圆锥曲线的定义 考点 大全
圆锥曲线所有知识点和二级结论
圆锥曲线是解析几何学中的重要内容,它包括椭圆、双曲线和抛物线三种基本形式。
它们在数学、物理、工程等领域均有重要应用,具有广泛的研究价值。
下面将从几何、代数、物理等多个角度对圆锥曲线进行系统介绍和分析。
一、圆锥曲线的概念圆锥曲线的定义:在平面上依旧定点F到平面上所有定点P的距离的比值(|PF|/|PM|)为常数e(e>1)的动点M所得的轨迹即为双曲线。
在平面上的直线l与定点F的距离与到定点P的距离的比值始终为常数e(0<e<1)时,动点P所得的轨迹即为椭圆。
在平面上的直线上的所有点P到定点F的距离与到直线l的距离的差始终为常数e时,点P的轨迹即为抛物线。
二、椭圆的知识点1. 定义及表示:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的所有点P的集合。
2. 几何性质:椭圆有等轴对称性、焦点F1和F2为椭圆的两个焦点、平行于长轴或短轴的弦都过椭圆的焦点、焦距等于长轴长度、离心率等于c/a(c为焦距,a为长轴半径)等。
3. 参数方程:椭圆的参数方程为x = a*cos(t), y = b*sin(t),其中t为参数。
4. 离心率:离心率e的定义,离心率与长短轴的关系。
三、双曲线的知识点1. 定义及表示:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点P的集合。
2. 几何性质:双曲线有两条渐近线、两个焦点F1和F2、两个顶点、离心率等于c/a(c为焦距,a为顶点到中心的距离)等。
3. 参数方程:双曲线的参数方程为x = a * cosh(t), y = b * sinh(t),其中t为参数。
4. 离心率:离心率e的定义,离心率与距离关系。
四、抛物线的知识点1. 定义及表示:抛物线是平面上到定点F和直线l的距离相等的点P 的集合。
2. 几何性质:抛物线有顶点、准直线、对称轴、离心率等。
3. 参数方程:抛物线的参数方程为x = a * t^2, y = 2*a*t,其中t为参数。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线,是由平面上一个动点到两个定点的距离之比为定值的点的轨迹。
圆锥曲线是解析几何的重要内容,广泛应用于数学、物理、工程等领域。
本文将对圆锥曲线的相关知识进行总结,帮助读者更好地理解和掌握这一概念。
一、基本概念1. 定义:圆锥曲线是平面上一个动点到两个定点的距离之比为定值的点的轨迹。
2. 定点:圆锥曲线的两个定点分别称为焦点。
3. 对称轴:通过两个焦点并垂直于准线的直线称为对称轴。
4. 准线:通过两个焦点的直线段称为准线。
二、椭圆1. 定义:椭圆是圆锥曲线的一种,其离心率小于1,且焦点不重合的曲线。
2. 方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。
3. 性质:椭圆具有对称性、渐近线和切线性质等。
4. 应用:椭圆在天文学、建筑学和电子等领域应用广泛。
三、双曲线1. 定义:双曲线是圆锥曲线的一种,其离心率大于1的曲线。
2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。
3. 性质:双曲线具有渐近线和切线性质,且有两个分支。
4. 应用:双曲线在物理学、天文学和通信等领域有重要应用。
四、抛物线1. 定义:抛物线是圆锥曲线的一种,其离心率等于1的曲线。
2. 方程:抛物线的标准方程为y^2 = 4ax,其中a是抛物线的焦点到准线的距离。
3. 性质:抛物线具有对称性、渐近线和切线性质等。
4. 应用:抛物线在物理学、工程学和天文学等领域有广泛应用。
五、圆1. 定义:圆是圆锥曲线的一种,其离心率等于0的曲线。
2. 方程:圆的标准方程为(x-h)^2 + (y-k)^2 = r^2,其中(h, k)是圆心的坐标,r是半径长度。
3. 性质:圆具有对称性、切线性质和切圆定理等。
4. 应用:圆在几何学、物理学和工程学等领域有广泛应用。
总结:圆锥曲线是解析几何的重要内容,包括椭圆、双曲线、抛物线和圆。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。
2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。
3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。
二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。
完美版圆锥曲线知识点总结
完美版圆锥曲线知识点总结圆锥曲线是数学中的一类重要曲线,广泛应用于几何、物理、工程等领域。
由于其独特的性质和广泛的应用,掌握圆锥曲线的知识对于提高数学水平和解决实际问题具有重要意义。
本文将对圆锥曲线的基本概念、性质和常见类型进行总结和归纳。
一、圆锥曲线的基本概念圆锥曲线是由平面和一个固定点(焦点F)以及一个固定直线(准线L)共同确定的曲线。
根据焦点和准线的位置关系,圆锥曲线分为椭圆、抛物线和双曲线三类。
1. 椭圆:椭圆是焦点到准线的距离之和恒定于两倍焦半径的轨迹。
椭圆具有对称性,焦点位于椭圆的两个焦点之间。
2. 抛物线:抛物线是焦点到准线的距离等于焦半径的轨迹。
抛物线具有对称轴,焦点位于抛物线的焦点上方或下方。
3. 双曲线:双曲线是焦点到准线的距离之差恒定于两倍焦半径的轨迹。
双曲线也具有对称性,焦点位于双曲线的两个焦点之间。
二、圆锥曲线的性质圆锥曲线具有一系列重要的性质,为研究和应用圆锥曲线提供了基础。
1. 对称性:椭圆和双曲线具有两个关于准线和两个焦点的对称轴,抛物线具有一个关于准线的对称轴。
2. 焦距和半焦距:焦距是焦点到对称轴的距离,半焦距是焦距的一半。
焦距对于不同类型的圆锥曲线有不同的计算方法,但都是相对于准线和对称轴计算的。
3. 焦半径:焦半径是焦点到曲线上点的距离,焦半径对于同一曲线上不同点的值是相等的。
4. 离心率:离心率是焦半径与半焦距的比值,用e表示。
对于椭圆,离心率范围在0和1之间;对于抛物线,离心率等于1;对于双曲线,离心率大于1。
5. 焦点和准线的关系:焦点和准线的位置关系决定了曲线的类型。
当焦点在准线上时,曲线是抛物线;当焦点在准线之上时,曲线是椭圆;当焦点在准线之下时,曲线是双曲线。
三、常见类型的圆锥曲线。
圆锥曲线的定义 考点 大全
圆锥曲线定义、尺度方程及性质之袁州冬雪创作一.椭圆定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+(a 为常数)则P 点的轨迹是椭圆.定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的间隔与到定直线l 的间隔之比为常数e (0<e<1),则P 点的轨迹是椭圆.尺度方程:12222=+by a x )0(>>b a 取值范围:}{a x a x ≤≤-,}{b y b x ≤≤-长轴长=a 2,短轴长=2b焦距:2c准线方程:c a x 2±= 焦半径:)(21c a x e PF +=,)(22x c a e PF -=,212PF a PF -=,ca PF c a +≤≤-1等(注意:涉及焦半径时①用点P 坐标暗示,②第一定义,第二定义.)注意:(1)图中线段的几何特征:=11F A ca F A -=22,=21F A ca F A +=12=11F B aF B F B F B ===122221 ,222122b a B A B A +==等等.顶点与准线间隔、核心与准线间隔分别与c b a ,,有关.(2)21F PF ∆中常常操纵余弦定理、三角形面积公式将有关线段2c(3(4)注意题目中椭圆的核心在x轴上还是在y轴上,请补偿当核心在y轴上时,其相应的性质.二、双曲线(一)定义:Ⅰ若F1,F2数),则动点P的轨迹是双曲线.Ⅱ若动点P到定点F与定直线l的间隔之比是常数e(e>1),则动点P的轨迹是双曲线.(二)图形:(三)性质实轴长=2b焦距:2c注意:(1两准线间的间隔(2)若双曲线方程为渐近线方程:x y轴上)(3别为(4)注意中连系定义与余弦定理.(5)完成当核心在y轴上时,尺度方程及相应性质.三、抛物线(一)定义:到定点F与定直线l的间隔相等的点的轨迹是抛物线.即:到定点F的间隔与到定直线l的间隔之比是常数e(e=1).(二)图形:核心:准线:注意:(1)几何特征:核心到顶点的间隔间隔顶点是核心向准线所作垂线段中点.(2)抛物线上的动点可设为P或考点一求圆锥曲线方程求指定的圆锥曲线的方程是高考命题的重点,主要考察学生识图、画图、数形连系、等价转化、分类讨论、逻辑推理、合理运算及创新思维才能,处理好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,处理这类问题常常使用定义法和待定系数法.●典例探究[例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m.建立坐标系并写出该双曲线方程.命题意图:本题考察选择适当的坐标系建立曲线方程和解方程组的基础知识,考察应用所学积分知识、思想和方法处理实际问题的才能.知识依托:待定系数法求曲线方程;点在曲线上,点的坐标适合方程.错解分析:建立恰当的坐标系是处理本题的关键. 技巧与方法:本题第一问是待定系数法求曲线方程. 解:如图,建立直角坐标系xOy ,使AA ′在x 轴上,AA ′的中点为坐标原点O ,CC ′与BB ′平行于x 轴.设双曲线方程为2222b y a x -=1(a >0,b >0),则a =21AA ′=7又设B (11,y 1),C (9,x 2)因为点B 、C 在双曲线上,所以有 由题意,知y 2-y 1=20,由以上三式得:y 1=-12,y 2=8,b =72故双曲线方程为984922y x -=1.[例2]过点(1,0)的直线l 与中心在原点,核心在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x过线段AB 的中点,同时椭圆C 上存在一点与右核心关于直线l 对称,试求直线l 与椭圆C 的方程.命题意图:本题操纵对称问题来考察用待定系数法求曲线方程的方法,设计新颖,基础性强.知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题.错解分析:不克不及恰当地操纵离心率设出方程是学生容易犯的错误.恰当地操纵好对称问题是处理好本题的关键.技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式.解法二,用韦达定理.解法一:由e从而a2=2b2,c=b.设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上.