(完整版)专升本数学公式大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数公式:
专升本高等数学公式大全
2
(tgx) sec x (arcsin x)
(ctgx) 2 csc x
(secx) secx tgx (arccos
x)
(cscx) cscx ctgx
(a x) a x I na
(arctgx) (Iog a X) 1 (arcctgx)
1 1
a r 2 1 X2
.1 X2 1 X2
基本积分表:
三角函数的有理式积分:
tgxdx In cosx C ctgxdx In sin x C secxdx In secx tgx C
cscxdx In cscx ctgx C
dx 2 .
2 sec xdx tgx C cos x
dx 2
・2 csc xdx ctgx C sin x
secx tgxdx secx C
dx ~2 2 a x 1 丄x arctg C a a
dx x2a2
dx
2 2
a x 丄ln|x a
2a |x a
1 , a x In
2a a x
cscx ctgxdx cscx C
x
a x dx C
In a
shxdx chx C
chxdx shx C
异—arcsin 仝C “ a2 x2 a
dx 2 2 ——2 2 "( x x a ) C
.x a
2 2
n
n sin xdx n
cos xdx 0 0
'、 2 a dx x 2 x 2 a
2
x2a2 dx x ..x2a2
2
x dx x ■ a2 2 x I n 2 a . / In (x 2 a2I —— In x 2 x2 a2) 2 a . x arcs in C 2 2 a 2u sinx 2, cosx 1 u 2 一些初等函数: 双曲正弦:shx 双曲余弦: chx 双曲正切:thx tg 2, dx 2du V~u\ 两个重要极限: x x e e 2 x x e e 2 x x shx e e x x chx e e sin x ’ lim 1 x 0 x lim(1丄广 x x e 2.718281828459045… arshx ln(x x 2 1) archx In (x x 2 1) arthx 1|n1 x 2 1 三角函数公式: •诱导公式: -和差化积公式: sin( )sin cos cos sin cos( )cos cos sin sin 、tg tg tg( ) 1 tg tg ctg( )ctg ctg 1 ctg ctg -和差角公式: sin sin sin sin cos cos cos cos 2sin cos — 2 2 2 cos sin — 2 2 2 cos cos — 2 2 2 sin ------- s in ------ 2 2 sin 2 2si n cos2 2cos2 ctg2 ctg2 2ctg tg2 2tg 2 •倍角公式: cos 1 -半角公式: 1 1 2si n 2 2 cos ・2 sin sin3 3si n cos3 4cos3 tg3 3tg 4si n3 3 cos -3 tg ~2 sin — 2 1 cos 2 1 cos cos— 2 1 cos 2 1 cos sin sin 1 cos ct g- 1 cos sin 1 cos sin 1 cos -正弦定理:,一 sin A sin B 亠2R sin C -余弦定理: b22abcosC -反三角函数性质: arcs in x arccosx arctgx arcctgx 高阶导数公式一一莱布尼兹( Leib niz 公式: (uv)(n) n CnU(n k 0 k)v(k) u(n)v nu(n 1)v n(n 1) u 2! (n 2)v n(n 1) (n k k! 1) (n k)v(k)uv(n) 中值定理与导数应用: 拉格朗日中值定理: 柯西中值定理: f(b) f(b) f (a) f (a) F () f ( )(b a) ) 当F(x) x时,曲率: F(b) F(a) 柯西中值定理就是拉格朗日中值定理。 弧微分公式: 1 2 . ds 1 y dx,其中y tg 平均曲率:K:从M点到M点,切线斜率的倾角变化量; s:MM弧 长。 M点的曲率: y| (1 y2)3 直线:K 0; 半径为a的圆: 1