传感器实验指导书(新仪器)
《传感技术综合实验单元》实验指导书

《传感技术综合实验单元》实验指导书一、电子测量与检测实验须知传感技术综合实验的目的使学生在掌握各类传感器的理论及其检测技术、信号调理电路和光电检测技术基础上,能合理选择和利用传感器测量各种工程上常见的物理量。
这是本专业本科学生必须掌握的基本技能。
要求学生通过实际操作,培养独立思考、独立分析和独立实验的能力。
为使实验正确、顺利地进行,并保证实验设备、仪器仪表和人身的安全,在做检测与转换技术实验时,需知以下内容。
1.实验预习实验前,学生必须进行认真预习,掌握每次实验的目的、内容、线路、实验设备和仪器仪表、测量和记录项目等,做到心中有数,减少实验盲目性,提高实验效率。
2.电源(1)实验桌上通常设有单相(或三相)交流电源开关和直流电源开关,由实验室统一供电,实验前应弄清各输出端点间的电压数值。
(2)实验桌(或仪器)上配有直流稳压电源,在接入线路之前应调节好输出电压数值,使之符合实验线路要求。
特别是在实验线路中,严禁将超过规定电压数值的电源接入线路运行。
(3)在进行实验线路的接线、改线或拆线之前,必须断开电源开关,严禁带电操作,避免在接线或拆线过程中,造成电源设备或部分实验线路短路而损坏设备或实验线路元器件。
3.实验线路(1)认真熟悉实验线路原理图,能识图并能按图接好实验线路。
(2)实验线路接线要准确、可靠和有条理,接线柱要拧紧,插头与线路中的插孔的结合要插准插紧,以免接触不良引起部分线路断开。
(3)线路中不要接活动裸接头,线头过长的铜丝应剪去,以免因操作不慎或偶然原因而触电,或使线路造成意想不到的后果。
(4)线路接好后,应先由同组同学相互检查,然后请实验指导教师检查同意后,才能接通电源开关,进行实验。
4.仪器仪表(1)认真掌握每次实验所用仪器仪表的使用方法、放置方式(水平或垂直),并要清楚仪表的型号规格和精度等级等。
(2)仪器仪表与实验线路板(或设备)的位置应合理布置,以方便实验操作和测量。
(3)仪器仪表上的旋钮有起止位置,旋转时用力要适度,到头时严禁强制用力旋转,以免损坏旋钮内部的轴及其连接部分,影响实验进行。
传感器实验指导书电子版

实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,输出电压U0=EKε(E为供桥电压),对单臂电桥而言,电桥输出电压,U01=EKε/4。
(E为供桥电压)。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1),应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。
2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。
3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。
传感器实验指导书

传感器实验指导书 Revised at 2 pm on December 25, 2020.传感器实验指导书实验一电位器传感器的负载特性的测试一、实验目的:1、了解电桥的工作原理及零点的补偿;2、了解电位器传感器的负载特性;3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。
二、实验仪器与元件:1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表;2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕);3、运算放大器LM358;4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。
三、基本原理:❖电位器的转换原理❖电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为电位器输出端接有负载电阻时,其特性称为负载特性。
当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。
❖电位器输出端接有负载电阻时,其特性称为负载特性。
四、实验步骤:1、在面包板上设计负载电路。
3、改进电路的负载电阻RL,用以测量的电位器的负载特性。
4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。
五、实验报告1、画出电路图,并说明设计原理。
2、列出数据测试表并画出负载特性曲线。
电源电压5V,测试表格1.曲线图:画图说明,x坐标是滑动电阻器不带负载时电压;y坐标是对应1000欧姆(负载两端电压)或100k欧姆(负载两端电压),100欧和100K欧两电阻可以得到两条曲线。
3、说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困难及解决方法。
实验二声音传感器应用实验-声控LED旋律灯一、实验目的:1、了解声音传感器的工作原理及应用;2、掌握声音传感器与三极管的组合电路调试。
二、实验仪器与元件:1、直流稳压电源、数字万用表、电烙铁等;2、电子元件有:声音传感器(带脚咪头)1个;弯座1个;线1个;5MM白发蓝LED 5个;9014三极管 2个1M电阻 1个;10K电阻 1个;电阻 1个;1UF电解电容 1个;47UF电解电容1个;万能电路板一块。
传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。
二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。
电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。
电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。
压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。
磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。
传感器实验指导书