则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22设AB中点为(x0,y0),则k AB=又(x0,y0)在直线y上,y00,-1,k AB=-1,设l的方程为y=-x+1.右核心(b,0)关于l的对称点设为(x′,y′),由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2∴所求椭圆C l的方程为y=-x+1.解法二:由e从而a2=2b2,c=b.设椭圆C的方程为x2+2y2=2b2,l的方程为y=k(x-1),将l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,则x1+x2y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=直线l:y过AB的中点解得k=0,或k=-1.若k=0,则l的方程为y=0,核心F(c,0)关于直线l的对称点就是F点自己,不克不及在椭圆C上,所以k=0舍去,从而k=-1,直线l的方程为y=-(x-1),即y=-x+1,以下同解法一.[例3]如图,已知△P1OP2P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P线方程.命题意图:本题考察待定系数法求双曲线的方程以及综合运用所学知识分析问题、处理问题的才能.知识依托:定比分点坐标公式;三角形的面积公式;以及点在曲线上,点的坐标适合方程.错解分析:操纵离心率恰当地找出双曲线的渐近线方程是本题的关键,正确地暗示出△P1OP2的面积是学生感到坚苦的.技巧与方法:操纵点P在曲线上和△P1OP2的面积建立关于参数a、b的两个方程,从而求出a、b的值.解:以O为原点,∠P1OP2的角平分线为x轴建立如图所示的直角坐标系.a>0,b>0)由e2∴两渐近线OP1、OP2方程分别为y和y=设点P1(x11),P2(x2,2)(x1>0,x2>0),则由点P比λ得P点坐标为又点P即(x1+2x2)2-(x1-2x2)2=9a2,整理得8x1x2=9a2①即x1x2由①、②得a2=4,b2=9●思路方法一般求已知曲线类型的曲线方程问题,可采取“先定形,后定式,再定量”的步调.定形——指的是二次曲线的核心位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的核心不确定在哪一个坐标轴上时,可设方程为mx2+ny2=1(m >0,n>0).定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小.●考点一训练一、选择题1已知直线x+2y-3=0与圆x2+y2+x-6y+m=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,则m等于( )A.3B.-3C.1D.-12中心在原点,核心在坐标为(0,±的椭圆被直线3x-y-2=0( )二、填空题l的方程为y=x+3,在l上任取一点P,若过点P且以双曲线12x2-4y2=3的核心作椭圆的核心,那末具有最短长轴的椭圆方程为_________.P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为则该圆的方程为_________.三、解答题5已知椭圆的中心在坐标原点,核心在x轴上,它的一个核心为F,M是椭圆上的任意点,|MF|的最大值和最小值的几何平均数为2,椭圆上存在着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=3104,试求椭圆的方程.6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.C 1的方程为(x -2)2+(y -1)2=320,椭圆C 2的方程为2222b y a x +=1(a >b >0),C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.考点二 直线与圆锥曲线直线与圆锥曲线接洽在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的断定,弦长问题、最值问题、对称问题、轨迹问题等.突出考察了数形连系、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和处理问题的才能、计算才能较高,起到了拉开考生“档次”,有利于选拔的功能.●典例探究[例1]如图所示,抛物线y 2=4x 的顶点为O ,点A的坐标为(5,0),倾斜角为4π的直线l 与线段OA 相交(不颠末点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.——“韦达定理法”.知识依托:弦长公式、三角形的面积公式、不等式法求最值、函数与方程的思想.错解分析:将直线方程代入抛物线方程后,没有确定m 的取值范围.不等式法求最值忽略了适用的条件.技巧与方法:涉及弦长问题,应熟练地操纵韦达定理设而不求计算弦长,涉及垂直关系往往也是操纵韦达定理,设而不求简化运算.解:由题意,可设l 的方程为y =x +m ,-5<m <0. 由方程组⎩⎨⎧=+=xy m x y 42,消去y ,得x 2+(2m -4)x +m 2=0①∵直线l 与抛物线有两个分歧交点M 、N ,∴方程①的辨别式Δ=(2m -4)2-4m 2=16(1-m )>0, 解得m <1,又-5<m <0,∴m 的范围为(-5,0) 设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -.点A 到直线l 的间隔为d =25m +.∴S △=2(5+m )m -1,从而S △2=4(1-m )(5+m )2=2(2-2m )·(5+m )(5+m )≤2(35522mm m ++++-)3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号.故直线l 的方程为y =x -1,△AMN 的最大面积为82.[例2]已知双曲线C:2x2-y2=2与点P(1,2)(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点.(2)若Q(1,1),试断定以Q为中点的弦是否存在.——“差分法”.知识依托:二次方程根的个数的断定、两点连线的斜率公式、中点坐标公式.错解分析:第一问,求二次方程根的个数,忽略了二次项系数的讨论.第二问,算得以Q为中点弦的斜率为2,就认为所求直线存在了.技巧与方法:涉及弦长的中点问题,常常使用“差分法”设而不求,将弦所在直线的斜率,弦的中点坐标接洽起来,相互转化.解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线Cl的斜率存在时,设直线l的方程为y-2=k(x-1),代入C的方程,并整理得(2-k2)x2+2(k2-2k)x-k2+4k-6=0 (*)(ⅰ)当2-k2=0,即k=(*)有一个根,l与C有一个交点(ⅱ)当2-k2≠0,即kΔ=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k)①当Δ=0,即3-2k=0,k(*)有一个实根,l与C有一个交点.②当Δ>0,即k又k故当k kk(*)有两不等实根,l与C有两个交点.③当Δ<0,即k(*)无解,l与C无交点.综上知:当k=或k k不存在时,l与C只有一个交点;k k或k l与C有两个交点;当k l与C没有交点.(2)假设以Q为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2)又∵x1+x2=2,y1+y2=2∴2(x1-x2)=y1-y1即k AB连系图形知直线AB与C无交点,所以假设不正确,即以Q为中点的弦不存在.[例3]如图,已知某椭圆的核心是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上分歧的两点A(x1,y1),C(x2,y2)知足条件:|F2A|、|F2B|、|F2C|成等差数列.(1)求该弦椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.命题意图:本题考察直线、椭圆、等差数列等基本知识,一、二问较简单,第三问巧妙地借助中垂线来求参数的范围,设计新颖,综合性,矫捷性强.知识依托:椭圆的定义、等差数列的定义,处理直线与圆锥曲线的方法.错解分析:第三问在表达出“k0”时,忽略了“k=0”时的情况,理不清题目中变量间的关系.技巧与方法:第一问操纵椭圆的第一定义写方程;第二问操纵椭圆的第二定义(即焦半径公式)求解,第三问操纵m暗示出弦AC的中点P的纵坐标y0,操纵y0的范围求m的范围.解:(1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b(2)由点B(4,y B)在椭圆上,得|F2B|=|y B因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(-x1),|F2C x2),由|F 2A |、|F 2B |、|F 2C |成等差数列,得x 1x 2)=2由此得出:x 1+x 2=8.设弦AC 的中点为P (x 0,y 0),则x 0(3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上.①-②得9(x 12-x 22)+25(y 12-y 22)=0, 即9x 1≠x 2)将(k ≠0)代入上式,得9×4+25y 0((k ≠0)即k 0(当k =0时也成立).由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k+m ,所以m =y 0-4k =y 00=0.由点P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的外部,得-y 0m解法二:因为弦AC 的中点为P (4,y 0),所以直线AC 的方程为y -y 0=x -4)(k ≠0)③①②得(9k2+25)x2-50(ky0+4)x+25(ky0+4)2-25×9k2=0所以x1+x2解得k0.(当k=0时也成立)(以下同解法一).●思路方法1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形连系的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常常使用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常常使用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标接洽起来,相互转化.同时还应充分挖掘题目标隐含条件,寻找量与量间的关系矫捷转化,往往就可以事半功倍.