第五章线性系统的频域分析
长安大学:自动控制原理第五章 线性系统的频域分析
A () 1 0 T
() 0
() 90
V() A() sin ()
长安大学信息工程学院
自动控制理论
第五章
二、研究频率特性的意义 1、频率特性是控制系统在频域中的一种数学模型,是研究自 动控制系统的另一种工程方法。 2、根据系统的频率性能间接地揭示系统的动态特性和稳态特 性,可以简单迅速地判断某些环节或参数对系统性能的影响, 指出系统改进的方向。 3、频率特性可以由实验确定,这对于难以建立动态模型的系 统来说,很有用处。 三、频率特性的求取方法 1、已知系统的系统方程,输入正弦函数求其稳态解,取输 出稳态分量和输入正弦的复数比; 2、根椐传递函数来求取; 3、通过实验测得。
设
x c (t) ae jt ae jt b1es1t b2es2t ... b1esn t
A AG( j) ( s j ) | s j s 2 2 2j
( t 0)
对于稳定的系统, -s1,s2,…,sn 其有负实部
x c (t) ae jt ae jt
a G(s)
a G (s)
CHANG’AN UNIVERSITY
A AG( j) ( s j ) | s j s 2 2 2j
长安大学信息工程学院
自动控制理论
第五章
a
AG( j) 2j
AG( j) a 2j
G( j) | G( j) | e jG( j) | G( j) | e jG( j)
幅频特性 相频特性 实频特性 虚频特性
CHANG’AN UNIVERSITY
A() | G ( j) | U 2 () V 2 () 1 V() () G( j) tg U () U() A() cos()
四、线性系统的频域分析法
其中: A()Ac (j) 幅频特性
A
() (j) 相频特性
RC网络频率特性的物理意义:
1 A()
0.707
频带宽度
b
01 2 3 4 5
TTTT T
() 0
相角迟后
90
01 2 3 4 5
TTTT T
对稳定的线性系统,其频率特性如下:
设: (s)C R ((s s))b a 0 0 ssm n b a 1 1 s sm n 1 1 .... a .b .m n 1 1 s s a b n m
微分环节: s 惯性环节: 1/(Ts1) 一阶微分环节: Ts1
振荡环节: 1 /s (2/ n 2 2s/ n 1 )0 , 1
二阶微分环节: s2/n22 s/n 1 ,01
例如:G(s)s(0.5s K 1()ss( 21 )2s5) 由上述的5个环节组成。
A()1/ ()900
db 60 40 20 0 900
[20]
0.1
1
j
0
幅相曲线
对数频率特性曲线
L()2l0g A()
20lg () 900
10
3)微分环节: s 由 G(s)s
A() ()900
db 60 40 20 0 90 0 00
uc
ur
ur Asi nt c u c
设初值为0, 对上式拉氏变换,设A=1,得:
Uc(s)RC 1s1Ur(s) s1/1T/Ts2 2
RC网络
TRC
s1x/Tsy2sz2 (xy)s2( s (z1 /T y)/T s(2) s x 2 )2z/T
第5章-线性系统的频域分析法
0.1 0.2
0.5
1
2
5
10
20
50
() -96.3 -102.5 -116.6 -140.7 -164.7 -195.3 -219.3 -240.6 -257.5
5-4 频率域稳定判据
一、奈氏判据的数学基础 1、幅角原理
设F(s)为复变函数,F(s)
在s平面上任一点 K*(s z1)(s z2) (s zm)
G( j) j L() 20lg () 90
L(dB) 40 20
0 0.01 0.1
1
20
20dB / dec
10
-40
( ) 90
0 0.01 0.1
1
90
10
4、一阶惯性环节
G(
j)
1
Tj
1
1
e arctgT
1 T 22
L() 20 lg 1 T 22
() arg tgT
5-1 引言
频率特性是研究自动控制系统的一种工程方法,它 反映正弦信号作用下系统性能。应用频率特性可以 间接地分析系统的动态性能与稳态性能。频率特性 法的突出优点是组成系统的元件及被控对象的数学 模型若不能直接从理论上推出和计算时,可以通过 实验直接求得频率特性来分析系统的品质。其次, 应用频率特性法分析系统可以得出定性和定量的结 论,并且有明显的物理意义。在应用频率特性法分 析系统时,可以利用曲线,图表及经验公式,因此, 用频率特性法分析系统是很方便的。
1
T
() 45
L(dB) 0
20
40
60 ( )
0
1 T
精确特性
45
90
渐进特性
20dB/ dec
自动控制原理课件:线性系统的频域分析
