安徽省合肥市第九中学物理 静电场及其应用精选测试卷专题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省合肥市第九中学物理 静电场及其应用精选测试卷专题练习
一、第九章 静电场及其应用选择题易错题培优(难)
1.如图所示,竖直平面内有半径为R 的半圆形光滑绝缘轨道ABC ,A 、C 两点为轨道的最高点,B 点为最低点,圆心处固定一电荷量为+q 1的点电荷.将另一质量为m 、电荷量为+q 2的带电小球从轨道A 处无初速度释放,已知重力加速度为g ,则()
A .小球运动到
B 2gR B .小球运动到B 点时的加速度大小为3g
C .小球从A 点运动到B 点过程中电势能减少mgR
D .小球运动到B 点时对轨道的压力大小为3mg +k 12
2
q q R 【答案】AD 【解析】 【分析】 【详解】
A.带电小球q 2在半圆光滑轨道上运动时,库仑力不做功,故机械能守恒,则:
212
B mgR mv =
解得:
2B v gR 故A 正确;
B.小球运动到B 点时的加速度大小为:
22v a g R
==
故B 错误;
C.小球从A 点运动到B 点过程中库仑力不做功,电势能不变,故C 错误;
D.小球到达B 点时,受到重力mg 、库仑力F 和支持力F N ,由圆周运动和牛顿第二定律得:
2
122B
N q q v F mg k m R R
--=
解得:
12
23N q q F mg k
R
=+ 根据牛顿第三定律,小球在B 点时对轨道的压力为:
12
2
3q q mg k
R 方向竖直向下,故D 正确.
2.电荷量相等的两点电荷在空间形成的电场有对称美.如图所示,真空中固定两个等量异种点电荷A 、B ,AB 连线中点为O.在A 、B 所形成的电场中,以O 点为圆心半径为R 的圆面垂直AB 连线,以O 为几何中心的边长为2R 的正方形平面垂直圆面且与AB 连线共面,两个平面边线交点分别为e 、f ,则下列说法正确的是( )
A .在a 、b 、c 、d 、e 、f 六点中找不到任何两个场强和电势均相同的点
B .将一电荷由e 点沿圆弧egf 移到f 点电场力始终不做功
C .将一电荷由a 点移到圆面内任意一点时电势能的变化量相同
D .沿线段eOf 移动的电荷,它所受的电场力先减小后增大 【答案】BC 【解析】
图中圆面是一个等势面,e 、f 的电势相等,根据电场线分布的对称性可知e 、f 的场强相同,故A 错误.图中圆弧egf 是一条等势线,其上任意两点的电势差都为零,根据公式W=qU 可知:将一正电荷由e 点沿圆弧egf 移到f 点电场力不做功,故B 正确.a 点与圆面内任意一点时的电势差相等,根据公式W=qU 可知:将一电荷由a 点移到圆面内任意一点时,电场力做功相同,则电势能的变化量相同.故C 正确.沿线段eof 移动的电荷,电场强度 先增大后减小,则电场力先增大后减小,故D 错误.故选BC .
【点睛】等量异种电荷连线的垂直面是一个等势面,其电场线分布具有对称性.电荷在同一等势面上移动时,电场力不做功.根据电场力做功W=qU 分析电场力做功情况.根据电场线的疏密分析电场强度的大小,从而电场力的变化.
3.有固定绝缘光滑挡板如图所示,A 、B 为带电小球(可以近似看成点电荷),当用水平向左的力F 作用于B 时,A 、B 均处于静止状态.现若稍改变F 的大小,使B 向左移动一段小距离(不与挡板接触),当A 、B 重新处于平衡状态时与之前相比( )
A .A 、
B 间距离变小 B .水平推力力F 减小
C .系统重力势能增加
D .系统的电势能将减小 【答案】BCD 【解析】 【详解】
A .对A 受力分析,如图;由于可知,当
B 向左移动一段小距离时,斜面对A 的支持力减小,库仑力减小,根据库仑定律可知,AB 间距离变大,选项A 错误;
B .对AB 整体,力F 等于斜面对A 的支持力N 的水平分量,因为N 减小,可知F 减小,选项B 正确;
C .因为AB 距离增加,则竖直距离变大,则系统重力势能增加,选项C 正确;
D .因为AB 距离增加,电场力做正功,则电势能减小,选项D 正确; 故选BCD.