传感器特性实验目录传感器特性实验目录 (1)一、基础型实验部分 (3)实验一金属箔式应变片单臂电桥性能实验 (3)实验二金属箔式应变片半桥性能实验 (5)实验三金属箔式应变片全桥性能实验 (6)实验四金属箔式应变片单臂、半桥、全桥性能比较 (7)实验五金属箔式应变片全桥温度影响实验 (8)实验六直流全桥的应用—电子秤实验 (9)实验七交流全桥的应用—振动测量实验 (9)实验八压阻式压力传感器压力测量实验 (11)* 实验九扩散硅压阻式压力传感器差压测量 (13)实验十差动变压器位移性能实验 (14)实验十一激励频率对差动变压器特性的影响 (16)实验十二差动变压器零点残余电压补偿实验(1、2) (17)实验十三差动变压器的应用—振动测量实验 (19)实验十四电容式位移传感器位移测量实验 (21)实验十五电容式位移传感器的动态特性实验 (23)实验十六直流激励时接触式霍尔位移传感器特性实验 (25)实验十七交流激励时霍尔式位移传感器特性实验 (26)实验十八霍尔位移传感器振动测量 (27)实验十九霍尔式位移传感器的应用―电子秤实验 (28)实验二十霍尔转速传感器测速实验 (28)实验二十一磁电式转速传感器测速实验 (29)* 实验二十二用磁电式传感器测量振动实验 (30)实验二十三压电式传感器振动测量实验 (31)实验二十四电涡流传感器位移实验 (32)实验二十五被测体材质对电涡流传感器特性影响实验 (33)实验二十六被测体面积大小对电涡流传感器的特性影响实验 (34)实验二十七电涡流传感器测量振动实验 (35)实验二十八电涡流传感器的应用―电子秤实验 (36)* 实验二十九电涡流转速传感器 (37)实验三十光纤传感器的位移特性实验 (38)实验三十一光纤传感器测量振动实验 (39)实验三十二光纤传感器测量转速实验 (40)实验三十三光电转速传感器的转速测量实验 (41)实验三十四利用光电传感器测转速的其它方案* (43)实验三十五热电偶测温性能实验 (43)实验三十六热电偶冷端温度补偿实验 (45)实验三十七热电阻测温特性实验 (46)实验三十八集成温度传感器温度特性实验 (48)实验三十九气体流量的测定实验* (51)实验四十气敏(酒精)传感器气体浓度测量实验 (52)实验四十一湿度传感器湿度测量实验 (53)实验四十二移相器实验 (53)实验四十三相敏检波器实验 (55)实验四十四SET传感器特性实验软件操作 (59)二、增强型实验部分 (65)实验一热释电远红外传感器辐射特性 (65)实验二--- 实验五、光电传感器特性实验(光敏电阻、光电池、光敏二极管、光敏三极管) (67)实验六光纤温度传感器实验 (70)实验七光纤压力传感器实验 (71)实验八光栅位移传感器(原理型)实验 (71)实验九增量型光电编码器传感器(原理型)实验 (73)实验十超声测距传感器实验 (74)* 实验十一超声波传感器的运用 (75)实验十二矩传感器原理实验 (75)* 实验十三扭矩传感器的不同形式 (77)实验十四PSD位置传感器位置测量实验 (77)实验十五PSD位置传感器微振动测量实验 (79)* 实验十六PSD位置传感器用于自动定位 (79)实验十七CCD图像传感器线(圆)径测量实验 (79)实验十八J型热电偶温度特性实验 (83)实验十九T型热电偶温度特性实验 (83)实验二十半导体热敏电阻温度特性实验 (83)实验二十一表面无损探伤实验 (83)实验二十二指纹传感器(带控制输出)认知实验 (84)* 实验二十三指纹传感器计算机图像采集实验 (88)* 实验二十四红外辐射温度传感器实验 (88)* 实验二十五颜色识别传感器颜色识别实验 (89)* 实验二十六微波传感器运用实验 (90)* 实验二十七zigbee无线传感器网络实验 (90)* 实验二十八光栅位移传感器(测量型)实验(1) (90)* 实验二十九光栅位移传感器(测量型)实验(2) (91)* 实验三十环境监测实验(另附)一、基础型实验部分实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
传感器实验指导书

目录使用说明 .................................. 错误!未定义书签。
实验一电阻应变式传感器位移测量、温度补偿和性能比较.. (4)实验二差动变压器的标定和振动测量 (1)实验三热电式传感器――热电偶 (3)使用说明CSY系列(CSY.CSY10.CSY10A.CSY10B)传感器系统实验仪是用于检测仪表类课程教学实验的多功能教学仪器。
其特点是集被测体、各种传感器、信号激励源、处理电路和显示器于一体,可以组成一个完整的测试系统。
通过实验指导书所提供的数十种实验举例,能完成包含光、磁、电、温度、位移、振动、转速等内容的测试实验。
通过这些实验,实验者可对各种不同的传感器及测量电路原理和组成有直观的感性认识,并可在本仪器上举一反三开发出新的实验内容。
实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。
各款实验仪的传感器配置及布局是:(具体布局详见各款仪器工作台布局图)一、位于仪器顶部的实验工作台部分,左边前方是一副平行式悬臂梁,上梁的上表面装有应变式、热敏式、P-N结温度式、热电式和压电加速度五种传感器。
平行梁上梁的上表面和下梁的下表面对应地贴有半导体式应变片,灵敏系数130。
受力工作片分别用符号和表示。
左边后方是一个双孔悬臂梁称重传感器:称重范围0~500g,精度1%。
双孔称重传感器上下两面圆孔薄臂处贴有四片金属箔式应变片,用符号和表示。
中间厚臂处上下两片为温度补偿片,用符号和表示。
两种应变计实验线路与实验指导书中箔式应变计和半导体应变计的接线方法一致,可以分别进行单臂、半桥和全桥的交、直流信号激励实验。
位移和称重实验均可采用在承重圆盘上增减砝码的办法。
为进行温度实验,左边悬臂梁之间装有电加热器一组,加热电源取自15V直流电源,打开加热开关即能加热,加热器开关向上打开时可给平行悬臂梁上布局的温度传感器和半导体应变计加热,向下扳动时则给双孔称重传感器加热,工作时能获得高于温度30℃左右的升温,达到热平衡的时间随环境温度高低而不同。
传感器实验指导书