●考点二训练一、选择题l y2=1相交于A、B两点,则|AB|的最大值为( )2抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有( )A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0D.x1x2+x2x3+x3x1=0二、填空题M(1、N(-4,给出下列曲线方程:①4x+2y-1=0,②x2+y2=3,y2=1,y2=1,在曲线上存在点P知足|MP|=|NP|的所有曲线方程是_________.ABCD的边AB在直线y=x+4上,C、D两点在抛物线y2=x上,则正方形ABCD的面积为_________.y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________.三、解答题y2=2px(p>0),过动点M(a,0)且斜率为1的直线l与该抛物线交于分歧的两点A、B,且|AB|≤2p.(1)求a的取值范围.(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.7.已知中心在原点,顶点A1、A2在x轴上,离心率e线过点P(6,6).(1)求双曲线方程.(2)动直线l颠末△A1PA2的重心G,与双曲线交于分歧的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论.C的两条渐近线都过原点,且都以点A0)为圆心,1为半径的圆相切,双曲线的一个顶点A1与A点关于直线y=x对称.(1)求双曲线C的方程.(2)设直线l过点A,斜率为k,当0<k<1时,双曲线C的上支上有且唯一一点B到直线l k的值及此时B点的坐标.考点三圆锥曲线综合题圆锥曲线的综合问题包含:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向接洽,圆锥曲线知识和三角、复数等代数知识的横向接洽,解答这部分试题,需要较强的代数运算才能和图形认识才能,要能准确地停止数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以包管成果的完整.●典例探究[例1]已知圆k过定点A(a,0)(a>0),圆心k在抛物线C:y2=2ax上运动,MN为圆k在y轴上截得的弦.(1)试问MN的长是否随圆心k的运动而变更?(2)当|OA|是|OM|与|ON|的等差中项时,抛物线C的准线与圆k 有怎样的位置关系?命题意图:本题考察圆锥曲线科内综合的知识及学生综合、矫捷处理问题的才能.知识依托:弦长公式,韦达定理,等差中项,相对值不等式,一元二次不等式等知识.错解分析:在断定d与R的关系时,x0的范围是学生容易忽略的.技巧与方法:对第(2)问,需将方针转化为断定d=x0R.解:(1)设圆心k(x0,y0),且y02=2ax0,圆k的半径R=|AK∴|MN a(定值)∴弦MN的长不随圆心k的运动而变更.(2)设M(0,y1)、N(0,y2)在圆k:(x-x0)2+(y-y0)2=x02+a2中,令x=0,得y2-2y0y+y02-a2=0∴y1y2=y02-a2∵|OA|是|OM|与|ON|的等差中项.∴|OM|+|ON|=|y1|+|y2|=2|OA|=2a.又|MN|=|y1-y2|=2a∴|y1|+|y2|=|y1-y2|∴y1y2≤0,因此y02-a2≤0,即2ax0-a2≤0.∴0≤x0圆心k到抛物线准线间隔d=x0a,而圆k半径R a.且上两式不克不及同时取等号,故圆k必与准线相交.[例2≤m≤5),过其左核心且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A、B、C、D,设f(m)=||AB|-|CD||(1)求f(m)的解析式;(2)求f(m)的最值.命题意图:本题主要考察操纵解析几何的知识建立函数关系式,并求其最值,体现了圆锥曲线与代数间的科间综合.知识依托:直线与圆锥曲线的交点,韦达定理,根的辨别式,操纵单调性求函数的最值.错解分析:在第(1)问中,要注意验证当2≤m≤5时,直线与椭圆恒有交点.技巧与方法:第(1)问中,若注意到x A,x D为一对相反数,则可迅速将||AB|-|CD||化简.第(2)问,操纵函数的单调性求最值是常常使用方法.解:(1)设椭圆的半长轴、半短轴及半焦距依次为a、b、c,则a2=m,b2=m-1,c2=a2-b2=1∴椭圆的核心为F1(-1,0),F2(1,0).故直线的方程为y=x+1,又椭圆的准线方程为x=即x=±m.∴A(-m,-m+1),D(m,m+1)消去y得:(m-1)x2+m(x+1)2=m(m-1)整理得:(2m-1)x2+2mx+2m-m2=0Δ=4m2-4(2m-1)(2m-m2)=8m(m-1)2∵2≤m≤5,∴Δ>0恒成立,x B+x C又∵A、B、C、D都在直线y=x+1上∴|AB|=|x B-x A x B-x A)CD x D-x C)∴||AB|-|CD x B-x A+x D-x C x B+x C)-(x A+x D)|又∵x A=-m,x D=m,∴x A+x D=0∴||AB|-|CD||=|x B+x C|≤m≤5)故f(mm∈[2,5].(2)由f(mf(m又222∴f(m)故f(m)m=2;f(m)m=5.[例3]舰A在舰B的正东6千米处,舰C在舰B的北偏西30°且与B相距4千米,它们准备捕海洋动物,某时刻A发现动物信号,4秒后B、C同时发现这种信号,A发射麻醉炮弹.设舰与动物均为运动的,动物信号的传播速度为1千米//秒,其中g为重力加速度,若不计空气阻力与舰高,问舰A发射炮弹的方位角和仰角应是多少?命题意图:考察圆锥曲线在实际问题中的应用,及将实际问题转化成数学问题的才能.知识依托:线段垂直平分线的性质,双曲线的定义,两点间的间隔公式,斜抛运动的曲线方程.错解分析:答好本题,除要准确地掌控好点P的位置(既在线段BC的垂直平分线上,又在以A、B为核心的抛物线上),还应对方位角的概念掌握清楚.技巧与方法:通过建立恰当的直角坐标系,将实际问题转化成解析几何问题来求解.对空间物体的定位,一般可操纵声音传播的时间差来建立方程.解:取AB所在直线为x轴,以AB的中点为原点,建立如图所示的直角坐标系.由题意可知,A、B、C舰的坐标为(3,0)、(-3,0)、(-5,由于B、C同时发现动物信号,记动物所在位置为P,则|PB|=|PC|.于是P在线段BC-3y又由A、B两舰发现动物信号的时间差为4秒,知|PB|-|PA|=4,故知P的右支上.直线与双曲线的交点为(8,,此即为动物P的位置,操纵两点间间隔公式,可得|PA|=10.据已知两点的斜率公式,得k PA所以直线PA的倾斜角为60°,于是舰A发射炮弹的方位角应是北偏东30°.设发射炮弹的仰角是θ,初速度v0∴sin2θ∴仰角θ=30°.●思路方法处理圆锥曲线综合题,关键是熟练掌握每种圆锥曲线的定义、尺度方程、图形与几何性质,注意挖掘知识的内涵接洽及其规律,通过对知识的重新组合,以达到巩固知识、提高才能的目标.(1)对于求曲线方程中参数的取值范围问题,需构造参数知足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的方针函数,转化为函数的值域.(2)对于圆锥曲线的最值问题,解法常有两种:当题目标条件和结论能分明体现几何特征及意义,可思索操纵数形连系法解;当题目标条件和结论能体现一种明白的函数关系,则可先建立方针函数,再求这个函数的最值.●考点三训练一、选择题A、B、C三点在曲线y1,m,4(1<m<4),当△ABC的面积最大时,m等于( )u,v∈R,且|u|v>0,则(u-v)22的最小值为( )二、填空题3. A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA =2,则椭圆离心率的范围是_________.4一辆卡车高3米,宽1.6米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是_________.y =x 2-1上一定点B (-1,0)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的横坐标的取值范围是_________.三、解答题y =kx -1与双曲线x 2-y 2=1的左支交于A 、B 两点,若另外一条直线l 颠末点P (-2,0)及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围.C :y 2=4x .(1)若椭圆左核心及相应的准线与抛物线C 的核心F 及准线l 分别重合,试求椭圆短轴端点B 与核心F 连线中点P 的轨迹方程;(2)若M (m ,0)是x 轴上的一定点,Q 是(1)所求轨迹上任一点,试问|MQ |有无最小值?若有,求出其值;若没有,说明来由.8.如图,为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为线段OD 的中点,已知|AB |=4,曲线C 过Q 点,动点P 在曲线C 上运动且坚持|PA |+|PB |的值不变.(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D点的直线l与曲线C相交于分歧的两点M、N,且M在D、Nλ,求λ的取值范围.[学法指导]怎样学好圆锥曲线圆锥曲线将几何与代数停止了完美连系.借助纯代数的处理手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔创始了坐标系那天就已经开端.高考中它依然是重点,主客观题必不成少,易、中、困难皆有.为此需要我们做到:1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容.2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等.3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时操纵数形连系思想和设而不求法与弦长公式及韦达定理接洽去处理.这样加强了对数学各种才能的考察.4.重视对数学思想、方法停止归纳提炼,达到优化解题思维、简化解题过程.(1)方程思想解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题操纵韦达定理停止整体处理,就简化解题运算量.(2)用好函数思想方法对于圆锥曲线上的一些动点,在变更过程中会引入一些相互接洽、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效.(3)掌握坐标法坐标法是处理有关圆锥曲线问题的基本方法.近几年都考察了坐标法,因此要加强坐标法的训练.。
(完整版)圆锥曲线知识点归纳总结
完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) = y。
4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
圆锥曲线知识点