4.如图甲所示,两点电荷放在x 轴上的M 、N 两点,电荷量均为Q ,MN 间距2L ,两点电荷连线中垂线上各点电场强度y E 随y 变化的关系如图乙所示,设沿y 轴正方向为电场强度的正方向,中垂线上有一点()
0,3P L ,则以下说法正确的是 ( )
A .M 、N 两点上的两等量点电荷是异种电荷,M 为正电荷,N 为负电荷
B .将一试探电荷-q 沿y 轴负方向由P 移动到O ,试探电荷的电势能一直减少
C .一试探电荷-q 从P 点静止释放,在y 轴上做加速度先变小后变大的往复运动
D .在P 点给一试探电荷-q 合适的速度,使其在垂直x 轴平面内以O 点为圆心做匀速圆周运动,所需向心力为3Qq
k 【答案】BD 【解析】 【详解】
A .如果M 、N 两点上的两等量点电荷是异种电荷,则其中垂线是为等势线,故A 错误;
B .等量同种电荷连线中垂线上,从P 到O 电势升高,负电荷的电势能减小,故B 正确;
C .等量同种电荷连线中垂线上,从P 到O 电场线方向向上,试探电荷受的电场力沿y 轴向下,在y 轴上O 点下方,电场线方向沿y 轴向下,试探电荷受的电场力沿y 轴向上,由图乙可知,y 轴上电场强度最大点的位移在P 点的下方,所以试探电荷沿y 轴先做加速度增大,后做加速度减小的加速运动,在y 轴上O 点下方,做加速度先增大后减小的减速运动,故C 错误;
D .等量正电荷中垂面上电场方向背离圆心O ,所以负试探电荷受电场力作用以O 为圆心做匀速圆周运动,如图,由几何关系可知,P 到M 的距离为2L ,图中60θ︒=,由叠加原理可得,P 点的场强为
232sin 2
sin 60(2)P M kQ kQ E E L θ︒
=== 所以电场力即为向心力为
2
34Qq
F k
L = 故D 正确。
5.如图所示,在竖直放置的半径为R 的光滑半圆弧绝缘细管的圆心O 处固定一点电荷,将质量为m ,带电量为+q 的小球从圆弧管的水平直径端点A 由静止释放,小球沿细管滑到最低点B 时,对管壁恰好无压力,已知重力加速度为g ,则下列说法正确的是( )
A .小球在
B 2gR B .小球在B 2gR
C .固定于圆心处的点电荷在AB 弧中点处的电场强度大小为3mg/q
D .小球不能到达C 点(C 点和A 在一条水平线上) 【答案】AC
【解析】
试题分析:由A 到B ,由动能定理得:0
102
mgr mv =
-,解得2v gr =,A 正确,B 错误,在B 点,对小球由牛顿第二定律得:2
qE mg v m r
-=,将B 点的速度带入可得
3mg
E q
=
,C 正确,从A 到C 点过程中电场力做功为零,所以小球能到达C 点,D 错误, 考点:动能定理和牛顿定律综合的问题
点评:小球沿细管滑到最低点B 时,对管壁恰好无压力.并不是电场力等于重力,而是电场力与重力提供向心力去做圆周运动.当是点电荷的电场时,由于电场力与支持力均于速度方向垂直,所以只有重力做功.
6.如图所示,竖直墙面与水平地面均光滑且绝缘,两个带有同种电荷的小球A 、B 分别处于竖直墙面和水平地面上,且处于同一竖直平面内,若用图示方向的水平推力F 作用于小球B ,则两球静止于图示位置,如果将小球B 向左推动少许,待两球重新达到平衡时,则两个小球的受力情况与原来相比( )
A .竖直墙面对小球A 的弹力减小
B .地面对小球B 的弹力一定不变
C .推力F 将增大
D .两个小球之间的距离增大 【答案】ABD 【解析】 【分析】 【详解】
整体法可知地面对小球B 的弹力一定不变,B 正确;假设A 球不动,由于A 、B 两球间距变小,库仑力增大,A 球上升,库仑力与竖直方向夹角变小,而其竖直分量不变,故库仑力变小A 、B 两球间距变大,D 正确;但水平分量减小,竖直墙面对小球A 的弹力减小,推力F 将减小,故A 正确,C 错误。
故选ABD 。
7.如图所示,质量为m 的带电小球用绝缘丝线悬挂于P 点,另一带正电小球M 固定在带电小球的左侧,小球平衡时,绝缘丝线与竖直方向夹角为θ,且两球球心在同一水平线上.关于悬挂小球的电性和所受库仑力的大小,下列判断正确的是( )
A.正电,
mg
tanθ
B.正电,mg tan θ
C.负电,mg tan θD.负电,
mg tanθ
【答案】B
【解析】
【分析】
【详解】
小球 M带正电,两球相斥,故小球带正电;以小球为研究对象,对小球进行受力分析,根据小球处于平衡状态可知,F=mgtgθ,故选B.