一、人体动脉血压的测量一、实验目的通过实践学习,掌握间接测量人体动脉血压的原理和方法,了解血压测量的意义,要求能较准确地测出人体肱动脉的收缩压与舒张压的正常值,了解人体的正常血压及脉压标准。
二、实验原理血压是指血管内血液对于单位面积血管壁的侧压力,也即压强。
血压的单位通常用kPa或mmHg来表示。
人体动脉血压通常是用汞柱血压计和听诊进行测量的(也可用弹簧血压计或电子血压计进行测量),汞柱血压计的结构原理如附图1-2-3所示;测量部位通常为右上臂肱(GONG)动脉。
血液在血管内流动时一般没有声音,但如果血液通过狭窄处形成涡流时,便会使血管壁振动而发出声音。
当将空气打入缠于上臂的袖带内使其压力超过收缩压时,则完全阻断了肱动脉内的血流,此时在被压迫的肱动脉远端听不到声音,也触不到桡动脉的搏动。
如徐徐放气,降低袖带内压,当其压力刚低于收缩压而高于舒张压时,血液便断续地冲过受压血管,形成涡流使血管壁振动而发出声音,此时即可在被压的肱动脉远端听到,也可触到桡(RAO)动脉脉搏。
如继续放气,当外加压力等于舒张压时,则血管内血流由断续变成连续,声音便会突然由强变弱或消失。
因此当听到第一声音时的最大外加压力相当于收缩压;而当声音突然由强变弱或消失前最后声响时的外加压力则相当于舒张压。
此法即Korotkoff听诊法。
三、实验对象人体四、实验器材血压套件(水银柱血压计、压力表、听诊器、充气球、气管和联接用三通),电子血压计,胶布。
五、实验步骤与方法1.熟悉血压计构造血压计由检压计、袖带和气囊三部分组成。
检压计是一个标有0~260 mm(或0~300 mm)刻度的玻璃管。
上端通大气,下端和水银储槽相通。
袖带是一个外包布套的长方形橡皮囊,通过橡皮管分别与检压计水银储槽和橡皮球相通。
打气球是一个带有螺丝帽的橄榄球状橡皮囊,螺丝帽的拧紧和放松分别用于充气或放气。
2.测量过程1)受试者脱去右臂衣袖,取坐位,全身放松,右肘关节轻度弯曲,置于实验桌上,使上臂中心部与心脏位置同高,准备测量。
传感器实验指导书正文

实验一 电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。
2、掌握电阻应变式传感器放大电路的调试方法。
3、掌握单臂电桥电路的工作原理和性能。
二、实验所用单元电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架。
三、实验原理及电路1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R =K ε,ΔR 为电阻丝变化值,K 为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L 。
通过测量电路将电阻变化转换为电流或电压输出。
2、电阻应变式传感如图1-1所示。
传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm 。
1342+5VR RR5R1─外壳 2─电阻应变片 3─测杆 4─等截面悬臂梁 5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R 1、R 2、R 3为固定,R 为电阻应变片,输出电压U O =EK ε,E 为电桥转换系数。
+5V R 2rR 1R R 1R 2R 4RP 2OP07R 3R 4RP 1R 5+15V-15V 调零电桥电 阻传感器差动放大器4321876RPR 3VA DB CE图1-2 电阻式传感器单臂电桥实验电路图四、实验步骤1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm 左右。
将测微器装入位移台架上部的开口处,旋转测微器测杆使其与电阻应变式传感器的测杆适度旋紧,然后调节两个滚花螺母使电阻式应变传感器上的两个悬梁处于水平状态,两个滚花螺母固定在开口处上下两侧。
2、将实验箱(实验台内部已连接)面板上的±15V 和地端,用导线接到差动放大器上;将放大器放大倍数电位器RP 1旋钮(实验台为增益旋钮)逆时针旋到终端位置。
3、用导线将差动放大器的正负输入端连接,再将其输出端接到数字电压表的输入端;按下面板上电压量程转换开关的20V 档按键(实验台为将电压量程拨到20V 档);接通电源开关,旋动放大器的调零电位器RP 2旋钮,使电压表指示向零趋近,然后换到2V 量程,旋动调零电位器RP 2旋钮使电压表指示为零;此后调零电位器RP 2旋钮不再调节,根据实验适当调节增益电位器RP 1。
传感器实验指导书

传感与检测技术实验讲义实验一应变式称重传感器的应用一.实验目的:1.熟悉常用应变式力传感器的应用。
2.掌握应变片传感器的测量原理及电桥电路的应用。
二.实验仪器:稳压电源、万用表、实验箱、称重传感器模块等。
实验原理:应变式传感器是常用的测量力的传感器。
应变片式传感器是一种将测试件上的应变量转换成一种电信号的敏感器件。
当事件受力发生形变时,电阻应变片的阻值发生改变,从而使加在电阻上的电压发生变化,通常采用桥式电路,然后通过放大器放大实现。
三.实验内容及测试1.不同质量砝码重量测量应变片可以测量的重量范围为0~1Kg,额定灵敏度为1.0±0.15mv/g,R1~R4组成的电桥测量电路输入阻抗为1115±10%Ω,输出阻抗为1000±10%Ω,安全过载率为150%F.S,最大工作电压为15VDC。
满量程输出电压=激励电压×灵敏度。
U1A、U1B组成放大倍数可调的差分放大电路。
测量模块面板上共有4测试点,分别连接+12V,-12V,GND,输出点U0,连接电源和地线,用万用表直流电压档测量输出端电压。
1)不放任何砝码,用万用表测量输出端电压,调整RV1,RV2,使输出电压为0;2)将不同的砝码顺序放置在测量模块测量称盘上,用万用表测量输出端电压,并将电压值记录在2.实验报告1)整理实验数据,并绘制输入输出线性图;2)将数据填写在报告上。
实验二温度传感器的应用一、实验目的:熟悉常用温度传感器并掌握温度传感器的应用。
二、实验仪器:稳压电源、万用表、数字逻辑实验箱、Pt100热电阻、热敏电阻、集成电路等。
三、实验原理:温度传感器是将温度转换为电量输出的装置。
常用的温度传感器有热电阻、热敏电阻、热电偶、集成温度传感器等等。
热电阻主要是利用电阻随温度变化而变化这一特性来进行温度的测量、控制。
四、实验内容1、热电阻的测量:测量Pt 100热电阻、热敏电阻在不同温度下的电阻值。
2、热敏电阻的应用------------过热报警器热敏电阻在电路中常作为温度控制器件使用。
传感器实验指导书(独家)