圆锥曲线知识点圆锥曲线是数学中一个重要的概念,它指的是平面上由一个动点P 与一个定点F和一条定直线L确定的一类曲线。
圆、椭圆、抛物线和双曲线都是圆锥曲线的具体例子。
本文将介绍圆锥曲线的定义、特征以及它们在现实生活中的应用。
一、圆锥曲线的定义圆锥曲线是平面几何中的重要概念,它由一个定直线L和一个定点F以及平面上P点的轨迹组成。
其中,定直线L称为准线,定点F称为焦点,而曲线上的点P为动点。
根据焦点与准线之间的距离关系,圆锥曲线可以分为四种类型。
1. 圆:当焦点F与准线L上的点重合时,即F为L的中点时,形成的曲线为圆。
圆锥曲线上的所有点到焦点F的距离都相等,这是圆的特征。
2. 椭圆:当焦点F到准线L的距离小于曲线上点P到焦点F的距离之和时,形成的曲线为椭圆。
椭圆是我们生活中常见到的圆形,特点是离焦点F 越远的点到焦点F的距离与到准线L的距离之和越大。
3. 抛物线:当焦点F到准线L的距离等于曲线上点P到焦点F的距离时,形成的曲线为抛物线。
抛物线可以看作是圆锥曲线的一种极端情况,具有开口向上或向下的特点。
4. 双曲线:当焦点F到准线L的距离大于曲线上点P到焦点F的距离之和时,形成的曲线为双曲线。
双曲线的特点是离焦点F越远的点到焦点F的距离与到准线L的距离之和越大。
二、圆锥曲线的性质圆锥曲线具有许多重要的性质,其中一些性质如下:1. 焦点与准线之间的距离关系:对于椭圆和双曲线而言,焦点F到准线L的距离是一个恒定值。
而对于抛物线而言,焦点F到准线L的距离等于焦距的两倍。
2. 离心率:离心率是一个衡量圆锥曲线形状的重要参数。
对于椭圆而言,离心率介于0和1之间;对于双曲线而言,离心率大于1;而对于抛物线而言,离心率等于1。
3. 对称性:圆锥曲线具有一定的对称性。
例如,椭圆具有关于两个对称轴的对称性,而抛物线具有关于焦点和准线的对称性。
4. 焦点与直线之间的关系:对于给定的圆锥曲线上的一点P,焦点F到点P的连线与准线L之间的夹角相等。
圆锥曲线知识点总结_高三数学知识点总结
圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学的重要知识点,主要包括圆锥曲线的定义、性质、方程和参数方程、焦点、直线和曲线的位置关系等内容。
下面对圆锥曲线的相关知识点进行总结:一、圆锥曲线的定义圆锥曲线是平面上一个点到一定直线上一点的距离与另一定点(称为焦点)到这一定直线上一点的距离的比等于一个常数的几何图形。
根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种。
1. 椭圆:椭圆是平面上到两定点F1和F2的距离之和等于定长2a的点P的轨迹。
即|PF1| + |PF2| = 2a。
椭圆对应的方程为\(\frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\)。
3. 抛物线:抛物线是平面上到一个定点F和一条直线L的距离相等的点P的轨迹。
即|PF| = |PM|,其中M是直线L上的一点。
抛物线对应的方程为\(y^2 = 2px\)。
二、圆锥曲线的性质1. 椭圆的性质:A. 椭圆的长半轴是轴的两焦点的距离的2a,短半轴是2b。
B. 椭圆的离心率e的范围为0<e<1。
C. 椭圆的离心率e与半长轴a和半短轴b的关系为\(e = \frac{\sqrt{a^2 -b^2}}{a}\)。
3. 抛物线的性质:A. 抛物线的焦点为定点F。
B. 抛物线的离心率e=1。
C. 抛物线的焦点F到直线L的垂直距离等于抛物线的焦点到抛物线顶点的距离。
三、圆锥曲线的方程和参数方程1. 椭圆的方程:\( \frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\),参数方程为\(x = a\cos{t}, y = b\sin{t}\)。
2. 双曲线的方程:\(\frac{x^2} {a^2} - \frac{y^2} {b^2}= 1\),参数方程为\(x = a\sec{t}, y = b\tan{t}\)。
3. 抛物线的方程:\(y^2 = 2px\),参数方程为\(x = at^2, y = 2at\)。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是代数几何中重要的一部分,它由平面和一个定点的两条曲线组成。
在数学的发展历史中,圆锥曲线的研究经历了漫长的时期,涉及到众多的数学家和学者的努力。
本文将对圆锥曲线的基本概念、性质、分类以及应用等知识点进行总结。
一、圆锥曲线的基本概念1. 圆锥曲线的定义圆锥曲线是由平面与一个定点和这个定点到平面上任意一点的连线组成的图形。
2. 圆锥曲线的基本元素圆锥曲线由定点称为焦点和一条固定的直线称为准线组成。
3. 圆锥曲线的标准方程圆锥曲线可以用一般的二次方程表示,即 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
4. 圆锥曲线的焦点和准线焦点是定点到平面上各点的距离与准线到这些点距离之比的极限值。
准线是过焦点且垂直于对称轴的直线。
二、圆锥曲线的性质1. 直线和圆的特例直线是当离心率为1的圆锥曲线,圆是离心率为0的圆锥曲线。
2. 焦准属性圆锥曲线上的任意一点到焦点的距离与到准线的距离之比始终为常数,这就是焦准属性。
3. 长轴和短轴圆锥曲线的焦点和准线确定了两条互相垂直的轴线,这两条轴线分别称为长轴和短轴。
4. 离心率圆锥曲线的离心率是一个反映离心程度的量,离心率为0时曲线为圆,离心率为1时曲线为直线。
5. 对称性圆锥曲线具有平移和对称性,即曲线在对称轴两侧具有相同的形状。
三、圆锥曲线的分类1. 椭圆圆锥曲线的离心率小于1,且大于0,形状近似于椭圆的曲线称为椭圆。
2. 抛物线圆锥曲线的离心率等于1,形状类似于抛物线的曲线称为抛物线。
3. 双曲线圆锥曲线的离心率大于1,形状类似于双曲线的曲线称为双曲线。
四、圆锥曲线的应用1. 天文学圆锥曲线在天文学中有广泛的应用,例如行星和彗星的轨道可以用圆锥曲线描述。
2. 工程学在工程学中,圆锥曲线被用于设计天桥、隧道、公路弯道等工程项目。
3. 经济学圆锥曲线在经济学中有重要的应用,例如需求曲线和供给曲线可以用圆锥曲线表示。
电子版圆锥曲线知识点总结
电子版圆锥曲线知识点总结一、圆锥曲线的定义圆锥曲线是指平面上的一类曲线,可以由一个锥面上的一个圆截面和一个平面上的直线交点轨迹来定义。
根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种类型。
1. 椭圆:椭圆是一个闭合曲线,其定义是一个平面上的动点的轨迹,该动点到两个给定点的距离之和等于一个常数。
椭圆的特点是对称性明显,轴对称和中心对称的性质。
2. 双曲线:双曲线是一个开口向上或向下的曲线,其定义是一个平面上的点的轨迹,该点到两个给定点的距离之差等于一个常数。
双曲线的特点是具有两个分支,分支之间存在对称性。
3. 抛物线:抛物线是一个开口朝上或朝下的曲线,其定义是一个平面上的动点的轨迹,该点到一个给定点的距离等于到一个给定直线的距离。
抛物线的特点是对称性明显,经常出现在物体飞行轨迹和抛射物的运动中。
二、圆锥曲线的方程圆锥曲线的方程是解析几何中的重要内容,可以通过不同的方式来表示。
根据圆锥曲线的类型,其方程也有所不同。
1. 椭圆的方程:椭圆的标准方程是(x/a)² + (y/b)² = 1,其中a和b分别是椭圆的长轴和短轴。
2. 双曲线的方程:双曲线的标准方程是(x/a)² - (y/b)² = 1或者(y/b)² - (x/a)² = 1,其中a和b分别是双曲线的长轴和短轴。
3. 抛物线的方程:抛物线的标准方程是(x/h)² = 4py或者(y/k)² = 4px,其中p是焦点到准线的距离,h和k分别是抛物线的横轴和纵轴的顶点坐标。
三、圆锥曲线的性质圆锥曲线具有许多重要的性质,这些性质不仅可以帮助我们理解和描述曲线的形状,还可以在具体问题中进行应用。
1. 直线的切线性质:圆锥曲线在不同位置都有切线,而且其切线和曲线在切点处相切,且切线的斜率由曲线的斜率表达。
2. 曲线的离心率:离心率是描述圆锥曲线形状的一个重要参数,表示曲线长轴和短轴之间的比值。
圆锥曲线知识点整理
圆锥曲线知识点整理圆锥曲线是解析几何中的重要内容,它是由圆(或椭圆、双曲线、抛物线)在一个平面上的投影形成的一类曲线。
在数学和物理学等领域,圆锥曲线有着广泛的应用。
下面将对圆锥曲线的相关知识点进行整理和说明。
一、圆锥曲线的定义及基本概念1. 圆锥曲线的定义:圆锥曲线是平面上的一条曲线,它是由一个固定点(焦点)和一个固定直线(准线)所确定的点的集合。
2. 圆锥曲线的焦点和准线:焦点是确定圆锥曲线形状的重要参数,准线是直线,在圆锥曲线的定义中起着重要作用。
3. 圆锥曲线的形状:圆锥曲线有四种形状,分别是圆、椭圆、双曲线和抛物线。
它们的形状由焦点、准线和离心率等参数确定。
二、圆锥曲线的方程及性质1. 圆的方程:圆的方程可以用一般式表示为(x-a)²+(y-b)²=r²,其中(a,b)表示圆心的坐标,r表示半径。
2. 椭圆的方程:椭圆的方程可以用标准方程表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)表示椭圆中心的坐标,a和b分别表示椭圆在x轴和y轴上的半轴长度。
3. 双曲线的方程:双曲线的方程可以用标准方程表示为(x-h)²/a²-(y-k)²/b²=1,或(x-h)²/a²-(y-k)²/b²=-1。
其中(h,k)表示双曲线中心的坐标,a和b分别表示双曲线在x轴和y轴上的半轴长度。
4. 抛物线的方程:抛物线的方程可以用标准方程表示为y²=4ax,其中a表示抛物线的焦点到准线的距离。
5. 圆锥曲线的性质:圆锥曲线具有许多重要的性质,如对称性、离心率、焦点与准线的关系等。
这些性质对于理解和分析圆锥曲线的形状起着重要作用。
三、圆锥曲线在实际应用中的意义1. 圆锥曲线在物理学中的应用:在物理学中,圆锥曲线被广泛应用于描述物体的运动轨迹、电场和磁场分布等问题。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。
下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。
一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。
根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。
(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。
椭圆有两个焦点,与这两个焦点的距离之和是常数。
椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。
(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。