【点睛】
对于复合场中的共点力作用下物体的平衡其解决方法和纯力学中共点力作用下物体的平衡适用完全相同的解决方法.
8.一个带电量为+Q的点电荷固定在空间某一位置,有一个质量为m的带电小球(重力不
能忽略)在+Q周围作匀速圆周运动,半径为R,向心加速度为3
3
g
(g为重力加速
度)。
关于带电小球带电情况,下列说法正确的是:
A.小球带正电,电荷量大小为
2 83
3
mgR
kQ
B.小球带正电,电荷量大小为
2 3
3 mgR kQ
C.小球带负电,电荷量大小为
2 83
3
mgR
kQ
D
2 3mgR
【答案】C 【解析】【详解】
由题意可知小球做匀速圆周运动,合力提供向心力,因中心电荷为+Q,做出运动图像如图所示:
可知要让小球做匀速圆周运动,即小球所受库仑力和重力的合力提供向心力,所以小球带负电;
由向心力公式可知:
3
3
F ma mg
==
向
设小球与点电荷连线与竖直方向夹角为θ,则有:
3
3
3
tan=
3
F
mg mg
θ==
向
所以θ=30°,根据几何关系有:
cos30
mg
F
=
库
sin30
R
L
=
根据库仑定律有:
2
qQ
F k
L
=
库
联立可得:
2
83
3
mgR
q
kQ
=
故C正确,ABD错误。
9.如图所示,光滑绝缘半球形的碗固定在水平地面上,可视为质点的带电小球1、2的电荷分别为Q1、Q2,其中小球1固定在碗底A点,小球2可以自由运动,平衡时小球2位于碗内的B位置处,如图所示.现在改变小球2的带电量,把它放置在图中C位置时也恰好能平衡,已知AB弦是AC弦的两倍,则()
A .小球在C 位置时的电量是
B 位置时电量的一半 B .小球在
C 位置时的电量是B 位置时电量的四分之一
C .小球2在B 点对碗的压力大小等于小球2在C 点时对碗的压力大小
D .小球2在B 点对碗的压力大小大于小球2在C 点时对碗的压力大小 【答案】C 【解析】 【详解】
AB .对小球2受力分析,如图所示,小球2受重力、支持力、库仑力,其中F 1为库仑力F 和重力mg 的合力,根据三力平衡原理可知,F 1=F N .由图可知,△OAB ∽△
BFF 1
设半球形碗的半径为R ,AB 之间的距离为L ,根据三角形相似可知,
1F mg F
OA OB AB
== 即
1F mg F
R R L
== 所以
F N =mg ①
L
F mg R
=
② 当小球2处于C 位置时,AC 距离为
2
L
,故 '1
2F F =
, 根据库仑定律有:
2
A B
Q Q F k
L
= '21()2
A C Q Q F k
L = 所以
1
8
C
B
Q
Q
=
,
即小球在C位置时的电量是B位置时电量的八分之一,故AB均错误;
CD.由上面的①式可知F N=mg,即小球2在B点对碗的压力大小等于小球2在C点时对碗的压力大小,故C正确,D错误。
故选C。
10.如图所示,固定在竖直面内的光滑金属细圆环半径为R,圆环的最高点通过长为L的绝缘细线悬挂质量为m、可视为质点的金属小球,已知圆环所带电荷量均匀分布且带电荷量与小球相同,均为Q(未知),小球在垂直圆环平面的对称轴上处于平衡状态,已知静电力常量为k,重力加速度为g,细线对小球的拉力为F(未知),下列说法正确的是( )
A.Q=
3
mgR
kL
,F=mgR
L
B.Q=
3
mgL
kR
,F=mgR
L
C.Q=
3
mgR
kL
,F=mgL
R
D.Q=
3
mgL
kR
,F=mgL
R
【答案】D
【解析】
【详解】
由于圆环不能看成点电荷,采用微元法,小球受到的库仑力为圆环各个点对小球库仑力的合力,以小球为研究对象,进行受力分析,如图所示
则Fsin mg
θ=,其中=
R
sin
L
θ,解得
mgL
F
R
=
设圆环各个点对小球的库仑力的合力为F Q,水平方向上有
2
2
Q
Q
Fcos F k cos
L
θθ
==,解得
3
mgL Q kR =
,故D 项正确,ABC 三项错误.
