整式的乘法与因式分解

合集下载

因式分解与整式乘法的联系和区别

因式分解与整式乘法的联系和区别

因式分解与整式乘法的联系和区别示例文章篇一:哎呀,亲爱的同学们,今天我想跟你们好好唠唠因式分解和整式乘法这对“双胞胎”!你们说,这俩家伙是不是特别让人头疼?就像一对长得有点像,但性格又不太一样的兄弟!咱们先来说说整式乘法吧。

比如说,(x + 2)(x - 3),这一乘,就得到了x² - x - 6 。

这就像是把两个小队伍合并成了一个大队伍,力量变得更强大啦!那你们说,这是不是很神奇?再看看因式分解,比如说x² - x - 6 ,能把它变成(x + 2)(x - 3) 。

这就好像是把一个大部队又拆分成了两个小部队,各有各的任务!那它们到底有啥联系呢?咱们想想啊,整式乘法是把几个整式相乘得到一个新的整式,而因式分解呢,是把一个整式变成几个整式的乘积。

这难道不像我们搭积木吗?整式乘法是把几块小积木拼成一个大的造型,而因式分解就是把那个大造型又拆成几块小积木。

这不就是一正一反的过程嘛!那区别又在哪呢?整式乘法是从“局部”到“整体”,是合成的过程。

而因式分解呢,则是从“整体”到“局部”,是分解的过程。

这就好比盖房子,整式乘法是把砖头、水泥啥的组合起来盖成房子,而因式分解就是把房子拆成砖头、水泥这些原材料。

你们说是不是这个理儿?我同桌还跟我说:“哎呀,这也太难区分啦!”我就跟他讲:“你仔细想想呀,乘法是越乘越复杂,分解是越分越简单,这不就好懂多啦?”老师上课讲的时候,我可是听得特别认真。

我发现,只要我们多做几道题,多琢磨琢磨,就能把它们分得清清楚楚啦!所以啊,同学们,咱们可不能被这对“双胞胎”给难住,要把它们的特点和区别都摸透,这样在数学的世界里才能游刃有余!你们说对不对?示例文章篇二:《因式分解与整式乘法的那些事儿》嘿,同学们!今天我要和你们好好聊聊因式分解和整式乘法这对“欢喜冤家”。

先来说说整式乘法吧,这就好比盖房子,我们把各种材料按照一定的规则搭建起来,变成一个完整的大房子。

比如说,(x + 2)(x + 3),我们通过乘法法则,就能得到x² + 5x + 6 ,这是不是很神奇?那因式分解又是什么呢?它呀,就像是把盖好的房子拆成原来的材料。

整式的乘法与因式分解

整式的乘法与因式分解

整式的乘法与因式分解基础知识1 同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

2 幂的乘方,底数不变,指数相乘。

3、积的乘方法则:nn n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

4、同底数幂的除法法则:nm n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

5、零指数和负指数;10=a ,即任何不等于零的数的零次方等于1。

p p a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单 项式里含有的字母,则连同它的指数作为积的一个因式。

①积的系数等于各因式系数的积,先确定符号,再计算绝对值。

②相同字母相乘,运用同底数幂的乘法法则。

③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 ④单项式乘法法则对于三个以上的单项式相乘同样适用。

⑤单项式乘以单项式,结果仍是一个单项式。

7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)①积是一个多项式,其项数与多项式的项数相同。

②运算时要注意积的符号,多项式的每一项都包括它前面的符号。

③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。

8、多项式与多项式相乘的法则;多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再 把所的的积相加。

9、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式 里含有的字母,则连同它的指数作为商的一个因式。

10、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的 的商相加。

因式分解 互逆运算

因式分解 互逆运算

因式分解互逆运算
因式分解与整式乘法是互逆关系。

因式分解是把一个多项式写成几个整式积的形式(和变积),而整式乘法是把整式的积写成多项式(积变和)。

从这一点(即形式上)来说,二者是互为逆运算的。

因式分解:
因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。

因式分解方法灵活,技巧性强。

学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。

学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。

整式的乘法和因式分解

整式的乘法和因式分解

同底数幂的乘法:a m×a n=a m+na 可以是单项式,底数为正数还是负数,括号外为奇数次方还是偶数次方,若偶次方有没有对着负号,运算过后把底数都化为正数,再利用同底数幂的乘法。

若为同类项再把系数相加减。

a 若为多项式时,看底数是相同的还是相反数,若相反的把相反的化为相同的,若指数为偶数次方,直接改变;若指数为奇数次方,前面添负号,把底数化为相同的。

若指数中有子母,求字母的值,把底数化为相同的,一般化为最小的,再按同底数幂相乘,两个式子相等,底数一样,则指数也相等。

公式的倒用:给两个幂的值,求一个更复杂幂的值,见指数的和转化为同底数幂的乘,见指数的差转化为同底数幂的差,以所给的式子为目标进行变形出来,再代入求值。

比较几个幂的大小:根据题中给的形式,把底数化为相同的或把指数化为相同的形式,有一个相同,另一个谁大总体谁就大了。

指数比较大的幂相乘:把指数都化成最小的,根据积的乘方的倒算,把底数相乘,结果往往为±1,再算剩余的。

整式的乘法:1)几个单项式相乘,若题中有幂的乘方或积的乘方先进行自身计算,再进行其他的计算。

2)给积和一个因式,求另一个因式,利用乘法除法来做均可以,若为多项式注意带括号。

3)单项式×多项式,利用乘法的分配率来做题。

4)两个多项式乘开后没有几次项,就是看哪些项相乘可以得到几次项,利用合并同类项把系数写在一起,则总系数为0.5)多项式×多项式利用乘法的分配率来做,有公式的先用公式,先用平方差再用完全平方公式。

6)给一个等式,求字母的值:这类题是左边为多项式×多项式,右边为一个二次三项式;把左边按多项式×多项式乘开,两个多项式相等,二次项系数等于二次项系数,一次项系数等于一次项系数,常数项等于常数项。

