利用导数研究函数的性质
第21讲 利用导数研究函数的单调性(解析版)
第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。
利用导数研究函数的性质
点击对应数字即可跳转到对应题目
1
2
3
4
5
链教材·夯基固本 激活思维
3.(人 A 选必二 P91 例 5)函数 f(x)=13x3-4x+4 的极大值为__2_38__,极小值为__-__43___.
【解析】 因为 f(x)=13x3-4x+4,所以 f′(x)=x2-4=(x+2)(x-2).令 f′(x)=0,解 得 x=-2 或 x=2. 当 x∈(-∞,-2)时,f′(x)>0,当 x∈(-2,2)时,f′(x)<0,当 x∈(2,+∞)时, f′(x)>0,因此,当 x=-2 时,f(x)有极大值,并且极大值为 f(-2)=238;当 x=2 时,f(x)有极小值,并且极小值为 f(2)=-43.
1 (1)已知f(x)=3x2+6x-6ex+5,则函数f(x)的单调递减区间为
A.(1,+∞)
B.(ln3,+∞)
C.(-∞,ln3)
D.(-∞,+∞)
( D)
【解析】 由题可知f(x)的定义域为R,且f′(x)=6x+6-6ex=6(x+1-ex). 令 g(x) = x + 1 - ex , 则 g′(x) = 1 - ex , x ∈ R . 当 x ∈ ( - ∞ , 0) 时 , g′(x) > 0 ; 当 x∈(0,+∞)时,g′(x)<0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调 递减,则g(x)的最大值为g(0)=0,故g(x)≤0恒成立,故f′(x)≤0在R上恒成立,所 以f(x)在R上单调递减,即函数f(x)的单调递减区间为(-∞,+∞).
利用导数研究函数的性质
链教材·夯基固本
链教材·夯基固本 激活思维
1.若函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,
2015届高考数学一轮总复习 3-2利用导数研究函数的性质
2015届高考数学一轮总复习 3-2利用导数研究函数的性质基础巩固强化一、选择题1.(文)(2012·陕西文,9)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 [答案] D[解析] 由f ′(x )=-2x 2+1x =1x (1-2x )=0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减,当x >2时 f ′(x )>0,f (x )单调递增.所以x =2为极小值点. (理)(2012·陕西理,7)设函数f (x )=x e x ,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点 [答案] D[解析] 本题考查了导数的应用—求函数的极值. f ′(x )=e x +x e x ,令f ′(x )=0, ∴e x +x e x =0,∴x =-1,当x ∈(-∞,-1)时,f ′(x )=e x +x e x <0,x ∈(-1,+∞)时,f ′(x )=e x +x e x >0,∴x =-1为极小值点,故选D.[点评] 求函数的极值要讨论在各区间内导函数值的符号,同时要注意函数的定义域. 2.(2013·贵州四校期末)已知函数f (x )=x 3-2x 2-4x -7,其导函数为f ′(x ).则以下四个命题: ①f (x )的单调减区间是(23,2);②f (x )的极小值是-15;③当a >2时,对任意的x >2且x ≠a ,恒有f (x )>f (a )+f ′(a )(x -a ); ④函数f (x )有且只有一个零点. 其中真命题的个数为( ) A .1个 B .2个 C .3个D .4个[答案] C[解析] f ′(x )=3x 2-4x -4=(3x +2)(x -2),可得f (x )在(-∞,-23)上为增函数,在(-23,2)上为减函数,在(2,+∞)上为增函数,故①错误;f (x )极小值=f (2)=-15,故②正确;在(2,+∞)上,f (x )为“下凸”函数,又a >2,x ≠a ,当x >a 时,有f (x )-f (a )x -a >f ′(a )恒成立;当x <a 时,有f (x )-f (a )x -a <f ′(a )恒成立,故恒有f (x )>f (a )+f ′(a )(x -a ),故③正确;f (x )极大值=f (-23)<0,故函数f (x )只有一个零点,④正确.真命题为②③④,故选C.3.(文)(2013·郑州第一次质量预测)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .2B .-1C .1D .-2[答案] C[解析] ∵直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),且y =x 3+ax +b 的导数y ′=3x 2+a ,∴⎩⎪⎨⎪⎧3=k ×1+13=13+a ×1+b k =3×12+a,解得a =-1,b =3,∴2a +b =1.(理)(2013·昆明调研)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2[答案] C[解析] 依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1,选C.4.(2012·洛阳统考)若函数f (x )=2x 3-9x 2+12x -a 恰好有两个不同零点,则a 可能为( ) A .4 B .6 C .7 D .8 [答案] A[解析] f ′(x )=6x 2-18x +12=6(x -1)(x -2),由f ′(x )>0得x <1或x >2,由f ′(x )<0得1<x <2,所以函数f (x )在(-∞,1),(2,+∞)上单调递增,在(1,2)上单调递减,从而可知f (x )的极大值和极小值分别为f (1)、f (2),欲使函数f (x )恰好有两个不同的零点,则需使f (1)=0或f (2)=0,解得a =5或a =4,而选项中只给出了一个值4,所以选A.5.(文)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在(a,b)内的极大值点有()A.1个B.2个C.3个D.4个[答案] B[解析]由导函数的图象知,f(x)在(a,b)内变化情况为增→减→增→减,故有两个极大值点.(理)(2012·重庆理,8)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如下图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)[答案] D[解析]当x<-2时,1-x>3,则f′(x)>0;当-2<x<1时,0<1-x<3,则f′(x)<0;∴函数f(x)有极大值f(-2),当1<x<2时,-1<1-x<0,则f′(x)<0;x>2时,1-x<-1,则f′(x)>0,∴函数f(x)有极小值f(2),故选D.6.(文)已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为()A.427,0 B .0,427C .-427,0D .0,-427[答案] A[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0.解得⎩⎪⎨⎪⎧p =2,q =-1.∴f (x )=x 3-2x 2+x , 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.(理)(2013·浙江理,8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值 [答案] C[解析] ①当k =1时,f (x )=(e x -1)(x -1),此时f ′(x )=e x (x -1)+(e x -1)=e x ·x -1,∴A 、B 项均错.②当k =2时,f (x )=(e x -1)(x -1)2此时f ′(x )=e x (x -1)2+(2x -2)(e x -1)=e x ·x 2-2x -e x +2=e x (x +1)(x -1)-2(x -1)=(x -1)[e x (x +1)-2],显然f ′(1)=0,x >1时f ′(x )>0,x <1时,在x =1附近x -1<0,e x (x +1)>2,∴f ′(x )<0,故f (x )在x =1处取得极小值.二、填空题7.(文)函数f (x )=x 3+3x 2-9x 的单调减区间为________. [答案] [-3,1][解析] f ′(x )=3x 2+6x -9,由f ′(x )≤0得-3≤x ≤1,∴f (x )的单调减区间为[-3,1]. (理)已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是________.[答案] [-2,-1][解析] 由题意知,点(-1,2)在函数f (x )的图象上,故-m +n =2① 又f ′(x )=3mx 2+2nx ,由条件知f ′(-1)=-3, 故3m -2n =-3②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2, 令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0, 则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0,所以t ∈[-2,-1].[点评] f (x )在区间[t ,t +1]上单调递减,故[t ,t +1]是f (x )的减区间的子集.8.已知函数f (x )=x 3-kx 在区间(-3,-1)上不单调,则实数k 的取值范围是________. [答案] 3<k <27[解析] f ′(x )=3x 2-k .由3x 2-k >0,得x 2>k3,若k ≤0,则f (x )显然在(-3,-1)上单调递增,∴k >0,∴x >k3或x <-k 3. 由3x 2-k <0得-k 3<x <k 3, ∴f (x )在⎝⎛⎭⎫-∞,-k 3上单调递增,在(-k 3,k3)上单调递减,在⎝⎛⎭⎫k 3,+∞上单调递增,由题设条件知-3<-k3<-1,∴3<k <27. 9.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值为3,那么此函数在[-2,2]上的最小值为________.[答案] -37[解析] f ′(x )=6x 2-12x ,由f ′(x )=0得x =0或x =2,当x <0或x >2时,f ′(x )>0,当0<x <2时,f ′(x )<0,∴f (x )在[-2,0]上单调增,在[0,2]上单调减, 由条件知f (0)=m =3,∴f (2)=-5,f (-2)=-37, ∴最小值为-37. 三、解答题10.(文)若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.[解析] 函数f (x )的导数f ′(x )=x 2-ax +a -1. 令f ′(x )=0,解得x =1,或x =a -1.当a -1≤1即a ≤2时,函数f (x )在(1,+∞)上为增函数,不合题意;当a -1>1即a >2时,函数f (x )在(-∞,1)上为增函数,在(1,a -1)上为减函数,在(a -1,+∞)上为增函数.依题意当x ∈(1,4)时,f ′(x )<0; 当x ∈(6,+∞)时,f ′(x )>0. 所以4≤a -1≤6,解得5≤a ≤7. 所以a 的取值范围为[5,7]. (理)已知f (x )=ax 3-2ax 2+b (a ≠0). (1)求出f (x )的极值;(2)若f (x )在区间[-2,1]上最大值是5,最小值是-11,求f (x )的解析式.[解析] (1)f ′(x )=3ax 2-4ax ,令f ′(x )=0⇒x =0或x =43.当a >0时,当x =43时,y 取得极小值b -3227a ,同理当a <0时,x =0时,y 取得极小值b , x =43时,y 取得极大值b -3227a . (2)当a >0时,f (x )在[-2,0)上单调递增,在(0,1]上单调递减, 所以f (x )max =f (0)=b =5. 又f (-2)=b -16a <f (1)=b -a , 所以b -16a =-11,a =1.当a <0时,f (x )在[-2,0)上单调递减,在(0,1]上单调递增, 所以f (x )min =f (0)=b =-11. 又f (-2)=b -16a >f (1)=b -a , 所以b -16a =5,a =-1.综上,f (x )=x 3-2x 2+5或f (x )=-x 3+2x 2-11.能力拓展提升一、选择题11.(文)已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad 等于( )A .2B .1C .-1D .-2[答案] A[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2. (理)已知函数f (x )=ax 2-1的图象在点A (1,f (1))处的切线l 与直线8x -y +2=0平行,若数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和为S n ,则S 2010的值为( )A.20102011B.10052011C.40204021D.20104021[答案] D[解析] ∵f ′(x )=2ax ,∴f (x )在点A 处的切线斜率为f ′(1)=2a ,由条件知2a =8,∴a =4, ∴f (x )=4x 2-1, ∴1f (n )=14n 2-1=12n -1·12n +1=12⎝⎛⎭⎫12n -1-12n +1, ∴数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和S n =1f (1)+1f (2)+…+1f (n )=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝⎛⎭⎫12n -1-12n +1=12⎛⎭⎫1-12n +1=n 2n +1,∴S 2010=20104021. 12.(文)函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1,或x >1}D .{x |x <-1,或0<x <1}[答案] A[解析] 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x-e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.(理)(2013·湖北理,10)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ) A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12[答案] D[解析] 由题意知,函数f (x )=x (ln x -ax )=x ln x -ax 2有两个极值点, 即f ′(x )=ln x +1-2ax =0在区间(0,+∞)上有两个根.令h (x )=ln x +1-2ax ,则h ′(x )=1x -2a =-2ax +1x ,当a ≤0时h ′(x )>0,h (x )在区间(0,+∞)上递增,f ′(x )=0不可能有两个正根,∴a >0.由h ′(x )=0,可得x =12a ,从而可知h (x )在区间(0,12a )上递增,在区间(12a,+∞)上递减.因此需h (12a )=ln 12a +1-1=ln 12a >0,即12a >1时满足条件,故当0<a <12时,h (x )=0有两个根x 1,x 2,且x 1<12a<x 2.又h (1)=1-2a >0,∴x 1<1<12a <x 2,从而可知函数f (x )在区间(0,x 1)上递减,在区间(x 1,x 2)上递增,在区间(x 2,+∞)上递减.∴f (x 1)<f (1)=-a <0,f (x 2)>f (1)=-a >-12.故选D.二、填空题13.(文)(2013·天津一中月考)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b 的值为________.[答案] -7[解析] f ′(x )=3x 2+6ax +b ,若在x =-1处有极值0,则⎩⎪⎨⎪⎧f ′(-1)=3-6a +b =0,f (-1)=-1+3a -b +a 2=0, 解得⎩⎪⎨⎪⎧ a =2,b =9或⎩⎪⎨⎪⎧a =1,b =3,但当a =1,b =3时,f ′(x )=3(x +1)2≥0,不合题意, 故a -b =-7.(理)(2013·课标全国Ⅰ理,16)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值为________.[答案] 16[解析] ∵函数f (x )的图象关于直线x =-2对称, ∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即⎩⎪⎨⎪⎧ b =-15(16-4a +b ),0=-8(9-3a +b ),解得⎩⎪⎨⎪⎧a =8,b =15.∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0, 得x 1=-2-5,x 2=-2,x 3=-2+ 5.易知,f (x )在(-∞,-2-5)上为增函数,在(-2-5,-2)上为减函数,在(-2,-2+5)上为增函数,在(-2+5,+∞)上为减函数.∴f (-2-5)=[1-(-2-5)2][(-2-5)2+8(-2-5)+15] =(-8-45)(8-45) =80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15] =-3(4-16+15)=-9.f (-2+5)=[1-(-2+5)2][(-2+5)2+8(-2+5)+15] =(-8+45)(8+45) =80-64=16. 故f (x )的最大值为16.14.(文)已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________.[答案] -13[解析] 求导得f ′(x )=-3x 2+2ax ,由函数f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x ,易知f (x )在(-1,0)上单调递减,在(0,1)上单调递增,∴当m ∈[-1,1]时,f (m )min =f (0)=-4.又∵f ′(x )=-3x 2+6x 的图象开口向下,且对称轴为x =1,∴当n ∈[-1,1]时,f ′(n )min =f ′(-1)=-9.故f (m )+f ′(n )的最小值为-13.