幂函数第一课时
幂函数(第1课时)课件4
1.21
1.331 1.048808848
"y=x^2" y=x^3 y=x^(1/2)
图象的性质
幂函数f(x)=x的性质: 1。>0时,(1)图象都经过点(0,0)和(1,1);
(2)图象在第一象限是增函数。 2。 <0时,(1)图象都经过点(1,1);
(2)图象在第一象限是减函数,且向右无限 接近X轴,向上无限接近Y轴。
学生练习
利用上面所学的图像的性质,比
较下列各组值的大小:
1
1
(1)5.232 5.242
(2)0.26-1 0.27-1
(3)(-0.72)3 (-0.75)3
1
1
解:(1) 5.232 5.242
(2) 0.26-1 > 0.27-1 (3) (-0.72)3 < (-0.75)3
例3:
0.8
0.64
0.512 0.894427191
-2
0.85
0.7225 0.614125 0.921954446
0.9
0.81
0.729 0.948683298
-3
0.95
0.9025 0.857375 0.974679434
1
1
1
1
1.05
1.1025 1.157625 1.024695077
1.1
0.0625 0.015625
0.5
2
0.3
0.09
0.027 0.547722558
0.35
0.1225 0.042875 0.591607978
0.4
0.16
0.064 0.632455532
1
幂函数(第1课时)课件5
(2)在第一象限内,函数的图象随 x的增大而上升,
函数在区间 [0, ) 上是单调增函数.
退出
§2.4 幂 函 数
函数定义 方法回忆 简单举例 函数性质 应用举例 达标测试 小结作业
画幂函数 y x ( 0)图象
利用幂函数性质比较大小
退出
§2.4 幂 函 数
函数定义 方法回忆 简单举例 函数性质 应用举例 达标测试 小结作业
1、求下列函数的定义域,并指出它们的奇偶性:
1
(1) y x4 (2) y x4 (3) y x3
2
5
3
(4) y x5 (5) y x8 (6) y x 5
2、比较下列各组数中两个值的大小:
函数奇偶性判断的一般步骤: 1.看定义域是否关于原点对称; 2.在定义域关于原点对称的前提下判断:
满足 f (x) f (x) 是偶函数; 满足 f (x) f (x) 是奇函数.
退出
2.4 幂 函 数
函数定义 方法回忆 简单举例 函数性质 应用举例 达标测试 小结作业
幂函数 y x ( 0) 的性质
研究对象
函数的性质通常包含几个方面: 定义域、值域、单调性、奇偶性等等.
研究方法
研究函数时,我们通常从函数的定义或解 析式入手找出定义域,判断奇偶性,在通过图 像研究单调性和其它性质.
退出
§2.4 幂 函 数
函数定义 方法回忆 简简单单举举例例 函数性质 应用举例 达标测试 小结作业
求幂函数定义域的关键是:将分数指数幂写成根式; 优点:一幕了然
退出
§2.4 幂 函 数
函数定义 方法回忆 简单举例 函数性质 应用举例 达标测试 小结作业
幂函数课件必修1-PPT课件
2
(
( 1 ( -
- - 6 - 4 2 2 4 6
-1
(-
x -3 -2 -1 1 2 3
-2
y x1 -1/3 -1/2 -1 1 1/2 1/3
-3
-4
( 4 y x 3 ( y x 2
3 y 1 y x 2
2
(
( 1 ( y x - -
- - 6 - 4 2 2 4 6
\ \0 … -1/3 -1/2 -1 \ 1 1/2 1/3 …
4
3
2
1
(1,1)
-6
-4
-2
-1
(-1,-1)
-2
2
4
6
-3
-4
x -3 -2 -1 0 1 2 3 4
y=x2 9 4 1 0 1 4 9 3
y=x
2
1
(1,1)
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
3
2
(2,4) y=x
1
(-1,1)
(1,1)
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
-3
-4
(-2,4 4 )
3
(2,4) y x 2 =
y=x
2
(-1 1 ,1 (1 ) ,1)
-6
-4
-2
2
4
6
-1
(-1,-1)
x -2 -3 -2 -1 0 1 2 3 -3y=x3 -27 -8 -1 0 1 8 27
幂函数(第一课时)
问题1:函数y=2x,y=x3是指数函数吗?