包围坐标原点 − 周。
m
F (s)
K1 ( s z j )
j 1
n
i 1
( s pi )
24
• 02
基本概念
m
1 G ( s) H ( s) F ( s)
K1 ( s z j )
j 1
在 平面上的映射曲线 F 1 G ( j ) H ( j )将按逆时针方向
围绕坐标原点旋转 = − 周。
如果在s平面上,s沿着奈奎斯特回线顺时针方向移动一周时,
在 平面上的映射曲线围绕坐标原点按逆时针方向旋转 =
周,则系统为稳定的。
26
根据
( 1, j 0)
L( ) 20 lg K 20 lg 1 12 2 20 lg 1 22 2
( ) arctg 1 arctg 2
τ2
20dB / dec 1
2
L3 ( )
L2 ( )
40dB / dec
( )
0
L( )
90
A( ) 1, ( )
L ( ) 20 lg A( ) 0
L( )
jQ( )
L( ) 0
0
( )
1
0
1
P( )
1
0
30
60
16
5.3
系统开环频率特性图
设开环系统由n个典型环节串联组成
G(s ) G 1(s )G 2(s ) G n(s )
这意味着 的映射曲线 F 围绕原点运动的情况,相当于
第五章线性系统的频域分析法
对 A(ω ) 求导并令等于零,可解得 A(ω ) 的极值对应的频率 ω r 。
ω r = ω n 1 2ζ 2
该频率称为谐振峰值频率。可见,当 ζ = 当ζ
> 1 2
s = jω
G( jω) =| G( jω) | e
j∠G( jω)
= A(ω)e
j (ω)
G( jω) = G(s) |s= jω
G( jω) = G(s)|s= jω =| G( jω)| e j∠G( jω) = A(ω)e j(ω)
A A j (ω ) k1 = G( jω ) e k2 = G( jω ) e j (ω ) 2j 2j
可以作为系统模型
G( jω) = G(s) |s= jω = G( jω) e j(ω)
定义 幅频特性
A(ω ) =| G( jω ) |
(ω ) = ∠G ( jω )
它描述系统对不同频率输入信号在稳态时的放大特性; 它描述系统对不同频率输入信号在稳态时的放大特性; 相频特性
它描述系统的稳态响应对不同频率输入信号的相位移特性; 它描述系统的稳态响应对不同频率输入信号的相位移特性; 幅频特性和相频特性可在复平面上构成一个完整的向量 G ( jω ), 频率特性。 频率特性 G ( jω ) = A(ω )e j (ω ) ,它也是 ω 的函数。G( jω) 称为频率特性 还可将 G ( jω ) 写成复数形式,即
A(ω ) = 1 1 + T 2ω 2 ,
G (s) =
1 Ts + 1
G ( jω ) =
1 jT ω + 1
(ω ) = tg 1T ω
幅频特性 L(ω) = 20log A(ω) = 20log K 20log 1+ T 2ω2 低频段:当Tω << 1时,ω 高频段:当 Tω >> 1时, ω
第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】
)2
A(0) 1 (0) 0
G(jn )
A() 0 () 180
j
G(j0)
●
0
G(jn )
共振点
G( jn ) (n ) 0 G( jn ) (n ) 180
变化趋势 0 n () 0 , A() :1
n () 180 , A() : 0
零阻尼振荡环节在自然振荡频率处,相角突变180°。
A()
谐振现象是振荡系统的 特性,谐振频率 r 与系 统固有频率 n 和阻尼比
有关。当谐振频率等于
频率响应峰值
Mr 1/ (2 1 2 )
阶跃响应超调
p exp( / 1 2 )
固有频率时,则发生共振。
共振的危害巨大。
当阻尼比较小,且系统谐振频率处于输入信号的
频率范围时,系统输出会出现很大的振荡,影响系
5.2 典型环节与开环系统的频率特性
环节是系统的基本组成单元。將环节进行分类形成 典型环节。典型环节的频率特性是开环系统频率特性 的分解,而开环系统频率特性是闭环系统分析与设计 的基础。
一、典型环节的频率特性
1.典型环节的分类
环节:系统增益、零点或极点对应的因式
分类:按照增益的正负性、零点或极点的位置(实数 或复数、位于左半平面或右半平面)进行划分,共分 为最小相位、非最小相位两大类、12种典型环节。
设互为倒数的典型环节频率特性为
G1(j)=A1()e j1() G2 (j) =A2 ()e j2 ()
则由 G1(s) 1/ G2 (s) 得
A1()e j1 ( ) =A21()e j2 ( )
L1() L2 ()
互为倒数典型环节的对数相频曲线关于0°线对称, 对数幅频曲线关于0dB线对称。
线性系统的频域分析法