(理)(2013·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.[答案] -3e[解析] f ′(x )=1x +m x 2=x +mx2(x >0),当m >0时,f ′(x )>0,f (x )在区间[1,e]上为增函数, f (x )有最小值f (1)=-m =4, 得m =-4,与m >0矛盾.当m <0时,若-m <1即m >-1,f (x )min =f (1)=-m =4, 得m =-4,与m >-1矛盾;若-m ∈[1,e],即-e ≤m ≤-1,f (x )min =f (-m )=ln(-m )+1=4, 解得m =-e 3,与-e ≤m ≤-1矛盾;若-m >e ,即m <-e 时,f (x )min =f (e)=1-me =4,解得m =-3e ,符合题意.三、解答题15.(文)设函数f (x )=x 3-3ax +b (a ≠0).(1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a 、b 的值; (2)求函数f (x )的单调区间与极值点. [解析] (1)f ′(x )=3x 2-3a .因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=8.即⎩⎪⎨⎪⎧12-3a =0,8-6a +b =8.解得a =4,b =24. (2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增;此时函数f (x )没有极值点. 当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增.∴f (x )的单调增区间为(-∞,-a )和(a ,+∞),单调减区间为(-a ,a ). 故x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点. (理)(2013·昆明调研)设f (x )=ln x +ax (a ∈R 且a ≠0). (1)讨论函数f (x )的单调性;(2)若a =1,证明:x ∈[1,2]时,f (x )-3<1x成立.[解析] (1)函数f (x )的定义域为(0,+∞),f ′(x )=1x +a ,当a >0时,f ′(x )>0,∴函数f (x )在(0,+∞)上是增函数. 当a <0时,f ′(x )=ax +1x,由f ′(x )>0得0<x <-1a ;由f ′(x )<0得,x >-1a.∴函数f (x )在(0,-1a )上是增函数;在(-1a ,+∞)上是减函数.(2)当a =1时,f (x )=ln x +x , 要证x ∈[1,2]时,f (x )-3<1x成立,只需证x ln x +x 2-3x -1<0在x ∈[1,2]时恒成立. 令g (x )=x ln x +x 2-3x -1,则g ′(x )=ln x +2x -2, 设h (x )=ln x +2x -2,则h ′(x )=1x+2>0,∴h (x )在[1,2]上单调递增,∴g ′(1)≤g ′(x )≤g ′(2),即0≤g ′(x )≤ln2+2,∴g (x )在[1,2]上单调递增,∴g (x )≤g (2)=2ln2-3<0,∴当x ∈[1,2]时,x ln x +x 2-3x -1<0恒成立,即原命题得证.考纲要求1.了解函数单调性和导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 3.了解函数在某点取得极值的必要条件和充分条件.4.会用导数求函数的极大值、极小值,会用导数求闭区间上函数的最大(小)值(其中多项式函数一般不超过三次).补充说明1.抓住三个考点:用导数求函数的单调区间、极值与最值,明确两个条件:一是f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的充分条件.二是对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件;掌握利用导数讨论函数单调性、极(最)值的基本方法步骤.明确极值与最值的区别.牢记定义域的限制;防范错误的认为极值点就是最值点,导数为0的点就是极值点,f (x )单调递增⇔f ′(x )>0.2.求函数的极值、最值时,要严格按解题步骤规范条理的写出解答过程,养成列表的习惯,含参数时注意分类讨论,已知单调性求参数的值域或取值范围时,要注意其中隐含f ′(x )≥0(或f ′(x )≤0)恒成立.还要注意f (x )在区间A 上单调增(或减)与f (x )的单调增(或减)区间是A 的区别.3.易错警示[例]已知函数f (x )=ax 3+3x 2-x +1在R 上是减函数,求a 的取值范围. [错解] 求函数的导数f ′(x )=3ax 2+6x -1,当f ′(x )<0时,f (x )是减函数,则f ′(x )=3ax 2+6x -1<0(x ∈R ).故⎩⎪⎨⎪⎧a <0,Δ<0.解得a <-3.[错因分析] f ′(x )<0(x ∈(a ,b ))是f (x )在(a ,b )上单调递减的充分不必要条件,在解题过程中易误作是充要条件,如f (x )=-x 3在R 上递减,但f ′(x )=-3x 2≤0.[正确解答] 函数的导数f ′(x )=3ax 2+6x -1,∵f (x )是减函数,∴f ′(x )=3ax 2+6x -1≤0(x ∈R ).故⎩⎪⎨⎪⎧a <0,Δ≤0,解得a ≤-3.综上a 的取值范围是a ≤-3. 4.如何利用导数证明不等式导数作为一种研究数学知识的工具,在求函数单调性、最值等方面发挥了独特的作用,同样,我们也可以利用导数完成一些不等式的证明问题,其关键在于要构造好函数的形式,转化为研究函数的单调性、最值或值域问题,一般难度较大.[例] (2012·山东)已知函数f (x )=ln x +ke x (k 为常数,e =2.71828…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.[审题要点] (1)由已知,求导后利用方程f ′(1)=0即可求出k 的值;(2)讨论f ′(x )在(0,+∞)上的符号可得出函数f (x )的单调区间;(3)变换g (x )=x +1e x (1-x -x ln x ),适当构造函数,证明0<x +1e x <1,1-x -x ln x ≤1+e-2即可.[规范解答] (1)解:由f (x )=ln x +ke x, 得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1.(2)解:由(1)得f ′(x )=1x ex (1-x -x ln x ),x ∈(0,+∞),令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)证明:因为g (x )=(x 2+x )f ′(x ),所以g (x )=x +1e x (1-x -x ln x ),x ∈(0,+∞).因此,对任意x >0,g (x )<1+e-2等价于1-x -x ln x <e x x +1(1+e -2).由(2)知h (x )=1-x -x ln x ,x ∈(0,+∞),所以h ′(x )=-ln x -2=-(ln x -lne -2),x ∈(0,+∞).因此,当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减.所以h (x )的最大值为h (e -2)=1+e -2.故1-x -x ln x ≤1+e -2.设φ(x )=e x -(x +1),则φ′(x )=e x -1=e x -e 0,所以当x ∈(0,+∞)时,φ′(x )>0,φ(x )单调递增,φ(x )>φ(0)=0, 故当x ∈(0,+∞)时,φ(x )=e x -(x +1)>0, 即e x x +1>1. 所以1-x -x ln x ≤1+e -2<e x x +1(1+e -2).因此对任意x >0,g (x )<1+e -2.备选习题1.已知非零向量a 、b 满足|a |=3|b |,若函数f (x )=13x 3+|a |x 2+2a ·b x +1在R 上有极值,则〈a ,b 〉的取值范围是( )A .[0,π6]B .(0,π3]C .(π6,π2]D .(π6,π][答案] D[解析] 据题意知,f ′(x )=x 2+2|a |x +2a ·b ,若函数存在极值,必有(2|a |)2-4×2a ·b >0,整理可得|a |2>2a ·b ,故cos 〈a ,b 〉=a ·b |a |·|b |<|a |22|a |·|a |3=32,解得π6<〈a ,b 〉≤π.2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )[答案] D[解析] 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间上单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0.对任意正数a 、b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )[答案] A[解析] ∵xf ′(x )+f (x )≤0,又f (x )≥0, ∴xf ′(x )≤-f (x )≤0.设y =f (x )x ,则y ′=x ·f ′(x )-f (x )x 2≤0,故y =f (x )x 为减函数或为常数函数.又a <b ,∴f (a )a ≥f (b )b ,∵a 、b >0,∴a ·f (b )≤b ·f (a ).[点评] 观察条件式xf ′(x )+f (x )≤0的特点,可见不等式左边是函数y =xf (x )的导函数,故可构造函数y =xf (x )或y =f (x )x通过取导数利用条件式来得到函数的单调性推得结论.4.(2013·山西诊断)设D 是函数y =f (x )定义域内的一个区间,若存在x 0∈D ,使f (x 0)=-x 0,则称x 0是f (x )的一个“次不动点”.若函数f (x )=ax 2-3x -a +52在区间[1,4]上存在次不动点,则实数a的取值范围是( )A .(-∞,0)B .(0,12)C .[12,+∞)D .(-∞,12][答案] D[解析] 设g (x )=f (x )+x ,依题意,存在x ∈[1,4],使g (x )=f (x )+x =ax 2-2x -a +52=0.当x =1时,g (1)=12≠0;当x ≠1时,由ax 2-2x -a +52=0得a =4x -52(x 2-1).记h (x )=4x -52(x 2-1)(1<x ≤4),则由h ′(x )=-2x 2+5x -2(x 2-1)2=0得x =2或x =12(舍去).当x ∈(1,2)时,h ′(x )>0;当x ∈(2,4)时,h ′(x )<0,即函数h (x )在(1,2)上是增函数,在(2,4)上是减函数,因此当x =2时,h (x )取得最大值,最大值是h (2)=12,故满足题意的实数a 的取值范围是(-∞,12],选D.5.(2013·安庆模拟)定义在R 上的函数f (x )满足(x +2)f ′(x )<0(其中f ′(x )是函数f (x )的导数),又a =f (log 123),b =f [(13)0.1],c =f (ln3),则a ,b ,c 的大小关系为______.(从大到小排列)[答案] a >b >c[解析] 因为-2=log 124<log 123<log 121=0,0<(13)0.1<(13)0=1,ln3>ln e =1,因而-2<log 123<(13)0.1<ln3.由(x +2)f ′(x )<0知,当x >-2时,f ′(x )<0,所以f (x )在(-2,+∞)上是减函数,从而f (log 123)>f [(13)0.1]>f (ln3),即a >b >c .6.(2012·湖南长郡中学一模)已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.[答案] (1,2)[解析] ∵导函数是偶函数,∴原函数f (x )是奇函数,且定义域为(-1,1),又由导数值恒大于0,∴原函数在定义域上单调递增,∴所求不等式变形为f (1-x )<f (x 2-1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).。
高考复习-利用导数研究函数的单调性及极值和最值
利用导数研究函数的单调性及极值和最值知识集结知识元利用导数研究函数的单调性问题知识讲解1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.例题精讲利用导数研究函数的单调性问题例1.函数f(x)=e x-3x+2的单调减区间为__________.例2.若函数y=-x3+ax在[1,+∞)上是单调函数,则a的最大值是___.例3.函数f(x)=sin x-x,x∈(0,)的单调递增区间是_______.利用导数研究函数的极值与最值问题知识讲解1.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f (x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.2.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f (x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.例题精讲利用导数研究函数的极值与最值问题例1.函数y=lnx-e x在[1,e]最大值为()A.1-e e B.C.-eD.例2.己知定义域为(1,+∞)的函数f(x)=e x+a-ax,若f(x)>0恒成立,则正实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)例3.函数f(x)=x2-lnx的最小值为()A.1+ln2B.1-ln2C.D.当堂练习单选题练习1.定义在R上的函数f(x)的导函数为f'(x),且,若存在实数x使不等式f(x)≤m2-am-3对于a∈[0,2]恒成立,则实数m的取值范围为()A.(-∞,-2]∪[2,+∞)B.C.D.练习2.若函数f(x)与g(x)满足:存在实数t,使得f(t)=g'(t),则称函数g(x)为f(x)的“友导”函数.已知函数为函数f(x)=x2lnx+x的“友导”函数,则k的取值范围是()A.(-∞,1)B.(-∞,2]C.(1,+∞)D.[2,+∞)练习3.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=e x(x-2)且f(3)=0,则不等式f(x)<0的解集为()A.(0,2)B.(0,3)C.(2,3)D.(3,+∞)练习4.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),f(x)>0且f(e)=1,若xf′(x)lnx+f(x)>0对任意x∈(0,+∞)恒成立,则不等式<lnx的解集为()A.{x|0<x<1}B.{x|x>1}C.{x|x>e}D.{x|0<x<e}练习5.已知函数f(x)=x3-x2+ax-a存在极值点x0,且f(x1)=f(x0),其中x1≠x0,x1+2x0=()A.3B.2C.1D.0练习6.若函数f(x)=e x+axlnx(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.(-∞,-e)B.(-∞,-2e)C.(e,+∞)D.(2e,+∞)填空题练习1.已知函数f(x)=,若∃,使得f(f(x0))=x0,则m的取值范围是_________练习2.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习3.已知函数,若当x1,x2∈[1,3]时,都有f(x1)<2f(x2),则a的取值范围为______________.练习4.若函数f(x)=e-x(x2+ax-a)在R上单调递减,则实数a的值为____.练习5.已知函数,g(x)=|x-t|,t∈(0,+∞).若h(x)=min{f(x),g (x)}在[-1,3]上的最大值为2,则t的值为___.练习6.已知函数f(x)=x3-ax2在(-1,1)上没有最小值,则a的取值范围是_________.解答题练习1.'已知函数f(x)=e x-a(x+1),其中a∈R.(1)讨论f(x)的单调性;(2)若a>0时,函数f(x)恰有一个零点,求实数a的值.(3)已知数列{a n}满足a n=,其前n项和为S n,求证S n>ln(n+1)(其中n∈N).'练习2.'已知函数f(x)=(a∈R).(1)当a=1时,求f(x)的单调区间;(2)设点P(x1,y1),Q(x2,y2)是函数f(x)图象的不同两点,其中0<x1<1,x2>1,是否存在实数a,使得OP⊥OQ,且函数f(x)在点Q切线的斜率为f′(x1-),若存在,请求出a的范围;若不存在,请说明理由.'练习3.'已知函数f(x)=x2+ax-alnx(1)若函数f(x)在上递减,在上递增,求实数a的值.(2)若函数f(x)在定义域上不单调,求实数a的取值范围.(3)若方程x-lnx-m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.'练习4.'已知函数f(x)=xlnx-x2-ax+1,a>0,函数g(x)=f′(x).(1)若a=ln2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.'练习5.'已知函数f(x)=e x-ax-b.(其中e为自然对数的底数)(Ⅰ)若f(x)≥0恒成立,求ab的最大值;(Ⅱ)设g(x)=lnx+1,若F(x)=g(x)-f(x)存在唯一的零点,且对满足条件的a,b不等式m(a-e+1)≥b恒成立,求实数m的取值集合.'。
新高考 高中数学 选修三 课件+类型题6.2.1 导数与函数的单调性
(2)如果在(a,b)内, f′(x)<0 ,则 f(x)在此区间是减函 数,(a,b)为 f(x)的单调减区间.
上述结论可用图来直观理解. 图 1-3-1
典型例题
类型一、导数与单调性的关系 例 1、设函数 f(x)在定义域内可导,y=f(x)的图象如图 1 -3-2 所示,则导函数 y=f′(x)可能为( )
(2)由题意知 f(x)=ln x-2ax 的定义域为(0,+∞), 又 f′(x)=1x-2a, 因为 a>0,x>0,令1x-2a>0,则 1-2ax>0. 所以在 x∈(0,21a)时,f(x)=ln x-2ax 是增函数; 在 x∈(21a,+∞)时,f(x)=ln x-2ax 是减函数. 所以当 a>0 时,函数 f(x)的单调增区间是(0,21a), 函数 f(x)的单调减区间是(21a,+∞).
【答案】 C
类型二、利用导数研究函数的单调性 例 2、讨论函数 f(x)=1ax2+x-(a+1)ln x(a≥0)的单调性.
2 【思路探究】 按照导数研究函数单调性的步骤求解.