抛物线是一条对称曲线,其开口方向由切割平面的位置决定。
抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。
(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。
双曲线有两个焦点,与这两个焦点的距离之差是常数。
双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。
二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。
(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。
三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。
2. 椭圆的长轴和短轴分别与x轴和y轴平行。
3. 椭圆有两个焦点,对称于椭圆的长轴上。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是二维平面上的几何图形,由直角圆锥与一个平面相交而产生。
它在数学、物理、工程和计算机图形等领域具有广泛的应用。
本文将对圆锥曲线的基本概念、方程、性质和应用进行总结。
一、基本概念1. 定义:圆锥曲线可以分为三种类型,即椭圆、抛物线和双曲线。
它们的定义分别是:- 椭圆:平面上到两个定点的距离之和等于常数的点的集合。
- 抛物线:平面上到一个定点的距离等于定直线的距离的点的集合。
- 双曲线:平面上到两个定点的距离之差等于常数的点的集合。
2. 方程形式:圆锥曲线可以以各种形式的方程表示。
常见的方程形式包括标准方程、参数方程和极坐标方程。
二、椭圆1. 基本性质:椭圆是一个闭合的曲线,两个焦点之间的距离是常数,而离心率小于1。
椭圆对称于两个坐标轴,并且具有两个主轴和两个焦点。
2. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是两个半轴的长度。
3. 参数方程:椭圆的参数方程是x = h + a*cos(t),y = k + b*sin(t),其中t是参数的角度。
4. 极坐标方程:椭圆的极坐标方程是r = (a*b) / sqrt((b*cos(t))² + (a*sin(t))²),其中r是极径,t是极角。
5. 应用:椭圆在日常生活中有多种应用,例如天体运动的轨道、水平仪和椭圆形浴缸等。
三、抛物线1. 基本性质:抛物线是一个开放的曲线,焦点和直线称为准线。
抛物线对称于准线,并且具有一个顶点。
2. 抛物线的方程:抛物线的标准方程是y = a*x² + b*x + c,其中a、b和c是常数。
3. 参数方程:抛物线的参数方程是x = t,y = a*t² + b*t + c,其中t是参数。
4. 极坐标方程:抛物线没有显式的极坐标方程。
5. 应用:抛物线在物理学、工程学和天文学中有多种应用,例如抛物线反射器、天体运动的近似模型和喷泉水流的轨迹等。
圆锥曲线知识点总结
圆锥曲线知识点总结
定义与性质:
到平面内一定点的距离r与到定直线的距离d之比是常数e=r/d 的点的轨迹叫做圆锥曲线。
其中,定点叫做该圆锥曲线的焦点,定直线叫做(该焦点相应的)准线,e叫做离心率。
当e>1时为双曲线。
当e=1时为抛物线。
当0<e<1时为椭圆。
形成方式:
用垂直于锥轴的平面去截圆锥,得到的是圆。
把平面渐渐倾斜,得到椭圆。
当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线。
用平行于圆锥的轴的平面截取,可得到双曲线的一支。
应用领域:
工程:圆锥曲线被应用于各种工程设计中,如建筑、航天、船舶等。
例如,圆锥曲线被用于设计桥梁、隧道、水坝、航天器、船舶等。
光学:圆锥曲线被广泛应用于光学设计中,例如设计反射望远镜和透镜,以及光学系统中的成像和折射问题。
绘画和艺术:圆锥曲线的美学特性使其成为绘画、雕塑、建筑和设计等领域的重要元素。
物理:圆锥曲线可以用来描述粒子在空间中的运动轨迹。
以上仅为圆锥曲线部分知识点的总结,如需更全面的内容,建议查阅数学教材或咨询数学教师。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
圆锥曲线知识点 总结
圆锥曲线知识点总结1. 圆锥曲线的定义圆锥曲线是指平面内由圆锥截面形成的曲线。
圆锥曲线包括圆、椭圆、双曲线、抛物线等类型。
它们的定义方式如下:- 圆:如果平面内的一条曲线上到定点的距离恒定,那么这条曲线就是一个圆。
- 椭圆:平面内的一条曲线上到两个定点的距离之和恒定,这条曲线就是椭圆。
- 双曲线:平面内的一条曲线上到两个定点的距离之差恒定,这条曲线就是双曲线。
- 抛物线:平面内的一条曲线上到定点的距离等于到直线的距离,这条曲线就是抛物线。
2. 圆锥曲线的基本性质圆锥曲线具有一些共同的基本性质,对于不同的类型曲线具有不同的特点:- 对称性:圆锥曲线可能具有对称轴,可以对称于直线、坐标轴、原点或其他特定点。
- 过焦点性质:圆锥曲线上的任意一点到焦点的距离与到焦距的距离之和始终是一个固定值。
- 直径性质:圆锥曲线可能有两个焦点,双曲线、椭圆和抛物线有两个焦点,而圆只有一个焦点。
- 渐近线性质:双曲线和椭圆的曲线可能有渐近线,这些渐近线与曲线的某些特定方向趋近的直线。
3. 圆锥曲线的参数方程圆锥曲线可以用参数方程来表示。
参数方程是指用参数来表示一个函数或曲线的方程。
对于椭圆、双曲线等圆锥曲线,它们的参数方程可以表示为:- 椭圆:x=a*cos(t) ,y=b*sin(t) 0≤t≤2π- 双曲线:x=a*cosh(t) , y=b*sinh(t) -∞<t<+∞4. 圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程来表示。
极坐标方程是指用极坐标来表示一个函数或曲线的方程。
对于椭圆、双曲线等圆锥曲线,它们的极坐标方程可以表示为:- 椭圆:r(t)=a(1-e^2)/(1+e*cos(t))- 双曲线:r(t)=a(1+e*cos(t))5. 圆锥曲线的焦点和直径对于圆锥曲线来说,焦点和直径是它们的重要性质。
焦点是指椭圆、双曲线、抛物线曲线上的两个固定点,直径是指通过焦点的直线。
6. 圆锥曲线的渐近线部分圆锥曲线,如双曲线和椭圆,可能存在渐近线。
圆锥曲线知识点清单
圆锥曲线知识点清单1.圆锥曲线定义:圆锥曲线可以定义为平面上一条曲线,是由一个平面与一个双曲面(或抛物面、圆锥、椭球)相交而得到的曲线。
2.圆锥曲线的分类:根据双曲面的切割方式,圆锥曲线可以分为圆、椭圆、双曲线和抛物线四种。
3.圆:圆是一种特殊的圆锥曲线,是由一个平面与圆锥体的底面相交而得到的曲线。
圆的特点是所有的点到圆心的距离都相等。
4.椭圆:椭圆是圆锥曲线中除了圆之外最为常见的一种形式。
椭圆的特点是到两个焦点的距离之和等于定长的点构成的轨迹。
5.双曲线:双曲线是圆锥曲线中的一种形式,具有两个分离的点,称为焦点。
双曲线的特点是到两个焦点的距离之差等于定长的点构成的轨迹。
6.抛物线:抛物线是圆锥曲线中的一种形式,具有一个焦点和一个定点。
抛物线的特点是到焦点和定点的距离相等的点构成的轨迹。
7.圆锥曲线的方程:每种圆锥曲线都有其特定的方程形式。
例如,椭圆的方程可以表示为x^2/a^2+y^2/b^2=1,其中a和b分别代表椭圆的长半轴和短半轴长度。
8.圆锥曲线的焦点和准线:每种圆锥曲线都具有焦点和准线,它们在曲线的定义中起到重要作用。
焦点是曲线的特定点,而准线是曲线的特定直线。
9.圆锥曲线的参数方程:除了直角坐标系方程外,圆锥曲线还可以使用参数方程来表示。
参数方程由参数t控制,使我们可以通过调整参数值来改变曲线的形状。
10.圆锥曲线的基本性质:每种圆锥曲线都具有一些基本的性质,如对称性、渐近线、离心率等。
这些性质有助于我们更好地理解和分析圆锥曲线。
11.圆锥曲线的应用:圆锥曲线在现实生活和工程领域中有着广泛的应用,如天体轨道、卫星通信、汽车运动轨迹等。
了解圆锥曲线的性质和方程形式有助于我们更好地理解和应用它们。
12.圆锥曲线的研究方法:研究圆锥曲线的方法包括几何方法和解析几何方法。
几何方法主要是通过几何性质和图形推理来研究曲线的特性,而解析几何方法则是通过代数和数学计算来推导圆锥曲线的方程和性质。
以上是圆锥曲线的一些主要知识点,通过学习和了解这些知识点,我们可以更好地理解和应用圆锥曲线。
圆锥曲线重点知识点总结
圆锥曲线重点知识点总结圆锥曲线是高中数学中一个重要的内容,是解析几何的重点之一。
在学习圆锥曲线时,我们需要掌握一些重要的知识点。
本文将对圆锥曲线的基本概念、方程与性质进行总结。
一、圆锥曲线的基本概念圆锥曲线是由切割一个锥体的过程中所得到的曲线。
根据切割方式的不同,圆锥曲线可分为三类:椭圆、双曲线和抛物线。
1. 椭圆:通过一点F(焦点)到平面上任意一点P的距离之和恒定的点集所构成的曲线称为椭圆。
这个常数称为椭圆的焦距,用c表示。
椭圆还有一个重要的性质是焦点与准线之间的距离等于准线两焦点距离的一半。
2. 双曲线:通过一点F到平面上任意一点P的距离之差恒定的点集所构成的曲线称为双曲线。
这个常数称为双曲线的离心率,用e表示。
双曲线还有一个重要的性质是焦点与准线之间的距离等于准线两焦点距离的一半。
3. 抛物线:通过平面上任意一点P到一个定点F的距离等于点P到一条直线l的距离的点集所构成的曲线称为抛物线。
二、圆锥曲线的方程在解析几何中,我们常常使用方程描述曲线。
圆锥曲线的方程可以用多种形式表示,例如标准方程、一般方程和参数方程等。
1. 椭圆的方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1 (a > b > 0),其中a和b分别代表椭圆的长半轴和短半轴。
2. 双曲线的方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1 (a > 0,b > 0),其中a和b分别代表双曲线的距离焦点的距离和离心率。
3. 抛物线的方程:抛物线的标准方程为y^2 = 2px,其中p为抛物线的焦距。
三、圆锥曲线的性质掌握圆锥曲线的性质对于解析几何的问题求解非常重要。
1. 椭圆的性质:a) 椭圆的离心率满足0<e<1,离心率越小,椭圆越圆。
b) 长半轴和短半轴的长度之间的关系是a>b。
c) 椭圆的离心率e满足等于c/a(其中c代表焦距)。
2. 双曲线的性质:a) 双曲线的离心率满足e>1,离心率越大,双曲线越开口。
高中数学圆锥曲线知识点总结
高中数学中,圆锥曲线是重要的内容之一。
以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。
2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。
3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。