第五章线性系统的频域分析法5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。
图5-1 问5-1图称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
5-2 频率特性与传递函数的关系是什么?试证明之。
证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。
证明如下。
假设系统传递函数为:输入时,经拉氏反变换,有:稳态后,则有:其中:将与写成指数形式:则:与输入比较得:幅频特性相频特性所以是频率特性函数。
5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。
答频率特性的几何表示一般有3种方法。
⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。
它以频率为参变量,以复平面上的矢量来表示的一种方法。
由于与对称于实轴,所以一般仅画出的频率特性即可。
⑵对数频率特性曲线(伯德图)。
此方法以幅频特性和相频特性两条曲线来表示系统的频率特性。
横坐标为,但常用对数分度。
对数幅频特性的纵坐标为,单位为dB。
对数相频特性的纵坐标为,单位为“。
”(度)。
和都是线性分度。
横坐标按分度可以扩大频率的表示范围,幅频特性采用可给作图带来很大方便。
⑶对数幅相频率特性曲线(尼柯尔斯曲线)。
这种方法以为参变量,为横坐标,为纵坐标。
5-4 什么是典型环节?答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为典型环节。
①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节;⑤一阶微分环节;⑥延迟环节;⑦振荡环节;⑧二阶微分环节 ;⑨不稳定环节。
典型环节频率特性曲线的绘制是系统开环频率特性绘制的基础,为了使作图简单并考虑到工程分析设计的需要,典型环节对数幅频特性曲线常用渐近线法近似求取。
线性系统的频域分析方法教学课件PPT开环频率曲线的绘制
h
7
二、开环幅相曲线的绘制(1)
绘制方法 (1)起点 0 和终点 ; (2)与实轴的交点 ( x , 0 ) ; 穿越频率: x
(3)变化范围(象限和单调性)。
Im [G (j x)H (j x)] 0 (x ) G ( jx ) H ( jx ) k ;k 0 , 1 , 2 ,
G( jx )H( jx ) K
25.11.2020
h
12
二、开环幅相曲线的绘制(5)
例5.设系统开环传递函数为
试绘制系统开环概G 略(s)幅H (相s)曲s 线(T s 。 1 )(K s2 n 2 1 ); K ,T0
解:
起点: G (j0 )H (j0 ) 9 0 终点: G (j )H (j )0 3 6 0
h
2
10
二、开环幅相曲线的绘制(4)
例3 已知单位反馈系统开环传递函数为
G (s ) K (s 1 ) ; s (T 1 s 1 )(T 2 s 1 )
K ,T 1 ,T 2 , 0
试绘制系统概略开环幅相曲线。
解:起点: Gj090
终点:
Gj0180
25.11.202曲线的绘制(5)
25.11.2020
h
3
一、典型环节及其频率特性(2)
非最小相位系统环节 1)比例环节 K (K0) 2)惯性环节 1/(1 T s) (T0 )
3)一阶微分环节 1Ts (T0)
4)振荡环节 1 /( s 2 /n 2 2 s /n 1 )(n 0 ,0 1 )
5)二阶微分环节 s 2 /n 2 2 s /n 1(n 0 ,0 1 )
第五章 线性系统的频域分析法
5-1 引言 5-2 频率特性 5-3 开环频率特性曲线的绘制 5-4 频域稳定判据 5-5 稳定裕度 5-6 闭环系统的频域性能指标
自动控制原理第五章线性系统的频域分析法
自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。
(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。
非最小相位环节的频率特性。
(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。
单环系统开环对数频率持性的求取与绘制。
最小相位系统开环对数幅频特性与相频特性间的对应关系。
(4)奈奎斯特稳定判据幅角定理。
S平面与F平面的映射关系。
根据开环频率特性判别闭环系统稳定性的奈氏判据。
奈氏判据在多环系统中的应用和推广。
系统的相对稳定性。
相角与增益稳定裕量。
(5)二阶和高阶系统的频率域性能指标与时域性指标。
系统频率域性能指标。