【自主解答】 函数 f(x)的定义域为(0,+∞), f′(x)=ax+1-a+x 1=ax2+x-x a+1, (1)当 a=0 时,f′(x)=x-x 1, 由 f′(x)>0,得 x>1;由 f′(x)<0,得 0<x<1. 所以,f(x)在(0,1)内为减函数,在(1,+∞)内为增函数;
方法点评:
利用导数研究函数单调性的方法 第一步:求定义域,对函数求导; 第二步:解导数等于 0 时的方程; 第三步:导数大于 0 的区间与定义域求交集为增区间, 小于 0 的区间与定义域求交集为减区间,即“正增负减”.
高三数学二轮复习教学案一体化:利用导数研究函数的性质
专题二——利用导数研究函数的性质高考趋势导数作为进入高中考试范围的新内容,在考试中占比较大.常利用导数研究函数的性质,主要是利用导数求函数的单调区间、求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。
试题主要先判断或证明函数的单调区间,其次求函数的极值和最值,有时涉及用函数的单调性对不等式进行证明。
考点展示1.二次函数y f x =()的图象过原点且它的导函数y f x ='()的图象是如图所示的一条直线,则y f x =()图象的顶点在第 一 象限 2.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别 为(04)(20)(64),,,,,,则((0))f f = 2 ; 函数()f x 在1x =处的导数(1)f '= -2 .3.曲线324y x x =-+在点(13),处的切线的倾斜角为 45° 4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a 15.设R a ∈,若函数ax e y x+=,R x ∈有大于零的极值点,则a 的取值范围1-<a6.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为 2 . 7.已知函数3()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=__32_ _ 8.过点P (2,8)作曲线3x y =的切线,则切线方程为_ 12x-y-16=0或3x-y+2=0 样题剖析例1、设函数323()(1)1,32a f x x x a x a =-+++其中为实数。
(Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。
10导数研究函数的性质
/ 产 知识点扫描 。 。
1 .关 于 z的 函 数 f( 1 z ) 一 +3 z +3 — n的 极
+c x 。 ) , 所以本题就是要求 厂( - z ) ≤o 在( o , +c x 。 ) 上有
实数解.
值点 的个数有
一
时, g ( ) ≤O , 因此 当 x E E o , 1 ] 时, g ( z ) 为减 函数 , 从
而当x E[ o , 1 ] 时, g ( z ) E[ g ( 1 ) , g ( O ) 3 .
有解 , 从 而导致错误. 在研究 函数 的有关性 质时 , 一定 要注意优先考虑定义域. 例 2 将 函 数 y— l n x一 2的 图 象 按 向量 n 一
/( z ) ≤0有实数解 , 考 虑到 函数 的定义 域为 ( 0 ,
( 一1 , 2 ) 平移 得到函数 一, ( ) 的图象 , 求证: 当 >
平 移 得 到 函 数 一 ’ ( ) 一l n ( + 1 ) . 令 g( z) 一 ( z) 一 兰 ± 2 二 兰一
( + 2 ) 。
2 ] 单调递增 , 又 由于 厂 ( z ) 在[ 一2 , 一1 ] 上单调递减 , 因此 _ 厂 ( 2 ) 和厂 ( ~1 ) 分别是 _ 厂 ( z ) 在 区间[ 一2 , 2 ] 上 的最 大值和
因为 函数 的定义域 为( O , +c o ) , 则a X +2 z 一1 ≥O应
有x > O的解 .
3 . /( o ) 一0 是可导函数 一, ( z ) 在点z —z o 处
有极值 的 条件.
, , y = )
( 1 )当 a >O时 , =n 。 +2 一1 为开 口向上的抛
高考复习用导数研究三次函数的性质
专题:用导数研究三次函数的性质★★★教学目标1、 掌握三次函数的定义和解析式;2、 掌握用导数求三次函数的切线方程、单调区间、极值和最值;3、 能利用三次函数的图象和性质解决与三次函数有关的问题.知识梳理1.三次函数的定义:形如 的函数叫做三次函数. 2.三次函数的几种表达式:(1)一般形式: ;(2)已知函数的对称中心为),(n m ,则()f x = ;(3)已知函数图象与x 轴三个交点的横坐标)(,,γ<β<αγβα,则()f x = ; (4)已知函数图象与x 轴的一个交点的横坐标0x ,则()f x = . 3.三次函数)0()(23>+++=a d cx bx ax x f 的性质:2()32(0)f x ax bx c a '=++>,则2()320f x ax bx c '=++=的判别式222124(4)b ac b ac =-=-△().(1)函数的定义域为 ,值域为 ;(2)单调性:①若22120b ac =-≤△(),此时函数()f x 在上 是增函数;②若22120b ac =->△(),令2()320f x ax bx c '=++=两根为12,x x 且12x x <,则()f x 在上 单调递增,在 上单调递减;(3)极值:①若 ,此时函数无极值;②若0△>,且2()320f x ax bx c '=++=两根为12,x x 且12x x <,此时函数()f x 在 处取极大值 ,在 处取极小值 . 答案:1.)0(23≠+++=a d cx bx ax y .2.(1)32()(0)f x ax bx cx d a =+++≠;(2)3()()(0)A x m B x m n a -+-+≠;(3)()()()(0)a x x x a αβγ---≠;(4)20()()(0)x x ax mx n a -++≠.3.(1)R , R ;(2)①R ;②12(,),()x x -∞+∞,12(,)x x ;(3)①0≤△,②1x x =,)(1x f ,2x x =,)(2x f .思维升华:1. 三次函数d cx bx ax x f +++=23)(当且仅当 时是奇函数?2. 三次函数d cx bx ax x f +++=23)(的图象是对称图形吗?如果是,那么对称中心或对称轴是什么? 答案:1. 0==d b .2.图象关于点))3(,3(abf a b --中心对称. 证明如下:三次函数d cx bx ax x f +++=23)(关于点(m ,n )对称的充要条件是n x m f x m f 2)()(=++-,即])()()([23d x m c x m b x m a +-+-+-+32[()()a m x b m x +++ ()]2c m x d n +++=,整理得,n d mc bm am x b ma 2)2222()26(232=+++++,据多项式恒等对应系数相等,可得a b m 3-=且d mc bm am n +++=23=)3()(abf m f -=,从而三次函数是中心对称曲线,且对称中心是))3(,3(abf a b --. 典例精讲30 min.例1(★★★)(全国卷2文)已知函数f (x )=x 3-3ax 2+3x+1. (Ⅰ)设a=2,求f (x )的单调期间;(Ⅱ)设f (x )在区间(2,3)中至少有一个极值点,求的取值范围.分析:(1)求出函数的导数,由导数大于0,可求得增区间,由导数小于0,可求得减区间.(2)求出函数的导数'()f x ,在(2,3)内有极值,即为'()f x 在(2,3)内有一个零点,即可根据'(2)'(3)0f f <,即可求a 出的取值范围.解:当2a =时,32()631f x x x x =-++,'()3(23)(23)f x x x =--,当(,23)x ∈-∞时,'()0f x >,()f x 在(,23)-∞单调增加; 当(23,23)x ∈时,'()0f x <,()f x 在(23,23)单调减少; 当(23,)x ∈+∞时,'()0f x >,()f x 在(23,)+∞单调增加.综上所述,()f x 的单调增区间是(,23)(23,)-∞+∞和.()f x 的单调减区间是(23,23).(II ))22'()3[()1]f x x a a =-+-.当210a -≥时, '()0f x >,()f x 为增函数,故()f x 无极值点;当210a -<时,'()0f x =有两个根12x a x a ==+由题意知,23a << ①或23a < ② ①式无解,②式的解为5543a <<, 因此a 的取值范围是5543⎛⎫ ⎪⎝⎭,. 点评:三次函数的单调性判定与一般函数一样,利用函数的导数来求解,求极值时,要注意函数取得极值时的充要条件. 巩固练习(★★★)已知函数f (x )=-x 3+3x 2+9x +a , (I )求f (x )的单调递减区间;(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 解析:(I ) 0)(,963)(2<'++-='x f x x x f 令,解得x <-1或x >3 所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞). (II ))}2(),2(max{)(,5)1()(,3212m ax m in f f x f a f x f -=+-=-=∴<<-<-(2)2,(2)22,(2)(2)f a f a f f -=+=+∴>-,于是有 22+a =20,解得 a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=-7, 即函数f (x )在区间[-2,2]上的最小值为-7.例2(★★★)已知函数f (x )=3231()2ax x x R -+∈,其中a>0. (Ⅰ)若a=1,求曲线y=f (x )在点(2,f (2))处的切线方程; (Ⅱ)若在区间11,22⎡⎤-⎢⎥⎣⎦上,f (x )>0恒成立,求a 的取值范围. 分析:先求切点坐标,再利用导数求出切线斜率,可得切线方程;再利用三次函数的图象求解函数的极值来解不等式.解:(Ⅰ)当a=1时,f (x )=323x x 12-+,f (2)=3;'()f x =233x x -, '(2)f =6.所以曲线y=f (x )在点(2,f (2))处的切线方程为y-3=6(x-2),即y=6x-9.(Ⅱ)'()f x =2333(1)ax x x ax -=-.令'()f x =0,解得x=0或x=1a.以下分两种情况讨论: (1) 若110a 2<≤≥,则,当x 变化时,'()f x ,f (x )的变化情况如下表: 当11x f x 22⎡⎤∈-⎢⎥⎣⎦,时,()>0等价于5a 10,()0,8215a ()0,0.28f f -⎧⎧>->⎪⎪⎪⎪⎨⎨+⎪⎪>>⎪⎪⎩⎩即 解不等式组得-5<a<5.因此0a 2<≤.(2) 若a>2,则11<<.当x 变化时,'()f x ,f (x )的变化情况如下表:当11x 22⎡⎤∈-⎢⎥⎣⎦,时,f (x )>0等价于1f(-)21f()>0,a ⎧⎪⎪⎨⎪⎪⎩>0,即25811->0.2a a -⎧⎪⎪⎨⎪⎪⎩>0,解不等式组得52a <<或2a <-.因此2<a<5. 综合(1)和(2),可知a 的取值范围为0<a<5.点评:三次函数的切线问题,要看清问题是在某点处的切线,还是过某点的切线,确定切线的切点是关键点.利用函数的图象来求解不等式也是常用之法. 巩固练习(★★★)已知函数xxxxf3231)(23+-=(Rx∈)的图象为曲线C.(1)求过曲线C上任意一点的切线的倾斜角的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围;解析:(1)34)(2+-='xxxf,则11)2()(2-≥--='xxf,即过曲线C上任意一点的切线斜率的取值范围是[)+∞-,1;故倾斜角取值范围为3[0,)[,)24πππ⋃.(2)由(1)可知,⎪⎩⎪⎨⎧-≥--≥111kk解得01<≤-k或1≥k,由03412<+-≤-xx或1342≥+-xx.得:(][)+∞+-∞-∈,22)3,1(22,x;例3(★★★)设Ra∈,讨论关于x的方程0323=-+axx的相异实根的个数?分析:讨论三次方程的根的问题,可化为讨论三次函数的极值点与x轴之间的关系问题.解:0,263)()(212=-==+='xxxxxfxf的两根为导函数函数,,fxffxf0)0()(,4)2()(==-∴的极小值是的极大值是函数如图所示,(1)当0<a或4>a时,函数)(xf与)(xg只有一个交点,即方程只有一个根.(2)当0=a或4=a时,函数)(xf与)(xg只有两个交点,即方程只有两个根.(3)当40<<a时,函数)(xf与)(xg有三个交点,方程有三个根.点评:讨论三次函数的极值的大小与0的关系,可以解决三次方程根的个数问题.可以总结如下的经验:从数形结合的视角看三次方程320(0)ax bx cx d a+++=>的实数根:(1)若22120b ac =-≤△(),方程有且只有一个实数解;(2)若22120b ac =->△(),令2()320f x ax bx c '=++=两根为12,x x 且12x x <, ①若0)()(21<⋅x f x f ,则方程有三个不同的实数解)(,,γ<β<αγβα,且有γ<<β<<α21x x ,②若0)(0)(21==x f x f 或,则方程有两个不同的实数解,③若0)()(21>⋅x f x f ,则方程有且只有一个实数解α,且21x x >α<α或, 巩固练习(★★★)若函数()33f x x x a =-+有3个不同的零点,则实数a 的取值范围是 .答案:()2,2- 解析:2'()33f x x =-,则'()0f x =可得1x =±,则有(1)0(1)0f f <⎧⎨->⎩,可解得22x -<<.回顾总结4 min.1.容易忽视三次函数的切线的特殊性而出错.例如3()2f x x x =-+经过(1,2)P 有几条切线?常见的错解有:把P 点当做切点,判定经过P 点只有一条,而实际上要分是否为切点两种情况来看. 2.容易忽视三次函数的图象的特殊性而出错.例如在讨论三次方程有三个根的问题时,不知道函数的极大值大于0且函数的极小值小于0.典型错题反思反思是自觉地对数学认知活动进行分析、总结、评价和调控的过程,是一种自我挑战、自我完善和自我超越,是优化解法、深化思维的有效手段,是高效的学习方法、最佳的纠错手段,是走出“题海”的最有效途径.请整理出本课时的典型错误,找出错因,并从审题、知识、方法和策略的层面进行反思! 我的错题:错因:反思:。
(整理)利用导数研究函数的性质.
