理论力学重点总结

合集下载

大理论力学知识点总复习

大理论力学知识点总复习

大理论力学知识点总复习1.摩擦力:摩擦力是物体相互接触时发生的一种力。

根据接触面之间的压力大小和物体的粗糙程度,可以分为静摩擦力和动摩擦力。

2.牛顿第一定律:牛顿第一定律也称为惯性定律,它指出一个物体如果没有外力作用,将保持静止或匀速直线运动。

3. 牛顿第二定律:牛顿第二定律描述了物体在受到外力作用下的加速度与作用力的关系。

F=ma,其中F代表作用力,m代表物体的质量,a代表物体的加速度。

4.牛顿第三定律:牛顿第三定律指出,对于任何作用力都有相等大小、方向相反的反作用力。

这意味着作用力和反作用力总是成对存在的。

5.动量守恒定律:当物体间没有外力作用时,系统的总动量保持不变。

动量的大小等于物体的质量乘以其速度。

6.能量守恒定律:在一个封闭系统中,能量总量保持不变。

能量可以相互转化,但总能量不会减少或增加。

7. 动能与势能:动能是物体由于运动而具有的能量,公式为K=1/2mv²,其中m为物体的质量,v为物体的速度。

势能是物体由于位置变化而具有的能量,公式为E=mgh,其中m为物体的质量,g为重力加速度,h为高度。

8.弹性碰撞与非弹性碰撞:弹性碰撞指在碰撞过程中物体之间的动能守恒,且碰撞后物体之间没有能量损失。

非弹性碰撞指碰撞后物体之间有能量损失。

9.万有引力定律:万有引力定律描述了两个物体之间的引力与它们质量和距离的关系。

公式为F=G(m1m2/r²),其中F为引力,G为万有引力常量,m1和m2为两个物体的质量,r为它们之间的距离。

10.刚体力学:刚体力学研究刚体的运动和平衡条件。

刚体是指形状和大小在外力作用下不会改变的物体。

11.流体力学:流体力学研究流体(包括气体和液体)的运动和性质。

其中包括流体的压力、密度和流速等。

12.静力学:静力学研究物体处于平衡状态时的力学性质。

对于平衡物体,其力合为零,力矩合为零。

13.动力学:动力学研究物体运动时的力学性质。

通过牛顿第二定律可以描述物体的加速度。

理论力学知识点总结(15篇)

理论力学知识点总结(15篇)

理论力学知识点总结第1篇xxx体惯性力系的简化:在任意瞬时,xxx体惯性力系向其质心简化为一合力,方向与质心加速度(也就是刚体的加速度)的方向相反,大小等于刚体的质量与加速度的乘积,即。

平面运动刚体惯性力系的简化:如果刚体具有质量对称面,并且刚体在质量对称面所在的平面内运动,则刚体惯性力系向质心简化为一个力和一个力偶,这个力的作用线通过该刚体质心,大小等于刚体的质量与质心加速度的乘积,方向与质心加速度相反;这个力偶的力偶矩等于刚体对通过质心且垂直于质量对称面的轴的转动惯量与刚体角加速度的乘积,其转向与角加速度的转向相反。

即(10-3)定轴转动刚体惯性力系的简化:如果刚体具有质量对称面,并且转轴垂直于质量对称面,则刚体惯性力系向转轴与质量对称面的交点O简化为一个力和一个力偶,这个力通过O点,大小等于刚体的质量与质心加速度的乘积,方向与质心加速度的方向相反;这个力偶的力偶矩等于刚体对转轴的转动惯量与角加速度的乘积,其转向与角加速度的转向相反。

即(10-4)理论力学知识点总结第2篇定点运动刚体的动量矩。

定点运动刚体对固定点O的动量矩定义为:(12-6)其中:分别为刚体上的质量微团的矢径和速度,为刚体的角速度。

当随体参考系的三个轴为惯量主轴时,上式可表示成(12-7)(2)定点刚体的欧拉动力学方程。

应用动量矩定理可得到定点运动刚体的欧拉动力学方程(12-8)(3)陀螺近似理论。

绕质量对称轴高速旋转的定点运动刚体成为陀螺。

若陀螺绕的自旋角速度为,进动角速度为,为陀螺对质量对称轴的转动惯量,则陀螺的动力学方程为(12-9)其中是作用在陀螺上的力对O点之矩的矢量和。

理论力学知识点总结第3篇牛顿第二定律建立了在惯性参考系中,质点加速度与作用力之间的关系,即:其中:分别表示质点的质量、质点在惯性参考系中的加速度和作用在质点上的力。

将上式在直角坐标轴上投影可得到直角坐标形式的质点运动微分方程(6-2)如果已知质点的运动轨迹,则利用牛顿第二定律可得到自然坐标形式的质点运动微分方程(6-3)对于自由质点,应用质点运动微分方程通常可研究动力学的两类问题。