问题2:函数y=x3中自变量有什么特点? 问题3:再举出几个这样的函数.
函数特征分析
(1) 都是形如 y x a 的函数; (2) 指数为常数; (3) 均是以自变量为底的幂.
一般地,函数y=xa叫做幂函数,
其中x是自变量,a是常数. 注意: 幂函数中a的可以为任意实数.
1 1 B.2,2,-2,-2 1 1 D.2,2,-2,-2
的图象.
1 2
1
O
x
幂函数的性质归纳 (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点 (1,1). (2)α>0 时,幂函数的图象通过原点,并且在区间[0,+∞)上是 增函数. 特别地,当 α>1 时,幂函数的图象下凸; 当 0<α<1 时,幂函数的图象上凸. (3)α<0 时,幂函数的图象在区间(0,+∞)上是减函数.在第一 象限内,当 x 从右边趋向原点时,图象在 y 轴右方无限地逼近 y 轴正 半轴;当 x 趋于+∞时,图象在 x 轴上方无限地逼近 x 轴正半轴.
变式函数 f(x)=(m2-m-1)xm2+m-3 是幂函数,且当 x∈(0,+∞)时,f(x)是增函数,求 f(x)的解析式.
幂函数的图象
[例 2] (1)如图,图中曲线是幂函数 y=xα
1 在第一象限的大致图象,已知 α 取-2,-2, 1 2,2 四个值,则相应于曲线 C1,C2,C3, C4 的 α 的值依次为 1 1 A.-2,-2,2,2 1 1 C.-2,-2,2,2 ( )
练习 1. 判断下列函数是否为幂函数
1 2
(1) y x
4
( 2) y x
2
2.5.1简单的幂函数第一课时(幂函数的概念)
(1)点( 2,2)在幂函数 f(x)的图象上,求 f(x)的解析式 1 (2)点(-2,4)在幂函数 g(x)的图象上.求 g(x)的解析式
【思路点拨】 由幂函数的定义,求出f(x)与g(x)的解析式.
【解析】
设 f(x)=xn,由题意得 2=( 2)n,
∴n=2,即 f(x)=x2. 再设 g(x)=xm, 1 由题意得4=(-2)m, ∴m=-2,即 g(x)=x-2.
2
例2. 利用单调性判断下列各值的大小。 (1)5.20.8 与 5.30.8 (2)0.20.3 与 0.30.3 解:(1)y=
(3)
-2 -2 2.5 5 与 2.7 5 x0.8在(0,+∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 < 5.30.8 (2)y=x0.3在(0,+∞)内是增函数
1.下列函数中是幂函数的是(
)
A.y=3x2
B.y=2x
C.y=x-1+1
D.y=x3.14
【答案】 D
2 2 3.已知幂函数f(x)=xα的部分对应值如表:则f(8)=_______.