(整理)利⽤导数研究函数的性质.专题三利⽤导数研究函数的性质1. f ′(x )>0在(a ,b )上成⽴是f (x )在(a ,b )上单调递增的充分不必要条件.2. f (x )在(a ,b )上是增函数的充要条件是f ′(x )≥0,且f ′(x )=0在有限个点处取到. 3.对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的必要条件,但并不充分. 4.如果连续函数f (x )在区间(a ,b )内只有⼀个极值点,那么这个极值点就是最值点.在解决实际问题中经常⽤到这⼀结论.1.已知函数f (x )=ln a +ln xx在[1,+∞)上为减函数,则实数a 的取值范围为__________.答案 [e ,+∞)解析 f ′(x )=1x·x -(ln a +ln x )x 2=1-(ln a +ln x )x 2,因为f (x )在[1,+∞)上为减函数,故f ′(x )≤0在[1,+∞)上恒成⽴,即ln a ≥1-ln x 在[1,+∞)上恒成⽴.设φ(x )=1-ln x ,φ(x )max =1,故ln a ≥1,a ≥e. 2.设函数f (x )=ax 3-3x +1 (x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成⽴,则实数a的值为________.答案 4解析若x =0,则不论a 取何值,f (x )≥0显然成⽴;当x >0,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间0,12上单调递增,在区间12,1上单调递减,因此g (x )max =g 12=4,从⽽a ≥4.当x <0,即x ∈[-1,0)时,同理a ≤3x 2-1x3.g (x )在区间[-1,0)上单调递增,∴g (x )min =g (-1)=4,从⽽a ≤4,综上可知a =4.3.若函数f (x )的导函数为f ′(x )=-x (x +1),则函数g (x )=f (log a x )(0__________.答案1,1a 解析由f ′(x )=-x (x +1)≤0,得x ≤-1或x ≥0,即f (x )的减区间为(-∞,-1],[0,+∞),则f (x )的增区间为[-1,0].∵0a 时,g (x )为减函数,∴g (x )的单调减区间为1,1a . 4.直线l 与函数y =3x +1x的图象相切于点P ,且与直线x =0和y =3x 分别交于A ,B 两点,则APBP=________. 答案 1解析设P x 0,3x 0+1x 0,则在点P 处的切线⽅程为y -3x 0+1x 0=3-1x 20(x -x 0),与y =3x 联⽴解得x B =2x 0,所以AP BP =x P x P -x B =x 0x 0-2x 0=1. 5.函数f (x )=12x 2-ln x 在[1,e]上的最⼤值为________.答案 12解析∵f ′(x )=x -1x ,∴当x ∈(1,e)时,f ′(x )>0,∴f (x )在[1,e]上是增函数,故f (x )min =f (1)=12.题型⼀利⽤导数求函数的单调区间例1 已知函数f (x )=x 3+ax 2-x +c ,且a =f ′23.(1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.解 (1)由f (x )=x 3+ax 2-x +c ,得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′23=3×232+2a ×23-1,解之,得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c .则f ′(x )=3x 2-2x -1=3x +13(x -1),列表如下:所以f (x )的单调增区间是(-∞,-13)和(1,+∞);f (x )的单调减区间是-13,1. (3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x ,有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成⽴.只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞).探究提⾼利⽤导数研究函数单调性的⼀般步骤:(1)确定函数的定义域; (2)求导数f ′(x );(3)①若求单调区间(或证明单调性),只需在函数f (x )的定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成⽴问题求解.设函数f (x )=x (e x -1)-ax 2.(1)若a =12,求f (x )的单调区间;(2)若当x ≥0时,f (x )≥0,求a 的取值范围.解 (1)a =12时,f (x )=x (e x -1)-12x 2,f ′(x )=e x -1+x e x -x =(e x -1)(x +1).当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 故f (x )在(-∞,-1),(0,+∞)上单调递增,在(-1,0)上单调递减.(2)f (x )=x (e x -1-ax ),令g (x )=e x -1-ax ,g ′(x )=e x -a .若a ≤1,则当x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数,⽽g (0)=0,从⽽当x ≥0时,g (x )≥0,即f (x )≥0. 若a >1,则当x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数,⽽g (0)=0,从⽽当x ∈(0,ln a )时,g (x )<0,即f (x )<0. 综合得a 的取值范围为(-∞,1].题型⼆已知单调区间求参数范围例2 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为⾃然对数的底数).(1)当a =2时,求函数f (x )的单调增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围.解 (1)当a =2时,f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2所以函数f (x )的单调增区间是[-2,2].(2)因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成⽴.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成⽴.因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成⽴,即a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成⽴.令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增,所以y <(1+1)-11+1=32.即a ≥32.因此a 的取值范围为a ≥32.探究提⾼ (1)根据函数的单调性确定参数范围是⾼考的⼀个热点题型,其根据是函数在某区间上单调递增(减)时,函数的导数在这个区间上⼤(⼩)于或者等于零恒成⽴,转化为不等式恒成⽴问题解决.(2)在形式上的⼆次函数问题中,极易忘却的就是⼆次项系数可能等于零的情况,这样的问题在导数单调性的讨论中是经常遇到的,值得特别注意.已知函数f (x )=axx 2+b在x =1处取得极值2.(1)求函数f (x )的表达式;(2)当m 满⾜什么条件时,函数f (x )在区间(m,2m +1)上单调递增?解 (1)因为f ′(x )=a (x 2+b )-ax (2x )(x 2+b )2,⽽函数f (x )=axx 2+b在x =1处取得极值2,所以f ′(1)=0,f (1)=2,即?a (1+b )-2a =0,a1+b =2,得a =4b =1,所以f (x )=4x1+x 2即为所求.(2)由(1)知f ′(x )=4(x 2+1)-8x 2(x 2+1)2=-4(x -1)(x +1)(1+x 2)2. 令f ′(x )=0得x 1=-1,x 2=1,则f (x )的增减性如下表:可知,f (x )的单调增区间是[-1,1],所以m ≥-12m +1≤1?-1m <2m +1,所以当m ∈(-1,0]时,函数f (x )在区间(m,2m +1)上单调递增.题型三函数的极值、最值应⽤问题例3 设函数f (x )=x 4+ax 3+2x 2+b (x ∈R ),其中a ,b ∈R .(1)当a =-103时,讨论函数f (x )的单调性;(2)若函数f (x )仅在x =0处有极值,求a 的取值范围;(3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成⽴,求b 的取值范围.思维启迪:f (x )≤1在[-1,0]上恒成⽴,转化为f (x )在[-1,0]上的最⼤值f (x )max ≤1. 解 (1)f ′(x )=4x 3+3ax 2+4x =x (4x 2+3ax +4).当a =-103时,f ′(x )=x (4x 2-10x +4)=2x (2x -1)(x -2).令f ′(x )=0,得x 1=0,x 2=12,x 3=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在0,12和(2,+∞)上是增函数,在(-∞,0)和12,2上是减函数. (2)f ′(x )=x (4x 2+3ax +4),显然x =0不是⽅程4x 2+3ax +4=0的根.由于f (x )仅在x =0处有极值,则⽅程4x 2+3ax +4=0有两个相等的实根或⽆实根, Δ=9a 2-4×16≤0,解此不等式,得-83≤a ≤83.这时,f (0)=b 是唯⼀极值.因此满⾜条件的a 的取值范围是-83,83. (3)由(2)知,当a ∈[-2,2]时,4x 2+3ax +4>0恒成⽴.∴当x <0时,f ′(x )<0,f (x )在区间(-∞,0]上是减函数.因此函数f (x )在[-1,0]上的最⼤值是f (-1).⼜∵对任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成⽴,∴f (-1)≤1,即3-a +b ≤1. 于是b ≤a -2在a ∈[-2,2]上恒成⽴.∴b ≤-2-2,即b ≤-4.因此满⾜条件的b 的取值范围是(-∞,-4].探究提⾼ (1)对含参函数的极值,要进⾏讨论,注意f ′(x 0)=0只是f (x )在x 0处取到极值的必要条件.(2)利⽤函数的极值、最值,可以解决⼀些不等式的证明、函数零点个数、恒成⽴问题等.已知f (x )=ax 2 (a ∈R ),g (x )=2ln x .(1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若⽅程f (x )=g (x )在区间[2,e]上有两个不等解,求a 的取值范围.解 (1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),∴F ′(x )=2ax -2x =2(ax 2-1)x(x >0).①当a >0时,由ax 2-1>0,得x >1a. 由ax 2-1<0,得01a. 故当a >0时,F (x )的增区间为1a ,+∞,减区间为?0,1a . ②当a ≤0时,F ′(x )<0 (x >0)恒成⽴.故当a ≤0时,F (x )在(0,+∞)上单调递减.(2)原式等价于⽅程a =2ln xx 2=φ(x )在区间[2,e]上有两个不等解.∵φ′(x )=2x (1-2ln x )x 4在(2,e)上为增函数,在(e ,e)上为减函数,则φ(x )max =φ(e)=1e ,⽽φ(e)=2e 2<φ(2)=2ln 24=ln 22=φ(2).∴φ(x )min =φ(e),如图当f (x )=g (x )在[2,e]上有两个不等解时有φ(x )min =ln 22, a 的取值范围为ln 22≤a <1e.导数与函数单调性关系不清致误典例:(14分)已知f (x )=x 3-ax 2-3x .(1)若f (x )在[2,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是f (x )的极值点,求f (x )在[1,a ]上的最⼩值和最⼤值.易错分析求函数的单调增区间就是解导数⼤于零的不等式,受此影响,容易认为函数f (x )的导数在区间[2,+∞)上⼤于零,忽视了函数的导数在[2,+∞)上个别的点处可以等于零,这样的点不影响函数的单调性.规范解答解 (1)由题意,知f ′(x )=3x 2-2ax -3,[1分] 令f ′(x )≥0 (x ≥2),得a ≤32x -1x . 记t (x )=32x -1x ,当x ≥2时,t (x )是增函数,[3分] 所以t (x )min =32×2-12=94,所以a ∈?-∞,94.[6分] (2)由题意,得f ′(3)=0,即27-6a -3=0,所以a =4.[7分] 所以f (x )=x 3-4x 2-3x ,f ′(x )=3x 2-8x -3.[9分] 令f ′(x )=0,得x 1=-13,x 2=3.[10分]⼜因为x ∈[1,4],所以x =-13(舍去),故x =3.当x ∈(1,3)时,f ′(x )<0,所以f (x )在[1,3]上为减函数;[11分] 当x ∈(3,4)时,f ′(x )>0,所以f (x )在[3,4]上为增函数.[12分] 所以x =3时,f (x )有极⼩值.于是,当x ∈[1,4]时,f (x )min =f (3)=-18,⽽f (1)=-6,f (4)=-12,所以f (x )max =f (1)=-6.[14分]温馨提醒 (1)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,其逆命题不成⽴,因为f ′(x )≥0包括f ′(x )>0或f ′(x )=0.当f ′(x )>0时函数y =f (x )在区间(a ,b )上单调递增,当f ′(x )=0时f (x )在这个区间内为常函数;同理,若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,其逆命题不成⽴.(2)使f ′(x )=0的离散的点不影响函数的单调。
(天津专版)2018年高考数学母题题源系列专题20应用导数研究函数的性质文
母题二十 应用导数研究函数的性质【母题原题1】【2018天津,文20】设函数()()()123=()f x x t x t x t ---,其中123,,t t t R ∈,且123,,t t t 是公差为d 的等差数列. (I )若20,1,t d == 求曲线()y f x =在点()()0,0f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x = 与直线()2y x t =---d 的取值范围.【考点分析】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分.【答案】(Ⅰ)0x y +=;(Ⅱ)极大值为-;(Ⅲ) ((),10,-∞-+∞【解析】试题分析:(Ⅰ)由题意可得()()3231,f x x x f x x '=-=-,结合()()0010,f f '=-=,究()g x 的性质可得d 的取值范围是((),10,-∞+∞.试题解析:(Ⅰ)由已知,可得()()()311f x x x x x x =-+=-,故()231f x x '=-,因此()()0010,f f '=-=,又因为曲线()y f x =在点()()0,0f 处的切线方程为()()()00?0f y f x '-=-,故所求切线方程为0x y +=.(Ⅱ)由已知可得()()()()()()()332232222222223393399f x x t x t x t x t x t x t x t x t t =-+---=---=-+--+.故()2222 3639x t x t f x '=-+-.令()0f x '=,解得2x t =2x t =当x 变化时,()f x ',()f x 的变化如下表:∴函数()f x 的极大值为(((329f t =-⨯=;函数()f x 的极小值为(32f t =-=-.(Ⅲ)曲线()y f x =与直线()2y x t =---有三个互异的公共点等价于关于x 的方程()()()()2222 0x t d x t x t d x t -+---+-=有三个互异的实数解,令2u x t =-,可得()3210u d u +-+=.设函数()()321gx x d x =+-+()y f x =与直线()2y x t =---价于函数()y f x =有三个零点.()()3231x x g d '=+-.()g x 的极小值())322219g x d g ⎛==--+ 若()20g x ≥,由()g x 的单调性可知函数()y g x =至多有两个零点,不合题意. 若()20,g x <即()322127d ->,也就是d >,此时2d x >,()0,g d d =+>且()312||,26|20d x g d d d --=--+<-,从而由()g x 的单调性,可知函数()y g x =在区间()()()11222,,,,,d x x x x d -内各有一个零点,符合题意.d ∴的取值范围是((),10,-∞-+∞.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用. 【母题原题2】【2017天津,文19】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -.(2)(ⅰ)()f x 在0x x =处的导数等于0.(ⅱ)b 的取值范围是[7],1-.试题解析:(I )由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =,或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(II )(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()exx x x g g'⎧=⎪⎨=⎪⎩,由(I )知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减,故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.【考点】1.导数的几何意义;2.导数求函数的单调区间;3.导数的综合应用.【名师点睛】本题本题考点为导数的应用,本题属于中等问题,第一问求导后要会分解因式,并且根据条件能判断两个极值点的大小关系,避免讨论,第二问导数的几何意义,要注意切点是公共点,切点处的导数相等的条件,前两问比较容易入手,但第三问,需分析出0x a =,同时根据单调性判断函数的最值,涉及造函数解题较难,这一问思维巧妙,有选拔优秀学生的功能. 【母题原题3】【2016天津,文20】设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈, (I)求)(x f 的单调区间;(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间[]02,上的最大值不小于...41. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)详见解析. 