二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。
(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。
用等M圆线从开环频率特性求取闭环频率特性。
用尼氏图线从开环对数频率特性求取闭环频率特性。
2、重点(l)系统稳态频率响应和暂态时域响应的关系。
(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。
(3)奈奎斯特稳定判据和稳定裕量。
5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。
频域分析是控制理论的一个重要分析方法。
5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。
自动控制原理第五章线性系统的频域分析
第五章 线性系统的频域分析例5-1 已知一控制系统结构图如图5-1所示,当输入r (t ) = 2sin t 时,测得输出c (t )=4sin(t -45︒),试确定系统的参数ξ ,ωn 。
图5-1 系统结构图解:系统闭环传递函数为222()2nn ns s s ωΦξωω=++ 系统幅频特性为2()j Φω相频特性为222arctan)(ωωωξωωϕ--=nn由题设条件知c (t ) = 4sin( t -45︒) =2 A (1) sin(t + ϕ(1)) 即122222224)()1(=+-=ωωωξωωωnnnA 24)1(22222=+-=nnnωξωω1222arctan)1(=--=ωωωωξωϕn n ︒-=--=4512arctan2n nωξω整理得]4)1[(422224n n n ωξωω+-= 122-=n n ωξω解得 1.244n ω=,0.22ζ=例5-2 已知系统传递函数为)5.0)(2()52(10)(2-++-=s s s s s G ,试绘制系统的概略幅相特性曲线。
解:(1)传递函数按典型环节分解)15.0)(12()1)5(51251(50)(2+-++--=s s s s s G(2)计算起点和终点50)(lim 0-=→ωωj G ,10)(lim =∞→ωωj G相角变化范围:不稳定比例环节-50:-180︒ ~ -180︒;惯性环节1/(0.2s +1):0︒~ -90︒;不稳定惯性环节1/(-2s +1):0︒~ +90︒;不稳定二阶微分环节0.2s 2-0.4s +1:0︒~ -180︒(3)计算与实轴的交点22222)5.1()1()5.11)(25(10)(ωωωωωωω++-----=j j j G2222222)5.1()1()]5.35.5(3)1)(5([10ωωωωωωω+++-+++--=j(4) 确定变化趋势 根据G (j ω)的表达式,当ω <ωx 时,I m [G (j ω)] < 0;当ω >ωx 时,I m [G (j ω)] > 0。
自动控制原理第五章 线性系统的频域分析法-5-1
如同收音机、电视机一样,任一系统的频率响应反映系统的频率特性,体现系统的控制性能。
系统频率特性物理意义明确。应用频率特性分析研究系统性能的方法称为频域分析法。
控制系统的频域分析法兼顾动态响应和噪声抑制的要求,可以拓展应用于非线性系统。
频率特性定义
分别称为系统的幅频特性和相频特性。
系统数学模型间的关系
控 制 系 统
傅氏变换
拉氏变换
g(t)
数学建模
例5.1-1
图示系统,设输入为r(t)=sin(5t),计算系统的频率响应和稳态误差。
当
1
2
3
4
5
6
7
8
9
10
20
100
1
2
3
4
5
6
7
8
9
10
0
0.301
0.477
0.602
0.699
0.788
0.845
0.903
0.954
1
十倍频程
两倍频程
0.1
0.2
200
十倍频程
十倍频程
对数坐标的单位长度
⑶ 对数频率特性曲线
对数幅频特性曲线 纵坐标: ,线性刻度,单位为分贝(dB) 横坐标:ω ,对数刻度,单位为弧度/秒(rad/s)
绘制一阶系统幅相频率特性曲线
解:系统频率特性为
且有
即
复平面上位于第Ⅳ象限圆心为(1/2,j0),半径为1的半圆。
箭头表示随ω增加,曲线的运动方向
2. 对数频率特性曲线(对数坐标图、伯德(Bode)图)
⑴ 频率特性的常用对数函数
线性系统的频域分析_自动控制原理
X G(-j )X d 1 G(s) 2 (s j ) S -j 2 2j s X G(j )X d 2 G(s) 2 (s - j ) S j 2 2j s G(j ) | G(j ) | e j G(-j ) | G(-j ) | e - j | G(j ) || G(-j ) |