x f(x )
1 1
4 2
4.已知幂函数f(x)=(4m - 1)x1 - m (1) 若点(a , 3)在该函数的图像上,则a = 9 (2) f(x)的定义域是 [0,+ ∞ )
-2
-3
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
1
3
y=x 2
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
2.3__幂函数_(第一课时)
2.3 幂函数(第一课时)1、下列函数中,其定义域和值域不同的函数是( ) A.31x y =B. 21-=xy C. 35x y = D. 32x y =2、如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-123、以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错4、已知幂函数f(x)的图象经过点(2,22),则f(4)的值为( )A .16 B.116 C.12D .25、下列幂函数中,定义域为{x|x >0}的是( )A .y =x 23 B .y =x 32 C .y =x -13 D .y =x -346、已知幂函数的图象y =xm 2-2m -3(m ∈Z ,x≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( ) A .-1或1 B .-1,1或3 C .1或3 D .37、下列结论中,正确的是( )①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0)③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④8、在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( ) A .1个 B .2个 C .3个 D .4个9、幂函数f(x)=x α满足x >1时f(x)>1,则α满足条件( ) A .α>1 B .0<α<1 C .α>0 D .α>0且α≠110、函数f(x)=(1-x)0+(1-x)12的定义域为________.11、幂函数f(x)的图象过点(3,3),则f(x)的解析式是________.12、设x ∈(0,1)时,y =x p (p ∈R)的图象在直线y =x 的上方,则p 的取值范围是________.13、如图所示的函数F(x)的图象,由指数函数f(x)=a x 与幂函数g(x)=x α“拼接”而成,则a a 、a α、αa 、αα按由小到大的顺序排列为________.14、函数f(x)=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,试确定m 的值.15、已知函数f(x)=(m 2+2m)·x m2+m -1,m 为何值时,f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?16、已知幂函数y =x m2-2m -3(m ∈Z)的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.17、求下列幂函数的定义域,并指出其奇偶性、单调性.(1)y=x 52;(2)y=x 43-;(3)y=x -2.18、比较下列各组数的大小:(1)1.531,1.731,1; (2)(-22)32-,(-710)32,1.134-;(3)3.832-,3.952,(-1.8)53; (4)31.4,51.5.19、幂函数f (x )=ax mm82-(m ∈Z )的图象与x 轴和y 轴均无交点,并且图象关于原点对称,求a 和m.。
高中数学_幂函数第一课时教学课件设计
f (x1) f (x2 )
x1
x2
(
x1
x2 )( x1
x2 )
x1 x2
x1 x2
x1 x2
因为 x1 x2 0, x1 x2 0
所以 f (x1) f (x2 )
即幂函数 f (x) 在x
上0,是增 函数.
例3. 利用单调性判断下列各值的大小。
(1)5.20.8 与5.30.8
一般地,函数y xa 叫做幂函数(power function) ,
其中x为自变量,a为常数。
试一试:下列函数中,哪几个函数是幂函数?
(1)y
x4; (2) y
2x2; (3) y
1 x2
;
(4) y 2x ; (5) y x3 2; (6) y 1
答案:(1)、(3)
例1.已知幂函数 y f (x) 的图象过点(2, 2),试求 出这个函数的解析式.
y=x
y=x2 y=x3 y=x2
y=x-1
定义域 R
R
R [0,+∞) {x|x≠0}
值域 R
奇偶性 奇
[0,+∞)
偶
R [0,+∞)
非奇
奇 非偶
{y|y≠0}
奇
单调性
在R 上增
在(-∞,0]上减, 在R上 在[0,+∞)上增,增
在[0, 在(-∞,0)上减, +∞)上增在,(0,+∞)上减
公共点 (1,1)
(2)0.20.3 与0.30.3
2
2
(3)2.5-5 与2.7 -5
解:(1)y=x0.8在(0,+∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8<5.30.8
幂函数(课件)
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
高一数学《幂函数》PPT课件