传感器技术实验指导书电子信息教研室2005年3月前言CSY2000/SET9000型系列传感器与检测(控制)技术实验台由主控台、测控对象、传感器、实验模板、数据采集卡及处理软件等五部分组成。
一、主控台部分:提供高稳定的±15V、+5V、±2V~±10V、+2V~+24V可调四种直流稳压电源,主控台面板上装有数显电压、频率、转速、压力表。
0.4KHz~10KHz可调音频信号源;1Hz~30Hz可调低频信号源;0~20kpa可调气压源;高精度温度控制仪表,电源故障报警指示,RS232计算机串行接口;浮球流量计;SET9000型还增加了数据采集控制器及测控系统接口。
二、测控对象有:振动台1Hz~30Hz(可调);旋转源0-2400转/分(可调);温度源<200℃(可调)。
SET9000型的上述三种对象均带手动/自动调节功能。
三、传感器: 1.电阻应变式传感器、2.扩散硅压力传感器、3.差动变压器、4.电容式传感器、5.霍尔式位移传感器、6.霍尔式转速传感器、7.磁电转速传感器、8.压电式传感器、9.电涡流位移传感器10.光纤位移传感器、11.光电转速传感器、12.集成温度传感器、13.K 型热电偶、14.E型热电偶、15.Pt100铂电阻、16.湿敏传感器、17敏传感器、18.热释电传感器、19.PSD位置传感器、20.扭矩传感器、21.超声测距感器、D电荷耦合器件、23.光栅位移传感器、24.远红外、25.光敏电阻、26.光敏二极管、27.光敏三极管、28.光电池、29.光电耦合器、30.T型热电偶、31.J型热电偶、32.红外夜视传感器、33.光纤温度、34.光纤压力等,其中18.-34.传感器为增强型配置所有。
四、实验模块部分:普通型有:应变式、压力、差动变压器、电容式、电涡流、光纤位移、温度、移相/相敏检波/滤波、气敏、湿敏。
增强型有:光纤温度、光纤压力、热释电、PSD、扭矩、超声波、CCD、光栅、红外夜视。
传感器技术实验指导书_3

实验二直流全桥的应用――电子秤实验 (7)实验三电容式传感器的位移特性实验 (9)实验五直流激励时霍尔式传感器位移特性实验 (13)实验七光纤传感器的位移特性实验 (18)实验二直流全桥的应用――电子秤实验一、实验目的:了解应变直流全桥的应用及电路的标定。
二、基本原理:电子秤实验原理为实验一,全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量纲(g)即成为一台原始电子秤。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码四、实验步骤:1、按实验一中2的步骤,将差动放大器调零,应变式传感器实验模板按全桥接线,合上主控台电源开关,调节电桥平衡电位R W1,使数显表显示0.00V。
2、将10只砝码全部置于传感器的托盘上,调节电位器R W3(增益即满量程调节)使数显表显示为0.200V(2V档测量)或-0.200V。
3、拿去托盘上的所有砝码,调节电位器R W4(零位调节)使数显表显示为0.0000V。
4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量纲g,就可以称重。
成为一台原始的电子秤。
5、把砝码依次放在托盘上,填入下表2-1。
6、根据上表,计算误差与非线性误差。
五、思考题1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。
2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。
实验三电容式传感器的位移实验一、实验目的:了解电容式传感器结构及其特点。
二、基本原理:利用平板电容C=εA/d和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。
三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。
传感器系统综合实验指导书