11.如图所示,真空中有两个点电荷Q 1和Q 2,Q 1=+9q ,Q 2=-q ,分别固定在x 轴上x =0处和x =6cm 处,下列说法正确的是( )
A .在x =3cm 处,电场强度为0
B .在区间上有两处电场强度为0
C .在x >9cm 区域各个位置的电场方向均沿x 轴正方向
D .将试探电荷从x =2cm 移到x =4cm 处,电势能增加 【答案】C 【解析】 【详解】
A .某点的电场强度是正电荷Q 1和负电荷Q 2在该处产生的电场的叠加,是合场强。
根据点电荷的场强公式E =
2
kq
r ,所以要使电场强度为零,那么正电荷Q 1和负电荷Q 2在该处产生的场强必须大小相等、方向相反。
因为它们电性相反,在中间的电场方向都向右。
设距离
Q 2为x 0处的电场强度矢量合为0,则:
12
2200
(6)kQ kQ x x =+ 可得:x 0=3cm ,故A 错误;
B .由选项A 的分析可知,合场强为0的点不会在Q 1的左边,因为Q 1的电荷量大于Q 2,也不会在Q 1Q 2之间,因为它们电性相反,在中间的电场方向都向右。
所以,只能在Q 2右边。
即在x 坐标轴上电场强度为零的点只有一个。
故B 错误; C.设距离Q 2为x 0处的电场强度矢量合为0,则:
122200
(6)kQ kQ x x =+ 可得:x 0=3cm ,结合矢量合成可知,在x >9cm 区域各个位置的电场方向均沿x 轴正方向。
故C 正确;
D.由上分析,可知,在0<x <6cm 的区域,场强沿x 轴正方向,将试探电荷+q 从x =2cm 处移至x =4cm 处,电势能减小。
故D 错误。
12.如图所示,A 、B 、C 、D 是立方体的四个顶点,在A 、B 、D 三个点各放一点电荷,使C 点处的电场强度为零。
已知A 点处放的是电荷量为Q 的正点电荷,则关于B 、D 两点处的点电荷,下列说法正确的是( )
A .
B 点处的点电荷带正电 B .D 点处的点电荷带正电
C .B 26
D .D 点处的点电荷的电荷量为13
Q
【答案】C 【解析】 【分析】 【详解】
A .A 点处放的是电荷量为Q 的正点电荷,若
B 点处的点电荷带正电,根据场强叠加可知,在D 点无论是放正电还是负电,
C 点的场强都不可能为零,选项A 错误; B .若
D 点处的点电荷带正电,则根据场强叠加可知,在B 点无论是放正电还是负电,C 点的场强都不可能为零,选项B 错误;
CD .设正方体边长为a ,BC 与AC 夹角为θ,由叠加原理可知,在BD 两点只能都带负电时,C 点的合场强才可能为零,则
22cos 32B Q Q
k k a a θ= 22sin 3D Q Q
k
k a a
θ= 其中2cos 3
θ=sin 3θ=解得
26
B Q = 39
D Q Q =
选项C 正确,D 错误。
故选C 。
13.如图所示,竖直绝缘墙上距O 点l 处固定一带电量Q 的小球A ,将另一带等量同种电荷、质量为m 的小球B 用长为l 的轻质绝缘丝线悬挂在O 点,A 、B 间用一劲度系数为k ′原长为
54
l
的绝缘轻质弹簧相连,静止时,A 、B 间的距离恰好也为l ,A 、B 均可看成质点,以下说法正确的是( )
A .A 、
B 间库仑力的大小等于mg B .A 、B 间弹簧的弹力大小等于k ′l
C .若将B 的带电量减半,同时将B 球的质量变为4m ,A 、B 间的距离将变为2
l D .若将A 、B 的带电量均减半,同时将B 球的质量变为
2k l
m g
'+,A 、B 间的距离将变为2
l 【答案】D 【解析】 【分析】 【详解】
A .对小球受力分析如图;小球受弹簧的弹力与
B 所受的库仑力的合力(F 库+F 弹)沿AB 斜向上,由几何关系以及平衡条件可知
F 库+F 弹=mg
则
F 库= mg -F 弹
选项A 错误;
B .A 、B 间弹簧的弹力大小等于
''51=(
)44
l F k l k l -=弹 选项B 错误;
C .若将B 的带电量减半,A 、B 间的距离将变为2
l
,则库仑力变为2F 库,则弹力和库仑力的合力为
''
53=()22424
l l k l F k F F -+=+合库库
则由相似三角形关系可知
11'=13224
m g m g l
k l F l F =+合库 而
'1
4