理论力学知识点总结

理论力学知识点总结

理论力学知识点总结理论力学是研究物体运动规律的一门基础物理学科,它主要研究在力的作用下物体的运动状态。

以下是理论力学的知识点总结:1. 基本概念- 力:物体间的相互作用,可以改变物体的运动状态。

- 质量:物体所含物质的多少,是物体惯性大小的量度。

- 惯性:物体保持其运动状态不变的性质。

- 运动:物体位置随时间的变化。

- 静止:物体相对于参照系位置不发生改变的状态。

2. 牛顿运动定律- 第一定律(惯性定律):物体在没有外力作用下,将保持静止或匀速直线运动。

- 第二定律(加速度定律):物体的加速度与作用力成正比,与物体质量成反比,方向与作用力方向相同。

- 第三定律(作用与反作用定律):对于任何两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。

3. 功和能- 功:力在物体上做功,等于力与位移的乘积,是能量转化的量度。

- 动能:物体由于运动而具有的能量,与物体质量和速度的平方成正比。

- 势能:物体由于位置而具有的能量,与物体位置有关。

- 机械能守恒定律:在没有非保守力做功的情况下,系统的机械能(动能加势能)保持不变。

4. 动量和角动量- 动量:物体运动状态的量度,等于物体质量与速度的乘积。

- 角动量:物体绕某一点旋转运动状态的量度,等于物体质量、速度与该点到物体距离的乘积。

- 动量守恒定律:在没有外力作用的系统中,系统总动量保持不变。

- 角动量守恒定律:在没有外力矩作用的系统中,系统总角动量保持不变。

5. 刚体运动- 平动:刚体上所有点的运动状态相同,即刚体整体移动。

- 转动:刚体绕某一点或某一轴的旋转运动。

- 刚体的转动惯量:衡量刚体对转动的抵抗程度,与刚体的质量分布和旋转轴的位置有关。

6. 振动和波动- 简谐振动:物体在回复力作用下进行的周期性振动,其运动方程为正弦或余弦函数。

- 阻尼振动:在阻尼力作用下的振动,振幅随时间逐渐减小。

- 波动:能量在介质中的传播,包括横波和纵波。

7. 分析力学- 拉格朗日力学:通过拉格朗日量(动能减势能)来描述物体的运动。

理论力学下知识点总结

理论力学下知识点总结

理论力学下知识点总结一、静力学1. 作用力和反作用力作用力是指物体之间相互作用的力,它是使物体产生变化的原因。

而反作用力是作用力的作用对象对作用力的作用体产生的一种力,大小相等、方向相反。

2. 牛顿定律牛顿第一定律:一个物体如果受到平衡力的作用,将保持原来的状态,即匀速直线运动或静止状态。

牛顿第二定律:一个物体所受的合外力等于它的质量与加速度的乘积,即F=ma。

牛顿第三定律:相互作用的两个物体之间的作用力和反作用力大小相等、方向相反。

3. 力的分解在斜面上,对一个斜面上的物体,可以将它的重力分为垂直于斜面的力和平行于斜面的力,然后分解力的作用,得到物体的加速度和受力情况。

4. 力矩力矩是力偶对物体的作用引起的旋转效果,是物体受力的结果。

力矩的大小等于力乘以力臂的长度,方向垂直于力和力臂所在平面。

二、动力学1. 动量和冲量动量是物体运动时固有的属性,它等于物体的质量乘以速度。

而冲量是力对物体加速度的积分,是描述力的作用效果的物理量。

牛顿第二定律可以表示为动量定理:FΔt=Δp。

2. 动能和动能定理动能是物体运动时所具有的能量,它等于物体的质量乘以速度的平方再乘以1/2。

动能定理表明外力对物体做功,使得物体的动能发生改变。

动能定理可以表示为W=ΔK。

3. 力和功功是力对物体做的功,它等于力乘以位移,力与位移方向一致时做正功,反之做负功。

功可以用来表示物体的动能的变化。

4. 动量守恒定律动量守恒定律指的是在一个封闭系统中,如果系统内部没有受到外力的作用,系统内部各个物体的总动量保持不变。

5. 动能守恒定律动能守恒定律指的是在一个封闭系统中,如果系统内部没有受到非弹性碰撞和外力的作用,系统内部各个物体的总动能保持不变。

三、运动学1. 加速度和速度加速度是物体运动过程中速度变化的快慢程度的物理量,它等于速度的变化量除以时间。

速度是物体在单位时间内移动的距离。

在直线运动中,加速度可以表示为v=at。

2. 弹性碰撞和非弹性碰撞在弹性碰撞中,碰撞前后物体的总动能保持不变;而在非弹性碰撞中,碰撞前后物体的总动能发生改变,一部分能量转化为其他形式。

理论力学快速知识点总结

理论力学快速知识点总结

理论力学快速知识点总结一、牛顿运动定律牛顿三定律是经典力学的基石,它包括三个定律:1. 牛顿第一定律:当物体处于静止或匀速直线运动时,它会保持这种状态,除非受到外力的作用。

2. 牛顿第二定律:物体的加速度与作用力成正比,且与物体的质量成反比。

它的数学表达式为F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。

3. 牛顿第三定律:任何两个物体之间的相互作用力都是相等的,方向相反。

二、运动的描述在力学中,需要描述物体的运动状态。

常用的描述方法包括:1. 位移和速度:位移是指物体从一个位置到另一个位置的变化,速度是位移随时间的变化率。

速度的数学定义为v=Δx/Δt,其中Δx表示位移的变化量,Δt表示时间的变化量。

2. 加速度:加速度是速度随时间的变化率。

加速度的数学定义为a=Δv/Δt,其中Δv表示速度的变化量,Δt表示时间的变化量。

3. 动量:动量是描述物体运动状态的物理量,它与物体的质量和速度有关。

动量的数学定义为p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。

三、牛顿运动定律的应用牛顿运动定律是力学中最基本的规律,它可以应用于各种不同的情况,包括:1. 自由落体运动:自由落体是指物体只受重力作用,不受其他力的影响。

根据牛顿第二定律,自由落体的加速度为g≈9.8m/s^2。

2. 斜抛运动:斜抛运动是指物体同时具有水平和竖直方向的运动。

根据牛顿第二定律,斜抛运动可以分解为水平和竖直方向的分量运动。

3. 圆周运动:圆周运动是指物体沿着圆形轨道运动。

根据牛顿第二定律,圆周运动的向心力由向心加速度和物体质量决定。

四、能量和动量守恒定律能量和动量是物体运动的重要物理量,它们遵循守恒定律。

1. 能量守恒定律:能量守恒定律表明,在一个封闭系统中,能量的总量是不变的。

这意味着能量可以在不同形式之间转化,但总量保持不变。

2. 动量守恒定律:动量守恒定律表明,在一个封闭系统中,动量的总量是不变的。

(完整版)理论力学复习总结(知识点)

(完整版)理论力学复习总结(知识点)

第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。

F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。

公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。

推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。

公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。

推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。

公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。

公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。

对处于平衡状态的变形体,总可以把它视为刚体来研究。

1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。

3.力对刚体的作用效应分为移动和转动。

力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。

(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。

理论力学单元知识点总结

理论力学单元知识点总结

理论力学单元知识点总结1. 受力分析力是物体间相互作用的结果,有多种类型的力,如重力、弹力、摩擦力、拉力等。

受力分析是力学研究的基础,通过对物体受到的不同力的分析,可以确定物体的受力情况,从而进一步研究物体的运动规律。

2. 牛顿定律牛顿定律是力学研究的基本原理,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。

牛顿第一定律表明物体在不受外力作用时保持匀速直线运动或静止状态;牛顿第二定律表明物体的加速度与作用在它上面的净力成正比,反向与物体的质量成反比;牛顿第三定律表明任何两个物体之间的相互作用力大小相等、方向相反。