简介一、概述传感器系统综合实验装置适应不同类别、不同层次专业教学实验、培训、考核的需求,是一套多功能、全方位、综合性、动手型的实验装置,可以与普教中的“物理”,职教、高教中的“传感器技术”、“工业自动化控制”、“非电测量技术与应用”、“工程检测技术与应用”等课程的教学实验配套。
二、设备构成:实验台主要由实验台部分和数据采集通讯部分组成。
1. 实验台部分这部分有1k~10kHz 音频信号发生器、1~30Hz 低频信号发生器、四组直流稳压电源:±15V、+5V、±2~±10V、24V、数字式电压表、频率/转速表、定时器以及高精度温度调节仪。
同时还包括两源板部分和传感器实验模块,分别为:热源:0~220V交流电源加热,温度可控制在室温~120 o C,控制精度±1 o C。
转动源:2~24V直流电源驱动,转速可调在0~4500 rpm。
超声波传感器实验模块:+15V直流电源供电,主要用于测量距离。
红外传感器实验模块:±15V直流电源供电,用于检测人体辐射的红外线,从而控制蜂鸣器和LED灯,起防盗作用。
温度传感器实验模块:±15V直流电源供电,用来检测温度。
光栅传感器实验模块:220V交流电源供电,可用作直线位移或角位移的检测,在数控机床中常用于对刀具和工件的坐标进行检测,来观察和跟踪走刀误差,以起到一个补偿刀具的运动误差的作用。
应变片传感器实验模块:±15V直流电源供电,用于检测压力。
2. 数据采集、分析部分为了加深对自动检测系统的认识,本实验台增设了USB数据采集卡及微处理机组成的微机数据采集系统(含微机数据采集系统软件)。
14位A/D转换、采样速度达300kHz,利用该系统软件,可对学生实验现场采集数据,对数据进行动态或静态处理和分析,并在屏幕上生成十字坐标曲线和表格数据,对数据进行求平均值、列表、作曲线图以及对数据进行分析、存盘、打印等处理,实现软件为硬件服务、软件与硬件互动、软件与硬件组成系统的功能。
传感器与检测技术实验指导书

实验一金属箔式应变片性能研究一、实验目的1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。
2、了解金属箔式应变片,半桥的工作原理和工作情况。
3、了解金属箔式应变片,全桥的工作原理和工作情况。
4、验证单臂、半桥、全桥的性能及相互之间的关系。
二、实验原理电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。
此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。
它可用于能转化成形变的的各种物理量的检测。
本实验以金属箔式应变片为研究对象。
箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或者金属箔制成,如图所示:(a)丝式应变片(b) 箔式应变片图1-1金属箔式应变片结构金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。
电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。
描述电阻应变效应的关系式为△R/R=Kε。
式中△R/R为电阻丝电阻的相对变化,K为应变灵敏系数,ε=△L/L为电阻丝长度相对变化。
为了将电阻应变式传感器的电阻变化转化成电压或者电流信号,在应用中一般采用电桥电路作为测量电路。
电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。
能较好地满足各种应变测量要求,因此在测量应变中得到了广泛的应用。
电路电桥按其工作方式分有单臂、半桥、全桥三种,单臂工作输出信号最小,线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂的四倍,性能最好。
因此,为了得到较大的输出电压一般采用半桥或者全桥工作。
三、需用器件与单元:可调直流稳压电源、电桥、差动放大器、双平行梁、测微头、应变片、电压/频率表、主、副电源。
传感器技术实验指导书Word

传感器技术实验指导书淮阴工学院电子工程系THSRZ-1型传感器系统综合实验装置简介实验台主要由试验台部分、三源板部分、处理(模块)电路部分和数据采集通讯部分组成。
1. 实验台部分这部分设有1k~10kHz 音频信号发生器、1~30Hz 低频信号发生器、直流稳压电源±15V、+5V、±2-±10V、2-24V可调四种、数字式电压表、频率/转速表、定时器以及高精度温度调节仪组成。
2. 三源板部分热源:0~220V交流电源加热,温度可控制在室温~120 o C转动源:2~24V直流电源驱动,转速可调在0~4500 RPM(转/分)振动源:装有振动台1Hz—30Hz(可调)3. 处理(模块)电路部分包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、温度检测与调理、压力检测与调理等共十个模块。
4. 数据采集、分析部分为了加深对自动检测系统的认识,本实验台增设了USB数据采集卡及微处理机组成的微机数据采集系统(含微机数据采集系统软件)。
14位A/D转换、采样速度达300kHz,利用该系统软件,可对学生实验现场采集数据,对数据进行动态或静态处理和分析,并在屏幕上生成十字坐标曲线和表格数据,对数据进行求平均值、列表、作曲线图等处理,能对数据进行分析、存盘、打印等处理,实现软件为硬件服务。
二、实验内容结合本装置的数据采集系统,不用外配示波器,可以完成大部分常用传感器的实验及应用。
实验一、 金属箔应变片的性能研究实验1 金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V 、±4V 电源、万用表(自备)。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=K ε,式中ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=Δl/l 为电阻丝长度相对变化。
CSY-9XX型传感器系统实验仪实验指南