第五章 线性系统的频域分析 §1 频率响应及其描述
一.频率特性 1.频率特性的基本概念 a.RC网络
右图所示的RC 网络的微分方程为
0 T dU dt U 0 U i
R UI C U0
式中
T RC 则
U 0 (S) U i (S)
1 TS 1
设 U i Asin t U 0 (S)
说明: 1.在稳态求出的输出信号 与输入信号的幅值比是 的非 线性函数, 称为幅频特性 Y/X | j ) | 2.输出信号与输入信号的 相位差是的非线性函数 ,称 为相频特性 .它描述在稳态情况下 ,当系统输入不同频率 的谐波信号时 , 其相位产生超前 ( 0 )或滞后( 0 )的 特性. 3.幅频特性和相频特性总 称为频率特性 , 记为 G(j ) G(j ) e jG(j ) 4.频率特性的求取 G(j ) G(s) s j
X(t) xsint Y(S)
B( s ) x ( s s1 )( s s2 ) ( s sn ) (s j )(s - j ) d1 d2 c1 cn s j s j s s1 s sn
y(t) d1e - jt d 2e jt c1e s1t c n e sn t 对于稳定系统 ,由于极点S1 , S2 , , Sn都有负实部 , 所以当t 时 y ss ( t ) d1e jt d 2e jt
自动控制原理的MATLAB仿真与实践第5章 线性系统的频域分析
7
【例5-1】 试绘制惯性环节G(jω)=1/(2s+1)的Nyquist曲线 和Bode图。
解:程序如下:
>>clear
G=tf(1,[2,1]); %建立模型
nyquist (G); %绘制Nyquist图
figure(2); bode (G); %绘制Bode图
4
ngrid;ngrid(‘new’):绘制尼科尔斯坐标网格即等 20lgM圆和等角曲线组成的网格。‘new’代表清除以前 的图形,与后一个nichols()一起绘制网格。
semilogx(w,20*log10(mag)):绘制半对数坐标下的幅 频特性曲线。
semilogx(w,phase*180/pi):绘制半对数坐标下的相频 特性曲线。
MATLAB提供了许多用于线性系统频率分析 的函数命令,可用于系统频域的响应曲线、参数分析 和系统设计等。常用的频率特性函数命令格式及其功 能见表5-1。 bode (G):绘制传递函数的伯德图。其中:G为传递
函数模型,如:tf(), zpk(), ss()。 bode(num,den):num,den分别为传递函数的分子与
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
6
5.2.1 Nyquist曲线和Bode图
MATLAB频率特性包括幅频特性和相频特性。 当用极坐标图描述系统的幅相频特性时,通常称为 奈奎斯特(Nyquist)曲线;用半对数坐标描述系 统的幅频特性和相频特性时,称为伯德(Bode) 图;在对数幅值-相角坐标系上绘制等闭环参数( M和N)轨迹图,称为尼克尔斯(Nichols)图。
运行结果如图5-2所示。
《自动控制原理》 胡寿松 第05#1章 线性系统的频域分析法
用,它也是经典控制理论中的重点内容。
本章主要学习内容如下: 5.1 频率特性
5.2 典型环节和开环系统频率特性
5.3 频域稳定判据
5.4频域稳定裕度
5.5 闭环系统的频域性能指标
5.1 频率特性的一般概念
1 频率特性的基本概念
首先我们以图示的RC滤波网络为例,建立频
率特性的基本概念。
R i(t) C
②实验方法
(原理后续介绍)
三种数学模型之间的关系
频率特性也是描述系统的一种动态数学模型。
与微分方程和传递函数一样,也表征了系统的运动
规律。
例1 已知系统传递函数 G ( s)
1 ,输入正弦信号 s 1 r (t ) 3sin(2t 30) ,求稳态输出响应 Css (t ) ?
G ( j ) G ( j ) e jG ( j ) 指数形式:
G ( j ) G ( j ) e jG ( j ) U ( ) jV ( ) 实部和虚部形式:
实频特性: 虚频特性:
U () A() cos () V () A( ) sin ( )
(1)频率特性的定义
频率特性:零初始条件下,输出信号与输入信 号的傅氏变换之比,用 G( j) 表示。
C ( j ) G ( j ) G ( s) |s j R( j )
A( ) G ( j ) C ( j ) R ( j )
—幅频特性 —相频特性
( ) G( j )
率的关系曲线;对数相频特性则是相角∠ G(j)
和频率的关系曲线。
伯德图是在半对数坐标纸上绘制出来的。横坐
标采用对数刻度,纵坐标采用线性的均匀刻度。
在绘制伯德图时,为了作图和读数方便,常将
