数学:522平行线的判定课件(人教新课标七年级下)

合集下载

人教版七年级数学下册5.2.2第1课时 平行线的判定 课件(共21张PPT) (1)

人教版七年级数学下册5.2.2第1课时 平行线的判定   课件(共21张PPT) (1)

几何语言:
∵ ∠3=∠2(已知),
∴ a∥b(内错角相等,两直线平行).
1
a
3
2 b
考 点 2 利用内错角相等判定两直线平行
完成下面证明:如图所示,CB平分∠ACD,∠1=∠3.
求证:AB∥CD.
证明:∵CB平分∠ACD, ∴∠1 = ∠2( 角平分线的定义_______). ∵∠1 = ∠3, ∴∠2 = ∠ 3 .
两直线平行
数量关系
位置关系
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
∴AB∥CD( 内错角相等,两直线平行_).
知识点3:利用同旁内角互补判定两条直线平行
如图,如果1+2 = 180° ,你能判定 a / / b 吗?
解:能, ∵1+2=180°(已知), 1+3=180°(邻补角的性质),
c
3
a
1
∴2=3(同角的补角相等) .
2
b
∴a//b(同位角相等,两直线平行) .
两条直线平行?请说明理由?
解: AB∥CD.
理由如下:
D
3C
∵ AC平分∠DAB(已知),
1
∴ ∠1=∠2(角平分线定义).
2
A
B
又∵ ∠1= ∠3(已知) ,
∴ ∠2=∠3(等量代换).
∴ AB∥CD(内错角相等,两直线平行).
四 课堂小结
判定
平行线的判 定示意图
同位角相等 内错角相等 同旁内角互补
证明:∵∠1+∠A=180º ( 已知 ), ∠1=∠2 (对顶角相等 ),
ቤተ መጻሕፍቲ ባይዱ
B
2 13
D

5-2-2平行线的判定-七年级下册人教版数学课件

5-2-2平行线的判定-七年级下册人教版数学课件

课堂练习
1.如图5.2-35,己知∠1=145°,∠2=145°,则AB∥CD,依据是 _同___位__角__相__等___,__两__直__线___平__行___.
图5.2-35
课堂练习
2.如图5.2-36 是一条街道的两个拐角,∠ABC与∠BCD均为140°,则 街道AB与CD的关系是_________,这是因___________________.
中考在线 考点:平行线的判定
【例1】如图5.2-27,下列说法错误的是( C ).
A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠5=180°,则a∥c
知识梳理
图5.2-27
【解析】根据平行线的判定进行判断:A.若a∥b,b∥c,则a∥c,利用了 平行公理,正确;B.若∠1=∠2,则a∥c,利用了内错角相等,两直线平行, 正确;C.∠3=∠2,不能判断b∥c,错误;D.若∠3+∠5=180°,则a∥c,利 用同旁内角互补,两直线平行,正确;故选C.
【答案】证明:∵AB⊥BC,BC⊥CD, ∴∠ABC=∠DCB=90°,∵∠1=∠2, ∴∠ABC-∠1=∠DCB-∠2, ∴∠CBE=∠BCF,∴BE∥CF.
图5.2-51
课后习题
9.如图5.2-52所示,已知∠1=50°,∠2=65°,CD平分∠ECF,则 CD∥FG.请说明理由.
图5.2-52
第5章 相交线与平行线
5.2.2 平行线的判定
教学新知
方法1:平行线的定义. 方法2:两条直线都与第三条直线平行,那么这两条直线也平行. 方法3:同位角相等,两直线平行. 方法4:内错角角相等,两直线平行. 方法5:同旁内角互补,两直线平行.