F k l mg +=库
解得
'11
4=42
m g mg k l mg =+≠
选项C 错误;
D .若将A 、B 的带电量都减半,A 、B 间的距离将变为2
l
,则库仑力仍F 库,则弹力和库仑力的合力为
''
'
53=()424
l l k l
F k F F -+=+合库库
则由相似三角形关系可知
22''=1324
m g m g l
k l F l F =+合库 而
'1
4
F k l mg +=库
解得
'22m g mg k l =+
即
'22k l
m m g
=+
选项D 正确; 故选D 。
14.如图所示,质量为m 的带电小球A 用绝缘细线悬挂于O 点,另一个相同的带电小球B 固定于O 点的正下方,已知细线长L ,O 到B 点的距离也为L ,平衡时,BO 与AO 间的夹角为45°,已知重力加速度为g ,则下列说法正确的是( )
A.细线对A球的拉力等于库仑力和重力的合力,因此拉力大于重力
B.两球之间的库仑力大小为22mg
-
C.A球漏了少量电后,细线对A球的拉力减小
D.A球漏了少量电后,B球对A球的库仑力增大
【答案】B
【解析】
【分析】
【详解】
A.小球A的受力分析,如图所示
由于力的三角形与OAB相似,对应边成比例,设AB间距离为x,因此
mg T F
==①
l l x
可得
=
T mg
A错误;
B.根据余弦定理,可得
222o
=+-=-
2cos4522
x l l l
根据①式可得,库仑力大小
=-
F mg
22
B正确;
C.A球漏了少量电后,力的三角形与OAB仍相似,根据①式可知,细线对A球的拉力仍等于mg,C错误;
D.根据相似三角形,可得当x减小时,根据①可知,库仑力也减小,D错误。
故选B。
15.已知均匀带电球壳内部电场强度处处为零,电势处处相等.如图所示,正电荷均匀分布在半球面上,Ox为通过半球顶点与球心O的轴线.A、B为轴上的点,且OA=OB.C、D 为直径上的两点,且OC=OD.则下列判断正确的是( )
A .A 点的电势与
B 点的电势相等
B .
C 点的电场强度与
D 点的电场强度不相同 C .A 点的电场强度与B 点的电场强度相同
D .在A 点由静止开始释放重力不计的带正电粒子,该粒子将沿AB 做匀加速直线运动 【答案】C 【解析】 【分析】 【详解】
试题分析:由题意可知半球面右边的电场线是水平向右的,沿电场线方向电势逐渐降低,A 点电势高于B 点电势,A 错误;有对称性原理及电场叠加可知C 点和D 点场强一样;B 错误;B 错误;均匀带电半球相当于一个均匀带正电的球和半个均匀带负电的球,这个半球放在图的另一边.然后看AB 两点,可以看到,AB 两点在在上述涉及到的正电半球和负电半球中的相同的位置上.而由题目给出的条件,正电球在AB 两点产生的电场为零.所以,A 点正电半球产生的电场强度相当于负电半球产生的电场强度,而与B 点的环境比较,唯一的区别是电荷符号相反,从而电场大小相同,只有可能有方向的区别,而分析可知,方向是相同的,故电场强度相等,C 正确;电场线方向水平向右,所以在A 点释放静止带正电的微粒(重力不计),微粒将作加速运动,距离远后电场力减小,所以是变加速运动,D 错误;
二、第九章 静电场及其应用解答题易错题培优(难)
16.如图所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =4.0×10-12C ,现引入第三个同种点电荷C ,
(1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置?
(2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置? 【答案】(1)见解析(2)1216
109
C -⨯ ,为负电荷 【解析】 【分析】 【详解】
(1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ AC BC F F = ∴ 1323
22
()Q Q Q Q k
k x L x =- ∴ 1222
()Q Q x L x =- ∴ 4(L -x)2=x 2 ∴ x =0.2m
即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷.