3. 运动学运动学是研究物体的运动轨迹、速度和加速度等参数的学科。

通过运动学的研究,可以获取物体在受力作用下的运动规律,包括匀速直线运动、变速直线运动、曲线运动等不同类型的运动规律。

4. 动力学动力学是研究物体受力作用下的运动规律的学科。

在受到外力作用时,物体的速度和加速度会发生变化,动力学通过对受力物体的运动状态和力的关系进行研究,揭示了物体在受力作用下的运动规律。

5. 势能和势能守恒势能是物体由于位置或状态而具有的能量,包括重力势能、弹性势能、化学势能等不同类型的势能。

势能守恒是指在不受非保守力(如摩擦力、拉力)作用时,系统的总机械能(动能和势能之和)保持不变。

势能的研究对于理解物体在受力作用下的运动规律具有重要意义。

6. 动能和动能守恒动能是物体由于速度而具有的能量,物体的动能与速度的平方成正比。

动能守恒是指在不受非保守力(如摩擦力、拉力)作用时,系统内的动能保持不变。

动能的研究对于理解物体在受力作用下的运动规律具有重要意义。

7. 力的合成与分解力的合成是指将多个力合成为一个合力的过程,力的分解是指将一个力分解为多个分力的过程。

通过力的合成与分解,可以对受力物体的受力情况进行分析,进一步研究物体的运动规律。

8. 圆周运动圆周运动是物体在圆周轨道上的运动规律,包括匀速圆周运动和变速圆周运动两种类型。

理论力学教程知识点总结

理论力学教程知识点总结

理论力学教程知识点总结一、基本概念1.1 质点:质点是理论力学研究的对象之一,它是一个没有体积的点,只有质量和位置。

在质点运动的研究中,忽略了质点的大小和形状,只关心质点的位置和速度。

1.2 力:力是导致物体产生运动、变形或改变物体的运动状态的原因。

在理论力学中,力是一个基本概念,是对物体产生影响的原因。

根据牛顿第二定律,力是导致物体加速度改变的原因,与物体质量和加速度成正比。

1.3 运动:运动是物体在空间中位置随时间变化的过程。

物体的运动可以是直线运动、曲线运动或者是平面运动等。

在理论力学中,研究物体的运动规律和运动状态的改变。

1.4 动力学:动力学是研究物体运动规律的科学,包括物体的运动状态、位置、速度、加速度等方面的研究。

动力学是理论力学的核心内容之一,是理解物体运动规律和力的作用关系的基础。

1.5 动力学方程:动力学方程是描述物体运动规律的方程,根据牛顿第二定律,动力学方程描述了物体的运动状态和受到的力之间的关系。

动力学方程包括牛顿第二定律 F=ma,它表示物体受到的外力等于质量与加速度的乘积。

二、运动方程2.1 牛顿第一定律:牛顿第一定律也称为惯性定律,它指出物体在不受外力作用时,会保持静止或匀速直线运动的状态。

牛顿第一定律是动力学方程的基础,它表明物体的运动状态需要受到外力的作用才会发生改变。

2.2 牛顿第二定律:牛顿第二定律是理论力学的基本定律之一,它描述了物体受到外力作用时的运动规律。

根据这个定律,物体受到的外力等于质量与加速度的乘积,即F=ma。

物体的质量越大,相同的力引起的加速度越小;物体的质量越小,相同的力引起的加速度越大。

2.3 牛顿第三定律:牛顿第三定律也称为作用与反作用定律,它指出作用在物体上的力总有一个与之相等的反作用力。

即使两个物体之间产生相互作用的力,这两个力的大小相等,方向相反。

牛顿第三定律描述了物体之间力的作用关系,是理论力学中一个重要的定律。

2.4 弹簧力:弹簧力是一种常见的力,当物体受到弹簧的拉伸或压缩时,会产生弹簧力。

理论力学知识点总结

理论力学知识点总结

理论力学知识点总结理论力学是物理学中的一个重要分支,研究物体的运动规律和受力情况。

其基础在于牛顿力学,也称为经典力学。

本文将总结理论力学领域中的一些重要知识点,包括牛顿定律、动量、能量等概念。

1. 牛顿定律牛顿定律是理论力学的基石,共分为三个定律。

第一定律也称为惯性定律,描述了物体的运动状态。

它指出,任何物体都保持静止或匀速直线运动,除非有外力作用于它。

第二定律是物体的运动状态与作用在其上的力成正比的关系。

其公式为F = ma,其中F为物体所受力,m为物体的质量,a为物体的加速度。

第三定律是作用力和反作用力总是成对存在的。

这些定律对于解释物体的运动行为和相互作用提供了基础。

2. 动量动量是物体运动的重要物理量,定义为物体质量与速度的乘积。

动量为矢量量,方向与速度方向一致。

动量的变化率等于作用在物体上的力。

这一关系可以表示为F = dp/dt,其中F为物体的受力,p为物体的动量,t为时间。

动量在碰撞、运动和相互作用等情况下起着重要的作用,也是守恒定律的基础之一。

3. 动能和势能动能是物体运动时具有的能量形式,定义为物体质量与速度平方的乘积的一半。

动能可以表示为K = 1/2 mv^2,其中m为物体质量,v为物体速度。

动能与物体的质量和速度平方成正比,是运动状态的指示器。

势能是与物体位置有关的能量,通常体现为引力和弹性力。

势能是因物体在某一位置而具有的能量,可以转化为动能,也可以从动能转化为势能,满足能量守恒定律。

4. 转动理论力学不仅研究物体的直线运动,还涉及到了转动的问题。

刚体的转动是指刚体绕固定轴线旋转的运动。

转动的物理量包括角位移、角速度和角加速度。

角位移表示物体绕轴线旋转的角度,角速度是单位时间内角位移的变化率,角加速度是单位时间内角速度的变化率。

转动存在着转动惯量、角动量、角动量守恒和角动量定理等重要概念。

5. 平衡在理论力学中,平衡是指物体处于静止或匀速直线运动的状态。

平衡可以分为静平衡和动平衡。

理论力学教材知识点总结

理论力学教材知识点总结

理论力学教材知识点总结1. 牛顿运动定律牛顿运动定律是理论力学的基础,它包括牛顿第一定律、牛顿第二定律和牛顿第三定律。

牛顿第一定律:一个物体如果受到合外力作用,将保持静止状态或匀速直线运动状态。

这一定律反映出了物体的运动状态与外力的关系。

牛顿第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。

