2∇ϕ2
=
−ε 2
∂ϕ2 ∂r
erˆ r
=
Aε 2 r2
err
∴
∫∫
r D
⋅ d sr
=
∫∫
r D1
⋅
d
sr
+
∫∫
r D2
⋅ dsr
S1
S1 左
S1 右
∫∫ ∫∫ =
Aε 1 a2
S1 左
err
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 0
泊松方程和拉普拉斯方程统称为微分方程。 二、泊松方程与拉普拉斯方程适用条件 只适用于各向同性、线性的均匀媒质。(?)
§2.8.2
唯一性定理(Uniquness Theorem)
一、定理内容
在静电场中,满足给定边界条件的微分方程(泊松方程或
拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定理。
2 2 2 式中: ( ex ey ez ) ( ex ey ez ) 2 2 2 2 x y z x y z x y z
2
泊松方程(针对场源点)
拉普拉斯方程(针对场点,ρ=0)
《电磁场理论》
主讲教师:李志刚 辽宁科技大学电信学院通信系 2012年05月
§2.8 静电场边值问题 唯一性定理
§2.8.1 泊松方程与拉普拉斯方程 一、静电场微分方程
D
E E E
E
E 0
常数
二、物理角度理解
场源相同、场分布相同,则场一定相同。
三、数学角度理解
方程相同、边界条件相同,则解一定相同。
四、唯一性定理的作用
1、确定何为相同场的判定条件;
2、可以采用等效方法进行问题的求解,只要保证满足唯一
性定理的条件,则解法不同,但解却一