4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。
-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。
5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。
-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。
6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。
-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。
-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。
-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。
7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。
同时,准线也是曲线的对称轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线定义、标准方程及性质一.椭圆定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。
定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0<e<1),则P 点的轨迹是椭圆。
标准方程:12222=+by a x )0(>>b a取值范围:}{a x a x ≤≤-, }{b y b x ≤≤- 长轴长=a 2,短轴长=2b焦距:2c准线方程:ca x 2±=焦半径:)(21ca x e PF +=,)(22x ca e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意:涉及焦半径时①用点P 坐标表示,②第一定义,第二定义。
)注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A +==等等。
顶点与准线距离、焦点与准线距离分别与c b a ,,有关。
(2)21F PF ∆中经常利用余弦定理....、三角形面积公式.......将有关线段1PF 、2PF 、2c ,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系(3)椭圆上的点有时常用到三角换元:⎩⎨⎧θ=θ=sin cos b y a x ;(4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相应的性质。
二、双曲线(一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。
Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。
(二)图形:(三)性质方程:12222=-b y a x )0,0(>>b a 12222=-bx a y )0,0(>>b a取值范围:}{a x a x x ≤≥或; 实轴长=a 2,虚轴长=2b焦距:2c准线方程:ca x 2±=焦半径:)(21ca x e PF +=,)(22x ca e PF -=,a PF PF 221=-;注意:(1)图中线段的几何特征:=1AF a c BF -=2,=2AF c a BF +=1顶点到准线的距离:c a a c a a 22+-或;焦点到准线的距离:ca c c a c 22+-或 两准线间的距离=ca 22(2)若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x aby ±=若渐近线方程为x aby ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)(3)特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;(4)注意21F PF ∆中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来。
(5)完成当焦点在y 轴上时,标准方程及相应性质。
三、抛物线(一)定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线。
即:到定点F 的距离与到定直线l 的距离之比是常数e (e=1)。
(二)图形:(三)性质:方程:焦参数-->=p p px y ),0(,22;焦点: )0,2(p,通径p AB 2=;准线: 2p x -=; 焦半径:,2p x CF +=ο过焦点弦长p x x px p x CD ++=+++=212122注意:(1)几何特征:焦点到顶点的距离=2p;焦点到准线的距离=p ;通径长=p 2顶点是焦点向准线所作垂线段中点。
(2)抛物线pxy 22=上的动点可设为P),2(2οοy py或或)2,2(2pt pt P P οοοοpx y y x 2),(2=其中考点一 求圆锥曲线方程求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.●典例探究 [例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A 、A ′是双曲线的顶点,C 、C ′是冷却塔上口直径的两个端点,B 、B ′是下底直径的两个端点,已知AA ′=14 m ,CC ′=18 m,BB ′=22 m,塔高20 m.建立坐标系并写出该双曲线方程. 命题意图:本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力.知识依托:待定系数法求曲线方程;点在曲线上,点的坐标适合方程。
错解分析:建立恰当的坐标系是解决本题的关键。
技巧与方法:本题第一问是待定系数法求曲线方程。
解:如图,建立直角坐标系xOy ,使AA ′在x 轴上,AA ′的中点为坐标原点O ,CC ′与BB ′平行于x 轴.设双曲线方程为2222by a x -=1(a >0,b >0),则a =21AA ′=7又设B (11,y 1),C (9,x 2)因为点B 、C 在双曲线上,所以有179,17112222222122=-=-by b y 由题意,知y 2-y 1=20,由以上三式得:y 1=-12,y 2=8,b =72故双曲线方程为984922y x -=1. [例2]过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.命题意图:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强. 知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题. 错解分析:不能恰当地利用离心率设出方程是学生容易犯的错误.恰当地利用好对称问题是解决好本题的关键.技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A 、B 两点坐标代入圆锥曲线方程,两式相减得关于直线AB 斜率的等式.解法二,用韦达定理.解法一:由e =22=a c ,得21222=-ab a ,从而a 2=2b 2,c =b . 设椭圆方程为x 2+2y 2=2b 2,A (x 1,y 1),B (x 2,y 2)在椭圆上.则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,(x 12-x 22)+2(y 12-y 22)=0,.)(221212121y y x x x x y y ++-=--设AB 中点为(x 0,y 0),则k AB =-002y x ,又(x 0,y 0)在直线y =21x 上,y 0=21x 0,于是-002y x = -1,k AB =-1,设l 的方程为y =-x +1.右焦点(b ,0)关于l 的对称点设为(x ′,y ′),⎩⎨⎧-='='⎪⎪⎩⎪⎪⎨⎧++'-='=-''b y x b x y bx y 11 1221解得则 由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2,b 2=89,1692=a . ∴所求椭圆C 的方程为2291698y x + =1,l 的方程为y =-x +1.解法二:由e =21,22222=-=ab a ac 得,从而a 2=2b 2,c =b . 设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =k (x -1),将l 的方程代入C 的方程,得(1+2k 2)x 2-4k 2x +2k 2-2b 2=0,则x 1+x 2=22214kk +,y 1+y 2=k (x 1-1)+k (x 2-1)=k (x 1+x 2)-2k =-2212kk+. 直线l :y =21x 过AB 的中点(2,22121y y x x ++),则2222122121k k kk +⋅=+-,解得k =0,或k = -1.若k =0,则l 的方程为y =0,焦点F (c ,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-(x -1),即y =-x +1,以下同解法一.[例3]如图,已知△P 1OP 2的面积为427,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为213的双曲线方程.命题意图:本题考查待定系数法求双曲线的方程以及综合运用所学知识分析问题、解决问题的能力. 知识依托:定比分点坐标公式;三角形的面积公式;以及点在曲线上,点的坐标适合方程. 错解分析:利用离心率恰当地找出双曲线的渐近线方程是本题的关键,正确地表示出 △P 1OP 2的面积是学生感到困难的.技巧与方法:利用点P 在曲线上和△P 1OP 2的面积建立关于参数a 、b 的两个方程,从而求出a 、b 的值.解:以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图所示的直角坐标系.设双曲线方程为2222by a x -=1(a >0,b >0)由e 2=2222)213()(1=+=a b ac ,得23=a b .