人教版数学七年级下册教学课件5.2.2平行线的判定 (18

人教版数学七年级下册教学课件5.2.2平行线的判定 (18

(1)放
·
(2)靠
(3)推 (4)画
合作探究 达成目标 A
(1)这样的画法可以看
作是怎样的图形变换?
1
l2
(2)画图过程中,什么角
始终保持相等?
(3)直线l1,l2位置 关系如何?
2
l1
(4)请将其最初和最终 的特殊位置抽象成几何 图形:
A
1
l2
B
(5) 由上面,同学们你能发现 判定两直线平行的方法吗?
合作探究 达成目标
如图,直线a、b被直线c所截, 若
c
∠2+∠3=180°, 则a ∥ b 答:∵ ∠2+∠3=180°(已知)
1 3
a
2b
∠1+∠3=180°(邻补角定义)
∴ ∠1=∠2 (同角的补角相等)
∴a∥b(同位角相等,两直线平行)
判定方法3 同旁内角互补,两直线平行.
合作探究 达成目标
如图:b⊥a、c⊥a,那么b、c平行吗?
b
c
答: 平行
理由:∵b⊥a,c⊥a. (已知) a
1
2
∴∠1=∠2=90o(垂直定义)
∴b∥c.(同位角相等,两直线平行)
总结梳理 内化目标
平行线的判定示意图 判定
同位角相等 内错角相等 同旁内角互补
两直线平行 位置关系
数量关系
课后作业
1.上交作业:教科书习题5.2第4,7题;
探究点二:平行线判定的应用
木工师傅用角尺画出工件边缘的两条垂线, 就可以再找出两条平行线,如图所示,a∥b ,你能说明是什么道理吗?
解 ∵∠1=∠2=90° ∴a∥b
(同位角相等,两直线平行)
合作探究 达成目标

人教版《平行线的判定》优秀课件

人教版《平行线的判定》优秀课件

已知条件:直线b与直线c 都垂直于直线a. 要说明的结论:直线b与 直线c平行吗?
已知:直线b与直线c都垂直于直线a.
说明:直线b与直线c平行吗? (1)由∠CBE=∠A可以判定哪两条直线平行?
简单说成:同旁内角互补,两直线平行.
简单说成:同旁内角互补,两直线平行.
答:直线b与直线c平行. 根据同位角相等,两直线平行.
人教版七年级数学下
5.2.2 平行线的判定
复习引入
如何判断两条直线是否平行? (1) 根据定义. (2) 根据平行公理的推论.
你还记得如何用直尺和三角尺画平行线吗?
C A
D B
C
D
A
B
判定方法1 两条直线被第三条直线所截, 如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行
如图,∠A+∠B+∠C+∠D=360°,且∠A=∠C,∠B=∠D,那么AB∥CD,AD∥BC. 判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
答你:还直 能线用(b其与他1直方)线法c说平由明行理. 由∠吗?CBE=∠A可以判定哪两条直线平行?
如图, BE是AB的延长线.
A
B
E
典例示范
如图, BE是AB的延长线. (2)由∠CBE=∠C可以判定哪两条直线平行?
根据是什么?
答: AE∥CD .根据内错角相等,两直线平行.
D
C
A
B
Eቤተ መጻሕፍቲ ባይዱ
判定方法2 内错角相等,两直线平行.
如图, BE是AB的延长线. ∵ b⊥a,∴ ∠1= 90°.
根据同旁内角互补,两直线平行.
例1 如图,你能说出木工用图中的角尺画平行线的道理吗?

5.2.2平行线的判定(课件)七年级数学下册(人教版)

5.2.2平行线的判定(课件)七年级数学下册(人教版)
CD
AB
A
D
1
B
C
人教版数学七年级下册
谢谢聆听
∴∠1=∠2(同角的补角相等)
∴a∥b(同位角相等,两直线平行)
1
3 4
a
2
b
探究新知
人教版数学七年级下册
判定两条直线平行的方法:
判定方法3:两条直线被第三条直线所截,如果同旁内角互补,
那么这两条直线平行.
1
a
3 4
简单说成:同旁内角互补,两直线平行.
2
符号语言表示:∵∠2+∠4=180°(已知)
人教版数学七年级下册
课后作业
人教版数学七年级下册
2.如图:
如果∠1=∠D,那么______∥________;
AD
BC
如果∠1=∠B,那么______∥________;
CD
AB
如果∠A+∠B=180°,那么______∥________;
BC
AD
如果∠A+∠D=180°,那么______∥________.
人教版数学七年级下册
2.如图:
AD
BC
如果∠B=∠1,则可得____//___
同位角相等,两直线平行
根据是_____________________
AB
CD
如果∠D=∠1,则可得到____//___
B
内错角相等,两直线平行
根据是_______________________
A
1
D
C
巩固练习
人教版数学七年级下册
但是,由于直线无限延伸,检验它们是否相交有困难,
所以难以直接根据两条直线是否相交来判定是否平行,那么