【解析】试题分析:(Ⅰ)先求函数的导数:a x x f --=2)1(3)(',再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得3)1(20a x =-,计算可得00(32)()f x f x -=再由)()(01x f x f =及单调性可得结论;(Ⅲ)实质研究函数)(x g 最大值:主要比较(1),(1),,f f f f ⎛⎫- ⎪⎝⎭⎝⎭,的大小即可,分三种情况研究①当3a ≥时,33120331a a +≤<≤-,②当334a ≤<时,3321233133103321aa a a +≤<+<-<≤-,③当304a <<时,23313310<+<-<a a .当x 变化时,)('x f ,)(x f 的变化情况如下表:所以)(x f 的单调递减区间为)331,331(a a +-,单调递增区间为)331,(a --∞,),331(+∞+a . (Ⅱ)证明:因为)(x f 存在极值点,所以由(Ⅰ)知0>a ,且10≠x ,由题意,得0)1(3)('200=--=a x x f ,即3)1(20a x =-,进而b a x a b ax x x f ---=---=332)1()(00300.又 b a ax x ab x a x x f --+-=----=-32)1(38)22()22()23(000300)(33200x f b ax a =---=,且|}1||,21max{||})0(||,)2(max{|b b a f f M ----==|})(1||,)(1max{|b a a b a a +--++-=⎩⎨⎧<++--≥+++-=0),(10),(1b a b a a b a b a a ,所以2||1≥++-=b a a M . (2)当343<≤a 时,3321233133103321a a a a +≤<+<-<≤-,由(Ⅰ)和(Ⅱ)知,)331()3321()0(a f a f f +=-≥,)331()3321()2(af a f f -=+≤,所以)(x f 在区间]2,0[上的取值范围为)]331(),331([af a f -+,因此|}392||,392max{||})331(||,)331(max{|b a a ab a a a a f a f M -----=-+= |})(392||,)(392max{|b a a a b a a a +-+--=414334392||392=⨯⨯⨯≥++=b a a a .|}21||,1max{||})2(||,)0(max{|b a b f f M ----==|})(1||,)(1max{|b a a b a a +--++-=41||1>++-=b a a . 综上所述,当0>a 时,)(x g 在区间]2,0[上的最大值不小于41. 证法2:欲证()g x 在区间[02],上的最大值不小于14,只需证在区间[02],上存在12,x x ,使得③若304a <≤时,()()102222f f a -=-≥,成立;④当34a >时,411132f f ⎛⎛-= ⎝⎝,成立. 考点:导数的运算,利用导数研究函数的性质、证明不等式 【名师点睛】1.求可导函数单调区间的一般步骤 (1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到. 【母题原题4】【2015天津,文20】已知函数4()4,,f x x x x R =-? (I )求()f x 的单调性;(II )设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x £;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x <,求证:1321-43a x x <-+.【答案】(I )()f x 的单调递增区间是(),1-∞,单调递减区间是()1,+∞;(II )见试题解析;(III )见试题解析. 【解析】试题解析:(I )由4()4f x x x =-,可得3()44f x x ¢=-,当()0f x '>,即1x < 时,函数()f x 单调递增;当()0f x '<,即1x > 时,函数()f x 单调递减.所以函数()f x 的单调递增区间是(),1-∞,单调递减区间是()1,+∞.(II )设()0,0P x ,则1304x =,()012,f x '=- 曲线()y f x = 在点P 处的切线方程为()()00y f x x x '=-,即()()()00g x f x x x '=-,令()()()F x f x g x =- 即()()()()0F x f x f x x x '=-- 则()()()0F x f x f x '''=-.由于3()44f x x =-在(),-∞+∞ 单调递减,故()F x '在(),-∞+∞ 单调递减,又因为()00F x '=,所以当()0,x x ∈-∞时,()0F x '>,所以当()0,x x ∈+∞时,()0F x '<,所以()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤=,对于任意的正实数x ,都有()()f x g x £.【命题意图】导数是研究函数的重要工具,利用导数研究函数的单调性可以描绘出函数图象大致的变化趋势,是进一步解决问题的依据.分类讨论思想具有明显的逻辑特征,是整体思想一个重要补充,解决这类问题需要一定的分析能力和分类技巧.因此高考对这类题主要考查导数的运算、代数式化简与变形,考查运算求解能力,运用数形结合、分类讨论的思想方法分析与解决问题能力.【命题规律】含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等.【答题模板】解答本类题目,以2017年第10题高考题为例,一般考虑如下三步:第一步:求解导函数、因式分解、分类讨论,写出单调性 (1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.第二步:依据单调性判断零点情况 (ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点;②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 第三步: 赋值判断零点 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a ->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).【方法总结】1.研究函数单调区间,实质研究函数极值问题.分类讨论思想常用于含有参数的函数的极值问题,大体上可分为两类,一类是定区间而极值点含参数,另一类是不定区间(区间含参数)极值点固定,这两类都是根据极值点是否在区间内加以讨论,讨论时以是否使得导函数变号为标准,做到不重不漏.2.求可导函数单调区间时首先坚持定义域优先原则,必须先确定函数的定义域,尤其注意定义区间不连续的情况,此时单调区间按断点自然分类;其次,先研究定义区间上导函数无零点或零点落在定义区间端点上的情况,此时导函数符号不变,单调性唯一;对于导函数的零点在定义区间内的情形,最好列表分析导函数符号变化规律,得出相应单调区间.3.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.4.含参数的函数的极值(最值)问题常在以下情况下需要分类讨论:(1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论; (3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论. 5.求可导函数单调区间的一般步骤(1)确定函数)(x f 的定义域(定义域优先); (2)求导函数()f x ';(3)在函数)(x f 的定义域内求不等式()0f x '>或()0f x '<的解集.(4)由()0f x '>(()0f x '<)的解集确定函数)(x f 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.6.由函数)(x f 在(,)a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.7.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.8.函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.9.导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用. 10.函数的单调性问题与导数的关系(1)函数的单调性与导数的关系:设函数()y f x =在某个区间内可导,若()0f x '>,则()f x 为增函数;若/()0f x <,则()f x 为减函数. (2)用导数函数求单调区间方法求单调区间问题,先求函数的定义域,在求导函数,解导数大于0的不等式,得到区间为增区间,解导数小于0得到的区间为减区间,注意单调区间一定要写出区间形式,不用描述法集合或不等式表示,且增(减)区间有多个,一定要分开写,用逗号分开,不能写成并集形式,要说明增(减)区间是谁,若题中含参数注意分类讨论; (3) 已知在某个区间上的单调性求参数问题先求导函数,将其转化为导函数在这个区间上大于(增函数)(小于(减函数))0恒成立问题,通过函数方法或参变分离求出参数范围,注意要验证参数取等号时,函数是否满足题中条件,若满足把取等号的情况加上,否则不加.(4)注意区分函数在某个区间上是增(减)函数与函数的增(减)区间是某各区间的区别,函数在某个区间上是增(减)函数中的区间可以是该函数增(减)区间的子集.11.函数的极值与导数 (1)函数极值的概念设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x <,则称0()f x 是函数()f x 的一个极大值,记作y 极大值=0()f x ;设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x >,则称0()f x 是函数()f x 的一个极小值,记作y 极小值=0()f x .注意:极值是研究函数在某一点附近的性质,使局部性质;极值可有多个值,且极大值不定大于极小值;极值点不能在函数端点处取.(2)函数极值与导数的关系当函数()y f x =在0x 处连续时,若在0x 附近的左侧/()0f x >,右侧/()0f x <,那么0()f x 是极大值;若在0x 附近的左侧/()0f x <,右侧/()0f x >,那么0()f x 是极小值.注意:①在导数为0的点不一定是极值点,如函数3y x =,导数为/23y x =,在0x =处导数为0,但不是极值点; ②极值点导数不定为0,如函数||y x =在0x =的左侧是减函数,右侧是增函数,在0x =处取极小值,但在0x =处的左导数0(0)(0)lim x x x -∆→-+∆--∆=-1,有导数0(0)(0)lim x x x+∆→+∆-∆=1,在0x =处的导数不存在.(3)函数的极值问题①求函数的极值,先求导函数,令导函数为0,求出导函数为0点,方程的根和导数不存在的点,再用导数判定这些点两侧的函数的单调性,若左增由减,则在这一点取值极大值,若左减右增,则在这一点取极小值,要说明在哪一点去极大(小)值;②已知极值求参数,先求导,则利用可导函数在极值点的导数为0,列出关于参数方程,求出参数,注意可导函数在某一点去极值是导函数在这一点为0的必要不充分条件,故需将参数代入检验在给点的是否去极值;③已知三次多项式函数有极值求参数范围问题,求导数,导函数对应的一元二次方程有解,判别式大于0,求出参数的范围.12.最值问题 (1)最值的概念对函数()y f x =有函数值0()f x 使对定义域内任意x ,都有()f x ≤0()f x (()f x ≥0()f x )则称0()f x 是函数()y f x =的最大(小)值.注意:①若函数存在最大(小)值,则值唯一;最大值可以在端点处取;若函数的最大值、最小值都存在,则最大值一定大于最小值.②最大值不一定是极大值,若函数是单峰函数,则极大(小)值就是最大(小)值.(2)函数最问题①对求函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值;②对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()f x ≤(≥)()g a (x 是自变量,a 是参数)恒成立问题,()g a ≥max ()f x (≤min ()f x ),转化为求函数的最值问题,注意函数最值与极值的区别与联系.1.【2018(1)若曲线(2【答案】(1)1;(2详解:(1(2【名师点睛】应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点(2) 己知斜率求切点(3) 巳知切线过不是切点)2.【2018(1)求曲线处的切线方程;(2)若函数2(3试问:正整数否存在最大值?若存在,求出这个最大值;若不存在,说明理由.【答案】【解析】分析:(1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(2p(x)a的范围即可;(3)求出h(x)的导数,根据函数的单调性求出h(x)的最值,从而求出m的范围即可.详解:(1(3)由题意因此,而是正整数,故,所以时,存在,时,对所有【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.3.【2018(1(2)求函数的单调区间;(3存在实数恒成立,求【答案】(12)见解析(3代入函数解析式,之后应用求导公式求得其导数,将其函数值和导函数值,之后应用点斜式将切线方程写出,在化为一般式即可;第二问对函数求导,对导数等于零的根的大小进行比较,分类讨论求得其单调区间;第三问从函数解析式可以发现,将问题转化为最值来处理即可求得结果.(3时,,,由(2)最大值即【名师点睛】该题考查的是有关应用导数研究函数的性质的问题,该题涉及到的知识点有函数在某个点处的切线的方程的问题,应用导数的几何意义求得其斜率,之后应用点斜式完成任务,函数的单调性,即为求其导数,大于零时单调增,小于零时单调减,需要分类讨论,关于恒成立问题需要将其向最值转化.4.【2018 a >2.(I)讨论函数f(x)的单调性;(II a的取值范围.【答案】(Ⅰ)见解析(Ⅱ)(2,5]【解析】分析:(Ⅱ)原不上恒成立,解不等式可得所求范围.g(x)在x∈(0,+∞)上为增函数.在,∵,∴实数【名师点睛】(1)注意函数的单调区间不能并在一起,若相同的单调区间有多个,中间应用“和”或“,”.(2)函数在某一区间上单调递增(减)的问题,可转化为导函数在该区间上大于等于零(或小于等于零)处理,解题时注意不要忘了等号.5.【2018(Ⅲ)【答案】在(3)不存在.两个不相等的实根,进而可得结果.详解:(1),解得时,(2)的定义域为,使得函数问题转化为关于的方程即方程,使得函数【名师点睛】本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1) 确定函数的定义域;(2) 求导数 ;(3) 解方程 求出函数定义域内的所有根;(4) 列表检查 在 的根 左右两侧值的符号,如果左正右负(左增右减),那么 在 处取极大值,如果左负右正(左减右增),那么 在 处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.6.【2018天津滨海新区七模拟】已知函数()1ln xf x x ax-=+(其中0a >,e 2.7≈). (1)当1a =时,求函数()f x 在()()1,1f 点处的切线方程; (2)若函数()f x 在区间[)2,+∞上为增函数,求实数a 的取值范围; (3)求证:对于任意大于1的正整数n ,都有111ln 23n n>+++.【答案】(1)0y =;(2)1,2⎡⎫+∞⎪⎢⎣⎭;(3)见解析【解析】试题分析:(1)()21x f x x='-,()10f '=,()10f =,可求得切线方程.(2)即()f x '在区间[)2,+∞上()0f x '≥恒成立.(3)由(1)得()1ln x f x x x -=+ 0≥在[)1,+∞上恒成立,即1ln x x x -≥.令1nx n =-,得()1ln ln 1n n n--≥,2,3,....n =,不等式同向相加可得.试题解析:(1)()1ln x f x x x -=+,()21.x f x x-∴=' ()10f ∴'=. ()10f =,()()11f x f ∴在点(,)处的切线方程为0y =.(2)()1ln x f x x ax -=+,()21(0).ax f x a ax -∴=>' 函数()f x 在[)2,+∞上为增函数,()0f x ∴'≥对任意[)2,x ∈+∞恒成立. 10ax ∴-≥对任意[)2,x ∈+∞恒成立,即1a x≥对任意[)2,x ∈+∞恒成立. [)2,x ∈+∞时,max 112x ⎛⎫= ⎪⎝⎭,∴ 12a ≥,即所求正实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(3)当1a =时,()1ln x f x x x -=+,()21x f x x='-,所以23111lnln ln 12123n n n +++>+++-,即23111ln()12123n n n ⨯⨯⨯>+++-, 所以111ln 23n n >+++,即对于任意大于1的正整数n ,都有111ln 23n n>+++.【名师点睛】(1)若可导函数f (x )在(a ,b )上单调递增,则()f x '≥0在区间(a ,b )上恒成立;要检验()f x '=0.(2)若可导函数f (x )在(a ,b )上单调递减,则()f x '≤0在区间(a ,b )上恒成立;要检验()f x '=0.离散型不等式证明关键要找到恒成立不等函数,再x 用离散点列代换,利用不等式同向相加可证,恒成立不等函数一般需要在题中寻找.7.【2018天津模拟】已知函数()()32+1,0{,ln ,0xx x x f x g x x ax m e ax x -+<==-+-≥.(1)当3a =时,求函数()f x 的单调区间;(2)若不等式()()f x g x >对任意的正实数x 都成立,求实数m 的最大整数;(3)当0a >时,若存在实数[],0,2m n ∈且1m n -≥,使得()()f m f n =,求证: 21e a e e -≤≤-. 【答案】(1)单调减区间为(),ln3-∞,单调增区间为()ln3,+∞;(2)2;(3)证明见解析. 【解析】试题分析:(1)当3a =时,()321,0{3,0xx x x f x e x x -++<=-≥,通过求导得出函数的单调性;(2)由()()f x g x >可得ln x e ax x ax m ->-+对任意的正实数都成立,等价于ln x e x m ->对任意的正实数都成立,设()ln (0)x h x e x x =->,求出()min h x ,即可求出实数m 的最大整数;(3)由题意()x f x e a '=-,( 0x ≥),得出()f x 在()0,ln a 上为减函数,在()ln ,a +∞上为增函数,若存在实数[],0,2m n ∈,()()f m f n =,则ln a 介于,m n 之间,根据函数单调性列出不等式组,即可求证.∴函数()f x 在区间()0,ln3上为减函数,在区间()ln3,+∞上为增函数.且()01f =,综上,()f x 的单调减区间为(),ln3-∞,单调增区间为()ln3,+∞.(2)由()()f x g x >可得ln x e ax x ax m ->-+对任意的正实数都成立,即ln xe x m ->对任意的正实数都成立.记()ln (0)xh x e x x =->,则()min m h x <,可得()1x h x e x'=-, 令()()()211,0,x x x h x e x e x xφφ==-=+'>'则 ∴()x φ在()0,+∞上为增函数,即()h x '在()0,+∞上为增函数又∵()120,1102h h e ⎛⎫=''=-⎪⎝⎭, ∴()h x '存在唯一零点,记为000011,,102x x x e x ⎛⎫∈-=⎪⎝⎭则且,当()00,x x ∈时,()0h x '<,当()0,x x ∈+∞时,()0h x '>,∴()h x 在区间()00,x 上为减函数,在区间()0,x +∞上为增函数.