自动控制原理 第五章-2
Determine the stability of the system for two cases (1)K is small(2) K is large
G ( j ) H ( j )
K (1 jT1 )(1 jT2 )( j ) (1 T12 2 )(1 T22 2 ) K ((T1 T2 ) j (1 T 1T2 2 ) (1 T12 2 )(1 T22 2 )
0 ~ 90
K ( j 3) G ( j ) H ( j ) j ( j 1) K [4 j (3 2 )] (1 2 )
Im[G( j ) H ( j )] 0
c 3
G ( j ) H ( j )
K ( j 3) j ( j 1)
越(-∞,-1)区间一次。 开环频率特性曲线逆时针穿越(-∞,-1)区间时,随ω增加,频 率特性的相角值增大,称为一次正穿越N’+。 反之,开环频率特性曲线顺时针穿越(-∞,-1)区间时,随ω增 加,频率特性的相角值减小,则称为一次负穿越N’-。 频率特性曲线包围(-1,j0)点的情况,就可以利用频率特性曲线 在负实轴(-∞,-1)区间的正、负穿越来表达。
除劳斯判据外,分析系统稳定性的另一种常用判据 为奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,是频率法的重要内容,简称奈氏判 据。奈氏判据的主要特点有
1.根据系统的开环频率特性,来研究闭环系统稳定性,而 不必求闭环特征根;
2.能够确定系统的稳定程度(相对稳定性)。 3.可分析系统的瞬态性能,利于对系统的分析与设计; 4.基于系统的开环奈氏图,是一种图解法。
N(s)=0 的根为开环传递函数的极点。
第五章 线性系统的频域分析法
4.还可以推广到研究某些非线性系统。
时域分析法与频域分析法比较:
时域分析法是分析控制系统的直接方法,比较直观、 精确。当往往需要求解复杂的微分方程。 频域分析法是一种图解分析法。它依据系统的又一种 数学模型——频率特性,利用频域指标和时域指标之间的 对应关系,间接地揭示系统的暂态特性和稳态特性,简单 迅速地判断某些环节或者参数对系统的暂态特性和稳态特 性的影响,并能指明改进系统的方向。也是一种工程上常 用的方法。
2 0.707 2
时,谐振峰值 M r 1 。
2 , (0, r ), 0 2 0 2 , ( , ), r 2
4.无谐振时
2 1, (0, ), 2
A( )
1
2 2 2 1 2 4 2 n n 2
参见《信号与系统》
频域分析法的基本介绍 •控制系统的频率特性反映正弦信号作用下系统响应的性能, 是系统的一种数学模型。 •应用频率特性来研究线性系统的经典方法称为频域分析法。 频域分析法具有以下特点:
1.控制系统及其元部件的频率特性可以运用分析法或者实验 法获得,并可用多种形式的曲线来表示,因而系统分析和控 制器设计可以应用图解法进行。
4.系统的开环幅相曲线(Nyquist图)
5.系统的开环对数频率特性曲线(bode图) 6.传递函数的频域实验确定
7.延迟环节和延迟系统
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。
1.典型环节
2.最小相位环节的频率特性
第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
第5章线性系统的频域分析方法
最小相位环节:
特点:某个参数的符号相反
除积分微分外,最小相位环 节有对应的非最小相位环节
非最小相位环节:
非最小相位环节和与之相对 应的最小相位环节的区别在 于其零极点在s平面的位置。
不稳定环节
设有两个系统
1 Ts G1 ( s ) 1 10Ts
和
1 Ts G2 ( s) 1 10Ts
1 典型环节 根据零极点,将开环传递函数的分子和分母多项式分解 成因式,再将因式分类,得到典型环节。 开环系统可表示为若干典型环节的串联形式
设典型环节的频率特性为
幅值相乘, 相角相加
则系统开环频率特性
系统的开环幅频特性和相频特性
系统开环频率特性为组成系统的各典型环节频率特性的合成 系统开环对数幅频特性
A 1 U o (s) [U i ( s ) Tuo 0 ] 代入 U i ( s ) L[ A sin t ] 2 s 2 Ts 1
U o ( s) Tu 1 A A [ 2 Tuo 0 ] o 0 再由拉氏逆变换 Ts 1 s 2 (Ts 1)(s 2 2 ) Ts 1
(1) 幅相频率特性曲线 (Nyquist图,极坐标图)
将频率特性表示为复平面上的向量,其长度为A(ω) , 向量与正实轴夹角为 (ω),则ω变化时,相应向量的矢端 曲线即为幅相曲线。
G( jω)=A(ω)e j(ω) ,G(-jω)=A(ω)e -j(ω)