整式的除法:若有积的乘方或幂的乘方,先用积的乘方或幂的乘方进行自身运算,再利用同底数幂的除法。

用同底数幂的乘或除,关键是化为相同的,可以同带负号,也可以都是正的,若不同应化为相同的。

八年级数学上册整式的乘法与因式分解

八年级数学上册整式的乘法与因式分解

八年级数学上册整式的乘法与因式分解整式的乘法和因式分解就像是数学世界里的一对魔法兄弟,一个负责把东西变多,一个负责把东西化简,玩得那叫一个不亦乐乎。

整式的乘法呢,就像是一个超级复制机。

你看啊,单项式乘以单项式的时候,就像是小细胞分裂。

比如说2x乘以3y,那就是把2和3相乘,x和y照抄,瞬间就得到6xy,就像一个细胞一下子变成了好几个,这速度比孙悟空拔毛变猴还快呢。

而单项式乘以多项式呢,就像是给一群小伙伴发礼物。

单项式是那个拿着礼物的人,多项式里的每一项都是一个等待礼物的小朋友。

例如a乘以(b + c),就等于ab+ac,把a这个礼物公平地分给b和c这两个小朋友。

多项式乘以多项式就更有趣啦,那简直是一场盛大的联欢派对。

(a + b)乘以(c + d),就像是a和b这两个小团体,分别去和c、d这两个小团体里的每个人握手拥抱,最后得到ac + ad+bc+bd,那场面,热闹非凡。

再说说因式分解,这家伙就像是一个神奇的收纳师。

它能把看起来乱糟糟的多项式变得整整齐齐。

提公因式法就像是从一堆东西里找出公共的部分先拎出来。

比如说2x+4y,2就是那个公共的小宝贝,提出来就变成2(x + 2y),一下子就清爽多了,就像把散落在房间里的同类型玩具都放在一个盒子里。

公式法更是厉害,完全平方公式(a±b)²=a²±2ab + b²就像是给多项式穿上了一件定制的漂亮衣服。

如果是a²+2ab + b²,你一眼就能看出来它是(a + b)²,就像你看到一个打扮得超级精致的小伙伴,马上能认出他是谁一样。

还有平方差公式a² - b²=(a + b)(a - b),这就像是把一个整体拆分成两个小部分,就像把一个大蛋糕切成两块一样简单又神奇。

这整式的乘法和因式分解啊,在数学的大舞台上可真是闪闪发光的明星。

有时候整式的乘法制造了一个超级复杂的式子,因式分解就像一个超级英雄一样,大喝一声“看我来收拾你”,然后就把式子变得简洁明了。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案第一章:整式的乘法1.1 整式乘法的基本概念理解整式的定义及表示方法掌握整式乘法的基本原理1.2 整式的乘法法则学习整式乘法的基本法则练习整式乘法的计算方法1.3 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法1.4 单项式乘多项式理解单项式乘多项式的概念掌握单项式乘多项式的计算方法第二章:平方差公式与完全平方公式2.1 平方差公式推导平方差公式练习应用平方差公式解题2.2 完全平方公式推导完全平方公式练习应用完全平方公式解题2.3 平方根与乘方理解平方根与乘方的概念掌握平方根与乘方的计算方法第三章:因式分解3.1 因式分解的概念理解因式分解的定义及意义掌握因式分解的基本方法3.2 提取公因式法学习提取公因式法的方法练习提取公因式法解题3.3 公式法学习公式法的方法练习公式法解题3.4 分组分解法学习分组分解法的方法练习分组分解法解题第四章:应用题与综合练习4.1 应用题解法学习应用题的解法练习解决实际问题4.2 综合练习综合运用所学知识解决实际问题提高解题能力与思维水平第五章:复习与总结5.1 复习重点知识复习整式的乘法与因式分解的重点知识巩固所学内容5.2 总结全章内容总结整式的乘法与因式分解的主要概念和方法提高学生的综合运用能力第六章:多项式的乘法与除法6.1 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法6.2 单项式乘多项式与多项式乘单项式理解单项式乘多项式与多项式乘单项式的概念掌握单项式乘多项式与多项式乘单项式的计算方法6.3 多项式除以单项式理解多项式除以单项式的概念掌握多项式除以单项式的计算方法6.4 多项式除以多项式理解多项式除以多项式的概念掌握多项式除以多项式的计算方法第七章:分式与分式方程7.1 分式的概念与性质理解分式的定义及表示方法掌握分式的基本性质7.2 分式的运算学习分式的运算规则练习分式的计算方法7.3 分式方程理解分式方程的定义及解法掌握解分式方程的方法7.4 应用题与综合练习学习解决实际问题中涉及分式与分式方程的问题提高解决实际问题的能力第八章:二次三项式的因式分解8.1 二次三项式的概念理解二次三项式的定义及表示方法掌握二次三项式的性质8.2 二次三项式的因式分解学习二次三项式的因式分解方法练习二次三项式的因式分解技巧8.3 应用题与综合练习学习解决实际问题中涉及二次三项式的因式分解的问题提高解决实际问题的能力第九章:方程的解法与应用9.1 方程的解法学习方程的解法掌握解一元二次方程的方法9.2 方程的应用理解方程在实际问题中的应用练习解决实际问题中涉及方程的问题9.3 应用题与综合练习学习解决实际问题中涉及方程的问题提高解决实际问题的能力第十章:复习与总结10.1 复习重点知识复习本章的重点知识巩固所学内容10.2 总结全章内容总结本章的主要概念和方法提高学生的综合运用能力重点和难点解析1. 整式乘法的基本概念和原理:理解整式乘法的定义和表示方法,掌握整式乘法的原理是学习整式乘法的基础,需要重点关注。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案一、教学目标:1. 理解整式乘法的基本概念和方法,能够熟练进行整式的乘法运算。