即F=ma,其中F为合外力,m为物体的质量,a为物体的加速度。

牛顿第三定律:任何两个物体之间的相互作用都是相等的,方向相反。

即作用力等于反作用力,它们的方向相反,大小相等。

这三条定律是理论力学的基石,它们为我们理解物体的运动提供了基本的规律。

在学习理论力学的过程中,我们要深刻理解这些定律,并能够灵活运用它们来解决实际问题。

2. 力的概念力是物体之间相互作用的表现,它是导致物体产生加速度的原因。

力的大小可以用牛顿(N)作为单位来表示,力的方向对物体的运动状态有着重要的影响。

在学习力的概念时,我们要了解各种不同类型的力,例如重力、弹力、摩擦力、弦力等,以及它们的性质和作用规律。

3. 动力学动力学是研究物体运动状态变化规律的学科,它包括物体的运动参数、牛顿第二定律、动量定理、动量守恒定律等内容。

动量是描述物体运动状态的物理量,它等于物体质量乘以速度。

动量定理指出,当合外力作用于物体时,物体的动量将发生改变,这个变化率等于作用力的大小与方向。

动量守恒定律说明了在某些特定条件下,物体的总动量是守恒的,即在某个过程中总动量保持不变。

通过学习动力学,我们可以更好地理解物体的运动状态变化规律,掌握物体的动量和动能等重要概念。

4. 静力学静力学是研究物体静止状态和平衡的学科,它包括物体受力平衡条件、力的分解、受力分析等内容。

物体受力平衡条件是指物体受到的各个力的合力和合力矩均为零时,物体处于平衡状态。

通过受力平衡条件,我们可以分析物体受力的情况,判断物体的平衡状态。

力的分解是指将一个斜面上的力分解为平行于斜面和垂直于斜面的两个分力,这样可以更好地分析斜面上物体的运动状态。

期末理论力学知识点总结

期末理论力学知识点总结

期末理论力学知识点总结一、点、质点、物体1、点、质点、物体是力学研究的基本对象。

不考虑物体的大小,可以看作质点。

2、质点是没有大小但具有一定质量的点,用于研究物体的运动和受力情况。

3、物体具有一定形状和大小,通常采用刚体模型研究物体的运动和受力情况。

二、参考系及基本运动1、参考系是对物体的运动进行观察的坐标系统。

常用的参考系有惯性参考系和非惯性参考系。

2、基本运动包括平动和转动。

平动是指物体沿直线运动,转动是指物体旋转运动。

三、位置、位移、速度、加速度1、位置是物体在运动轨迹上的坐标,通常用矢量表示。

2、位移是物体由一个位置移动到另一个位置的矢量差。

3、速度是单位时间内位移的矢量比值,是描述物体运动快慢和方向的物理量。

4、加速度是单位时间内速度变化的矢量比值,是描述物体运动加速或减速的物理量。

四、牛顿运动定律1、牛顿第一定律:物体静止或匀速直线运动时,受力为零或合外力为零。

2、牛顿第二定律:物体的加速度与作用在物体上的力成正比,与物体的质量成反比。

3、牛顿第三定律:任何两个物体相互作用,彼此之间的力的大小相等,方向相反。

五、工作、功、能1、工作是力对物体作用时产生的效果。

功是力对物体作用时所做的功。

2、功是标量,是描述物体受力情况时的一种物理量。

3、势能是物体由于位置关系而具有的能量。

机械能是动能和势能的总和。

六、动量、冲量1、动量是物体运动状态的一种物理量,是物体质量和速度的乘积。

2、冲量是由力对物体作用的时间和力的大小决定的物理量。

七、角动量、矩、力矩1、角动量是描述物体旋转运动状态的物理量,是转动惯量和角速度的乘积。

2、矩是矢量的积,是力矩和时间的乘积。

3、力矩是力和力臂的乘积,是描述物体转动的物理量。

八、简谐振动1、简谐振动是指物体以最小摩擦情况下,在恢复力的作用下沿平衡位置来回振动的运动。

2、简谐振动的特点是周期性、正弦曲线和有固有频率。

以上是期末理论力学知识点总结,该总结涵盖了力学的基本概念、运动定律、能量、冲量、角动量和简谐振动等内容。

理论力学总结知识点

理论力学总结知识点

理论力学总结知识点1. 牛顿力学牛顿力学是经典力学的基础,主要包括牛顿三定律、万有引力定律和动量定理等内容。

牛顿三定律是牛顿力学的基本定律,它分别描述了物体的运动状态、受力作用和反作用的关系。

动量定理则是描述了力对物体运动状态的影响,通过动量定理可以得到物体的运动规律。

而万有引力定律则描述了质点之间的引力作用,是描述天体运动和行星运动的基础。

2. 哈密顿力学哈密顿力学是经典力学的一种形式,它以哈密顿量为基础,通过哈密顿正则方程描述物体的运动规律。

哈密顿量是描述系统动能和势能的函数,通过对哈密顿量的推导和求解可以得到系统的运动规律。

哈密顿正则方程则是描述了对应于哈密顿量的广义动量和广义坐标的变化规律,通过它可以得到物体的运动轨迹。

3. 拉格朗日力学拉格朗日力学是经典力学的另一种形式,它以拉格朗日函数为基础,描述了物体在一定势场中的运动规律。

拉格朗日函数是描述系统动能和势能的函数,通过对拉格朗日函数的求导和求解可以得到系统的运动规律。

拉格朗日方程则是描述了对应于拉格朗日函数的广义坐标和时间的变化规律,通过它可以得到物体的运动轨迹。

4. 动力学动力学是研究物体在受力作用下的运动规律的一门学科,它主要包括质点动力学、刚体动力学和连续体动力学等内容。

质点动力学是研究质点在受力作用下的运动规律,通过牛顿三定律和动量定理可以得到质点的运动规律。

刚体动力学则是研究刚体在受力作用下的运动规律,它包括刚体的平动和转动运动规律。

而连续体动力学是研究连续体在受力作用下的变形和运动规律,它是弹性力学和流体力学的基础。

5. 卡诺周期卡诺周期是描述热力学循环过程的一个理论模型,它包括等温膨胀、绝热膨胀、等温压缩和绝热压缩四个基本过程。

在卡诺周期中,工质从高温热源吸热,然后做功,再放热到低温热源,最后再做功回到原始状态。

卡诺周期是理想热机的工作过程,它具有最高的热效率,是实际热机效率的理论上界。

总之,理论力学是研究物体在受力作用下的运动规律的一门基础学科,它包括牛顿力学、哈密顿力学和拉格朗日力学等内容。

理论力学知识点总结

理论力学知识点总结

理论力学知识点总结理论力学是一门研究物体机械运动一般规律的学科,它是许多工程技术领域的基础。