函数的性质不同
指数函数的底数是一个大于0且 不等于1的常数,而幂函数的底 数可以是任意实数。此外,指 数函数的值域为正实数集,而 幂函数的值域为非负实数集。
图像的形状不同
指数函数的图像是一条经过点 (0,1)的曲线,而幂函数的图像 是一条经过原点的曲线。
02
常见幂函数类型及其特点
一次幂函数
表达式
幂的乘方法则
幂的乘方
底数不变,指数相乘。公式: (a^m)^n = a^(m×n)
举例
(2^3)^4 = 2^(3×4) = 2^12; (x^2)^5 = x^(2×5) = x^10
积的乘方法则
积的乘方
把积的每一个因式分别乘方,再把所得的幂相乘。公式: (ab)^n = a^n × b^n
举例
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
幂函数性质
幂函数的性质包括定义域、值域、奇偶性、单调性等。例如,当a>0时,幂函数在定义域内 单调递增;当a<0时,幂函数在定义域内单调递减。
幂函数图像
幂函数的图像根据a的不同取值而呈现出不同的形态,如直线、抛物线、双曲线等。通过图像 可以直观地了解幂函数的性质。
易错难点剖y = x^n(n为实数)
图像
02
一条直线(n=1时)或射线(n≠1时)
性质
03
当n>0时,函数在(0, +∞)上单调递增;当n<0时,函数在(0,
幂函数教案(第一课时)
幂函数教案(第一课时)无锡市八士中学 李强教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。
本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。
幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数21132xy ,xy ,x y ,x y ,x y =====-。
组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。
对于幂函数,只需重点掌握21132xy ,x y ,x y ,x y ,x y =====-这五个函数的图象和性质。
学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。
学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。
因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
教学目标:㈠知识和技能1.了解幂函数的概念,会画幂函数32x y ,x y ,x y ===,1x y -=,21xy =的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2.了解几个常见的幂函数的性质。
㈡过程与方法1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
2.使学生进一步体会数形结合的思想。
㈢情感、态度与价值观1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。
教学重点常见幂函数的概念和性质教学难点幂函数的单调性与幂指数的关系教学过程一、创设情景,引入新课问题1:如果张红购买了每千克1元的水果w 千克,那么她需要付的钱数p (元)和购买的水果量w (千克)之间有何关系?(总结:根据函数的定义可知,这里p 是w 的函数)问题2:如果正方形的边长为a ,那么正方形的面积2a S =,这里S 是a 的函数。
新课标人教版必修一幂函数课件(共11张PPT)
代 兵
高中数学必修1同步辅导课程——幂函数
知识要点:
1:幂函数的定义:
一般地,函数y x 叫做幂函数, 其中x是自变量,
是常数.
注: 1 1.对于幂函数,我们重点讨论 =1,2,3, ,-1 2 时的情形。(对照教材,作出上述图像)
2.幂函数不同于指数函数和对数函数,其定义域
1
高中数学必修1同步辅导课程——幂函数
p x (0,1) 变式1: 时,函数 y x 的图像在直线 y x
上方,则P的取值范围是_________.
高中数学必修1同步辅导课程——幂函数
变式2:如果函数 f ( x) (m m 1) x
2
m2 ;∞ )内是减函数,求满足条件 的实数m的集合。
1.所有的幂函数在(0,+∞)都有定义,并且函 数图象都通过点(1,1);
a>1 0<a<1
2.如果a>0,则幂函数的图象过点 (0,0),(1,1)并在(0,+∞)上为增函数;
a<0
3.如果a<0,则幂函数的图象过点(1,1), 并在(0,+∞)上为减函数; 其它象限的图像可由函数奇偶性对称作出
高中数学必修1同步辅导课程——幂函数
典型题例:
例1:若f(x)=(m2-3m+3)x3为幂函数,求m的值
解析:由题意: m2-3m+3=1 解得:m=1或4
高中数学必修1同步辅导课程——幂函数
例2:如图所示,曲线是幂函数 y = xa 在第一象
1 限内的图象,已知 a分别取 1,1, , 2 2
四个值,则相应图象依次为:________
高中数学必修1同步辅导课程——幂函数
高中数学人教A版必修一《幂函数》课件1
(1,1)
高中数学人教A版必修一第二章2.3《 幂函数 》课件( 共25张 PPT)
探究1
你能找出所有幂函数的共同特性吗?
探究2
你能找出所有α>0的幂函数的共同特性吗?
探究3
你能找出所有α<0的幂函数的共同特性吗?