2. 掌握因式分解的基本原理和方法,能够对简单的一元二次方程进行因式分解。

3. 能够应用整式的乘法与因式分解解决实际问题。

二、教学内容:1. 整式乘法的基本概念和方法。

2. 整式乘法的运算规则。

3. 因式分解的基本原理和方法。

4. 因式分解的运算规则。

5. 应用整式的乘法与因式分解解决实际问题。

三、教学重点与难点:1. 整式乘法的运算规则。

2. 因式分解的方法和技巧。

3. 应用整式的乘法与因式分解解决实际问题。

四、教学方法:1. 采用讲解法,讲解整式乘法与因式分解的基本概念和方法。

2. 采用示范法,示范整式乘法与因式分解的运算过程。

3. 采用练习法,让学生通过练习来巩固所学知识。

4. 采用问题解决法,引导学生应用整式的乘法与因式分解解决实际问题。

五、教学准备:1. 教案、教材、PPT等教学资源。

2. 练习题、测试题等教学资料。

3. 教学黑板、粉笔等教学工具。

4. 投影仪、电脑等教学设备。

六、教学进程:1. 导入:通过复习整式的加减法,引出整式乘法的重要性,激发学生的学习兴趣。

2. 讲解:讲解整式乘法的基本概念和方法,重点讲解运算规则。

3. 示范:示范整式乘法的运算过程,让学生理解并掌握运算规则。

4. 练习:布置练习题,让学生通过练习巩固所学知识。

5. 总结:对本节课的内容进行总结,强调整式乘法的重要性。

七、作业布置:1. 完成练习题,巩固整式乘法的运算规则。

2. 预习下一节课的内容,为学习因式分解做准备。

八、课堂反馈:1. 课堂提问:通过提问了解学生对整式乘法的掌握情况。

2. 练习批改:及时批改学生的练习题,指出错误并给予讲解。

3. 学生反馈:听取学生的意见和建议,调整教学方法。

九、课后反思:1. 总结本节课的教学效果,反思教学方法的优缺点。

2. 根据学生的反馈,调整教学策略,提高教学质量。

整式的乘法与因式分解教案

整式的乘法与因式分解教案

整式的乘法与因式分解教案一、整式的乘法1.1 基本概念整式是由常数和变量按照一定的规律组成的代数式,例如3x2+2xy−5就是一个整式。

整式的乘法就是将两个或多个整式相乘的运算。

1.2 乘法法则整式的乘法法则有以下几种:1.2.1 乘法分配律对于任意的整数a,b,c,有a(b+c)=ab+ac。

例如:2(x+3)=2x+6。

1.2.2 乘法结合律对于任意的整数a,b,c,有(ab)c=a(bc)。

例如:(2x)(3y)=(2⋅3)(x⋅y)=6xy。

1.2.3 乘法交换律对于任意的整数a,b,有ab=ba。

例如:2x⋅3y=3y⋅2x。

1.3 例题解析例题1将(2x+3)(x−4)相乘。

解:按照乘法分配律展开,得到:(2x+3)(x−4)=2x⋅x+2x⋅(−4)+3⋅x+3⋅(−4)=2x2−5x−12例题2将(3x2−2xy+5)(x+2y)相乘。

解:按照乘法分配律展开,得到:(3x2−2xy+5)(x+2y)=3x2⋅x+3x2⋅(2y)−2xy⋅x−2xy⋅(2y)+5⋅x+5⋅(2y)=3x3+4xy2+5x−4y2x+10y二、整式的因式分解2.1 基本概念整式的因式分解就是将一个整式分解成若干个整式的乘积的形式,例如6x2+9x可以分解成3x(2x+3)的形式。

2.2 因式分解法则整式的因式分解法则有以下几种:2.2.1 公因式法如果一个整式的每一项都有一个公因式,那么可以将这个公因式提取出来,得到一个公因式和一个新的整式,再对新的整式进行因式分解。

例如:6x2+9x可以提取出3x,得到3x(2x+3)。

2.2.2 分组分解法如果一个整式中有两个或多个项可以分成一组,那么可以将这些项分成一组,然后将每组的公因式提取出来,得到一个公因式和一个新的整式,再对新的整式进行因式分解。

例如:3x2+5xy+2y2可以分成(3x2+3xy)+(2xy+2y2),然后提取出公因式得到3x(x+y)+2y(x+y),再将公因式(x+y)提取出来,得到(x+y)(3x+2y)。

整式的乘法与因式分解教案

整式的乘法与因式分解教案

整式的乘法与因式分解教案教案主题:整式的乘法与因式分解一、教学目标:1. 了解整式的乘法与因式分解的定义和性质;2. 掌握整式的乘法与因式分解的基本方法;3. 能够灵活运用整式的乘法与因式分解求解实际问题。

二、教学重点与难点:1. 整式的乘法的性质与运算方法;2. 整式的因式分解的基本步骤与方法。

三、教学过程:1. 导入新课:通过简单的代数表达式相加、相减等练习,引导学生思考整式的性质和运算法则。

2. 整式的乘法:a. 讲解整式的乘法的定义和性质,包括同底数相乘、同指数相乘、不同底数相乘、几个常见特殊情况的乘法性质等;b. 通过实例演示整式的乘法的具体计算方法;c. 练习:学生完成一些简单的整式乘法计算题,加深对整式乘法规则的理解。

3. 整式的因式分解:a. 讲解整式的因式分解的定义和性质,包括提取公因式、配方法、特殊公式等;b. 通过实例演示整式的因式分解的具体步骤和方法;c. 练习:学生完成一些简单的整式因式分解题,加深对整式因式分解的掌握。