以下是对理论力学一些重要知识点的总结。

一、静力学静力学主要研究物体在力系作用下的平衡问题。

1、力的基本概念力是物体之间的相互作用,具有大小、方向和作用点三个要素。

力的表示方法包括矢量表示和解析表示。

2、约束与约束力约束是限制物体运动的条件,约束力则是约束对物体的作用力。

常见的约束类型有柔索约束、光滑接触面约束、光滑圆柱铰链约束等,每种约束对应的约束力具有特定的方向和特点。

3、受力分析对物体进行受力分析是解决静力学问题的关键步骤。

要明确研究对象,画出其隔离体,逐个分析作用在物体上的力,包括主动力和约束力,并画出受力图。

4、力系的简化力系可以通过平移和合成等方法进行简化,得到一个合力或合力偶。

力的平移定理指出,力可以平移到另一点,但必须附加一个力偶。

5、平面力系的平衡方程平面任意力系的平衡方程有三个:∑Fx = 0,∑Fy = 0,∑Mo(F) =0。

对于平面汇交力系和平面力偶系,平衡方程分别有所简化。

6、空间力系的平衡方程空间力系的平衡方程数量增多,需要考虑三个方向的力平衡和三个方向的力矩平衡。

二、运动学运动学研究物体的运动而不考虑引起运动的力。

1、点的运动学描述点的运动可以使用矢量法、直角坐标法和自然法。

在自然法中,引入了弧坐标、切向加速度和法向加速度的概念。

2、刚体的基本运动刚体的基本运动包括平动和定轴转动。

平动时,刚体上各点的运动轨迹相同、速度和加速度相同;定轴转动时,刚体上各点的角速度和角加速度相同。

3、点的合成运动点的合成运动是指一个动点相对于两个不同参考系的运动。

通过选取合适的动点、动系和定系,运用速度合成定理和加速度合成定理来求解问题。

4、刚体的平面运动刚体平面运动可以分解为随基点的平动和绕基点的转动。

平面运动刚体上各点的速度可以用基点法、速度投影定理和瞬心法求解,加速度则可以用基点法求解。

三、动力学动力学研究物体的运动与作用力之间的关系。

理论力学知识点总结

理论力学知识点总结

理论力学知识点总结理论力学是研究物体运动规律和力的作用规律的学科,它是物理学的基础和核心内容之一、理论力学是以牛顿力学为基础的,通过描述和解决物体运动的数学模型来研究系统的行为。

本文将对理论力学的几个重要知识点进行总结。

1.牛顿运动定律:牛顿运动定律是理论力学的基石,包括三个定律:(1)第一定律:也称为惯性定律,物体在没有外力作用时将保持静止或匀速直线运动的状态。

(2) 第二定律:物体的加速度与作用在物体上的合力成正比,与物体的质量成反比,可以用公式F=ma表示,其中F为合力,m为质量,a为加速度。

(3)第三定律:也称为作用-反作用定律,任何作用力都有一个等大相反方向的反作用力。

2.动量和动量守恒定律:动量是物体运动的物理量,是质量和速度的乘积。

动量守恒定律是指在一个封闭系统中,系统总动量在时间上保持不变。

对于两个物体的弹性碰撞,可以用动量守恒定律来描述。

3.力学能的转化和守恒:力学能包括动能和势能。

动能是物体由于运动而具有的能量,可以用公式K = 1/2mv^2表示,其中m为质量,v为速度。

势能是物体由于其位置而具有的能量,例如重力势能和弹性势能。

力学能转化和守恒定律描述了力学能在物体运动过程中的转化和守恒。

4.圆周运动和万有引力:圆周运动是物体在向心力作用下绕固定轴作匀速圆周运动。

对于向心力和离心力的大小可以用公式F = mv^2 / R来计算,其中m为质量,v为速度,R为半径。

万有引力是质点之间的引力,可以用公式F = Gm1m2/ r^2来计算,其中G为万有引力常数,m1和m2为质量,r为两个质点之间的距离。

5.刚体力学:刚体是指形状保持不变的物体。

刚体力学研究刚体的运动和力学性质。

刚体的运动可以分为平动和转动两种。

平动是指刚体的所有点都以相同的速度和方向运动,转动是指刚体以一个固定轴为圆心绕轴进行旋转。

刚体力学还研究了刚体的稳定性和平衡条件。

6.振动和波动:振动是物体围绕平衡位置往复运动的现象。

《理论力学》知识点复习总结

《理论力学》知识点复习总结

《理论力学》知识点复习总结1.物体的力学性质:力、质量、惯性、受力分析方法等。

-力是物体之间相互作用的结果,具有大小和方向。

-质量是物体所固有的特性,是描述物体所具有惯性的物理量。

-惯性是物体保持运动状态的性质。

-受力分析方法包括自由体图、受力分解和力的合成等。

2.静力学:物体在平衡状态下的力学性质。

-质点和刚体的平衡条件:质点处于平衡状态的条件是合外力为零;刚体处于平衡状态的条件包括合外力为零和合力矩为零。

-平衡条件的应用:包括静力平衡、摩擦力和弹簧力的分析。

3.动力学:物体在运动状态下的力学性质。

- 牛顿第二定律:力的大小与物体的加速度成正比,与物体的质量成反比。

F=ma。

-牛顿第三定律:相互作用的两个物体对彼此施加的力大小相等、方向相反且作用线共面。

-看似相矛盾的运动:如撞击问题、弹性碰撞和非弹性碰撞等。

-应用:包括运动学方程、加速度分析和力学功与功率。

4.系统动力学:多个物体组成的力学系统的运动性质。

-质心和运动质量:质心是体系质点整体运动的简化描述,质点与质心之间的相对运动。

-惯性张量:描述刚体旋转运动的物理量,与刚体的形状和质量分布有关。

- 牛顿第二运动定理的推广:F=ma,扩展到系统的质心运动和转动运动。

-平面运动:考虑力矩与角动量的关系,通过角动量守恒定律解决问题。

-空间运动:考虑转动动力学和刚体旋转平衡。

5.两体问题:描述两个物体之间的相互作用。

-地球质点模型:解析化描述地球和物体之间的万有引力相互作用。

-地球表面近似:解析化描述地球表面物体之间的重力相互作用。

-行星运动:描述行星围绕太阳轨道运动和轨道素描和轨道周期的计算。

-卫星运动:描述人造卫星的轨道运动和发射速度的计算。

以上是对《理论力学》知识点的复习总结,需要注意的是理论力学是一个复杂的学科,其中涉及了静力学、动力学和系统动力学等多个方面的知识,所以复习时需要对每个知识点进行深入理解和掌握,并进行相关的计算和应用。