∴两渐近线OP 1、OP 2方程分别为y =23x 和y =-23x 设点P 1(x 1,23x 1),P 2(x 2,-23x 2)(x 1>0,x 2>0),则由点P 分21P P 所成的比λ=21PP P P =2,得P 点坐标为(22,322121x x x x -+),又点P 在双曲线222294a y a x -=1上,所以222122219)2(9)2(a x x a x x --+=1, 即(x 1+2x 2)2-(x 1-2x 2)2=9a 2,整理得8x 1x 2=9a 2①,427131241321sin ||||211312491232tan 1tan 2sin 21349||,21349||212121*********212121121=⋅⋅=⋅⋅=∴=+⨯=+==+==+=∆x x OP P OP OP S Ox P Ox P OP P x x x OP x x x OP OP P 又 即x 1x 2=29 ②由①、②得a 2=4,b 2=9故双曲线方程为9422y x -=1. ●思路方法一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. 定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1(m >0,n >0).定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. ●考点一训练 一、选择题1已知直线x +2y -3=0与圆x 2+y 2+x -6y +m =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,则m 等于( )A.3B.-3C.1D.-12中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为( )12575 D. 17525C.1252752 B. 1752252A.22222222=+=+=+=+y x y x y x y x二、填空题3.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.4.已知圆过点P (4,-2)、Q (-1,3)两点,且在y 轴上截得的线段长为43,则该圆的方程为_________. 三、解答题5已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个焦点为F ,M 是椭圆上的任意点,|MF |的最大值和最小值的几何平均数为2,椭圆上存在着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=3104,试求椭圆的方程.6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.7.已知圆C 1的方程为(x -2)2+(y -1)2=320,椭圆C 2的方程为2222by a x +=1(a >b>0),C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.考点二 直线与圆锥曲线直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.●典例探究[例1]如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为4π的直线l 与线段OA 相交(不经过点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.命题意图:直线与圆锥曲线相交,一个重要的问题就是有关弦长的问题.本题考查处理直线与圆锥曲线相交问题的第一种方法——“韦达定理法”.知识依托:弦长公式、三角形的面积公式、不等式法求最值、函数与方程的思想.错解分析:将直线方程代入抛物线方程后,没有确定m 的取值范围.不等式法求最值忽略了适用的条件.技巧与方法:涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,涉及垂直关系往往也是利用韦达定理,设而不求简化运算.解:由题意,可设l 的方程为y =x +m ,-5<m <0.由方程组⎩⎨⎧=+=xy m x y 42,消去y ,得x 2+(2m -4)x +m 2=0①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=(2m -4)2-4m 2=16(1-m )>0, 解得m <1,又-5<m <0,∴m 的范围为(-5,0) 设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=2(5+m )m -1,从而S △2=4(1-m )(5+m )2 =2(2-2m )·(5+m )(5+m )≤2(35522m m m ++++-)3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.[例2]已知双曲线C :2x 2-y 2=2与点P (1,2)(1)求过P (1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. (2)若Q (1,1),试判断以Q 为中点的弦是否存在.命题意图:第一问考查直线与双曲线交点个数问题,归结为方程组解的问题.第二问考查处理直线与圆锥曲线问题的第二种方法——“差分法”.知识依托:二次方程根的个数的判定、两点连线的斜率公式、中点坐标公式.错解分析:第一问,求二次方程根的个数,忽略了二次项系数的讨论.第二问,算得以Q 为中点弦的斜率为2,就认为所求直线存在了.技巧与方法:涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率,弦的中点坐标联系起来,相互转化.解:(1)当直线l 的斜率不存在时,l 的方程为x =1,与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=k (x -1),代入C 的方程,并整理得(2-k 2)x 2+2(k 2-2k )x -k 2+4k -6=0 (*)(ⅰ)当2-k 2=0,即k =±2时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k 2≠0,即k ≠±2时Δ=[2(k 2-2k )]2-4(2-k 2)(-k 2+4k -6)=16(3-2k )①当Δ=0,即3-2k =0,k =23时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程(*)有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程(*)无解,l 与C 无交点. 综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点; 当k >23时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A (x 1,y 1),B (x 2,y 2),则2x 12-y 12=2,2x 22-y 22=2两式相减得:2(x 1-x 2)(x 1+x 2)=(y 1-y 2)(y 1+y 2)又∵x 1+x 2=2,y 1+y 2=2 ∴2(x 1-x 2)=y 1-y 1即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在. [例3]如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该弦椭圆的方程; (2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.命题意图:本题考查直线、椭圆、等差数列等基本知识,一、二问较简单,第三问巧妙地借助中垂线来求参数的范围,设计新颖,综合性,灵活性强.知识依托:椭圆的定义、等差数列的定义,处理直线与圆锥曲线的方法.错解分析:第三问在表达出“k =3625y 0”时,忽略了“k =0”时的情况,理不清题目中变量间的关系. 技巧与方法:第一问利用椭圆的第一定义写方程;第二问利用椭圆的第二定义(即焦半径公式)求解,第三问利用m 表示出弦AC 的中点P 的纵坐标y 0,利用y 0的范围求m 的范围.解:(1)由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1. (2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2), 由|F 2A |、|F 2B |、|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2×59,由此得出:x 1+x 2=8. 设弦AC 的中点为P (x 0,y 0),则x 0=221x x +=4.(3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9(x 12-x 22)+25(y 12-y 22)=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0(x 1≠x 2) 将k x x y y y y y x x x 1,2,422121021021-=--=+==+ (k ≠0)代入上式,得9×4+25y 0(-k1)=0 (k ≠0)即k =3625y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m ,所以m =y 0-4k =y 0-925y 0=-916y 0. 由点P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部,得-59<y 0<59,所以-516<m <516.解法二:因为弦AC 的中点为P (4,y 0),所以直线AC 的方程为y -y 0=-k1(x -4)(k ≠0) ③将③代入椭圆方程92522y x +=1,得 (9k 2+25)x 2-50(ky 0+4)x +25(ky 0+4)2-25×9k 2=0所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.(当k =0时也成立)(以下同解法一). ●思路方法1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.●考点二训练 一、选择题 1.斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为( )A.2B.554C.5104 D.51082抛物线y =ax 2与直线y =kx +b (k ≠0)交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有( )A.x 3=x 1+x 2B.x 1x 2=x 1x 3+x 2x 3C.x 1+x 2+x 3=0D.x 1x 2+x 2x 3+x 3x 1=0 二、填空题①②3.已知两点M (1,45)、N (-4,-45),给出下列曲线方程:①4x +2y -1=0, ②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.