高中数学人教A版必修一第二章2.3《 幂函数 》课件( 共25张 PPT)
高中数学人教A版必修一第二章2.3《 幂函数 》课件( 共25张 PPT)
1
(4) y=x2
(2) y=x2 (5) y=x-1
(3) y=x3
高中数学人教A版必修一第二章2.3《 幂函数 》课件( 共25张 PPT)
高中数学人教A版必修一第二章2.3《 幂函数 》课件( 共25张 PPT)
正抛负双 大竖小横
高中数学人教A版必修一第二章2.3《 幂函数 》课件( 共25张 PPT)
归纳总结
幂函数的性质
1.所有的幂函数在(0,+∞)都有定义,并且函数图 象都通过点(1,1);
2.如果α>0,则幂函数的图象过 y 点(0,0),并在(0,+∞)上为增函数; o
α>1 0<α<1
x
3.如果α<0,则幂函数在(0,+∞)上为减函数;
在第一象限内,当x从右边趋近于原
y α<0
点时,图像在y轴右方无限逼近y轴,当
y x3
y x2
yx
1
y x2
y x1
点高指数大
观察幂函数图象,将你发现的结论写在下表 高中数学人教A版必修一第二章2.3《幂函数》课件(共25张PPT)
y=x
y=x2
y=x3 y=x1/2
幂函数的图像和性质(第一课时)课件-高一上学期数学湘教版(2019)必修第一册
新知探究| 几个常见的幂函数
其他的幂函数 也可以这样去 研究它的性质
分子有理化
利用函数性质指导作图再检验,更科学!!!
新知探究| 归纳幂函数的性质
பைடு நூலகம்
新知探究| 归纳幂函数的性质
所有幂函数都在y轴右侧有图像,并且都出现在第一象限,如何解释?
新知探究| 归纳幂函数的性质
幂函数图像都过点(1,1),你能在解析式中找到答案吗?
新知探究| 归纳幂函数的性质
代关数于方这法些的一证般明性验结证论了,我能们用观代察数图方像法得证到明的吗结?论。
新知探究|归纳幂函数的性质
后期我们就可以利用奇偶性把幂函数的图像补充完整。
新知探究| 幂函数性质的应用
思考题
新知探究| 幂函数性质的应用
思考题
3 典型例题
典型例题
典型例题
指数幂的方程或 不等式,优先考 虑化为同底
湘教版高中必修第一册
幂函数的图像和性质
教学课件
1 新课导入
新课导入
上述函数的解析式有什么共同特征呢?
2 新知探究
新知探究| 幂函数的定义
新知探究| 幂函数的定义
正整数次幂函数
整数次幂函数
幂函数
负整数次幂函数
分数次幂函数
这几个常见的幂函数是我们研究幂函数性质的窗口!!!
新知探究| 几个常见的幂函数
4 课堂练习
课堂练习
5 课堂小结
课堂小结
利用奇偶性就可以把图像补充完整。
6 作业布置
作业布置 书面作业:习题4.1 8、13 补充作业:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数(第1课时)
学习目标: 知识与技能 通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性. 教学重点:
重点 从五个具体幂函数中认识幂函数的一些性质.
难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.
新知探究:
(1)创设情境:思考下列实际问题
问题1:如果张红购买了每千克1元的蔬菜x 千克,那么她需要付的钱数y = 元, 问题2:如果正方形的边长为x ,那么正方形的面积是y = , 问题3:如果正方体的边长为x ,那么正方体的体积是y = , 问题4:如果正方形场地的面积为x ,那么正方形的边长y= ,
问题5:如果某人x h 内骑车行进了1km ,那么他骑车的平均速度y = km/h , 思考1:这些函数有什么共同的特征?
总结:幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数, 为未知数. 例1:判断下列函数是否为幂函数:
(1)x y =;(2)2
1
x y =;(3)2x y =;(4)1-=x y ;
(5) y=2x 2;(6) y=x 3+2;(7) y= -x 2 ;(8)y=1
例2、幂函数y =f (x )的图象经过点(2),试求解析式.
例3、已知函数()221(2)m m f x m m x
+-=+ 是幂函数,试确定m 的值。
(2)幂函数性质探究
由具体幂函数的图像和性质来探究幂函数的性质:
思考2:幂函数的图象能过第四象限吗?
例3、求下列函数的定义域和值域.
总结:在研究幂函数的定义域时,通常将分数指数幂化为根式形式,负整数指数幂化为分式形式,然后由根式、分式有意义求定义域;。