(2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外.而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足;
② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡.
③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; 由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷.
设电荷C 放在距A 右侧x 处,电荷量为Q 3 对C :1323
22(0.3)Q Q Q Q k
k x x =- ∴ x =0.2m 对B :3212
22
()Q Q Q Q k k L L x =- ∴ 12316
109
Q C -=
⨯,为负电荷. 【点睛】
此题是库仑定律与力学问题的结合题;要知道如果只是让电荷C 处于平衡,只需在这点的场强为零即可,电性不限;三个电荷的平衡问题,遵循:“两同加一异”、“两大加一小”的原则.
17.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量均为Q ,其中A 带正电荷,B 带负电荷,A 、B 相距为2d 。
MN 是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球P ,质量为m 、电荷量为+q (可视为点电荷),现将小球P 从与点电荷A 等高的C 处由静止开始释放,小球P 向下运动到距C 点距离为d 的D 点
时,速度为v 。
已知MN 与AB 之间的距离为d ,静电力常量为k ,重力加速度为g ,若取无限远处的电势为零,试求:
(1)在A 、B 所形成的电场中,C 的电势φC 。
(2)小球P 经过D 点时的加速度。
(3)小球P 经过与点电荷B 等高的E 点时的速度。
【答案】(1)222mv mgd q -(2)g +2
22kQq
md
(3)2v 【解析】 【详解】
(1)由等量异种电荷形成的电场特点可知,D 点的电势与无限远处电势相等,即D 点电势为零。
小球P 由C 运动到D 的过程,由动能定理得:
2
102
CD mgd q mv ϕ+=
- ① 0CD C D C ϕϕϕϕ=-=- ②
222C mv mgd q
ϕ-= ③
(2)小球P 经过D 点时受力如图:
由库仑定律得:
122
(2)F F k
d == ④
由牛顿第二定律得:
12cos 45cos 45mg F F ma +︒+︒= ⑤
解得:
a =g +
2
22kQq
md
⑥ (3)小球P 由D 运动到E 的过程,由动能定理得:
22
1122
DE B mgd q mv mv ϕ+=
- ⑦ 由等量异种电荷形成的电场特点可知:
DE CD ϕϕ= ⑧
联立①⑦⑧解得:
2B v v = ⑨
18.如图所示,在沿水平方向的匀强电场中,有一长度l =0. 5m 的绝缘轻绳上端固定在O
点,下端系一质量21010m .-=⨯kg 、带电量8
2.010q -=⨯C 的小球(小球的大小可以忽
略)在位置B 点处于静止状态,此时轻绳与竖直方向的夹角α=37°,空气阻力不计,sin37°=0. 6,cos37°=0. 8,g =10m/s 2. (1)求该电场场强大小;
(2)在始终垂直于轻绳的外力作用下将小球从B 位置缓慢拉动到细绳竖直位置的A 点,求外力对带电小球做的功;
(3)过B 点做一等势面交电场线于C 点(C 点未画出),使轻绳与竖直方向的夹角增大少许(不超过5°),再由静止释放,求小球从C 点第一次运动到B 点的时间,并写出分析求解过程.
【答案】(1) 63.7510E =⨯N/C (2)2
1.2510F W J -=⨯ (3)0.31t s =
【解析】 【详解】
(1)带电小球静止,受到合力等于零,电场力与重力的关系是:
tan Eq mg α=,即tan mg
E q
α=
代入数值计算得电场场强大小:63.7510/E
N C =⨯
(2)小球在外力作用下从B 位置缓慢移动到A 位置过程中,根据动能定理有:
sin (cos )0F W Eql mg l l αα-+-=
所以sin tan (cos )F mg
W q mg l l q
ααα=
-- 代入数值解得电场场强大小:2
1.2510F W J -=⨯
(3)分析受力可知:小球在运动过程中,重力和电场力的合力为恒力,大小为
5
cos 4
mg F mg α=
= 类比研究单摆的方法可知,小球的运动与单摆类似,回复力由上述合力沿圆周切向的分力提供。
因为从C 到B 的角度θ很小,进一步可知回复力与相对平衡位置的位移大小成正比、方向相反,故小球的运动为简谐运动。
小球的运动可等效为在某个场强大小为5
4
g mg '=,方向与竖直方向成α角斜向右下的场中做简谐运动,其周期为
225/4
l l T g g π
π==' 故从C 到B 最短的时间1
0.10.314
t T s π=
==
19.A 、B 是两个电荷量都是Q 的点电荷,相距l ,AB 连线中点为O 。
现将另一个电荷量为q 的点电荷放置在AB 连线的中垂线上,距O 为x 的C 处(图甲)。
(1)若此时q 所受的静电力为F 1,试求F 1的大小。
(2)若A 的电荷量变为﹣Q ,其他条件都不变(图乙),此时q 所受的静电力大小为F 2,求F 2的大小。
(3)为使F 2大于F 1,l 和x 的大小应满足什么关系?