∴()h x 的最小值为()000ln xh x e x =-.∵000000110,,ln xx e e x x x x -=∴==-,∴()000011,,12h x x x x ⎛⎫=+∈ ⎪⎝⎭,可得()052,2h x ⎛⎫∈ ⎪⎝⎭. 又∵()min m h x <,∴实数m 的最大整数为2.(3)由题意()xf x e a '=-,( 0x ≥),令()0,ln f x x a '==解得,由题意可得,1a >,当0ln x a <<时,()0f x '<;当ln x a >时,()0f x '>又∵()f x 在(),ln m a 上单调递减,且0ln m a ≤<,∴()()0f m f ≤,∴()()10f f ≤, 同理()()21f f ≥,则21{2e a e a e a-≤-≤-,解得21e a e e -≤≤-,∴21e a e e -≤≤-.【名师点睛】本题主要考查利用函数导数研究函数的单调性,最值,考查利用函数的导数求解不等式恒成问题.要通过求解不等式恒成立问题来求得参数的取值范围,可将不等式变形成一为零的形式,然后将另一边构造为函数,利用函数的导数求得这个函数的最值,根据最值的情况来求得参数的取值范围.8.【2018(1;(2(3的最大值.【答案】(1内单调递减;(2(3【解析】试题分析:(1)求出(2内单调递减,则有再证明当(3,的最大值,利用导数可得在单调递增,当(2解法一:时,综上实数解法二:时,内单调递减,则有当时,,有,则, 因此,即.综上实数(3有2个不相等的实数根,9.【2108天津部分区期末考】已知函数()()ln 1f x x a x =+-,a R ∈. (1)讨论()f x 的单调性;(2)当12a =-时,令()()212g x x f x =--,其导函数为()'g x ,设12,x x 是函数()g x 的两个零点,判断122x x +是否为()'g x 的零点?并说明理由. 【答案】(1)见解析;(2)见解析【解析】试题分析:(Ⅰ)先求导,再分类讨论,根据导数和函数单调性的关系即可求出,(Ⅱ)由(Ⅰ)知,g (x )=x 2﹣2lnx ﹣x ,x 1,x 2是函数g (x )的两个零点,不妨设0<x 1<x 2,可得x 12﹣2lnx 1﹣x 1=0,x 22﹣2lnx 2﹣x 2=0,两式相减化简可得x 1+x 2﹣1=()1212122ln ln 1x x x x x x -+-=-,再对g (x )求导,判断122x x g +⎛'⎫⎪⎝⎭的符号即可证明 试题解析:(1)依题意知函数()f x 的定义域为()0+∞,,且()1f x a x'=-. ①当0a ≤时,()0f x '>,所以()f x 在()0+∞,上单调递增. ②当0a >时,由()0f x '=得1x a =,则当10x a ⎛⎫∈ ⎪⎝⎭,时()0f x '>;当1x a ⎛⎫∈+∞ ⎪⎝⎭,时()0f x '<. 所以()f x 在10a ⎛⎫⎪⎝⎭,单调递增,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递减. (2)122x x +不是导函数()g x '的零点.证明如下:由(Ⅰ)知函数()22ln g x x x x =--. ∵1x ,2x 是函数()g x 的两个零点,不妨设120x x <<,∴22111111222222222ln 02ln { { 2ln 02ln x x x x x x x x x x x x --=-=⇒--=-=,两式相减得: ()()()12121212ln ln x x x x x x -+-=-又01t <<,∴()0t ϕ'>,∴()t ϕ在()0,1上是増函数, 则()()10t ϕϕ<=,即当01t <<时,()21ln 01t t t --<+,从而()()1212122ln ln 0x x x x x x ---<+,又121200x x x x <<⇒-<所以()()1212121222ln ln 0x x x x x x x x ⎡⎤--->⎢⎥-+⎣⎦, 故1202x x g +⎛⎫>⎪⎝⎭',所以122x x +不是导函数()g x '的零点. 10.【2018天津河西期中考试】已知函数()()223e xf x x ax a =+--.(1)若2x =是函数()f x 的一个极值点,求实数a 的值.(2)设0a <,当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =的上方,求实数a 的取值范围.【答案】(1)5a =-;(2)[)2,0e --. 【解析】试题分析:(1)由()'20f =解得a ,注意要检验此时2是极值点;(2)题意说明()f x 在区间[]1,2上的最大值2e ≤,因此只要求出导数()'f x ,确定()f x 在区间[]1,2上的单调性及最大值,解相应的不等式可得所求范围.当2x >时,()0f x '>,∴2x =是()f x 的极值.∴5a =-. (2)当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =上方,等价于[]1,2x ∈,()2e f x ≤恒成立,即[]1,2x ∈,()2max e f x ≤恒成立,由(1)知,()()()31e x f x x a x =++-',令()0f x '=,得13x a =--,21x =,当5a ≤-时,32a --≥,∴()f x 在[]1,2x ∈单调减,()()()2max 12e e f x f a ==--≤,e 2a ≥--与5a ≤-矛盾,舍去.当54a -<<-时,132a <--<,()f x 在()1,3x a ∈--上单调递减,在()3,2x a ∈--上单调递增,∴()maxf x 在()1f 或()2f 处取到,()()12f a e =--,()22f e =,∴只要()()212e f a e =--≤,计算得出e 24a --≤<-.当40a -≤<时,31a --≤,()f x 在[]1,2x ∈上单调增,()()max 2xf x f e ==,符合题意,∴实数a 的取值范围是[)e 2,0--.【名师点睛】利用导数研究函数的极值与最值是中学学习导数的主要内容,解题时要注意导数与极值的关系,()0'0f x =是0x 为可导函数()f x 的极值的必要条件,还必要满足在0x 两侧()'f x 的符号是异号,因此在由极值点求参数值时,必须检验,否则可能出错. 11.【2018天津滨海新区模拟】已知函数()()32ln ,ln .2f x x g x x x⎛⎫=++= ⎪⎝⎭ (1)求函数f (x )是单调区间;(2)如果关于x 的方程()12g x x m =+有实数根,求实数m 的取值集合; (3)是否存在正数k ,使得关于x 的方程()()f x kg x =有两个不相等的实数根?如果存在,求k 满足的条件;如果不存在,说明理由.【答案】(1) ()3,1,3,2⎛⎫--+∞ ⎪⎝⎭是函数的增区间;(-1,0)和(0,3)是函数的减区间; (2) 实数m 的取值范围是(],ln21-∞-;(3) 满足条件的正数k 不存在.由 ,由因此是函数的增区间; (-1,0)和(0,3)是函数的减区间(2)因为所以实数m 的取值范围就是函数的值域对令∴当x =2时取得最大值,且又当x 无限趋近于0时,无限趋近于无限趋近于0,进而有无限趋近于-∞.因此函数的值域是即实数m 的取值范围是(],ln21-∞-。
利用导数研究函数的性质
利用导数研究函数的性质1. 函数的单调性⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 .(逆命题不成立)(2) 如果在某个区间内恒有0)(='x f ,则)(x f .注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.(3) 求可导函数单调区间的一般步骤和方法:① 确定函数)(x f 的 ;② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根;③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间;④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性.2.可导函数的极值⑴ 极值的概念设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点.⑵ 求可导函数极值的步骤: ① 求导数)(x f ';② 求方程)(x f '=0的 ;③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得 .3.函数的最大值与最小值: ⑴ 设y =)(x f 是定义在区间[a ,b ]上的函数,y =)(x f 在(a ,b )内有导数,则函数y =)(x f 在[a ,b ]上 有最大值与最小值;但在开区间内 有最大值与最小值. (2) 求最值可分两步进行:① 求y =)(x f 在(a ,b )内的 值;② 将y =)(x f 的各 值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.(3) 若函数y =)(x f 在[a ,b ]上单调递增,则)(a f 为函数的 ,)(b f 为函数的 ;若函数y =)(x f 在[a ,b ]上单调递减,则)(a f 为函数的 ,)(b f 为函数的 . 例1. 已知f(x)=e x-ax-1. (1)求f(x)的单调增区间;(2)若f(x )在定义域R 内单调递增,求a 的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.解:)(x f '=e x-a.(1)若a ≤0,)(x f '=e x-a ≥0恒成立,即f(x)在R 上递增.若a>0,e x -a ≥0,∴e x≥a,x ≥lna.∴f(x)的单调递增区间为(lna,+∞). (2)∵f (x )在R 内单调递增,∴)(x f '≥0在R 上恒成立.∴e x-a ≥0,即a ≤e x在R 上恒成立.∴a ≤(e x )min ,又∵e x>0,∴a ≤0.(3)方法一 由题意知e x-a ≤0在(-∞,0]上恒成立.∴a ≥e x 在(-∞,0]上恒成立.∵e x在(-∞,0]上为增函数.∴x=0时,e x 最大为1.∴a ≥1.同理可知e x-a ≥0在[0,+∞)上恒成立.∴a ≤e x在[0,+∞)上恒成立.∴a ≤1,∴a=1.方法二 由题意知,x=0为f(x)的极小值点.∴)0('f =0,即e 0-a=0,∴a=1.变式训练1. 已知函数f(x)=x 3-ax-1.(1)若f(x)在实数集R 上单调递增,求实数a 的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a 的取值范围;若不存在,说明理由;(3)证明:f(x)=x 3-ax-1的图象不可能总在直线y=a 的上方.(1)解 由已知)(x f '=3x 2-a,∵f(x)在(-∞,+∞)上是单调增函数,∴)(x f '=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈R 恒成立.∵3x 2≥0,∴只需a ≤0,又a=0时,)(x f '=3x 2≥0,故f(x)=x 3-1在R 上是增函数,则a ≤0.(2)解 由)(x f '=3x 2-a ≤0在(-1,1)上恒成立,得a ≥3x 2,x ∈(-1,1)恒成立.∵-1<x<1,∴3x 2<3,∴只需a ≥3.当a=3时,)(x f '=3(x 2-1),在x ∈(-1,1)上,)(x f '<0,即f(x)在(-1,1)上为减函数,∴a ≥3. 故存在实数a ≥3,使f(x)在(-1,1)上单调递减.(3)证明 ∵f(-1)=a-2<a,∴f(x)的图象不可能总在直线y=a 的上方.例2. 已知函数f(x)=x 3+ax 2+bx+c,曲线y=f(x )在点x=1处的切线为l:3x-y+1=0,若x=32时,y=f(x )有极值.(1)求a,b,c 的值;(2)求y=f(x )在[-3,1]上的最大值和最小值.解 (1)由f(x)=x 3+ax 2+bx+c,得)(x f '=3x 2+2ax+b,当x=1时,切线l 的斜率为3,可得2a+b=0 ①当x=32时,y=f(x)有极值,则⎪⎭⎫ ⎝⎛'32f =0,可得4a+3b+4=0 ②由①②解得a=2,b=-4.由于切点的横坐标为x=1,∴f(1)=4. ∴1+a+b+c=4.∴c=5.(2)由(1)可得f(x)=x 3+2x 2-4x+5,∴)(x f '=3x 2+4x-4, 令)(x f '=0,得x=-2,x=32.当x 变化时,y,y ′的取值及变化如下表:x-3 (-3,-2)-2⎪⎭⎫ ⎝⎛-32,232⎪⎭⎫ ⎝⎛1,32 1y′ + 0 - 0 + y8单调递增 ↗ 13 单调递减 ↘ 2795 单调递增↗4∴y=f (x )在[-3,1]上的最大值为13,最小值为.2795 变式训练2. 函数y=x 4-2x 2+5在区间[-2,2]上的最大值与最小值.解 先求导数,得y ′=4x 3-4x,令y ′=0,即4x 3-4x=0.解得x 1=-1,x 2=0,x 3=1. 导数y ′的正负以及f(-2),f(2)如下表:x -2 (-2,-1) -1 (-1,0) 0 (0,1) 1 (1,2) 2 y′ - 0 + 0 - 0 +y 13 ↘ 4 ↗ 5 ↘ 4 ↗ 13从上表知,当x=±2时,函数有最大值13,当x=±1时,函数有最小值4.例3. 已知函数f(x)=x 2e -ax(a >0),求函数在[1,2]上的最大值.解 ∵f (x )=x 2e -ax (a >0),∴)(x f '=2xe -ax +x 2·(-a)e -ax =e -ax (-ax 2+2x). 令)(x f '>0,即e -ax (-ax 2+2x)>0,得0<x<a2. ∴f(x)在(-∞,0),⎪⎭⎫ ⎝⎛+∞,2a上是减函数,在⎪⎭⎫⎝⎛a 2,0上是增函数.①当0<a2<1,即a>2时,f(x )在(1,2)上是减函数, ∴f (x )max =f (1)=e -a. ②当1≤a2≤2,即1≤a ≤2时, f(x)在⎪⎭⎫ ⎝⎛a 2,1上是增函数,在⎪⎭⎫⎝⎛2,2a上是减函数,∴f(x)max =f ⎪⎭⎫ ⎝⎛a 2=4a -2e -2.③当a2>2时,即0<a<1时,f(x)在(1,2)上是增函数, ∴f (x )max =f (2)=4e -2a.综上所述,当0<a<1时,f(x)的最大值为4e -2a,当1≤a ≤2时,f(x)的最大值为4a -2e -2,当a>2时,f(x)的最大值为e -a.变式训练3. 设函数f(x)=-x(x-a)2(x ∈R ),其中a ∈R .(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)当a ≠0时,求函数f(x)的极大值和极小值.解:(1)当a=1时,f(x)=-x(x-1)2=-x 3+2x 2-x,f(2)=-2,)(x f '=-3x 2+4x-1, =')2(f -12+8-1=-5,∴当a=1时,曲线y=f(x)在点(2,f(2))处的切线方程为 5x+y-8=0.(2)f(x)=-x(x-a)2=-x 3+2ax 2-a 2x,)(x f '=-3x 2+4ax-a 2=-(3x-a)(x-a), 令)(x f '=0,解得x=3a或x=a. 由于a ≠0,以下分两种情况讨论.①若a>0,当x 变化时,)(x f '的正负如下表:x(-∞,3a ) 3a (3a ,a) a (a,+∞) )(x f '- 0+ 0 - f(x)↘3274a - ↗↘因此,函数f(x)在x=3a 处取得极小值f (3a), 且f (3a )=-;2743a函数f(x)在x=a 处取得极大值f(a),且f(a)=0.②若a<0,当x 变化时,)(x f '的正负如下表: x(-∞,a) a (a,3a ) 3a (3a,+∞) )(x f '- 0 + 0 -f(x)↘↗-3274a ↘因此,函数f(x)在x=a 处取得极小值f(a),且f(a)=0; 函数f(x)在x=3a 处取得极大值f (3a), 且f (3a )=-3274a .例4. 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a ≤5)的管理费,预计当每件产品的售价为x 元(9≤x ≤11)时,一年的销售量为(12-x)2万件. (1)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q (a ).解 (1)分公司一年的利润L (万元)与售价x 的函数关系式为:L=(x-3-a)(12-x)2,x ∈[9,11].(2))(x L ' =(12-x)2-2(x-3-a)(12-x)=(12-x)(18+2a-3x). 令'L =0得x=6+32a 或x=12(不合题意,舍去). ∵3≤a ≤5,∴8≤6+32a ≤328. 在x=6+32a 两侧L ′的值由正变负.所以①当8≤6+32a <9即3≤a <29时,L max =L(9)=(9-3-a)(12-9)2=9(6-a). ②当9≤6+32a ≤328,即29≤a ≤5时,L max =L(6+32a)=(6+32a-3-a)[12-(6+32a)]2=4(3-31a)3.所以⎪⎪⎩⎪⎪⎨⎧≤≤⎪⎭⎫ ⎝⎛-<≤-=.529,3134,293),6(9)(3a a a a a Q答 若3≤a <29,则当每件售价为9元时,分公司一年的利润L 最大,最大值Q (a )=9(6-a)(万元);若29≤a ≤5,则当每件售价为(6+32a)元时,分公司一年的利润L 最大,最大值Q(a)=33134⎪⎭⎫ ⎝⎛-a (万元).变式训练4:某造船公司年造船量是20艘,已知造船x 艘的产值函数为R(x)=3 700x+45x 2-10x 3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本) (2)问年造船量安排多少艘时,可使公司造船的年利润最大? (3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?解:(1)P(x)=R(x)-C(x)=-10x 3+45x 2+3 240x-5 000(x ∈N *,且1≤x ≤20);MP(x)=P(x+1)-P(x)=-30x 2+60x+3 275 (x ∈N *,且1≤x ≤19).(2))(x P '=-30x 2+90x+3 240=-30(x-12)(x+9), ∵x>0,∴)(x P '=0时,x=12,∴当0<x<12时,)(x P '>0,当x>12时,)(x P '<0,∴x=12时,P(x)有最大值.即年造船量安排12艘时,可使公司造船的年利润最大.(3)MP(x)=-30x 2+60x+3 275=-30(x-1)2+3 305. 所以,当x ≥1时,MP(x)单调递减,所以单调减区间为[1,19],且x ∈N *.MP(x)是减函数的实际意义是:随着产量的增加,每艘利润与前一艘比较,利润在减少.研究可导函数)(x f 的单调性、极值(最值)时,应先求出函数)(x f 的导函数)('x f ,再找出)('x f =0的x 取值或)('x f >0()('x f <0)的x 的取值范围.。
利用导数研究函数的单调性
若遇到不等式中带有参数时,可 分类讨论求得单调区间.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
【精讲点拨】
【例 2】已知函数 f(x)=x+ax+ln x(a∈R). (1)求函数 f(x)的单调区间; (2)若函数 f(x)在(1,+∞)上单调递增, 求 a 的取值范围.