4. 综合运用:a. 学生运用整式的乘法与因式分解方法,解决一些实际相关问题;b. 教师引导学生总结整式的乘法与因式分解的应用场景和意义。

四、教学方法:1. 演讲讲解:通过讲解整式的定义、性质和运算法则,引导学生理解整式的乘法与因式分解的思想与方法。

2. 实例演示:通过实例演示整式的乘法与因式分解的具体计算过程,帮助学生掌握乘法的规则和因式分解的步骤。

3. 练习操作:通过练习题目,提高学生对整式的乘法与因式分解的运用能力和问题解决能力。

4. 问题引导:通过引导学生解决实际问题,提高学生的综合运用能力和创造性思维。

五、教学评估:1. 教师通过课堂观察,评估学生的学习态度和参与度;2. 教师布置作业,评估学生对整式乘法与因式分解的掌握程度;3. 教师组织课堂小测验,评估学生对整式乘法与因式分解的运用能力和问题解决能力。

六、教学拓展:教师可以引导学生扩展整式乘法与因式分解的应用,例如多项式乘法与多项式因式分解、整式的乘法公式与因式分解等内容,拓宽学生的知识广度。

第十四章整式的乘法与因式分解大单元(教案)

第十四章整式的乘法与因式分解大单元(教案)
-练习:提供不同类型的因式分解题目,训练学生灵活运用方法。
2.教学难点
(1)多项式乘法的运算顺序和法则记忆。
-难点分析:学生容易混淆不同类型的乘法法则,忘记分配律。
-解决方法:通过直观图示和反复练习,加深记忆。
(2)完难点分析:学生难以区分两个公式,以及何时使用哪个公式。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的乘法与因式分解的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-练习:应用完全平方公式进行乘法和因式分解。
(3)平方差公式:a^2-b^2=(a+b)(a-b)。
-举例:解释公式中a和b的含义,展示公式的应用。
-练习:设计平方差公式的应用题目,加强理解。
(4)因式分解方法:提公因式法、公式法、十字相乘法。
-举例:详细讲解每种方法的步骤,如提取公因式时如何找到最大公因式。
第十四章整式的乘法与因式分解大单元(教案)
一、教学内容
第十四章整式的乘法与因式分解大单元(教案)
1.多项式乘以多项式
-乘法法则
-举例说明
-练习
2.单项式乘以多项式
-乘法法则
-举例说明
-练习
3.多项式乘以单项式
-乘法法则
-举例说明
-练习
4.完全平方公式
-公式推导
-应用实例
-练习
5.平方差公式
-公式推导
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

第十四章整式乘法与因式分解单元教学精选全文完整版

第十四章整式乘法与因式分解单元教学精选全文完整版

可编辑修改精选全文完整版第十四章整式乘法与因式分解单元教学第一篇:第十四章整式乘法与因式分解单元教学第十四章整式的乘法与因式分解单元教学计划14.3因式分解。

小结复习。

一、教学内容:14.1整式的乘法。

14.2乘法公式。

二、教学目标:知识与技能:1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。

使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。

2、使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。

3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运算运算律与乘法公式简化运算4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

过程与方法:1、通过探索、猜测,进一步体会学会推理的必要性,发展学生过程与方法〕初步推理归纳能力;2、通过揭示一些概念和法则之间的联系,对学生进行创新精神和实践能力的及主观能动培养.情感态度与价值观:1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主、合作精神,激发学生乐于探索的热情。

三、教学重点:掌握整式的乘法公式。

四、教学难点:掌握因式分解的方法。

五、课时分配:教学时间约需 14 课时,具体分配如下:14.1整式的乘法6课时。

14.2乘法公式3课时。

14.3因式分解3课时。

小结复习2课时。

第二篇:因式分解与整式乘法的关系因式分解与整式乘法的关系【知识点】整式乘法与因式分解一个是积化和差,另一个是和差化积,是两种互逆的变形.即:多项式整式乘积【练习题】1.下列因式分解正确的是①②③④⑤2.下列因式分解正确的是①②③④⑤3.下列因式分解正确的是①②③④⑤4.下列因式分解正确的是①②③④⑤5.下列因式分解正确的是①②③④⑤6.下列因式分解正确的是①②③④⑤答案1.1;22.1;3;53.4;54.3;45.2;46.1;3;57.第三篇:整式的乘法与因式分解复习教案《整式的乘法与因式分解》复习(一)教案教学目标:知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式情感态度与价值观:培养学生的独立思考能力和合作交流意识教学重点:记住公式及法则教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解教学方法与手段:讲练结合教学过程:一.本章知识梳理:幂的运算:(1)同底数幂的乘法(2)同底数幂的除法(3)幂的乘方(4)积的乘方整式的乘除:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)单项式除以单项式(5)多项式除以单项式乘法公式:(1)平方差公式(2)完全平方公式因式分解:(1)提公因式法(2)公式法二.合作探究:(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=三、当堂检测1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(ax+b)(x+2)=x-4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a+,b=5.已知11a2+2=3aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()A、x2+3x-1B、x2+2xC、x2-1D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm 9.下列各式是完全平方式的是()2A、x2-x+14 B、1+x2 C、x+xy+12D、x+2x-110.下列多项式中,含有因式(y+1)的多项式是(y 2 - 2 y + 1)A.22222(y+1)-(y-1)(y+1)-(y-1)(y+1)+2(y+1)+1B.C.D.三.课堂小结:今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总整式乘除与因式分解在研究代数的过程中,整式乘除与因式分解是非常重要的知识点。