七年级数学下册教学课件《5.2.2平行线的判定》

七年级数学下册教学课件《5.2.2平行线的判定》

第3题图
第 4 题图
第 5 题图
5.如图,能判定 AB∥CD 的条件有___①①③③④④ ___.(填序号)
①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.
当堂检测
6.如图所示,∠B=∠C,∠DEF=∠A.试问CD与EF平行吗?为什么? 解:CD∥EF.理由:∵∠B=∠C,∴AB∥CD(内错角相等,两直线平行). ∵∠DEF=∠A,∴EF∥AB(同位角相等,两直线平行). ∴CD∥EF(平行于同一条直线的两条直线平行).
方法二:∵∠1+∠4=180°(平角定义), ∵∠1+∠2=180°(已知),∴∠2=∠4(同角的 补角相等),∴a∥b(内错角相等,两直线平行).
预习成果
1.如图1,∠C=60°,当∠ABE= 60° 时,就能使 BE∥CD.根据 同位角相等,两直线平行 . 2.如图2,∠1=120°,∠2=60°,问a与b的位置关系? 3.如图3,直线CD、EF被直线AB所截. (1)量得∠3=120°,∠4=120°,就可以判定 CD ∥ EF , 根据 内错角相等,两直线平行 . (2)量得∠1=60°,∠3=120°,就可以判定 CD ∥ EF , 根据 同旁内角互补,两直线平行 .
巩固例题
【例 2】如图,BE平分∠ABD,DE平分∠BDC,且 ∠1+∠2=90°. 求证:AB∥CD. 解:∵BE平分∠ABD,DE平分∠BDC(已知), ∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义). ∵∠1+∠2=90°, ∴∠ABD+∠BDC=2(∠1+∠2)=180°. ∴AB∥CD(同旁内角互补,两直线平行).
②当∠2+∠3=180°时,a∥b.证明: ∵∠2+∠4=180°,∠3+∠6=180°(平角定义), ∴∠2+∠4+∠3+∠6=360°,∵∠2+∠3=180° ∴∠4+∠6=180°∴a∥b(同旁内角互补,两直线平行).

人教版数学七年级下册 5.2.2 平行线的判定 课件

人教版数学七年级下册 5.2.2 平行线的判定 课件

为什么?
解:直线与平行. 理由如下:
∵∠1 + ∠ = 180°, ∠1 + ∠ = 180°,
∴∠ = ∠.
∵∠ = ∠,
∴∠ = ∠.
∴∥(同位角相等,两直线平行).
【例题2】如图,∠ + ∠ = 180°,∠ = ∠,试说明∥.



∠ + ∠ = ∠
∠ = ∠ − ∠
∠ = ∠
∠ = ∠ − ∠ = ∠
【例题3】如图,∠ + ∠ = ∠,试说明∥.
解: 如图,作∠ = ∠.
∵∠ = ∠
∴∥.
又∵∠ + ∠ = ∠,
解: ∵∠1=∠2, ∴AB∥CD.
∵∠3+∠4=180°,∴CD∥EF,
∴AB∥EF.
3.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你
∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°
所添加的条件是___________________________________________(不允许添加
任何辅助线).
4.如图,下列条件不能判断直线a∥b的是( D
).
A. ∠1=∠4 B. ∠3=∠5 C. ∠2+∠5=180° D. ∠2+∠4=180°
平行线的判定方法
1. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2. 同位角相等,两直线平行.
3. 内错角相等,两直线平行.
4. 同旁内角互补,两直线平行.
∠1 = ∠2

判定方法2
线平行.
两条直线被第三条直线所截,如果内错角相等,那么这两条直

人教版七年级下册5.2《平行线的判定》课件(共29张PPT)

人教版七年级下册5.2《平行线的判定》课件(共29张PPT)

(1)上面的画法可以
A
看做是怎样的图形变换?
l1
平移变换
(2) 把图中的直线 l1 , l2 看成被尺边 AB所截,那
l2
么在画图过程中,什么角 始终保持相等? 同位角
B 由此你能发现判定两直线平行的方法吗?
两直线平行的判定方法(一):
两条直线被第三条直线所截 ,如果同位 角相等, 那么这两条直线平行.
已知直线l1,l2被l3所截,1=45º2=135º, 判断l1 与 l2 是否平行,并说明理由。
2
3 l2
l3
1 l1