通过理论力学的学习,可以更好地理解和应用力学原理,提高分析和解决实际问题的能力。

理论力学知识点总结pdf

理论力学知识点总结pdf

理论力学知识点总结pdf引言理论力学是物理学的一个重要分支,研究物体在受力作用下的运动规律和相互作用。

它在物理学、工程学、地质学等领域都有着重要的应用。

理论力学主要包括牛顿力学、理论动力学、固体力学和流体力学等内容。

在这篇论文中,将会总结理论力学的主要知识点,并对其进行深入探讨。

1. 牛顿力学牛顿力学是理论力学的基础,主要包括牛顿三定律和运动方程。

牛顿第一定律指出一个物体如果没有受到外力作用,它将保持静止或匀速直线运动。

牛顿第二定律则描述了物体受力作用下的加速运动规律,即力与加速度的关系。

而牛顿第三定律则说明了物体间相互作用的力是相等的、方向相反的。

理解并掌握牛顿力学的知识对于理论力学的深入学习至关重要。

2. 理论动力学理论动力学是研究具有确定力学规律的物体在受力作用下的运动规律。

它包括刚体力学和振动力学两个部分。

刚体力学研究的是刚体在受力作用下的运动规律,其中包括刚体的平动和转动运动。

振动力学则研究的是物体在受到一定条件下的振动规律,如弹簧振子、单摆等。

3. 固体力学固体力学是研究物体内部力的平衡和运动规律的学科,其研究对象是固体。

它包括静力学和动力学两个部分。

静力学研究的是固体在静止或匀速运动下的内部力的平衡规律,而动力学则研究的是固体在受力作用下的运动规律。

4. 流体力学流体力学是研究流体在受力作用下的运动规律和相互作用的学科。

它包括流体静力学和流体动力学两个部分。

流体静力学研究的是流体在静止或匀速运动下的内部力的平衡规律,而流体动力学则研究的是流体在受力作用下的运动规律,包括流体的流动规律和流体的阻力等。

结论理论力学是物理学中非常重要的一个分支,其研究对象是物体在受力作用下的运动规律和相互作用。

本文总结了理论力学的主要知识点,包括牛顿力学、理论动力学、固体力学和流体力学。

对这些知识点的深入学习和理解将有助于我们更好地应用理论力学的知识来解决实际问题。

希望通过本文的总结,读者能对理论力学有更全面的认识,并在实践中运用这些知识解决实际问题。

理论力学知识点总结公式

理论力学知识点总结公式

理论力学知识点总结公式理论力学是物理学的一个重要分支,研究物体的运动和受力情况。

它是物理学的基础,对于理解自然界的运动规律和分析物体的运动状态具有重要的意义。

本文将介绍理论力学的基本概念、重要定律和公式,并对其应用进行探讨。

一、基本概念1. 物体的质点和刚体质点是指质量可以集中于一个点的物体,它没有大小和形状,仅有质量和位置。

刚体是指即使受到外力也能保持形状不变的物体,它具有质量、大小和形状。

2. 位矢和位移位矢是指从参考点到物体的位置的矢量,通常用r表示。

位移是指物体在运动过程中位置的变化,通常用Δr表示。

3. 速度和加速度速度是指单位时间内物体位置的变化率,通常用v表示。

加速度是指单位时间内速度的变化率,通常用a表示。

4. 动量和力动量是指物体运动的特性,通常用p表示。

力是导致物体加速的原因,通常用F表示。

5. 动力学方程动力学方程描述了物体运动的规律,它由牛顿的第二定律得出:F=ma。

二、重要定律1. 牛顿三定律牛顿第一定律:物体静止或匀速运动的状态会保持下去,直到受到外力的作用改变为止。

牛顿第二定律:物体的加速度与受到的力成正比,与物体的质量成反比。

牛顿第三定律:对于任何施加力的物体,它都会受到一个与之大小相等、方向相反的反作用力。

2. 质点系和刚体系质点系的基本原理是质点的加速度等于所有作用在其上的力之和。

刚体系的基本原理是刚体上每一点的加速度相等。

三、运动方程1. 直线运动对于直线运动的质点,其运动方程可以由牛顿第二定律得出:F=ma,从而得出质点位置的变化规律。

2. 曲线运动对于曲线运动的质点,需要考虑外力对其产生的速度和加速度的影响,从而得出质点运动的轨迹和位移。

3. 刚体运动对于刚体的运动,需要考虑刚体上各部分的相对运动关系,从而得出刚体的整体运动规律。

四、能量和功1. 功功是力在物体运动过程中对物体产生的影响,它等于力与位移的乘积。

通常用W表示。

2. 功率功率是指单位时间内做功的速率,它等于功与时间的比值。

理论力学知识点详细总结

理论力学知识点详细总结

理论力学知识点详细总结引言理论力学是物理学的一个重要分支,研究物体的运动规律和力学特性。

它是一门基础学科,也是物理学中最早发展的学科之一。

理论力学对于理解和解释自然界的很多现象都起着关键作用,广泛应用于航天、航空、土木工程、机械制造等领域。

本文将对理论力学的主要知识点进行详细总结,包括牛顿力学、拉格朗日力学和哈密顿力学等内容。

一、牛顿力学牛顿力学是经典力学的基础理论,是研究物体运动规律和力学现象的最基本方法。

牛顿力学建立在牛顿三大定律的基础上,主要包括运动学和动力学两大部分。

1. 运动学运动学是研究物体运动的几何学方法,包括位置、速度、加速度等概念。

基本知识点包括:① 位移:物体从一个位置移动到另一个位置的距离和方向称为位移。

位移可用位移矢量表示。

② 速度:物体单位时间内移动的位移称为速度。

平均速度可用位移除以时间计算,瞬时速度可用极限定义。

③ 加速度:物体单位时间内速度变化的量称为加速度。

平均加速度可用速度变化除以时间计算,瞬时加速度可用速度的导数定义。

2. 动力学动力学是研究物体受力运动的学科,主要包括牛顿运动定律和牛顿万有引力定律。

① 牛顿三大定律:第一定律指出,物体在不受外力作用时保持匀速直线运动或静止;第二定律指出,物体受到的力与其加速度成正比,与质量成反比;第三定律指出,相互作用的两个物体之间的作用力和反作用力大小相等、方向相反。

② 牛顿万有引力定律:物体间的引力与它们的质量和距离平方成反比。

万有引力定律可用来解释行星运动、天体引力等现象。

二、拉格朗日力学拉格朗日力学是研究自由度受限制的多体系统的运动方程和动力学的方法。

它是经典力学的重要分支,由拉格朗日于18世纪提出,是经典力学的另一种处理方法。

主要包括拉格朗日方程和哈密顿原理等内容。

1. 拉格朗日方程拉格朗日方程是描述多体系统的运动方程的方法,它由拉格朗日量和运动方程组成。

主要包括:① 拉格朗日量:拉格朗日力学的核心概念,它是系统动能和势能的差的函数。

理论力学知识点总结

理论力学知识点总结

理论力学知识点总结理论力学是物理学中的一个重要分支,它研究物体的运动规律和相互作用力。

在学习理论力学的过程中,我们需要掌握一些重要的知识点,下面我将对一些常见的知识点进行总结,希望能够帮助大家更好地理解和掌握理论力学。

1. 牛顿运动定律。

牛顿运动定律是理论力学的基础,它包括了三条定律,惯性定律、动力定律和作用-反作用定律。

惯性定律指出物体在没有外力作用时将保持静止或匀速直线运动;动力定律则描述了物体的加速度与作用力之间的关系;作用-反作用定律则说明了两个物体之间的相互作用力是相等的、方向相反的。