下面将对这些知识点进行详细讲解。

一.幂的运算性质幂的运算性质是代数中最基本的知识之一。

其中,同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘。

例如,对于表达式(-2a)2(-3a2)3,可以先计算幂的乘方,然后再将同底数幂相乘。

二.乘方的运算乘方的运算也是代数中的基本知识。

根据乘方的运算法则,积的乘方等于各因式乘方的积。

例如,对于表达式(-a5)5,可以将其分解为a的5次方的积,然后再进行乘方运算。

三.同底数幂的除法同底数幂的除法也是代数中的基本知识之一。

根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减。

例如,对于表达式x÷x,可以将其化简为x的0次方,即1.四.零指数幂和负指数幂在代数中,零指数幂和负指数幂也是非常重要的概念。

任何一个不等于零的数的零指数幂都等于1;任何一个不等于零的数的负指数幂,等于这个数的指数幂的倒数。

例如,对于表达式(2a3b)1,可以通过代数式的运算,求出a和b的取值范围。

五.单项式和多项式的乘法单项式和多项式的乘法也是代数中的基本知识之一。

对于单项式相乘,需要将系数和同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

对于单项式与多项式相乘,需要用单项式和多项式的每一项分别相乘,再把所得的积相加。

对于多项式与多项式相乘,需要先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

通过对整式乘除与因式分解的研究,可以更好地理解代数的基本概念和运算法则,为后续的研究打下坚实的基础。

1.计算 (3×10^8)×(-4×10^4) = -1.2×10^132.计算 2x·(-2xy)·(-3) = 12x^2y3.若n为正整数,且x^(2n)=3,则(3x^(3n))^2的值为 274.如果 (anb·abm)^3 = a^9b^15,那么 mn 的值是 55.-[-a^2(2a^3-a)] = 2a^5 - a^36.(-4x^2+6x-8)·(-1/2x) = 2x^3-3x^2+4x7.2n(-1+3mn^2) = -6mn^2+2n8.若 k(2k-5)+2k(1-k) = 32,则 k = 49.(-3x^2)+(2x-3y)(2x-5y)-3y(4x-5y) = -10x^2+31xy-15y^210.在 (ax^2+bx-3)(x^2-x+8) 的结果中不含 x^3 和 x 项,则a = 1/2,b = -311.一个长方体的长为 (a+4)cm,宽为 (a-3)cm,高为(a+5)cm,则它的表面积为 2a^2+22a+32,体积为 (a+4)(a-3)(a+5) = a^3+6a^2-7a-60.若将长方形的长和都扩大了2cm,则面积增大了 8cm^2.12.一个长方形的长是 10cm,宽比长少6cm,则它的面积是 40cm^2.当长和都扩大了2cm时,面积增大了 44cm^2.13.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式。

第14章“整式的乘法与因式分解”简介

第14章“整式的乘法与因式分解”简介

八年级上册第十四章“整式的乘法与因式分解”简介人教版《义务教育教科书•数学》八年级上册第14章是“整式的乘法与因式分解”。

本章主要包括整式的乘法、乘法公式以及因式分解等知识。

整式的乘法运算和因式分解是基本而重要的代数初步知识,这些知识是以后进一步学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义。

同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了3个小节,教学时间约需14课时(供参考):14.1 整式的乘法6课时14.2 乘法公式3课时14.3 因式分解3课时数学活动小结2课时一、教科书内容和本章学习目标1.本章知识结构本章知识结构如下图所示:2.教科书内容本章共包括4节14.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。

本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。

其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。

在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。

首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。

在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。

整式的除法也是整式四则运算的重要组成部分,是今后学习(因式分解、整数指数幂、分式运算)必须的内容。

考虑到课标没有单列条目,因此不单独成节。

在讲完整式乘法后,从逆运算角度介绍同底数幂的除法、单项式除以单项式,多项式除以单项式等必须内容。

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式 分解整式的乘法第1课教案

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式 分解整式的乘法第1课教案

第十四章整式的乘法与因式分解14.1.4整式的乘法第1课时一、教学目标【知识与技能】1.会进行单项式乘单项式的运算.2.探索并了解单项式与多项式相乘的法则,会运用法则进行简单计算.【过程与方法】1.经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.2.进一步理解数学中“转化”“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘.【情感、态度与价值观】1.培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.2.逐步形成独立思考、主动探索的习惯,培养思维的严密性和初步解决问题的愿望和能力.二、课型新授课三、课时第1课时,共3课时。

四、教学重难点【教学重点】1.单项式与单项式相乘的法则.2.单项式与多项式相乘的法则及其运用.【教学难点】1.对单项式的乘法运算的算理的理解.2.单项式与多项式相乘去括号法则的应用.五、课前准备教师:课件、直尺、计算器等。

学生:直尺、计算器。

六、教学过程(一)导入新课教师:前面我们学习了幂的运算,这节课我们先来回答下面的问题,再进入今天的课题。

教师问1:幂的运算性质有哪几条?学生思考后找同学回答:同底数幂的乘法法则:a m·a n=a m+n( m、n都是正整数).幂的乘方法则:(a m)n=a mn ( m、n都是正整数).积的乘方法则:(ab)n=a n b n ( m、n都是正整数).教师对学生回答结果做出表扬后继续提问。

教师问2:计算:(1)x2· x3· x4= ;(2)(x3)6= ;(3)(–2a4b2)3= ;(4) (a 2)3 · a 4= ;(5)(- 53)5·(- 35)5= 。