【答案】223(())2l x +223
(())2
l
x +(3) 2l x >
【解析】
【详解】
(1)设q为正电荷,在C点,A、B两电荷对q产生的电场力大小相同,为:
2
2)
4
(
A B
kQq
F F
l
x
==
+
方向分别为由A指向C和由B指向C,如图:
故C处的电场力大小为:
F1=2F A sinθ
方向由O指向C。
其中:2
2
4
sin
l
x
θ=
+
所以:
3
12
22
2
4
()
kQqx
F
l
x
=
+
(2)若A的电荷量变为-Q,其他条件都不变,则C处q受到的电场力:
F2=2F A cosθ
其中:
2
2
2
4
l
cos
l
x
θ=
+
所以:
22223
(4
)kQql F l x += 方向由B 指向A 。
(3)为使F 2大于F 1,则: 22223(4)kQql F l x +=
>3122224
()kQqx F l x =+ 即: l >2x
20.如图所示,两异种点电荷的电荷量均为Q ,绝缘竖直平面过两点电荷连线的中点O 且与连线垂直,平面上A 、O 、B 三点位于同一竖直线上,AO BO L ==,点电荷到O 点的距离也为L 。
现有电荷量为q -、质量为m 的小物块(可视为质点),从A 点以初速度0v 向B 滑动,到达B 点时速度恰好减为零。
已知物块与平面的动摩擦因数为μ。
求:
(1)A 点的电场强度的大小;
(2)物块运动到B 点时加速度的大小和方向;
(3)物块通过O 点的速度大小。
【答案】(1)2Q E k
=;(2)2qkQ a g μ=-,方向竖直向上;(3)02v = 【解析】
【分析】
【详解】 (1)正、负点电荷在A 点产生的场强
)02222Q
Q
E k k L L ==
A 点的电场强度的大小
02222kQ E E L
==
(2)由牛顿第二定律得 qE mg ma μ-=
解得
222qkQ a g mL μ=
- 方向竖直向上; (3)小物块从A 到B 过程中,设克服阻力做功W f ,由动能定理得
201202
f mgL W mv -=- 小物块从A 到O 过程中
220111222
f mgL W mv mv -=- 解得
022
v v = 21.在竖直平面内固定一半径为R=0.3m 的金属细圆环,质量为5m 310kg -=⨯的金属小球
(视为质点)通过长为L=0.5m 的绝缘细线悬挂在圆环的最高点.小球带电荷量为
62.510q C -=⨯时,发现小球在垂直圆环平面的对称轴上某点A 处于平衡状态,如图所示.已知静电力常量9229.010?/k N m C =⨯. 求:
(1)细线的拉力F 的大小;
(2)小球所在处的电场强度E 的大小?
(3)金属细圆环不能等效成点电荷来处理,试应用微元法推导圆环带电量Q 表达式?(用字母R 、L 、k 、E 表示)
【答案】(1) 4510N -⨯ (2) 160/N C (3) 254EL Q k =或322Q k L R
=- 【解析】
由几何关系:3cos 5R L θ==,224sin 5
L R L θ-== ,4tan 3θ= ①
(1)对小球受力分析可知:cos mg F θ
= ② 由①②得:4510F N -=⨯ ③
(2)由平衡条件可得:tan qE mg θ= ④
由①④得:160/E N C = ⑤
(3)由微元法,无限划分,设每一极小段圆环带电量为q ∆ 则:2
sin q k
E L θ∆=∑ ⑥ 其中:q Q ∑∆= 由①⑥得:
2
5
4EL Q k =或3Q = ⑦ 点睛:因2Q E k r
=只能适用于真空中的点电荷,故本题采用了微元法求得圆环在小球位置的场强,应注意体会该方法的使用.库仑力的考查一般都是结合共点力的平衡进行的,应注意正确进行受力分析.。