2. 动量和动量守恒定律。

动量是描述物体运动状态的物理量,它等于物体的质量乘以速度。

动量守恒定律指出,一个系统的总动量在没有外力作用时将保持不变。

这一定律在碰撞和爆炸等过程中有重要的应用。

3. 动能和动能定理。

动能是描述物体运动能量的物理量,它等于物体的质量乘以速度的平方再乘以1/2。

动能定理则说明了物体的动能与外力做功之间的关系,即外力对物体做功等于物体动能的增量。

4. 势能和机械能守恒定律。

势能是描述物体位置状态的物理量,它与物体所处位置的位置势能有关。

机械能守恒定律指出,在没有非弹性碰撞和非保守力作用时,一个系统的总机械能将保持不变。

5. 圆周运动。

圆周运动是理论力学中的一个重要问题,它涉及到了角速度、角加速度、向心力等概念。

在圆周运动中,物体将沿着圆周做匀速运动或变速运动,这需要我们掌握相关的运动规律和公式。

6. 万有引力和开普勒定律。

万有引力是描述天体之间相互作用力的重要定律,它与质量和距离的平方成反比。

开普勒定律则描述了行星运动的规律,包括椭圆轨道、面积速度定律和周期定律。

通过对以上知识点的总结,我们可以更好地理解和掌握理论力学的基本原理和运用方法,这对于我们在物理学习和科学研究中都具有重要的意义。

希望大家能够认真学习和掌握这些知识点,不断提高自己的物理学水平。

理论力学知识点总结

理论力学知识点总结

理论力学知识点总结理论力学是经典物理学的一个重要分支,主要研究物体的力学运动规律。

从古至今,人们一直对物体的运动规律进行研究,不断总结出了一系列理论力学知识。

理论力学是物理学的基础,对于理解和研究各种现象有着重要的意义。

本文将对理论力学的主要知识点进行总结,并探讨其在实际应用中的重要性。

1. 牛顿定律牛顿定律是理论力学的基础,它由三个定律组成。

第一定律(惯性定律)指出,物体在受到合外力作用时,将保持原来的静止状态或匀速直线运动状态;第二定律(运动定律)规定物体的加速度与作用在其上的合外力成正比,与物体的质量成反比;第三定律(作用-反作用定律)规定,两个物体之间的相互作用力大小相等、方向相反,且作用在两个物体之间的直线上。

2. 物体的运动理论力学研究物体的运动形式,主要分为直线运动和曲线运动。

在直线运动中,物体以匀速或变速方式运动,可以通过位移、速度、加速度等物理量来描述其运动状态。

而在曲线运动中,物体的运动轨迹是曲线形状,它的速度和加速度的方向和大小在运动过程中会不断变化。

3. 动力学动力学是研究物体运动和其引起的一系列现象的力学学科。

在动力学中,我们研究物体受到各种力的作用下的运动规律。

根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比,因此可以通过力和质量之间的关系来研究物体的加速度和速度变化规律。

4. 力学能量力学能量是指物体由于位置、速度或形变而具有的能力。

力学能量主要包括动能和势能两种形式。

动能是由于物体的运动而产生的能量,它与物体的质量和速度平方成正比。

势能是由于物体所处的位置而产生的能量,它与物体的位置和受力关系有关。

在理论力学中,我们通过动能和势能的转化来研究物体的机械运动规律。

5. 转动力学转动力学研究物体绕固定轴线进行旋转运动的力学规律。

在转动力学中,我们主要研究物体的角位移、角速度、角加速度等物理量,并通过转动惯量、角动量等概念来描述物体的旋转运动状态。

转动力学在研究机械系统、刚体等方面有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理论力学重点总结绪论1.学习理论力学的目的:在于掌握机械运动的客观规律,能动地改造客观世界,为生产建设服务。

2.学习本课程的任务:一方面是运用力学基本知识直接解决工程技术中的实际问题;另一方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。

此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。

第一章静力学的基本公理与物体的受力分析1-1静力学的基本概念1.刚体:即在任何情况下永远不变形的物体。

这一特征表现为刚体内任意两点的距离永远保持不变。

2.质点:指具有一定质量而其形状与大小可以忽略不计的物体。

1-3约束与约束力1.2.胶带、链条)3.光滑接触面(线)约束:为单面约束,其约束力常又称为法向约束力。

光滑接触面(线)的约束力只能是压力,作用在接触处,方向沿着接触表面在接触处的公法线而指向物体,常用符号F N表示。

4.光滑圆柱形铰链约束:简称圆柱铰,是连接两个构件的圆柱形零件,通常称为销钉。

光滑圆柱铰链约束的约束力只能是压力,在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定。

5.铰支座:用光滑圆柱销把结构物或构件与底座连接,并把底座固定在支承物上而构成的支座称为固定铰链支座,简称铰支座。

铰支座约束的约束力在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定,通常表示为相互垂直的两个分力。

6.辊轴支座:将结构物或构件的铰支座用几个辊轴支承在光滑的支座面上,就称为辊轴支座,亦称为可动铰链支座。

辊轴支座约束的约束力应垂直于支承面,通过圆柱销中心,常用F N 表示。

7.链杆约束:为双面约束。

两端用光滑铰链与其他构件连接且不考虑自重的刚杆称为链杆。

链杆约束的约束力沿链杆两端铰链的连线,指向不能预先确定,通常假设链杆受拉。

8.解除约束原理:当受约束的物体在某些主动力的作用下处于平衡,若将其部分或全部的约束除去,代之以相应的约束力,则物体的平衡不受影响。

9.习题画出下列制定物体的受力图第二章平面汇交力系1.习题P37 2-7 简易起重机用钢丝绳吊起重量W=2kN 的重物,不计杆件自重、摩擦及滑轮大小,A、B、C三处简化为铰链连接。

求杆AB和AC所受的力。

P39 2-13 夹具所用的两种连杆增力机构如图所示,已知推力F1作用于A点,夹紧平衡时杆AB 与水平线的夹角为α。

求对于工件的夹紧力F2和当α=10º时的增力倍数F2/F1。

第三章力矩与平面力偶理论3-2 力偶及其性质1.力偶、力偶的作用面、力偶臂:物体同时受到大小相等、方向相反、作用线不在同一直线上的两个力作用,把这两个力作为一个整体来考虑,称为力偶,以符号(F,F’)表示,两力作用线所决定的平面称为力偶的作用面,两力作用线间的垂直距离称为力偶臂。

2.力偶的性质:1)力偶既没有合力,本身又不平衡,是一个基本的力学量。

2)力偶对于作用面内任一点之矩与矩心位置无关,恒等于力偶矩,因此力偶对于物体的效应用力偶矩度量,在平面问题中它是个代数量。

3.力偶矩公式:M(F,F’)=M=±Fd (N·m或kN·m) 逆时针为正4.平面力偶的等效定理:作用在同一平面内的两个力偶,若其力偶矩的大小相等,转向相同,则该两个力偶彼此等效。

5.习题P50 3-4 构件的支承及荷载情况如图,求支座A、B的约束力。

第四章平面任意力系4-1 力线平移定理1.力线平移定理:作用于刚体上的力均可以从原来的作用位置平行移至刚体内任意指定点,欲不改变该力对于物体的作用,则必须在该力与指定点所决定的平面内附加一力偶,其力偶矩等于原力对于指定点之矩。