学生回答:(1)x 9;(2)x 18;(3)-8a 12b 6;(4)a 10(5)1教师:复习完前面的相关知识后,下面进入今天的课题。

(二)探索新知1.师生互动,探究单项式乘法的意义下列代数式中,哪些是单项式?哪些是多项式?-2x 3;1+y ;45ab 3c ;-y ;6x 2-x +5;3ab 10. 学生回答:单项式有:-2x 3;45ab 3c ;-y ;3ab 10. 多项式有:1+y ;6x 2-x +5.教师问3:光的速度约为每秒3×105千米,太阳光射到地球上需要的时间约是5×102秒,地球与太阳的距离约是多少千米?(出示课件4)学生回答:地球与太阳的距离约是(3×105)×(5×102)km.教师问4:怎样计算(3×105)×(5×102)?计算过程中用到了哪些运算律及运算性质?(出示课件5)学生讨论后回答:(3×105)×(5×102)=(3×5)×(105×102) (乘法交换律、结合律)=15×107. (同底数幂的乘法)教师问5:15×107,这样书写规范吗?应该如何写呢?学生回答:不规范,应为1.5×108.教师问6:如果将上式中的数字改为字母,比如ac5·bc2,怎样计算这个式子?(出示课件6)学生讨论后回答:ac5·bc2是两个单项式ac5与bc2相乘,我们可以利用乘法交换律,结合律及同底数幂相乘的运算性质来计算:ac5·bc2 =(a ·b) ·(c5·c2) (乘法交换律、结合律)=abc5+2 (同底数幂的乘法)=abc7.教师问7:这是什么运算?如何进行运算?学生回答:乘法运算,单项式乘以单项式.教师问8:你能类比上题计算2x2y·3xy2;4a2x5·(-3a3bx)吗?学生尝试计算,交流,展示计算过程.(1)2x2y·3xy2=(2×3)(x2·x)(y·y2)=6x3y3;(2)4a2x5·(-3a3bx)=[4×(-3)](a2·a3)·b·(x5·x)=-12a5bx6.教师问9:用到了哪些知识?怎么进行单项式乘以单项式的运算?学生回答:运用了乘法的交换律和结合律,进行单项式乘以单项式的运算:把系数相乘,相同字,相同字母相乘.教师问10:你能总结单项式乘以单项式的规律吗?学生回答:单项式乘以单项式:把单项式的系数相乘,相同的字母相乘,再把所得的积相乘.教师问11:计算:5x2y3·7x3y4z2.学生回答:5x2y3·7x3y4z2=(5×7)·(x2·x3)(y3·y4)z2=35x5y7z2教师问12:计算5x2y3·7x3y4z2时,对于字母z2如何办呢?学生回答:只在一个因式中出现的字母,写在后边作为一项.教师问13:写在什么后边作为一项?学生回答:写在积的后面作为一项.总结点拨:(出示课件7)单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例1:计算:(出示课件8)(1)(–5a2b)(–3a);(2)(2x)3(–5xy2).解:(1)(–5a2b)(–3a)= [(–5)×(–3)](a2•a)b= 15a3b;(2)(2x)3(–5xy2)=8x3(–5xy2)=[8×(–5)](x3•x)y2=–40x4y2.总结点拨:(出示课件9)1. 在计算时,应先确定积的符号,积的系数等于各因式系数的积;2. 注意按顺序运算;3. 不要漏掉只在一个单项式里含有的字母因式;4. 此性质对三个及以上单项式相乘仍然适用.例2:已知–2x 3m +1y 2n 与7x n –6y –3–m 的积与x 4y 是同类项,求m 2+n 的值.(出示课件12)解:∵–2x 3m +1y 2n 与7x n –6y –3–m 的积与x 4y 是同类项,231,3164,--=⎧∴⎨++-=⎩n m m n解得:3,2,n m =⎧⎨=⎩∴m 2+n =7.总结点拨:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项的定义,列出二元一次方程组求出参数的值,然后代入求值即可.教师问14:如图,分别求出下边每块草坪的面积是多少?学生回答:如果把它看成三个小长方形,那么它们的面积可分别表示为pa 、pb 、pc.教师问15:如图,试求出三块草坪的总面积是多少?(出示课件14) 学生回答:pa+pb+pc.教师问16:如果把它们拼成一个大长方形,如下图,它的总面积是多少呢?(出示课件15)学生回答:如果把它看成一个大长方形,那么它的长为(a+b+c),面积可表示为p(a+b+c).教师问17:(出示课件17)由此我们可以得到什么呢?学生回答:pa+pb+pc=p(a+b+c).教师问18:看到这个等式,你想到了什么呢?学生回答:想到了乘法分配律!教师问19:哪位同学能说一下乘法分配律是怎样计算的呢?学生根据自己的理解回答。

《同底数幂的乘法》整式的乘法与因式分解

《同底数幂的乘法》整式的乘法与因式分解

整式的乘法与因式分解的相互转化
通过整式的乘法,我们可以将一 个多项式乘以1,从而得到一个
新的多项式。
如果我们将这个新的多项式再逆 用整式的乘法运算律,就可以得
到原来的多项式。
这种相互转化的关系在数学中非 常重要,它可以帮助我们更好地 理解整式的乘法和因式分解的本
质和相互关系。
THANKS
感谢观看
03
CATALOGUE
因式分解
因式分解的定义与性质
因式分解的定义
把一个多项式化为几个整式的积的形式,这 种变形叫做把这个多项式因式分解,也叫作 分解因式。
因式分解的性质
因式分解是整式乘法的逆变形,可以应用在 解决很多数学问题上。
因式分解的方法
公式法
利用平方差公式、完全平方公式、立 方和公式等基本公式进行因式分解。
分期付款问题
在金融领域,因式分解可 以用于计算分期付款的本 金、利息等。
图形面积计算
在几何学中,通过因式分 解可以计算图形的面积或 周长等。
04
CATALOGUE
整式的乘法与因式分解的关系
整式的乘法与因式分解的联系
整式的乘法与因式分解都是数学 中重要的代数方法。
在整式的乘法中,我们通常关注 的是运算律和计算规则,而因式 分解则更注重将多项式分解为更
解析实例
再比如求解$(3x)^{3} \times (3x)^{2}$的值,根据同底数幂的乘法规则,可以得 出$(3x)^{3+2}=(3x)^5$。
02
CATALOGUE
整式的乘法
单项式与单项式的乘法
总结词
系数相乘,相同字母相加,其余字母不变
详细描述
将两个单项式的系数相乘,相同字母相加,如$3x^2 \times 5x^3 = (3 \times 5)x^(2+3) = 15x^5$