A(ω)偶, (ω)奇
ω:0→+∞和ω:0→ -∞的幅相曲线关于实轴对称 只绘制ω从零变化至+∞的幅相曲线。 用箭头表示ω增大时幅相曲线变化方向 对于RC网络 G ( j )
j
cos j sin
自动控制原理第五章 线性系统的频域分析法-5-6
5.6 控制系统的频域校正方法
控
结合校正装置,简要介绍串联校正的设计方法。常
制 原
用校正装置分为无源和有源两大类。
理 1. 串联无源校正 包括无源超前、无源滞后和无源滞
后-超前校正三种。无源校正网络由电阻、电容构成。
⑴ 串联无源超前校正
超前校正网络实现形式
Gc
(s)
U U
c r
( (
s s
) )
a4
制 校验相角裕度
原 理
m
arctan
a 21 a=源自arctan3 4
=36.9
=180 +(c)+m 180 167.2 36.9 49.7
达到相角裕度的要求。由于选择超前校正,校正后开
环幅相曲线与负实轴仍无交点,故幅值裕度无穷大,
自然满足要求。
再由
m
T
1 a
=4.4
T 0.114 s
串联超前校正设计步骤
R(s)
K C(s)
例5.6-1 图示反馈系统
-
s(s 1)
要求系统在 r(t)=t 1(t) 时,
稳态误差 e ss 0 .1 ra d ,截止频率 c 4 .4 ra d / s 相角
裕度 4 5 幅值裕度 h d B 1 0 d B ,试设计串联无
源超前网络。
5
Page: 5
自 解:① 设计开环增益,满足稳态要求
动
控 未校正系统为Ⅰ型系统。在单位斜坡输入下,由
制
1
原 理
ess K 0.1
K 10
T 为a的减函数 m 为a的增函数
② 校验待校正系统频域指标 由 L(m) 为a的增函数
自动控制,线性系统的频域分析法习题
,
试确定系统稳定时的 值范围。
解:计算临界点, , ;
, ;
使闭环系统稳定的 值范围: 。
5-18设单位反馈系统的传递函数为
,
试确定闭环系统稳定时的 值范围。
解:计算临界点, , ;
, , 。
使闭环系统稳定时的 值范围: 。
5-19设单位反馈系统的传递函数为
,
试确定相角裕度为45o时参数a的值。
环系统稳定。
采用稳定裕度判断,
;
, ;
;
,解得, ,
; ;
最小相位系统, 且 ,闭环系统稳定。
5-16 已知两个最小相位系统开环对数相频特性曲线如图所示。试分别确定系统的稳定性。鉴于改变系统开环增益可使系统剪切频率变化,试确定闭环系统稳定时,剪切频率 的范围。
解:右图:闭环系统稳定; , ;左图:闭环系统不稳定; 。
,
试分别绘制 时的概略开环幅相曲线。
解: , ; , ;
和 都是递减函数。所有幅相曲线的终止相角均小于起始相角180o,以 趋于原点。
当 时,有 , ,与负实轴有交点 。
5-5已知系统开环传递函数
,
试分别计算 和 时,开环频率特性的幅值 和相位 。
解: ,
, ;
,
, 。
5-6已知系统开环传递函数
5-7 ,
第五章 线性系统的频域分析法
5-1若系统的单位阶跃响应
,
试确定系统的频率特性。
解: , , ;
, 。
或: ; ;
5-2 设系统如下图所示,试确定输入信号
作用下,系统的稳态误差 。
解: ;
, ;
, ;
答案: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统时,应先通过某种方法获得系统的开环
传递函数。频率特性法可以根据系统的开环
传递函数采用解析的方法得到系统的频率特
性,也可以用实验的的方法测出稳定系统或
元件的频率特性。
2020/5/21
北京科技大学自动化学院自动化系
3
6.1 频率特性的概念
1.频率特性的定义
反映系统对正弦输入信号的稳态响应的性能。讨论线性定常系 统(包括开环、闭环系统)在正弦输入信号作用下的稳态输出。
8
6.1 频率特性的概念
几点说明:
(1)幅频特性反映系统对不同频率正弦信号 的稳态衰减(或放大)特性。
(2)相频特性表示系统在不同频率正弦信号 下输出的相位移。
(3)已知系统的传递函数,令 s j ,可
得系统的频率特性。
(4)频率特性包含了系统的全部动态结构参 数,反映了系统的内在性质,因此也是一种数 学模型描述。
频率特性 G( j) 是s j 特定情况下的传递函数。它
和传递函数一样,反映了系统的内在联系。
二、实验法
在系统的输入端输入一正弦信号ui (t ) ASint,测出
不同频率时系统稳态输出的振幅uo和相移 ,便可得
到它的幅频特性 A和相频特性 ()。
三、定义法
对已知系统的微分方程,把正弦输入函数代入,求出其稳态解,
北京科技大学自动化学院自动化系
12
6.1 频率特性的概念
1. 极坐标图—奈奎斯特图 (Nyqusit) —幅相特性曲线
系统频率特性为幅频-相频形式 G( j) G( j) G( j)