.
解析
探究提高
基础知识
(, 3) (0,3)
4
a 3
4
5
B
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
【精讲点拨】
【例 1】 已知函数
f (x) ln(ex 1) ax(a 0) .
(1)若函数 y=f(x)的导函数是奇函数, 求 a 的值; (2)求函数 y=f(x)的单调区间.
探究提高
基础知识
题型分类
思想方法
利用导数研究函数的单调性质
泰安英雄山中学 刘宏
考点
考纲解读
了解函数单调性和导数的关系;
导数在研究函数中 能利用导数研究函数的单调性,
的应用
会求函数的单调区间(其中多项
式函数一般不超过三次).
基础知识·自主学习
自测自评
题号
答案
解析
2 ( b, ),(- ,- b ) (0,b ),(- b,0)
3
技 的最值来解;
巧
方法三、是二次函数,借助于 y f x 的图象,利
用根的分布求,也是常见的解题手段。
方法四、数形结合求解(如 2014 年山东高考理科
填空题 15)。
基础知识
题型分类
思想方法
练出高分
【训练巩固】 练出高分
利用导数研究函数的性质
利用导数研究函数的性质导数是微积分中的重要概念之一,它可以帮助我们研究函数的性质。
本文将介绍如何利用导数研究函数的极值、范围与曲线形状等方面的性质。
首先,导数可以帮助我们找到函数的极值。
对于一个连续可微的函数而言,其极值点可以通过求导数并令导数等于零来确定。
具体而言,我们先求函数的导函数,然后找到导函数的零点,即求得函数的极值点。
通过求导数的方法,我们可以确定函数的极大值或者极小值,并进一步分析函数在这些点的增减性与凹凸性。
其次,导数也可以帮助我们研究函数的增减性与凹凸性。
如果函数的导数在一些区间内始终大于零,那么函数在该区间内是递增的;如果导数在一些区间内始终小于零,那么函数在该区间内是递减的。
通过求导数,我们可以确定函数在不同区间内的增减情况。
同样地,函数的凹凸性可以通过分析导数的二阶导数来确定。
如果函数的二阶导数在一些区间内始终大于零,那么函数在该区间内是凹的;如果二阶导数在一些区间内始终小于零,那么函数在该区间内是凸的。
再次,导数还可以帮助我们确定函数的范围。
如果函数在一些区间内的导数始终大于零,那么函数在该区间内是上升的;如果导数在一些区间内始终小于零,那么函数在该区间内是下降的。
通过分析导数的正负性,我们可以确定函数的增减范围。
另外,函数的最大值和最小值也可以通过求导函数的极值点来确定。
最后,导数还可以帮助我们研究函数的曲线形状。
通过分析导数的零点以及正负性,我们可以确定函数的临界点和拐点。
临界点是函数曲线上的点,在这些点上函数的斜率为零。
拐点是函数曲线上的点,在这些点上函数的曲率发生变化。
通过分析这些点的位置和性质,我们可以了解函数曲线的形状。
综上所述,导数在研究函数的性质方面有着重要的作用。
它可以帮助我们确定函数的极值点、范围、增减性与凹凸性,以及曲线的形状。
在实际应用中,利用导数可以帮助我们优化函数、解决最优化问题等。
因此,对导数的研究是微积分中基础而重要的内容。
利用导数研究函数的性质
(五)利用导数研究函数的性质【知识精讲】导数在研究函数中的应用:1、利用导数求函数()y f x =单调区间的步骤:① 确定()f x 的定义域; ② 求导数'()f x ;③ 令'()0f x >,解不等式从而在定义域内确定()f x 的递增区间, 令'()0f x <,解不等式从而在定义域内确定()f x 的递减区间.2、对于含参数的函数()y f x =,若已知此函数在某区间单调递增(或单调递减),则此函数的导函数'()0f x ≥(或'()0f x ≤)在此区间上恒成立.处理恒成立问题,常用图象法或分离参数法,从而可求得参数的取值范围.3、求可导函数 )(x f y =极值的步骤:① 确定函数的定义域;② 求导数;③ 求方程'0y =的根,这些根也称为可能极值点;④ 检查在方程的根的左右两侧的符号,确定极值点.如果左正右负,那么)(x f y =在这个根处取得极大值;如果左负右正,那么)(x f y =在这个根处取得极大值.4、在区间 []b a ,上求函数 )(x f y =的最大值与最小值 的步骤:① 函数 )(x f y =在),(b a 内有导数... ;.② 求函数 )(x f y =在),(b a 内的极值③ 将.函数)(x f y =在),(b a 内的极值与)(),(b f a f 比较,其中最大的一个为最大值 ,最小的一个为最小值.【例题选讲】例1.【2014·全国大纲卷(理22)】已知函数3()ln(1)3x f x x x =+-+.讨论()f x 的单调性;例2.【2014·山东卷(文20)】(本小题满分13分)设函数1()ln 1x f x a x x -=++ ,其中a 为常数. (I)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(II )讨论14a =-时函数()f x 的单调性.例3.【2014·福建卷(理20)】已知函数()ax e x f x -=(a 为常数)的图像与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.求a 的值及函数()x f 的极值;例4.【2014·四川卷(文21)】已知函数3()12x f x e x =--,求函数()f x 在区间[0,1]上的最值;【练习巩固】1.求函数ln ()x f x x=的单调区间.2.设函数22()(ln )x e f x x x x=++求函数()f x 的单调区间3..【2014·湖南卷(理22)】已知常数20,()ln(1).2x a f x ax x >=+-+函数讨论()f x 在区间(0,)+∞上的单调性;4.【2014·安徽卷(理19,文20)】(本小题满分13分)设函数238()13f x x x x =+--,其中0a >. (Ⅰ)讨论()f x 在其定义域上的单调性;(Ⅱ)当[]0,1x ∈时,求()f x 取得最大值和最小值时的x 的值5.【2014·江西卷(理18)】已知函数. (1)当时,求的极值;(2)若在区间上单调递增,求b 的取值范围.。
3.2利用导数研究函数的性态
3.2 利用导数研究函数的性态3.2.1 函数的单调性单调增加:0)(>'x f (仅可能在个别点为零) 单调减少:0)(<'x f (仅可能在个别点为零).定理1(单调性判定法)函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导 (1)若0)(>'x f ,则函数)(x f ],[b a 上单调增加. (2)若0)(<'x f ,则函数)(x f ],[b a 上单调减少.证 (1)对任意],[,21b a x x ∈,且21x x <,由拉格朗日中值定理,有))(()()(1212x x f x f x f -'=-ξ )(21x x <<ξ.若0)(>'x f ,则必有0)(>'ξf ,又012>-x x ,故有)()(12x f x f >,即函数)(x f ],[b a 上单调增加.同理可证(2).例1 判断函数x x y sin -=在区间]2,0[π上的单调性.解 因为在)2,0(π内0cos 1>-='x y ,由定理可知,函数x x y sin -=在区间]2,0[π上的单调增加.函数具有单调性的区间为函数的单调区间.单调区间的分界点处的导数值应该为零,但导数值为零的点,不一定是单调区间的分界点.使0)(='x f 的点,叫做函数)(x f y =的驻点. 例2 求函数1)(+-=x e x f x的单调区间.解 1)(-='xe xf ,令0)(='x f ,得驻点0=x .当0>x 时,0)(>'x f ,所以1)(+-=x e x f x 在),0[+∞上单调增加.当0<x 时,0)(<'x f ,所以1)(+-=x e x f x在]0,(-∞上单调减少.例3 求函数32)(x x f =的单调区间.解 函数的定义域为),(+∞-∞,3132)(-='x x f ,此函数无驻点,但当0=x 时,函数的导数不存在.当0>x 时,0)(>'x f ,所以32)(x x f =在),0[+∞上单调增加. 当0<x 时,0)(<'x f ,所以32)(x x f =在),0[+∞上单调减少. 求函数)(x f y =单调区间的步骤如下: 第一步,确定函数)(x f y =的定义域;第二步,求)(x f ',并求出函数)(x f 在定义域内的驻点以及不可导点; 第三步,用驻点和不可导点将定义域分成若干小区间,列表分析; 第四步,写出函数)(x f y =的单调区间.例4 求函数31292)(23-+-=x x x x f 的单调区间. 解 (1)函数的定义域为),(+∞-∞.(2))1)(2(612186)(2--=+-='x x x x x f ,令0)(='x f ,得驻点11=x ,22=x .(3)11=x ,22=x 把定义域分成三部分,例5 求证)1ln(x x +>(0>x ) 证 设)1ln()(x x x f +-=,则xx f +-='111)(. 当0>x 时,0)(>'x f ,由定理1知)(x f 为单调增加,又 所以在),0[+∞上单调增加,又0)0(=f ,故当0>x 时,)0()(f x f >,即0)1ln(>+-x x .从而 )1ln(x x +>.例6 (人口增长问题)中国的人口总数P (以10亿为单位)在1993-1995年间可近似用方程tP )014.1(15.1⨯=来计算,其中t 是以1993年为起点的年数,根据这一方程,说明中国人口总数在这段时间是增长还是减少?解=dtdP0014.1ln )014.1(15.1>⨯⨯t . 因此,中国人口总数在1993-1995年期间是增长的.3.2.2 曲线的凹凸性与拐点定义1 在开区间),(b a 内,如果曲线上每一点处的切线都在它的下方,则称曲线在),(b a 内是凹的.如果曲线上每一点处的切线都在它的上方,则称曲线在),(b a 内是凸的.定理2(曲线凸凹性的判定定理) 设函数)(x f y =在闭区间],[b a 上连续,且在开区间),(b a 内具有二阶导数,如果对任意的),(b a x ∈,有(1)0)(>''x f ,则曲线)(x f 在闭区间],[b a 上是凹的 (2)0)(<''x f ,则曲线)(x f 在闭区间],[b a 上是凸的 曲线凹凸区间的分界点叫做曲线的拐点. 求曲线的凹凸区间及拐点的步骤: (1)确定函数)(x f 的定义域;(2)求)(x f ',)(x f '',解出0)(=''x f 的点和)(x f ''不存在的点;(3)这些点将定义域分成若干小区间,列表判定在这些小区间内)(x f ''的符号; (4)写出函数)(x f y =的凹凸区间及拐点.例7 确定曲线39623-+-=x x x y 的凸凹性和拐点.解 )2(6126)(,9123)(2-=-=''+-='x x x f x x x f ,由0)(=''x f ,得2=x .例8 确定曲线31)1(1-+=x y 的凹凸性和拐点.解 3532)1(192)(,)1(31)(-⋅-=''-='-x x f x x f ,当1=x 时,)(x f ''不存在.3.2.3 函数的极值与最值1.函数的极值定义 2 设函数)(x f 在点0x 的某邻域)(0x U 内有定义,如果对去心邻域)(0x U内的任一x ,有)()(0x f x f <(或)()(0x f x f >),那么就称)(0x f 是函数)(x f 的一个极大值(或极小值).函数的极大值和极小值统称为函数的极值,使得函数取得极值的点称为函数的极值点. 注:(1)极值是函数值,而极值点是指自变量的值.(2)极值与函数在整个区间上的最大值、最小值不同,前者是局部性的,而后者是整体性的.因此,对于同一函数来说,其极小值可能大于极大值.定理3(必要条件)若函数)(x f 在点0x 处可导,且在点0x 处取得极值,那么必有0)(='x f .注:(1)可导函数)(x f 的极值点必是他的驻点,但函数的驻点不一定是极值点; (2)函数在它的导数不存在的点处也可能取得极值.定理4(极值判定法则1)设函数)(x f 在点0x 处连续且在0x 的某一去心邻域)(0x U内可导,则(1)当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,那么函数)(x f 在点0x 处取得极大值;(2)当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,那么函数)(x f 在点0x 处取得极小值.定理5(极值判定法则2)设函数)(x f 在0x 某一邻域内二阶可导,且0)(0='x f ,0)(0≠''x f ,则(1)当0)(0<''x f 时,那么函数)(x f 在点0x 处取得极大值; (2)当0)(0>''x f 时,那么函数)(x f 在点0x 处取得极小值; 求极值的步骤: (1)求导数)(x f ';(2)求)(x f 的全部驻点和不可导点;(3)检查)(x f '在驻点或不可导点左右的正负号,判断极值点;如果是极值点,进一步判断是极大值点还是极小值点;(4)求极值.例9 求函数32)1()1()(+-=x x x f 的极值.解0)(),15()1)(1()(2='-+-='x f x x x x f ,求得驻点1,1,1-=x .5=x ,)(x f 有极大值3125)5(=f ;1=x ,)(x f 有极小值0)1(=f .例10 求函数x x x f cos sin )(+=在区间]2,0[π上的极值. 解 x x x f x x x f cos sin )(,sin cos )(--=''-=' 令0sin cos )(=-='x x x f 得驻点45,4ππ=x ,而0)4(<''πf ,0)45(>''πf故2)4(=πf 为极大值,2)45(-=πf 为极小值. 2. 最大值与最小值函数的最值,最大值及最小值的概念。
第三章 导数及其应用3-2利用导数研究函数的性质
6 (1)若 Δ=12-8a =0,即 a=± . 2
2
当
a x∈-∞,3或
a x∈3,+∞时,f
′(x)>0,
此时 f(x)在(-∞,+∞)为增函数. 6 所以 a=± 满足. 2
(2)若 Δ=12-8a2<0,恒有 f ′(x)>0,f(x)在(-∞,+ 3 ∞)上为增函数.所以 a > , 2
(理)(2010·广东省东莞市模拟)已知函数f(x) 的导函数f ′(x)的图象如图所示,那么函数f(x) 的图象最有可能的是( )
解析:由图可知,当x>0时,f ′(x)<0,∴函 数f(x)的图象在(0,+∞)上是单调递减的; 当x<-2时,f ′(x)<0,∴函数f(x)的图象在 (-∞,-2)上也是单调递减的,所以只有A 符合,故选A. 答案:A
重点难点 重点:1.用导数判定函数单调性的方法 2.函数极值的概念及求法、函数的最值 难点:导函数的图象与函数单调性的关系
知识归纳 1.函数的单调性 (1)设函数y=f(x)在区间(a,b)内可导,如果 f ′(x)>0,则f(x)在区间(a,b)内为增函数; 如果f ′(x)<0,则f(x)在区间(a,b)内为减函 数. (2)①如果在某个区间内恒有f ′(x)=0,则f(x) 等于常数.