八年级 第14章 整式的乘法与因式分解

八年级 第14章 整式的乘法与因式分解

八年级 第14章 整式的乘法与因式分解知识点集结1、 幂的运算同底数幂的乘法幂的乘方积的乘方2、 整式的乘法单项式乘以单项式单项式乘以多项式多项式乘以多项式3、 整式的除法:同底数幂的除法、单项式除以单项式 、多项式除以单项式4、 乘法公式: 平方差公式、完全平方公式5、 因式分解:提公因式法公因式法(十字相乘法)二、考点的引发、思维的拓展考点一:幂的运算在幂的运算中含有同底数幂的乘法、幂的乘方和积的乘方三种运算,要注意选准运算性质是关键。

(一) 同底数幂的乘法法则:a m ·a n =a m+n (m ,n 都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

例1:计算(1)84)21()21( (2)(-3)2×(-3)7变式1:计算(1)106·105·10 (2)x 3·x m(3)(a+b)4·(a+b) (4)x 2·(-x)5例2:2×24-22×23 变式1:m 7·m+m 3·m 2·m 3例3:(1)若26=24·2x 则 x=_______(2)2m =3 , 2n =4, 求2m+n 的值。

变式1、若6422=-a ,则a= ;变式2、若8)3(327-=⨯n ,则n= .变式3、计算()[]()[]m n x y y x 2322--变式4、若32=n a ,则n a 6= .(二)幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==例4:变式1、例5、若 ,2a m = 则=m 3a _____.;)y ()4(;)a )(3(;)b )(2(;)10)(1(234m23327-2342)a (a a )5(+∙3242(6)()()x x ⋅42])y x )[(7(+变式1、若 3m ,2m y x == 则 =+y x m ____, =+y 2x 3m =______.变式2、若(-2)² ·24= (a ³)²,则a =______(三)积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

人教版,初中八年级,数学上册,第十四章,《整式的乘法,与因式分解》,全章课件汇总

人教版,初中八年级,数学上册,第十四章,《整式的乘法,与因式分解》,全章课件汇总

b3+b· Nhomakorabeab45 + b5 =2b5 b =
------------强化训练-------------m 已知:a =2,
m+n 求a
n a =3.
=?. m+n m n 解: a = a ·a =2 × 3=6
------------强化训练-------------判断(正确的打“√”,错误的打“×”) (1) x4· x6=x24 (3) x4+x4=x8 x3=x3 ( × ) × ) (2) x· ( × ) (4)x2· x2=2x4 ( ×) ( ( √ )
a
3 ·a
5 ·a =
1+3 a
5 ·a =
4 a
5 9 ·a =a
m n p a · a· a
m+n+p =a
(m、n、p都是正整数)
------------强化训练-------------1.计算: (1)25 ×22 ;(2)a7 · a3 ; 解:(1)25×22 =25 + 2= 27 (2)a7 · a3 = a7 + 3 = a10 2.计算: (1)23×24×25 ;(2)-b ·b4 解:(1)23×24×25=23+4+5=212
am ·an = am+n
① (- 2)4×(- 2)5 = ②( ③
2 3 ) 5
(-2)9
公式中 的a可代 表一个 数、字 母、式 子等.
2 2 2 × ( ) = ( )5 5 5
5 ·(a+b)
2 (a+b)
= (a+b)7
------------强化训练--------------
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点的回顾1、单项式:都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式)。

2、多项式:几个单项式的和叫做多项式。

3、整式:单项式和多项式统称整式。

4、一个单项式中,所有字母的指数和叫做这个单项式的次数;一个多项式中,次数最高的项的次数叫做这个多项式的次数。

(单独一个非零数的次数是0)5、整式的加减运算法则:整式的加减⎩⎨⎧合并同类项法则去括号法则练一练:1、下列代数式中,单项式共有 个,多项式共有 个。

-231a , 52243b a -, 2, ab , )(1y x a +, )(21b a +, a , 712+x , πy x +2、(1)单项式232z y x -的系数是 ,次数是 ; (2)π的次数是 。

(3)22322--+ab b a c ab 是单项式 的和,次数最高的项是 ,它是 次 项式,二次项是 ,常数项是3、一个多项式加上-2x 3+4x 2y+5y 3后,得x 3-x 2y+3y 3,求这个多项式,并求当x=-21,y=21时,这个多项式的值。

第一讲. 整式的乘法1、同底数幂的乘法同底数幂的乘法,底数不变,指数相加。

即:n m n m a a a +=⋅,(m ,n 都是正整数)。

例1 (1)()=⨯-6533 (2)=⋅+12m m b b =-⋅⋅-32)())(3(y y y提示:①三个或三个以上的同底数幂相乘,法则也适用,即p n m p n m a a a a +++=⋅⋅⋅ , (p n m ,,都是正整数);②不要忽视指数为一的因数;③底数不一定是一个数或者一个字母,也可以是单项式或多项式;④注意法则的逆用,即n m n m a a a ⋅=+2、幂的乘方幂的乘方,底数不变,指数相乘。

即:()mn n ma a =, (m ,n 都是正整数)。

例2 (1)()232= (2)()=55b(3)()=-312n x(4)(x 3x m )3=3、积的乘方积的乘方等于每一个因数乘方的积。

即:()n n nb a ab =, (n 是正整数) 积的乘方法则可以进行逆运算.即:a n ·b n =(ab )n (n 为正整数)a n ·b n =()a a a n 个a ·()b b b n 个b=()()()a b a b a b n 个(a b)=(a ·b )n同指数幂相乘,底数相乘,指数不变.例3 (1)()=23x (2)()=-32b(3) 421⎪⎭⎫ ⎝⎛-xy = (4)()232-=(5)2m ×4m ×(81)m = 4、整式的乘法:(1)单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。

例4 ()=⎪⎭⎫ ⎝⎛-xy z xy 3122单项式乘以单项式注意几点① 各单项式的系数相乘;② 相同字母的幂按同底数的幂相乘;③ 单独字母连同它的指数照抄。