CSY-9XX型传感器系统实验仪实验指南CSY-9XX型传感器系统实验仪实验指南全国高科技产品优秀奖浙江省优秀科技成果奖“世行”贷款中标产品浙江大学浙江高联科技开发有限公司杭州高联信息技术有限公司前言感谢您使用本公司的产品。
您能成为我们的用户,是我们莫大的荣幸。
浙江高联科技开发有限公司是经工商管理部门登记、注册、拥有生产、经营许可证的独立法人企业。
本公司是专业生产教学仪器的高新技术企业。
企业拥有一支高水平的技术队伍,教授、高级工程师、工程师、技术员占一半以上比例。
本公司不断向用户提供更好,更新的产品。
CSY传感器实验仪是本公司开发研制生产的,已经有近十五年历史。
该仪器获省优秀科技成果奖;1991年全国火炬高新技术优秀奖,1994年浙江大学科技成果二等奖。
CSY传感器实验仪主要用于各大、中专、院校及职业、师范院校开设的“自动检测技术”“传感器原理与技术”“工业自动化控制”“非电量电测技术”等课程的实验教学。
本实验指导书是在原实验指南的基础上广泛征求了全国许多师生的意见后改编的。
在编写上我们力求有较大的适应面便于学生独立操作而深入思考。
CSY传感器系统实验仪上采用的大部分传感器虽是教学传感器(透明结构便于教学)但其结构与线路是工业应用的基础。
希望通过实验帮助广大学生加深理解课本知识,从实验得到的结果、现象分析中学会作为一个科技工作者应具有的动手能力与操作技能,加强动手能力培养。
当然,由于编写者时间、水平、精力所限,难免有疏漏谬误之处,热切期望您的赐教!本实验实验指导书第二章每个实验中都有注意事项。
希望学生认真阅读,谨慎操作,否则容易引起器件损坏。
如果您在CSY实验仪使用中发现问题,请打我们的服务热线:***-***** 谢谢您的合作!目录第一章产品说明书第二章实验指导一、应变片性能―单臂电桥二、应变片:单臂、半桥、全桥比较三、应变片的温度效应及补偿四、热电偶的原理及现象五、移相器实验六、相敏检波器实验七、应变片-交流全桥八、交流全桥的应用―振幅测量九、交流全桥的应用―电子称之一十、差动变压器(互感式)的性能十一、差动变压器(互感式)零点残余电压的补偿十二、差动变压器(互感式)的标定十三、差动变压器(互感式)的应用――振动测量十四、差动变压器(互感式)的应用――电子秤之二十五、差动螺管式(自感式)传感器的静态位移性能十六、差动螺管式(自感式)传感器的动态位移性能十七、电涡流式传感器的静态标定十八、被测体材料对电涡流传感器特性的影响十九、电涡流传感器的应用―振幅测量二十、电涡流传感器的应用―电子秤之三二十一、霍尔传感器的直流激励静态位移特性二十二、霍尔传感器的应用―电子秤之四二十三、霍尔传感器的交流激励静态位移特性二十四、霍尔传感器的应用―振幅测量二十五、磁电式传感器的性能二十六、压电传感器的动态响应实验二十七、压电传感器引线电容对电压放大器的影响、电荷放大器二十八、差动面积式电容传感器的静态及动态特性二十九、双平行梁的动态特性―正弦稳态影响三十、扩散硅压阻式压力传感器实验(998型) 三十一、光纤位移传感器静态实验(998型) 三十二、光纤位移传感器动态实验(一)(998型) 三十三、光纤位移传感器动态实验(二)(998型) 三十四、PN结温度传感器测温实验(998型) 三十五、热敏电阻测温演示实验(998型) 三十六、气敏传感器(MQ3)实验三十七、湿敏电阻(RH)实验三十八、光电传感器(反射型)测转速实验(998选配)第三章附录附录一、电路原理图附录二、传感器安装示意图及面板示意图附录三、PC数据采集卡说明附录四、部分问题提示第一章产品说明书一、CSY传感器实验仪简介实验仪主要由四部分组成:传感器安装台、显示与激励源、传感器符号及引线单元、处理电路单元。
传感器实验指导书

实验一金属箔式应变片性能—实验目的所需单元及部件:直流稳压电源、电桥、差动放大器、双平行梁测微头、一片应变片、F/V表、主、旋钮初始位置:2V档,F/V表打到2V实验步骤(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。
上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、(1)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。
(2)根据图1接线R1、R2、R3为电桥单元的固定电阻。
R4为应变片;将稳压电源的切换开关置±4V档,F/V表置20V档。
调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,然后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。
(3)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V表显示为零(细调零),(4)——往下或往上旋动测微头,使梁的自由端产生位移记下F/V表显示的值。
建议每旋动测微头一周即ΔX=0.5mm(5)据所得结果计算灵敏度S=ΔV/ΔX(式中ΔX为梁的自由端位移变化,ΔV为相应F/V表显示的电压相应变化)。
(6)注意事项(1) 电桥上端虚线所示的四个电阻实际上并不存在,仅作为一标记,让学生组桥容易。
(2) 为确保实验过程中输出指示不溢出,可先将砝码加至最大重量,如指示溢出,适当减小(3)(4) 电位器W1、W2,在有的型号仪器中标为RD、RA问题:(1)(2) 根据所给的差动放大器电路原理图,(见附录图一 ),分析其工作原理,说明它既能作差动放实验二实验目的所需单元和部件直流稳压电源、差动放大器、电桥、F/V表、双孔悬臂梁称重传感器、应变片、有关旋钮的初始位置:2V档,F/V表打到2V档,差动放大器增益打到最大。
传感器实验指导书