答案:3
[例3] 函数f(x)的导函数y=f ′(x)的图象如下 图所示,则y=f(x)的图象最有可能的是 ( )
分析:由导函数f ′(x)的图象位于x轴上方(下 方),确定f(x)的单调性,对比f(x)的图象, 用排除法求解. 解析:由f ′(x)的图象知,x∈(-∞,0)时,f ′(x)>0,f(x)为增函数,x∈(0,2)时,f ′(x)<0, f(x)为减函数,x∈(2,+∞)时,f ′(x)>0,f(x) 为增函数. 只有C符合题意,故选C. 答案:C
人教版高中数学利用导数研究函数的性质教案2023
人教版高中数学利用导数研究函数的性质教案2023本教案旨在通过利用导数来研究函数的性质。
通过理论讲解和实例演示,帮助学生理解导数在函数研究中的应用,从而提高他们的数学思维和解题能力。
【教学目标】1. 理解导数的概念和性质;2. 掌握函数导数的计算方法;3. 理解导数在函数研究中的应用。
【教学重点】1. 导数的概念和性质;2. 函数导数的计算方法;3. 导数在函数研究中的应用。
【教学难点】1. 导数在函数研究中的具体应用;2. 解决涉及导数的实际问题。
【教学准备】1. 教师准备好教案和相应的教学材料;2. 学生准备好笔记本和作业本。
【教学过程】一、导入(5分钟)为了引起学生的兴趣,我们可以通过一个实际问题来导入本节课的内容。
比如,可以用一个汽车行驶的例子,让学生思考汽车的速度变化是如何与时间变化相关联的。
二、理论讲解(15分钟)1. 导数的定义和概念:导数是描述函数变化率的工具,用来研究函数的性质和变化规律。
我们可以通过极限的概念来定义导数,即函数在某个点处的导数等于该点的切线的斜率。
2. 导数的计算方法:- 利用导数的定义计算导数;- 利用导数的性质计算导数;- 利用基本函数的导数公式计算导数。
三、实例演示(20分钟)通过几个具体的例子,我们来演示如何应用导数来研究函数的性质。
比如,给定一个函数,我们可以通过求导数来确定它的极值点、拐点,以及其它一些特殊的性质。
四、小组讨论(15分钟)将学生分成小组,让他们在小组内讨论一个实际问题,并运用导数的知识来解答。
鼓励学生积极思考,相互交流,帮助彼此解决问题。
五、解决问题(20分钟)让学生从课后作业中选择一个问题,并运用导数的知识来解答。
鼓励他们在解题过程中,发散思维,灵活运用导数的性质和计算方法。
六、归纳总结(10分钟)请学生进行课堂总结和复习。
我们可以回顾本节课涉及到的导数的概念、计算方法和应用。
让学生相互交流,共同总结本节课的重点和难点。
【课堂作业】1. 完成课后作业册上的练习题;2. 思考一个实际问题,并用导数的知识来解答。
导数的应用
导数的应用导数是新课程下一门新的数学工具,它的应用主要表现在:导数的几何意义;利用导数研究函数的性质,求极值和最值;导数在不等式以及实际问题中的应用。
一.下面就导数的应用举几个例子:(一)灵活应用导数,为数学解题引进新的思路和方法。
1.导数的几何意义。
函数在点处的几何意义就是曲线在点处的切线的斜率。
也就是说,曲线在点处的切线的斜率是,于是相对应的切线方程是,巧借导数的几何意义的各类综合试题在近几年高考试卷中频频出现。
例1.曲线在点处的切线的方程为()应选例2.已知曲线与直线相交于两点。
曲线在两点处的切线分别是,若,求实数的值。
分析:此题若用解析几何的方法来研究比较麻烦。
若使用导数分析则比较简洁。
解:设点,则利用能够得到两直线的斜率,因为,则有,能够得到,将两个方程联立可得到,此方程的两个根为。
根据韦达定理有:即所以点评:此题利用导数求曲线的切线斜率,充分表达了导数运算的简洁优势。
(二)利用导数研究函数的性质。
导数在解决函数的单调性,函数的极值和最值;以及对高次函数图像的特征分析等方面有着广泛的应用。
例3.设为实数,函数(1)求函数的单调区间;(2)若任意,求证:(3)若得图像与轴仅有一个交点,求实数的取值范围。
解:(1)所以递增区间为所以递减区间为(2)由(1)可知函数在区间上递减。
任意所以结论成立。
(3)根据(1)的分析可知函数在处取得极值。
要使得的图像与轴仅有一个交点,则需要函数的极大值小于,或函数的极小值大于。
所以有或得到或例4.用总长为的钢条制作一个长方体容器框架,假设所制容器的底面的一边比另一边长。
那么高为多少时容器容积最大?并求出最大容积。
解:设底面短边长为。
则另一边长为则高为即令容积为则所以高为时容器容积最大,此时最大容积为点评:使用导数的相关知识,研究函数的性质(单调性)极值和最值和实际问题中的应用是高考的热点问题。
解决此类问题有时也要注意联系相对应的函数图像。
(三)导数在证明不等式中的应用。
重难点08 导数在研究函数图像与性质中的综合应用—2023年高考数学(原卷版)
重难点08 导数在研究函数图像与性质中的应用一.导数的计算二.切线方程的求法(1)已知切点A (x 0,f (x 0))求切线方程,可先求该点处的导数值f ′(x 0),再根据y -f (x 0)=f ′(x 0)(x -x 0)求解.(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可. 3.求切点坐标已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标. 三.求参数的值(范围)1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围. 2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围. (2)谨记切点既在切线上又在曲线上. 四.解决两曲线的公切线问题的方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)是设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.2023年高考仍然重点考查利用导数的几何意义求函数的切线、利用导数研究函数的单调性、极值与最值问题,难度可以基础题,也可为中档题,也可为难题,题型为选择、填空或解答题.(建议用时:40分钟)一、单选题1.已知曲线y =24x -3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .122.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则 A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-3.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+4.曲线y=x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A .﹣9B .﹣3C .9D .155.曲线324y x x =-+在点(1,3)处的切线的倾斜角为( ) A .30︒B .45︒C .60︒D .120︒6.已知f (x )=x ln x ,若0()2f x '=,则x 0=( ) A .e 2B .eC .ln 22D .ln27.若直线l 与曲线y x x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +128.若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<9.曲线sin 1y sin cos 2x x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12C .2-D .210.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-11.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则=a A .2B .12C .12-D .2-12.曲线2e 1x y -=+在点 ()0,2处的切线与直线0y =和 y x =围成的三角形的面积为 A .13B .12C .23D .1二、填空题 13.曲线2x 1y x 2-=+在点()1,3--处的切线方程为__________. 14.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 15.曲线3y x =在点3(,)(0)a a a ≠处的切线与x 轴、直线x a =所围成的三角形的面积为16,则=a ________.16.过原点作曲线x y e =的切线,则切点的坐标为______,切线的斜率为______.三、解答题17.设函数32()33f x x ax bx =-+的图象与直线12x +y -1=0相切于点(1,-11). (1)求a 、b 的值.(2)讨论函数f (x )的单调性.18.已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)ቤተ መጻሕፍቲ ባይዱ
• [答案] A
[ 解析]
不等式化为 exf(x)-ex-5>0,
设 g(x)= exf(x)- ex-5,∴g′(x)= exf(x)+ exf ′(x)- ex=
ex[ f (x)+f ′(x)-1] >0, 所以函数 g(x)在定义域上单调递增, 又因为 g(0)=0,所以 g(x)>0 的解集为(0,+∞).
• 4.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实 数a的取值范围是________. • [答案] a<-3或a>6 • [解析] 由于f(x)=x3+ax2+(a+6)x+1,有f ′(x)=3x2+2ax+(a+ 6). • 若f(x)有极大值和极小值,则Δ=4a2-12(a+6)>0,从而有a>6或 a<-3.
lnx lnx 2 lnx2 (理)(2014· 安徽安庆二模)设 1<x<2,则 ,( ) , 2 的大 x x x 小关系是( ) lnx lnx 2 lnx2 B. <( ) < 2 x x x lnx2 lnx 2 lnx D. 2 <( ) < x x x lnx 2 lnx lnx2 A.( ) < < 2 x x x lnx 2 lnx2 lnx C.( ) < 2 < x x x
第三章
第二节 利用导数研究函数的性质
1
自主预习学案
2
典例探究学案
3
课 时 作 业
自主预习学案
• 1.了解函数单调性和导数的关系. • 2.能利用导数研究函数的单调性,会求函数的单调区间(其中多 项式函数一般不超过三次). • 3.了解函数在某点取得极值的必要条件和充分条件. • 4.会用导数求函数的极大值、极小值,会用导数求闭区间上函 数的最大(小)值(其中多项式函数一般不超过三次).
典例探究学案
利用导数研究函数的单调性
(理)(2015· 黄冈中学月考 )定义在 R 上的函数 f(x)满足: f ′(x)>1-f(x),f(0)=6 ,f ′(x)是 f(x)的导函数,则不等式 exf(x)>ex+5(其中 e 为自然对数的底数)的解集为(
A.(0,+∞) B.(-∞,0)∪(3,+∞) C.(-∞,0)∪(1,+∞) D.(3,+∞)
充分不必要
充分不必要
• 2.函数的极值 • (1)函数极值的定义 < > • 设x0是函数y=f(x)的定义域(a,b)内任一点,如果对x0附近的所有 点x,都有f(x)______f(x0)(或f(x)______f(x0)),则称f(x)在点x0取得极 大(小)值,称x0是f(x)的一个极大(小)值点. • 3.函数的最大值与最小值 • 在闭区间[a,b]内可导的函数f(x)必有最大值与最小值;但在开区 间(a,b)内可导的函数f(x)不一定有最大值与最小值.
• 2.已知函数f(x)的导函数f ′(x)的图象如图所示,那么函数f(x)的图 象最有可能的是( )
• [答案] A • [解析] 由图可知,当x>0时,f ′(x)<0,∴函数f(x)的图象在(0,+ ∞)上是单调递减的;当x<-2时,f ′(x)<0,∴函数f(x)的图象在(- ∞,-2)上也是单调递减的,所以只有A符合,故选A.
• 利用导数研究函数的性质,是高考必定考查的内容,常见的考查 方式有两种形式:一是直接把导数应用于多项式函数性质的研究, 考查多项式函数的单调性、极值、最值等,二是把导数与函数、 方程、不等式、数列等相联系,进行综合考查,主要考查函数的 最值或求参数的值(或范围)等.
• 1.函数的单调性 > • (1)设函数y=f(x)在区间(a,b)内可导,如果f ′(x)____0,则f(x)在区 间(a,b)内为增函数;如果f ′(x)______0,则f(x)在区间 < (a,b)内为 减函数. • (2)若在某个区间内恒有f ′(x)=0,则f(x)等于常数. • 对于可导函数f(x)来说,f ′(x)>0是f(x)在(a,b)上为单调增函数的 ____________条件,f ′(x)<0是f(x)在(a,b)上为单调减函数的 ____________条件.
[ 解析]
• [答案] A
1 x-1 令 f(x)=x-lnx(1<x<2), 则 f ′(x)=1- = >0, x x
∴函数 y=f(x)在(1,2)内为增函数. lnx ∴f(x)>f(1)=1>0,∴x>lnx>0⇒0< <1. x lnx 2 lnx ∴( ) < . x x lnx2 lnx 2lnx-xlnx 2-xlnx 又 2- = = >0, x x x2 x2 lnx2 lnx lnx 2 lnx lnx2 ∴ 2 > .∴( ) < < 2 ,选 A. x x x x x
• 1.(文)(2013·沈阳质检)已知y=f(x)是定义在R上的函数,且f(1)=1, f ′(x)>1,则f(x)>x的解集是( ) • A.(0,1) • B.(-1,0)∪(0,1) • C.(1,+∞) • D.(-∞,-1)∪(1,+∞) • [答案] C
• [解析] 设g(x)=f(x)-x,则g′(x)=f ′(x)-1>0, • ∴g(x)在R上是增函数, • 又g(1)=f(1)-1=1-1=0, • ∴当x>1时,g(x)>g(1)=0, • 即当x>1时,f(x)>x. • ∴f(x)>x的解集为(1,+∞).
• 3.(文)设f(x)、g(x)是R上的可导函数,f ′(x)、g′(x)分别为f(x)、g(x) 的导函数,且满足f ′(x)g(x)+f(x)g′(x)<0,则当a<x<b时,有( ) • A.f(x)g(b)>f(b)g(x) B.f(x)g(a)>f(a)g(x) • C.f(x)g(x)>f(b)g(b) D.f(x)g(x)>f(a)g(a) • [答案] C • [解析] 因为f ′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′,所以[f(x)g(x)]′<0, 所以函数y=f(x)g(x)在给定区间上是减函数,故选C.