“在同一平面 ,垂直于同一条直线的两条直 线互相平行”是否可以看做平行线判定方法的 特殊情形?
∵∠1=∠3=90°
l1∥ l2
l3
3
1
l2
l1
街道两侧路灯的 柱子是否互相平 行? 为什么?
简单地说, 同位角相等,两直线平行.
几何语言
2 a
1 b
c
∵ ∠ 1=∠2 (已知)
∴ a//b (同位角相等,两直线平行)
如图,哪两个角相等 能判定直线AB∥CD?
A
3 D
如果∠231 =∠542 , 能判定 哪两条直线平行?
E
G
A1 3
2 C
B
4
5
D
F
H
AEFB∥∥GCHD
同旁内, 角互补,两直线平行
∵∠2+∠4=180° ∴a//b (同旁内角互补,两直线平行)
例题讲解
例1:如图,∠A= 55 °,∠B=125 °,AD与BC平行吗?
AB与CD平行吗?为什么?
D
C
解:
∵∠A +∠B = 55 °+ 125 °= 180°

人教版七年级下册数学课件:5.2.2平行线的判定(共18张PPT)

人教版七年级下册数学课件:5.2.2平行线的判定(共18张PPT)
平行线的判定
一、回顾:平行线及画法. 判断下列语句是否正确,并加以改正. (1)两条不相交的直线叫平行线; (2)过一点画已知直线的平行线能且只能 画一条 ; (3)与已知直线平行的直线有且只有一条;
(4)若直线a、b都和c平行,那么a与b平行.
二、如何用直尺和三角 板过直线AB外一点P做 AB 的平行线CD.
平行线的画法2: “推平行线法”:
一、放 二、靠 三、推 四、画
画图并回答问题:
过直线l 外一点P画直线l 的平行线,
① 三角尺紧靠直尺的边和直线l 所成的角在平移前
的位置和平移后的位置构成了一对___同__位_角, 其大小___始__终__不___变__. ② 只要保持__同___位__角__相等,画出的直线就平行于
E
C
2
D
1
A
B
F
一般地,判断两直线平行有下面 的方法:
两条直线被第三条直线所截 ,如果内 错角相等, 那么这两条直线平行.
平行线判定方法2: 内错角相等,两直线 平行.
如图,已知∠1+∠2=180º,AB与 CD平行吗?为什么?
E
C
D
2
1
A
B
F
一般地,判断两直线平行有下面 的方法:
两条直线被第三条直线所截 ,如果同 旁内角互补, 那么这两条直线平行.
平行线判定方法3: 同旁内角互补,两直 线平行.
注意:AB ⊥m, CD ⊥m
A
C
看AB和CD
BD
m
AB∥CD
垂直于同一条直线 的两直你有线什互么相发现平吗行?!
平行线判定方法1:同位角相等, 两直线平行.
平行线判定方法2:内错角相等, 两直线平行.

人教版数学七年级下册5.2.2平行线的判定教学课件(共16张PPT)

人教版数学七年级下册5.2.2平行线的判定教学课件(共16张PPT)
行. C. ∠A=∠DCE D. ∠3=∠4
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
1.使学生理解平行线的三个判定方法.
如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是___________________________________________(不允许添加任何辅助线).
(1)判定方法1
你还记得如何用直尺和三角尺画平行线吗?
思考:在画图过程中,什么角始终保持不变?
新知讲解
判定方法1 两条直线被第三条直线 所截,如果同位角相等,那么这两 条直线平行.
简称 同位角相等,两直线平行.
新知讲解
判定方法2 两条直线被第三 条直线所截,如果内错角相 等,那么这两条直线平行. 简称 内错角相等,两直线平行.
你还记得如何用直尺和三角尺画平行线吗?
D.∠2+∠4=180°
下面我们来一起阅读下推理的小知识.
简称 同旁内角互补,两直线平行.
A.第一次左拐30°,第二次右拐30°
判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
3. 内错角相等,两直线平行.
判定方法3 两条直线被第三条直线所截,
1.使学生理解平行线的三个判定方法.
A. ∠1=∠2
B. ∠2=∠3
D.第一次向左拐50°,第二次向左拐120°
第五章 相交线与平行线
如果同旁内角互补,那么这两条直线平
分析: A、能判断,∠1=∠4,a∥b,满足内错角相等,两直线平行;
分析: A、能判断,∠1=∠4,a∥b,满足内错角相等,两直线平行;
第五章 相交线与平行线
5.2 平行线及其判定