在抛物线y 2=16x 内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________. 三、解答题6.已知抛物线y 2=2px (p >0),过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .(1)求a 的取值范围.(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值.7.已知中心在原点,顶点A 1、A 2在x 轴上,离心率e =321的双曲线过点P (6,6). (1)求双曲线方程.(2)动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.已知双曲线C 的两条渐近线都过原点,且都以点A (2,0)为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.(1)求双曲线C 的方程.(2)设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.考点三 圆锥曲线综合题圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.●典例探究[例1]已知圆k 过定点A (a ,0)(a >0),圆心k 在抛物线C :y 2=2ax 上运动,MN 为圆k 在y 轴上截得的弦.(1)试问MN 的长是否随圆心k 的运动而变化?(2)当|OA |是|OM |与|ON |的等差中项时,抛物线C 的准线与圆k 有怎样的位置关系? 命题意图:本题考查圆锥曲线科内综合的知识及学生综合、灵活处理问题的能力.知识依托:弦长公式,韦达定理,等差中项,绝对值不等式,一元二次不等式等知识. 错解分析:在判断d 与R 的关系时,x 0的范围是学生容易忽略的.技巧与方法:对第(2)问,需将目标转化为判断d =x 0+2a 与R =a x +20的大小. 解:(1)设圆心k (x 0,y 0),且y 02=2ax 0,圆k 的半径R =|AK |=2202020)(a x y a x +=+- ∴|MN |=2202202022x a x x R -+=-=2a (定值)∴弦MN 的长不随圆心k 的运动而变化.(2)设M (0,y 1)、N (0,y 2)在圆k :(x -x 0)2+(y -y 0)2=x 02+a 2中, 令x =0,得y 2-2y 0y +y 02-a 2=0 ∴y 1y 2=y 02-a 2∵|OA |是|OM |与|ON |的等差中项. ∴|OM |+|ON |=|y 1|+|y 2|=2|OA |=2a . 又|MN |=|y 1-y 2|=2a ∴|y 1|+|y 2|=|y 1-y 2|∴y 1y 2≤0,因此y 02-a 2≤0,即2ax 0-a 2≤0. ∴0≤x 0≤2a . 圆心k 到抛物线准线距离d =x 0+2a ≤a ,而圆k 半径R =220a x +≥a . 且上两式不能同时取等号,故圆k 必与准线相交.[例2]如图,已知椭圆122-+m y m x =1(2≤m ≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A 、B 、C 、D ,设f (m )=||AB |-|CD ||(1)求f (m )的解析式; (2)求f (m )的最值.命题意图:本题主要考查利用解析几何的知识建立函数关系式,并求其最值,体现了圆锥曲线与代数间的科间综合.知识依托:直线与圆锥曲线的交点,韦达定理,根的判别式,利用单调性求函数的最值. 错解分析:在第(1)问中,要注意验证当2≤m ≤5时,直线与椭圆恒有交点.技巧与方法:第(1)问中,若注意到x A ,x D 为一对相反数,则可迅速将||AB |-|CD ||化简.第(2)问,利用函数的单调性求最值是常用方法.解:(1)设椭圆的半长轴、半短轴及半焦距依次为a 、b 、c ,则a 2=m ,b 2=m -1,c 2=a 2-b 2=1 ∴椭圆的焦点为F 1(-1,0),F 2(1,0).故直线的方程为y =x +1,又椭圆的准线方程为x =±ca 2,即x =±m .∴A (-m ,-m +1),D (m ,m +1)考虑方程组⎪⎩⎪⎨⎧=-++=11122m y m x x y ,消去y 得:(m -1)x 2+m (x +1)2=m (m -1) 整理得:(2m -1)x 2+2mx +2m -m 2=0 Δ=4m 2-4(2m -1)(2m -m 2)=8m (m -1)2∵2≤m ≤5,∴Δ>0恒成立,x B +x C =122--m m. 又∵A 、B 、C 、D 都在直线y =x +1上∴|AB |=|x B -x A |=2=(x B -x A )·2,|CD |=2(x D -x C ) ∴||AB |-|CD ||=2|x B -x A +x D -x C |=2|(x B +x C )-(x A +x D )| 又∵x A =-m ,x D =m ,∴x A +x D =0 ∴||AB |-|CD ||=|x B +x C |·2=|mm 212--|·2=m m222 (2≤m ≤5)故f (m )=mm222,m ∈[2,5]. (2)由f (m )=mm222,可知f (m )=m1222-又2-21≤2-m1≤2-51∴f (m )∈[324,9210] 故f (m )的最大值为324,此时m =2;f (m )的最小值为9210,此时m =5.[例3]舰A 在舰B 的正东6千米处,舰C 在舰B 的北偏西30°且与B 相距4千米,它们准备捕海洋动物,某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是3320g千米/秒,其中g 为重力加速度,若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?命题意图:考查圆锥曲线在实际问题中的应用,及将实际问题转化成数学问题的能力.知识依托:线段垂直平分线的性质,双曲线的定义,两点间的距离公式,斜抛运动的曲线方程.错解分析:答好本题,除要准确地把握好点P 的位置(既在线段BC 的垂直平分线上,又在以A 、B 为焦点的抛物线上),还应对方位角的概念掌握清楚.技巧与方法:通过建立恰当的直角坐标系,将实际问题转化成解析几何问题来求解.对空间物体的定位,一般可利用声音传播的时间差来建立方程.解:取AB 所在直线为x 轴,以AB 的中点为原点,建立如图所示的直角坐标系.由题意可知,A 、B 、C 舰的坐标为(3,0)、(-3,0)、(-5,23).由于B 、C 同时发现动物信号,记动物所在位置为P ,则|PB |=|PC |.于是P 在线段BC 的中垂线上,易求得其方程为3x -3y +73=0.又由A 、B 两舰发现动物信号的时间差为4秒,知|PB |-|PA |=4,故知P 在双曲线5422y x -=1的右支上.直线与双曲线的交点为(8,53),此即为动物P 的位置,利用两点间距离公式,可得|PA |=10. 据已知两点的斜率公式,得k PA =3,所以直线PA 的倾斜角为60°,于是舰A 发射炮弹的方位角应是北偏东30°.设发射炮弹的仰角是θ,初速度v 0=3320g,则θθcos 10sin 200⋅=⋅v g v , ∴sin2θ=23102=v g ,∴仰角θ=30°. ●思路方法解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域.(2)对于圆锥曲线的最值问题,解法常有两种:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值.●考点三训练 一、选择题1.已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1<m <4),当△ABC 的面积最大时,m 等于( )A.3B.49 C.25 D.23 2.设u ,v ∈R ,且|u |≤2,v >0,则(u -v )2+(vu 922--)2的最小值为( ) A.4B.2C.8D.22二、填空题3. A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA =2,则椭圆离心率的范围是_________. 4一辆卡车高3米,宽1.6米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是_________.5.已知抛物线y =x 2-1上一定点B (-1,0)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的横坐标的取值范围是_________.三、解答题6.已知直线y =kx -1与双曲线x 2-y 2=1的左支交于A 、B 两点,若另一条直线l 经过点P (-2,0)及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围.7.已知抛物线C :y 2=4x .(1)若椭圆左焦点及相应的准线与抛物线C 的焦点F 及准线l 分别重合,试求椭圆短轴端点B 与焦点F 连线中点P 的轨迹方程;(2)若M (m ,0)是x 轴上的一定点,Q 是(1)所求轨迹上任一点,试问|MQ |有无最小值?若有,求出其值;若没有,说明理由.8.如图,为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为线段OD 的中点,已知|AB |=4,曲线C 过Q 点,动点P 在曲线C 上运动且保持|PA |+|PB |的值不变.(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设DNDM=λ,求λ的取值范围.[学法指导]怎样学好圆锥曲线圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始.高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到:1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容.2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等.3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查.4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量.(2)用好函数思想方法对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a ,b ,c ,e 之间构成函数关系,函数思想在处理这类问题时就很有效.(3)掌握坐标法坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练.。