2020/5/21
北京科技大学自动化学院自动化系
9
6.1 频率特性的概念
频率特性的数学描述形式为: G( j ) A( )e j ( )
其中:A()是系统的幅频特性。 ()是系统的相频特性。
2
5
1.5
4
3 1
2
0.5
线性系统
1
0
0
-0.5
-1
-2 -1
-3
-1.5 -4
-2
0
0.5
1
1.5
2
2.5
2020/5/21
北京科技大学自动化学院自动化系
2
6.1 频率特性的概念
频率特性法是经典控制理论中对系统进
行分析与综合的又一重要方法。与时域分析 法和根轨迹法不同,频率特性法是根据系统 对正弦信号的稳态响应,即系统的频率特性 来分析系统的频域性能指标。
频域性能指标与时域性能指标之间有着内
在的联系。应用时域分析法和根轨迹法分析
可见,RC电路的频率特性为: G( j ) A( )e j ( )
式中 A( ) 1
1
1 j
1 2 2
为幅频特性
( ) ( 1 ) arctan 1 j
为相频特性
2020/5/21
北京科技大学自动化学院自动化系
7
6.1 频率特性的概念
考虑系统的传递函数:
G(s) U2(s) 1
第六章 线性系统的频域分析
6.1 频率特性的概念 6.2 典型环节Bode图的绘制 6.3 最小相位系统的Bode图绘制 6.4 最小相位系统的Bode图的应用 6.5 本章小结
2020/5/21
北京科技大学自动化学院自动化系
1
本章重点
➢频率特性基本概念 ➢典型环节的对数频率特性 ➢系统频率特性的Bode图形表示方法 ➢最小相位系统 ➢由系统的开环频率特性分析系统的稳定性 ➢系统的稳定裕量
lim
t
u2
U1m sin( t ) 1 2 2
U1m
1
1 j
sin(t 1 ) 1 j
2020/5/21
北京科技大学自动化学院自动化系
6
6.1 频率特性的概念
RC电路的稳态频率响应为:
lim
t
u2
U1m sin( t ) 1 2 2
U1m
1
1 j
sin(t 1 ) 1 j
取输出稳态分量与输入正弦量的复数比即可得到。
2020/5/21
北京科技大学自动化学院自动化系
11
6.1 频率特性的概念
频率特性的表示方法: (一)解析表示
G( j ) G( j )
幅频 — 相频形式
G(
j
)
A(
)e
j
(
)
A()cos() jA()sin()
指数(极坐标)形式 三角函数形式
作用下,输出信号相对输入信号的相移。
2020/5/21
北京科技大学自动化学院自动化系
4
6.1 频率特性的概念
例6-1 求如图RC电路的频率特性。 R
解 RC电路的传递函数为:
u1
G(s) U2(s) 1 1
U1(s) RCs 1 s 1
C u2
设输入 u1 U1m sin t
其拉氏变换为 U1(s)
X ( ) jY ()
实频 — 虚频形式
(二)图示(几何)表示
1、极坐标图 —— Nyquist图(又叫幅相频率特性、或奈奎斯 特图,简称奈氏图)
2、对数坐标图—— Bode图(伯德图) 3、复合坐标图—— Nichocls图(尼柯尔斯图,或尼氏图),一
般用于闭环系统频率特性分析。
2020/5/21
ቤተ መጻሕፍቲ ባይዱ
U1m s2 2
则输出
u2
的拉氏变换为: U2(s)
1 s1
U1m s2 2
2020/5/21
北京科技大学自动化学院自动化系
5
6.1 频率特性的概念
求拉氏反变换,得
暂态分量
稳态分量
u2
U1m 1 2 2
t
e
其中 arctg
U1m sin(t ) 1 2 2
RC电路的稳态频率响应为:
3
-5
0
0.5
1
1.5
2
2.5
3
频率特性是系统(或元件)对不同频率正弦输入信
号的响应特性。
输出的振幅和相位一般均不同于输入量,且随着输
入信号频率的变化而变化。
2020/5/21
北京科技大学自动化学院自动化系
10
6.1 频率特性的概念
获取系统频率特性的途径:
一、解析法 求G(s) 令G(s) |s j G( j )
Xr Xr ( )Sint X r ( )e j0o
系统或 Xc Xc ()Sin(t ())
对象
Xc ( )e j( )
称 A( ) Xc ( ) 为系统的幅频特性,它反映系统在不同频 率正弦信号X作r 用(下) s,t输atic出稳态幅值与输入稳态幅值的比值。
称 ()为系统的相频特性,它反映系统在不同频率正弦信号
如果令:
G( j) G(s)
1
U1(s) s 1 s j
s j j 1
注意: 1 j 1
1
A( )
1 2 2
为幅频特性
( 1
1 j
)
arctan
( )为相频特性
可以证明:
如果令:
传递函数G(s)
G(s) s j G( j) 频率特性
s j
2020/5/21
北京科技大学自动化学院自动化系