(新人教版)七年级数学下册:5.2.2《平行线的判定》教学课件PPT

(新人教版)七年级数学下册:5.2.2《平行线的判定》教学课件PPT

【答案】平行
5.2.2直线平行的条件
1.如图5-41,点E在CD上,点F在BA上,G是AD延长线上一点. (1)若∠A=∠1,则可判断__C__D___∥__A__B___,因为 ___同__位__角__相__等__,_两__直__线__平__行___. (2)若∠1=∠____C_____,则可判断 AG∥BC,因为_内__错__角__相__等__,__两__直__线__平__行. (3)若∠2+ ∠__E__F_B__=180°,则可判 断CD∥AB,因为_同__旁__内__角__互__补__,_两__直__线_ 平行
5.2.2直线平行的条件
【例3】如图3,E是AB上的一点.
(1)知道了∠DEC=∠ADE,可以判定哪两条直线平行?为 什么?
(2)知道了∠AEC+∠DCE=180°,
可以判定哪两条直线平行?为什么? D
C
(3)知道了∠AED=∠B,可以判定 哪两条直线平行?为什么?
A
E
B
【解答】(1)AD∥CE,内错角相等,两直线平行;
方法2:两条直线被第三条直线所截,如果内错角相等,那么 这两条直线平行.(简称:内错角相等,两直线平行.)
5.2.2直线平行的条件
问题:在图4中,如果同旁内角∠2+∠4=180°,那么a,b 平行吗? 解∵∠2+∠4=180°(已知) 又∵∠1+∠4=180°(邻补角的定义)
∴∠1=∠2(同角的补角相等) ∴a∥b (同位角相等,两直线平行) 方法3: 两条直线被第三条直线所截,如果同旁内角互补,那 么这两条直线平行.(简称:同旁内角互补,两直线平行.)
4.如图5-44,直线AB、CD被直线EF所截,使
∠1=∠2≠90°,则( D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 同位角相等,两直线平)行
D
C
说一说
c
如图:(1)由1= 2, 可推出a//b吗?为什么?
3
答:可以推出a//b. 根据同位角相等,两直线平行
a
2
b
试一试:你能用数学推理写出来吗?
思考:
两条直线被第三条直线所截, 同时得到同位角、内错角和 同旁内角,由同位角相等可 以判定两直线平行,那么:能 否利用 (1)内错角
5.2.2 平行线的判定
复习回顾:
1.在同一平面内, 不相交的两条直线,就叫平行线. 2.过直线外的一点与一条直线平行的直线只有一条.
c 3.如果直线 a、b 都和 平行,
那么 a 、b 就平行.
问题1:如何用直尺和三角板过直 线AB外一点P做AB 的平行线CD。
2、平行线的画法:
(1)放
(2)靠
今日数学任务:作业:课本16—17页的第 2、4 题 练习:《课堂作业》第7到8页
(2)同旁内角
来判定两直线平行呢?
(2)由2= 3,可推出a//b吗? 如何推出?写出你的推理过程
c
解: 2=3(已知)
1=位角相等,两直线平行)
思考:你能得出什么结论吗?
a
2
b
判定方法2:内错角相等,两直线平行.
练习:课本15页第1题
(3)如图:如果1+2=1800 能判定 a//b 吗?
·
(3)推
(4)画
引入新课
1. 在同一平面内不相交的两 条直线是平行线,你有办法 测定两条直线是平行线吗?
平行线的判定公理
两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行. 简单说成:同位角相等,两直线平行.
格推 式理
1= A (已知)
A
B
1
-B--C---//--A---D-
c
解:能, 因为1+2=180
3
1
a
1+3=180 所以 2=3(同角的补角相等)
2
b
所以 a//b (同位角相等,两直线平行)
判定方法3:同旁内角互补,两直线平行.
练习:课本16页第2、3题
小结:本节课你有什么收获?
• 平行线的判定方法:
1、同位角相等,两直线平行 2、内错角相等,两直线平行. 3、同旁内角互补,两直线平行.
相关文档
最新文档