4-2 平面任意力系向已知点的简化·主矢与主矩1.主矢:平面汇交力系可合成为一力以F OR表示,F OR=F1+F2+…+F n=∑F=F’R其中F’R=∑F称为平面力系的主矢。

即,汇交力系的合力矢等于平面力系的主矢。

主矢F’R 是自由矢,它只代表力系中各力矢的矢量和,并不涉及作用点,因此汇交力系的合力F OR 与主矢F’R并不完全相同。

2.主矩:平面附加力偶系可合成为一力偶,其力偶矩以M表示,M=M0(F1)+M O(F2)+M O(F n)= ∑M O(F)= M O其中M O=∑M O(F)称为平面力系对于简化中心O的主矩。

附加力偶系的合力偶矩等于平面力系对于简化中心O的主矩。

3.平面任意力系向作用面内任一点简化,一般可以得到一力和一力偶;该力作用于简化中心,其大小及方向等于平面力系的主矢,该力偶之矩等于平面力系对于简化中心的主矩。

力系的主矢与简化中心的位置无关,主矩与简化中心的位置有关。

4.固定端(支座)约束简化为一力和一力偶,通常如图所示:4-4 平面任意力系的平衡条件与平衡方程1.平面任意力系平衡的必要与充分条件是:力系的主矢和力系对于任意点的主矩都等于零。

力系中所有力在作用面内任意两个坐标轴上投影的代数和等于零,以及各力对于平面内任意点之矩的代数和等于零。

2.平面任意力系的平衡方程:∑F x=0,∑F y=0,∑M O(F)=03.习题P75 4-3 求下列各图中平行分布力的合力和对于A点之矩。

第五章摩擦5-2 滑动摩擦1.摩擦自锁、自锁条件:若主动力的合力的作用线在摩擦角域或锥域内时,不论该合力的数值如何,物体总处于平衡状态,这种现象称为摩擦自锁,这种与力的大小无关而与摩擦角(或静摩擦因数)有关的平衡条件称为自锁条件。

2.在一般情况下动摩擦因数略小于静摩擦因数。

5-4 滚动摩擦1.库伦的滚动摩擦定律:滚动摩擦力偶矩的最大值M max与两个相互接触物体间的正压力(或法向约束力)成正比,即:M max=δF N2.滚动摩擦系数单位为长度单位,滑动摩擦系数为数字无单位。

3.习题P98 5-2 重为W的物体放在倾角α的斜面上,摩擦因数为f s。

问要拉动物体所需拉力F T 的最小值是多少,这时角θ多大?第六章空间力系和重心6-2 空间汇交力系的合成与平衡1.空间汇交力系几何法平衡的必要与充分条件是:该力系的力多边形自行封闭。

2.空间汇交力系解析法平衡的必要与充分条件是:该力系中所有各力在三个坐标轴的每一个坐标轴上投影的代数和等于零。

3.空间汇交力系的平衡方程:∑F x=0,∑F y=0,∑F z=06-3 空间力偶理论1.力偶的等效条件:作用面平行的两个力偶,若其力偶矩大小相等,转向相同,则两力偶等效。

2.力偶的三要素:力偶对于刚体的转动效应取决于力偶矩的大小、力偶的转向和力偶作用面在空间的方位。

6-6 空间任意力系的平衡条件与平衡方程1.空间任意力系平衡的必要与充分条件是:力系中所有力在任意相互垂直的三个坐标轴的每一个轴上之投影的代数和等于零,以及力系对于这三个坐标轴之矩的代数和分别等于零。

2.空间力系的平衡方程:∑F x=0,∑F y=0,∑F z=0∑M x(F)=0,∑M y(F)=0,∑M z(F)=0第七章点的运动学习题P154 7-6 曲柄连杆机构中,曲柄OA以匀角速度ω绕O轴转动。

已知OA=r,AB=l,连杆上M点距A端长度为b,开始时滑块B在最右端位置。

求M点的运动方程和t=0时的速度计加速度。

第八章刚体的基本运动8-2 刚体的定轴转动1.角速度:刚体绕定轴转动的角速度等于位置角对于时间的一阶导数。

公式:2.角加速度:刚体绕定轴转动的角加速度等于角速度对于时间的一阶导数,或等于位置角对于时间的二阶导数。

公式:8-3 转动刚体内各点的速度与加速度1.动点的速度代数值:2.动点的切向加速度:3.动点的法向加速度:4.动点的全加速度的大小及其与主法线即半径的偏角θ:5.习题P172 8-7 电动绞车由带轮Ⅰ和Ⅱ及鼓轮Ⅲ组成,轮Ⅲ和轮Ⅱ刚性连在同一轴上。

各轮半径分别为r1=30cm,r2=75cm,r3=40cm。

轮Ⅰ的转速为n1=100rpm。

设轮与胶带间无滑动,求重物M 上升的速度和胶带AB、BC、CD、DA各段上点的加速度的大小。

第九章点的合成运动9-1 点的合成运动的概念1.绝对运动:动点对于固定参考系的运动称为绝对运动。

2.相对运动:动点对于动参考系的运动称为相对运动。

3.牵连运动:动参考系对于固定参考系的运动称为牵连运动。

9-3 点的速度合成定理1.点的速度合成定理:动点的绝对速度等于它的牵连速度与相对速度的矢量和。

公式:v a=v e+v r9-5 牵连运动为转动时点的加速度合成定理1.当牵连运动为转动时,动点的绝对加速度:a a=a e+a r+a C2.牵连运动为转动时点的加速度合成定理:当牵连运动为转动时,动点的绝对加速度等于牵连加速度、相对加速度与科氏加速度的矢量和。

3.习题P189 9-9 摇杆OC经过固定在齿条AB上的销子K带动齿条上下平动,齿条又带动半径为10cm的齿轮绕O1轴转动。

如在图示位置时摇杆的角速度ω=0.5rad/s,求此时齿轮的角速度。

第十章刚体的平面运动10-1 刚体平面运动的概述1.平面运动:当刚体运动时,刚体内任意一点至某一固定平面的距离始终保持不变。

10-3 平面图形内各点的速度·速度投影定理·速度瞬心1.速度合成法(基点法):平面图形内任一点的速度等于基点的速度与绕基点转动速度的矢量和。

公式:v M=v O’+v O’M2.速度投影法(速度投影定理):在任一瞬时,平面图形上任意两点的速度在这两个点连线上的投影相等公式:[v O’]O’M=[v M]O’M3.速度瞬心法:如已知速度瞬心的位置,并选此点C作基点,则基点的速度为零,于是图形上其他点如M点在此瞬时的绝对速度即等于绕基点C的转动速度,其大小为:v M=CM·ω,方向与CM垂直,指向图形转动的一方。

速度瞬心的确定方法:P197-198。

相关文档
最新文档