测试技术与传感器实验指导书罗志增、倪红霞、席旭刚编倪红霞校杭州电子科技大学自动化学院二○一○年五月前言本实验指导书是为了配合“测试技术与传感器”、“传感器原理及应用”“集成传感器与应用”等课程而编写的,实验仪器是杭州高联教学仪器设备有限公司生产的传感器综合实验仪CSY-910,实验过程中大部分实验需由双踪示波器配合测试完成。
本实验指导书中的实验编排基本按照教材《测试技术与传感器》讲课进程,每个实验从易到难,从静态测量到动态实验的规律安排。
全书共列四个实验,涉及七种不同传感器,计划每个实验2学时,教师可根据不同教学要求,按需要选做。
目录实验一、应变片与直流电桥(单臂、半桥、全桥比较) (3)实验二、应变片与交流电桥、应变片电桥的应用 (6)实验三、差动变压器性能、零残及补偿、标定实验 (9)实验四、涡流传感器、霍耳传感器、压电加速度、电容传感器实验 (12)附录A 实验报告格式、要求 (17)附录B 实验设备介绍 (17)实验一 应变片与直流电桥(单臂、半桥、全桥比较)一、金属箔式应变片性能——单臂单桥实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。
实验准备:预习实验仪器和设备:直流稳压电源、电桥、差动放大器、测微头、应变片、电压表。
实验原理:当电桥平衡(或调整到平衡)时,输出为零,当桥臂电阻变化时,电桥产生相应输出。
实验注意事项:直流稳压电源打到4V 档,接线过程应关闭电源,电压表打到2V 档,如实验过程中指示溢出则改为20V 档,接线过程注意电源不能短接。
实验时位移起始点不一定在10mm 处,可根据实际情况而定。
为确保实验过程中输出指示不溢出,差动放大增益不宜过大,可先置中间位置,如测得的数据普遍偏小,则可适当增大,但一旦设定,在整个实验过程中不能改变。
实验内容:(1)观察双平行梁上的应变片、测微头的位置,每一应变片在传感器实验操作台上有引出插座。
(2)将差动放大器调零。
方法是用导线将差动放大器正负输入端相连并与地端连接起来,然后将输出端接到电压表的输入插口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一GLCK-107载荷(称重)测量实验一、实验目的:了解称重传感器与应用。
二、基本原理:常用的载荷传感器有称重传感器,称重传感器就是在弹性体表面(梁的上下面的左右)粘贴了四片箔式应变片组成差动式全桥测量电路。
数字电子秤实验原理如下图。
本实验只做放大器输出Vo实验,通过对电路的标定使电路输出的电压值为重量(载荷)对应值,电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。
数字电子称原理框图三、需用器件与单元:GLCK-107载荷测控实验装置(顶板上已装有量程为1kg的称重传感器)、托盘、砝码(200g 3只、100g 3只、20g 5只)。
四、实验步骤:1、按下图的示意接线(传感器的调理电路原理已标在GLCK-107载荷测控实验装置的面板上,面板内表面直接焊了仪表用放大器的集成电路及输入、输出口。
注意:人体触摸面板有感应。
)。
在传感器的右端装上托盘(空托盘,不压砝。
),再在GLCK-107载荷测控实验装置的机箱背后下部引入AC220V电源,将GLCK-109载荷测控实验装置面板的电压表量程拨动开关拨到2V档,合上主电源开关。
2、标定电路:在实验装置的面板上调大仪表用放大器的增益(顺时针方向慢悠悠轻转到底后再回转一点),再调节调零旋钮使电压表显示为0(人体有感应,仔细重复多调几下)。
将所有砝码都放置在托备上(3只200g在底层,3只100g在中间,5只20g在顶层),调节调增益旋钮使电压表显示为1.000V;拿去所有砝码,调节调零旋钮使电压表显示为0,再放上所有砝码调增益旋钮使电压表显示为1.000V,这样的过程重2~3次。
总之,空载为0V,装载1000g为1.000V,视为传感器调理电路标定完毕。
3、称重实验:依次放上砝码,记录电压表读数填入下表。
4、根据表格中的数据作出光滑的实验曲线:X轴为重量g,Y轴为电压mV。
计算传感器的精度与灵敏度。
实验完毕,关闭电源。
3实验二 GLCK-104直线位移测控实验一、实验目的:了解差动变压器位移测量与应用。
二、基本原理:位移测量是基于差动变压器的工作原理。
传感器型号为WYDC-20L ,内部整合有传感器调理电路,接触回弹式测量结构,DC24V 供电,量程为直线位移20mm ,对应输出0~5V 。
三、需用器件与单元:GLCK-104直线位移测控实验装置、差动变压器、测微头、位移支撑块。
四、实验步骤:1、按下图的示意安装、接线,接线时注意传感器(差动变压器)引线的颜色。
在GLCK-104 直线位移测控实验装置的机箱背后下部引入AC220V 电源,将GLCK-104直线位移测控实验装置面板上的电压表量程拨动开关拨到20V 档,合上主电源开关。
差动变压器测位移实验安装、接线示意图2、调整差动变压器与测微头的相对位置:①调节测微头的微分筒使微分筒上的0刻线与轴套2mm 处的轴线对准;②左右调整差动变压器位置使位移杆上的0刻线在端口附近(稍松差动变压器安装的紧固螺钉,但移动差动变压器时手感较紧,这样容易调整使电压表读数为0。
注意:示意图中差动变压器的位移0刻线必须在端口处。
)且电压表读数为0再锁紧紧固螺钉。
3、逆时针调节测微头的微分筒1mm(示意图中的位移方向、微分筒每转一圈产生位移为0.5mm 。
请注意:调节微分筒必须慢悠悠仔细转动,不能过量。
如过量再回转测微头会造成机械回程差。
)读取电压表读数,将实验数据填写到下表中。
如此重复过程,直到测微头给定20mm至。
4、根据表格中的数据作出光滑的实验曲线:X轴为位移mm,Y轴为电压V。
计算传感器的精度与灵敏度。
实验完毕,关闭电源。