注意:单项式乘以单项式的结果仍是单项式.(2)单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘公式:例5 ()b a ab ab 22324)1(+(3)多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(a+b)(m+n)=a(m+n)+b(m+n)=am+an+bm+bn例6 ()()=-+y x y x 221.下面的计算对不对如果不对,怎样改正(1)b 5 · b 5= 2b 5 ( )(2)b 5 + b 5 = b 10 ( )(3)x 5 ·x 5 = x 25 ( )(4)y 5 · y 5 = 2y 10 ( )(5)c · c 3 = c 3 ( )2.若(x 2)m =x 8,则m=______若[(x 3)m ]2=x 12,则m=_______ 若x m ·x 2m =2,求x 9m =若a 2n =3,求(a 3n )4=3.已知a m =2,a n =3,求a 2m+3n 的值.4.计算2(x 3)2·x 3-(3x 3)3+(5x)2·x 7 (-2x 3)3·(21x 2)2(3xy 2)2+(-4xy 3)·(-xy) (-x 2y)3+7(x 2)2·(-x)2·(-y)37×88 8×410 [(-n)3]p ·[(-n)p ]55.已知10m =5,10n =6,求102m+3n 的值6.已知,x m = 1/2 ,x n =3.求下列各式的值:(1)x m +n ; (2) x 2m •x 2n ; (3) x 3m +2n7.直接写出答案(1) 3x 2·5x 3 = (2) 4y · (-2xy 2) =(3)(-3x 2y)·(-4x) = (4)×103) ·(5×102)=(5)3y(-2x 2y 2) = (6)3a 3b ·(-ab 3c 2) =(7)-5a 3b 2c ·3a 2b= (8)a 3b ·(-4a 3b)=(9)(-4x 2y)·(-xy)= (10)2a 3b 4(-3ab 3c 2)=8.(1)若(-5a m+1b 2n-1)(2a n b m )=-10a 4b 4,则m-n 的值为______(2)(a 3b)2(a 2b)3 (3)(3a 2b)2+(-2ab)(-4a 3b)(4)(x+y)m-1·(x+y)m +1·(x+y)m-3 (5)(x-y)3+(y-x)2.9. )y x y -y)(x (x y)-8y)(x -(x 2)1)(x (3x 22++++10.先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-611.化简求值:)32)(12()1)(1(3)3)(2(-+--+++-x x x x x x ,其中x=54(y -2)(y 2-6y -9)-y (y 2-2y -15),其中y=-2。

12.一块长m 米,宽n 米的玻璃,长宽各裁掉a 米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少第二讲.(一)乘法公式1.平方差公式两数和与这两数差的积,等于它们的平方差符号语言:(a+b )(a-b )=a 2-b 2例1(1)(3x+2)(3x-2) (2)(b+2a )(2a-b )(3)(-x+2y )(-x-2y )(4)102×98(5)(y+2)(y-2)-(y-1)(y+5)2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 即:()2222b ab a b a ++=+,()2222b ab a b a +-=-。

例2(1)(4m+n )2 (2)(y-12)2 (3)(-a-b )2 (4)(b-a )23.添括号法则:如果括号前面是正号,括到括号里的各项都不改变符号;如果括号前面是负号,括到括号里的各项都改变符号。

例3 ()-=--1x ; ()-=+-a c b a练习1.下列哪些多项式相乘可以用平方差公式)32)(32(b a b a -+ )32)(32(b a b a +-+-)32)(32(b a b a --- )32)(32(b a b a -+-))((c b a c b a +-++ ))((c b a c b a -+-- 2.计算)2)(2(x y y x +--- )25)(52(x x -+)25.0)(5.0)(5.0(2++-x x x 22)6()6(--+x x(4m+n )2 (y-12)2 (-a-b )2 (b-a )22)4(y x - 222)43(c ab b a --x 5( )2= 4210y xy +-)3)(3(b a b a --+=3.运用完全平方公式计算:(1)1022 (2)992(3) (4)4.在下列多项式中,哪些是由完全平方公式得来的442+-x x 2161a + 12-x22y xy x ++ 224139y xy x +-3.(1)证明:两个连续奇数的积加上1一定是一个偶数的平方(2)求证:22)7()5(--+m m 一定是24的倍数4.计算阴影的面积:大正方形的边长是a+b. 小正方形的边长是a-b,空白长方形(二)整式的除法1. 同底数幂的除法同底数幂相除,底数不变,指数相减。

即:n m n m a a a -=÷(n m n m a >都是正整数,且,,0≠),提示:①同底数幂的除法与同底数幂的乘法互为逆运算;②当三项或者三项以上的同底数幂相除时,法则同样适用。

例4 (1)=÷47a a (2)()()=-÷-36x x (3)()()=÷xy xy 42. 零指数幂的性质零次幂:任何一个不为零的数的零次幂等于1。

即:,10=a )0(≠a3、整式的除法:(1)单项式相除,把系数同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

例5 (1)()()=÷b a c b a 334510(2)()()=÷xy y x 233(2)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相例6()()=-÷+-b b b a 2101822练习1.计算: (1)()ab ab ÷4(2)133+-÷-n m y y(3)()225225.041x x -÷⎪⎭⎫ ⎝⎛- (4)()()[]24655mn mn -÷-(5)()()()y x x y y x -⋅-÷-48 (6)(-3x 2n+2y n )3÷[(-x 3y )2] n(7)(6ab +8b )÷(2b ) (8)(27a 3-15a 2+6a )÷(3a );(9)(9x2y-6xy2)÷(3xy); (10)(3x2y-xy2+xy)÷(-xy). 2.比较2100与375的大小。

3.光的速度约为每秒3×105千米,若地球与太阳的距离为×108千米,•那么太阳光射到地球上需要多少时间)第三讲. 因式分解把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.因式分解是整式乘法的相反方向的变形因式分解与整式乘法的关系表示为:因式分解a2-b2=========(a+b)·(a-b)整式乘法说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

相关文档
最新文档