5实验三 GLCK-109电涡流传感器测位移实验一、实验目的:了解电涡流传感器的工作原理与非接触式测量小位移的应用。
二、基本原理:电涡流传感器的基本原理是基于电涡流效应,请参阅教课书。
实验中电涡流位移传感器的型号:CZF/BZF-Ⅱ,电涡流变换器即传感器调理电路已安装在GLCK-109电涡流传感器实验装置的机箱内。
供电:DC±15V,测量位移量程:5mm。
对应输出0~5V。
三、需用器件与单元:GLCK-109电涡流传感器实验装置、电涡流传感器、45#钢被测体、测微头。
四、实验步骤:1、按下图安装、接线。
在GLCK-109电涡流传感器实验装置的机箱背后下部引入AC220V电源,将GLCK-109电涡流传感器实验装置面板上的电压表量程拨动开关拨到20V档,合上主电源开关。
电涡流传感器测小位移实验安装、接线示意图2、调整电涡流传感器与测微头的相对位置:①调节测微头的微分筒使微分筒上的0刻线与轴套5mm处的轴线对准;②左右调整测微数位置(稍松测微头安装的紧固螺钉,但移动测微头时手感较紧,这样容易调整使电压表读数为0。
3、逆时针调节测微头的微分筒0.20mm(示意图中的位移方向、微分筒每转一小格产生位移为0.01mm。
请注意:调节微分筒必须慢悠悠仔细转动,不能过量。
如过量再回转测微头会造成机械回程差。
)读取电压表读数,将实验数据填写到下表中。
如此重复过程,直到测微头给定5mm至。
4、根据表格中的数据作出光滑的实验曲线:X轴为位移mm,Y轴为电压V。
计算传感器的精度与线性度。
实验完毕,关闭电源。
YA-12型多功能数据采集模板简介一、YA-12型多功能数据采集模板应用与功能YA-12型多功能数据采集模板(内部卡为北京阿尔泰科技发展有限公司生产的USB2833卡)是一种基于USB总线的数据采集卡,不需要外部工作电源可直接和计算机的USB 接口相连,构成实验室、检测中心等各种领域的数据采集、波形分析和处理系统。
也可构成工业生产过程监控系统。
主要应用场合为:信号采集、过程控制、伺服控制。
下图为YA-12型多功能数据采集模板图,模板上设有二种接口:专用实验线接口与普通导线接口。
第一节、AD模拟量输入功能1、转换器类型:AD73212、输入量程:±10V、±5V(默认)、±2.5V、0~10V3、转换精度:13位(Bit),第13位为符号位4、采样速率:AD芯片最大转换速率500KHz5、模拟输入通道总数:16路单端,8路双端6、采样通道数:软件可选择,通过设置首通道(FirstChannel)和末通道(LastChannel)来实现的。
说明:采样通道数= LastChannel- FirstChannel+17、通道切换方式:首末通道顺序切换8、程控放大器类型:AD825179、程控增益:1、2、4、8倍10、模拟输入阻抗:10MΩ11、AD芯片转换时间:≤1.6uS12、非线性误差:±1LSB(最大)13、系统测量精度:0.1%14、工作温度范围:0℃~+50℃15、存储温度范围:-20℃~+70℃二、YA-12型多功能数据采集模板各种信号的连接方法㈠、AD模拟量输入的信号连接方法1、AD单端输入连接方式单端方式是指使用单个通道实现某个信号的输入,同时多个信号的参考地共用一个接地点。
此种方式主要应用在干扰不大,通道数相对较多的场合。
可按下图连接成模拟电压单端输入方式,16路模拟输入信号连接到AI0~AI15端,其公共地连接到AGND端。
a、接线框图b、模板上实际接线图2、AD双端输入连接方式双端输入方式是指使用正负两个通路实现某个信号的输入,该方式也叫差分输入方式。
此种方式主要应用在干扰较大,通道数相对较少的场合。
单、双端方式的实现由软件设置,请参考USB2833软件说明书。
可按下图连接成模拟电压双端输入方式,可以有效抑制共模干扰信号,提高采集精度。
模拟信号正端接到AI0~AI7端,模拟信号相应的负端接到AI8~AI15端,并且负端通过几十KΩ~几百KΩ电阻接共用模拟地AGND(数据采集模板中的100K Ω电阻已经接到AGND,只要将电阻接到负端即可)。
a、接线框图b、模板上实际接线图9实验四 光纤传感器的位移采集实验一、实验目的:了解光纤位移传感器的工作原理和性能;熟悉数据采集系统在静态实验中的应用。
二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半圆分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距X ,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移;数据采集系统对实验仪的实验数据(模拟量)进行采集并于计算机(PC )机通讯,再用计算机对实验数据进行分析处理。
三、需用器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面、数据采集通讯卡及配套软件。
四、实验步骤:① 根据图4-1示意安装光纤位移传感器和测微头,两束光纤分别插入实验模板上的光电座中,其它接线按图4-1。
图4-1 光纤传感器位移实验接线图② 检查接线无误后,合上主机箱电源开关。
调节测微头,使光反射面与Y 型光纤头轻触;再调实验模板上的w R 、使主机箱中的电压表显示为V 0。
③ 旋转测微头,被测体离开探头,每隔mm 5.0读取电压表显示值,将数据填入表1中。
根据表1数据画出实验曲线;表1④ 将实验模板的输出01V 与主机箱上的数据采集通讯接口中的A 通道或B 通道并联,再将11 主机箱数据采集通讯接口中的)(232口USB Rs 与计算机的串行口(口)USB 相连。
⑤ 进行计算机数据采集系统实验。
⑥ 用数据采集系统软件对实验数据进行分析处理。
实验完毕,关闭所有电源。
五、思考题:光纤位移传感器测位移时对被测体的表面有些什么要求?。